
z/OS Communications Server

IP Configuration Guide
Version 1 Release 12

SC31-8775-18

���

z/OS Communications Server

IP Configuration Guide
Version 1 Release 12

SC31-8775-18

���

Note:
Before using this information and the product it supports, be sure to read the general information under “Notices” on page
1575.

Nineteenth Edition (April 2011)

This edition applies to Version 1 Release 12 of z/OS (5694-A01) and to all subsequent releases and modifications
until otherwise indicated in new editions.

IBM welcomes your comments. You may send your comments to the following address.
International Business Machines Corporation
Attn: z/OS Communications Server Information Development
Department AKCA, Building 501
P.O. Box 12195, 3039 Cornwallis Road
Research Triangle Park, North Carolina 27709-2195

You can send us comments electronically by using one of the following methods:

Fax (USA and Canada):
1+919-254-1258

Send the fax to “Attn: z/OS Communications Server Information Development”

Internet e-mail:
comsvrcf@us.ibm.com

World Wide Web:
http://www.ibm.com/systems/z/os/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number. Make sure to
include the following in your comment or note:
v Title and order number of this document

v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2000, 2011.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/systems/z/os/zos/webqs.html

Contents

Figures . xxiii

Tables . xxvii

About this document . xxix
Who should read this document . xxix
How this document is organized . xxix
How to use this document . xxx

Determining whether a publication is current . xxx
How to contact IBM service . xxx

Conventions and terminology that are used in this document xxxi
How to read a syntax diagram . xxxi
Prerequisite and related information . xxxiv
How to send your comments . xxxviii

Summary of changes . xli

Part 1. Base TCP/IP system . 1

Chapter 1. Overview of z/OS Communications Server 3
TCP/IP protocol stack . 4

Multipath channel I/O process . 5
Communications Storage Manager . 5

Connectivity and gateway functions . 5
Network protocol layer . 7
Transport layer . 7
File systems . 7
Application Programming Interfaces . 8

TCP/IP socket APIs provided by z/OS Communications Server 8
z/OS UNIX APIs . 10

Chapter 2. IP configuration overview . 11
IPv6 support . 11
IBM TCP/IP Configuration Demo for z/OS . 11
z/OS UNIX System Services concepts . 16
Overview of data sets and UNIX files . 17

Hierarchical file system concepts . 17
References to installation data sets . 18

Understanding search orders of configuration information. 19
Configuration data set naming conventions. 19

Configuration files for the TCP/IP stack . 28
PROFILE.TCPIP search order . 29
TCPIP.DATA search order . 30

Configuration files for TCP/IP applications. 30
Environment variables. 30

MVS-related considerations . 32
MVS system symbols . 32
Automatic restart manager . 34
Logging of system messages. 34
Accounting - SMF records . 36
Security considerations . 39
Nonreusable ASIDs . 40
TSO command authorization . 41

UNIX System Services security considerations . 41

© Copyright IBM Corp. 2000, 2011 iii

Requirement for an OMVS segment . 41
Authorization of TCP/IP started task user ID . 42
Other user IDs requiring z/OS UNIX superuser authority 42
BPX.DAEMON FACILITY class profile . 43
Program control . 44

Defining TCP/IP as a UNIX System Services physical file system 45
Performance considerations . 47
Fast path support . 48
Considerations for multiple instances of TCP/IP . 50

Common INET PFS. 50
Port management overview . 50
Selecting a stack when running multiple instances of TCP/IP 56
Specifying BPXPRMxx values for a CINET configuration 59

Considerations for Enterprise Extender . 60
Considerations for VIPA . 61
Considerations for Fast Response Cache Accelerator . 62
Considerations for extended address volumes . 63
Considerations for networking hardware attachment . 63

OSA-Express feature in QDIO mode . 63
Steps for converting from IPv4 IPAQENET DEVICE, LINK, and HOME definitions to the IPv4 IPAQENET
INTERFACE statement . 64
Virtual LAN . 67
OSA VLAN . 67
OSA routing . 68
Relationship of VLAN and primary router . 70
Network configuration strategy with VLAN . 71
OSA-Express port sharing . 75
OSA-Express connection isolation . 75
ARP offload and VIPA ARP processing . 76
Checksum offload . 76
TCP segmentation offload . 77
Dynamic LAN idle timer . 77
Optimized latency mode . 77
QDIO inbound workload queueing . 79
Displaying OSA-Express QDIO interface information . 81
HiperSockets concepts and connectivity . 81
QDIO Accelerator . 91
OSA-Express network traffic analyzer trace . 92
Synchronization of OSA-Express2 diagnostic data . 93
Prioritizing outbound OSA-Express data using the Workload Manager service class 94
Fixed storage requirements for OSA-Express QDIO and HiperSockets interfaces 95

Maximum transmission unit considerations. 95
Considerations for multiple servers sharing a TCP port. 97
Considerations for Common Information Model providers 98
Required steps before starting TCP/IP . 99

Planning your installation and migration . 99
Step 1: Install z/OS Communications Server . 100
Verifying the initial installation . 100
Step 2: Customize z/OS Communications Server . 100
Step 3: Configure VMCF and TNF . 103
Step 4: Update the VTAM application definitions . 107
Step 5: Verify that the required address spaces are active 108
Step 6: Start the TCP/IP address space . 108
Step 7: Set up cataloged procedures and configuration data sets 108

Chapter 3. Security . 109
Application security . 110
TCP/IP resource protection . 111

Local user access control to TCP/IP resources using SAF 111
Stack access control . 115
Port access control . 116

iv z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
||

||

||
||

Network access control . 120
OSM access control . 122
Socket option access control . 122
Netstat access control. 125
Fast Response Cache Accelerator access control . 126
TCP/IP stack initialization access control . 126
TCP/IP packet trace service access control. 126
TCP connection information service access control . 127
Real-time SMF information service access control . 127
TCP/IP OSAENTA trace service access control . 127
IPSec network management interface access control . 128
CIM provider access control . 128
Syslogd isolation . 128
IP filtering . 129
Security considerations for the VARY command . 130
Multilevel security. 130

Network security principles . 130
Cryptography: The foundation of good security . 130
End to end security . 131
Workload-based security deployment . 131

Network security protocols . 132
IPSec and VPNs . 132
SSL and TLS. 136
Application Transparent Transport Layer Security . 140
Kerberos . 141
OSPF authentication . 141
Secure DNS . 141
SNMPv3 . 142

Security event reporting: Integrated Intrusion Detection Services 142
Defensive filtering . 144
Network security services for the IPSec discipline . 145
Network security services for the XMLAppliance discipline 149

Chapter 4. Preparing for TCP/IP networking in a multilevel secure environment 153
Understanding multilevel security concepts . 153

Multilevel secure networking . 153
Nonsecure systems . 154
Managed systems . 154
Multilevel secure systems . 154
z/OS Communications Server TCP/IP stacks on z/OS multilevel secure systems. 155
Network security zones . 156
IBM zEnterprise System ensemble . 157
Where your z/OS systems fit in your network . 157

Planning stacks on your z/OS systems . 157
Required configuration in a multilevel secure environment 158
Deciding whether to use restricted or unrestricted stacks 159
Configuring global definitions for all stacks . 160
Exempting certain users of certain programs from full Network Access Control 161
Configuring stack sysplex features in a multilevel secure environment 162
Defining security labels on other profiles in the SERVAUTH class 162

Planning your multilevel secure network . 163
Planning for interactive UNIX System Services users in a multilevel secure environment 164

Steps for creating a separate home directory for each security label 164
Steps for setting stack affinity by security label . 164
Host and domain name by security label . 165

Planning for applications in a multilevel secure environment 165
Configuring z/OS CS applications in a multilevel secure environment 167

Changing your multilevel secure networking environment 182

Chapter 5. TCP/IP Customization . 185

Contents v

||

||

Configuring the syslog daemon . 185
Starting and stopping syslogd . 193
Configuring syslogd to receive remote messages . 198
Offloading log files . 202
Setting permissions for log files and directories . 203
Configuring syslogd for automatic archiving . 204
Using syslogd for z/OS UNIX application programs . 205
Usage notes . 206
Diagnosing syslogd configuration problems . 207

Configuring TCPIP.DATA . 208
Use of TCPIP.DATA and /etc/resolv.conf . 208
Creating TCPIP.DATA . 208
TCPIP.DATA statements . 209
Using MVS system symbols in TCPIP.DATA . 211

Configuring PROFILE.TCPIP . 211
Changing configuration information . 211
Setting up TCP/IP operating characteristics in PROFILE.TCPIP 212
Setting up physical characteristics in PROFILE.TCPIP . 221
Setting up reserved port number definitions in PROFILE.TCPIP 234
Setting up the System Authorization Facility server access authorization class (optional) 240

Configuring the local host table (optional) . 240
Creating HOSTS.LOCAL site host table. 241
Creating /etc/hosts . 243
Creating ETC.IPNODES and /etc/ipnodes . 243

Verifying your configuration . 245
Verifying TCPIP.DATA statement values in the native MVS environment 245
Verifying TCPIP.DATA statement values in the z/OS UNIX environment 245
Verifying PROFILE.TCPIP . 245
Verifying interfaces with Ping and Traceroute . 246
Verifying local name resolution with TESTSITE . 246
Verifying PROFILE.TCPIP and TCPIP.DATA using HOMETEST 246
Verifying your X Window System installation (Optional) 247

Customizing TCP/IP messages . 248
Customizing message catalogs. 248
Customizing message data sets . 252

Chapter 6. Routing . 255
Routing terminology . 255

General terms . 255
Interior Gateway Protocols . 256

Route selection algorithm . 258
The sample network . 258

IPv4 static routing . 260
IPv6 static routing . 263
Static routing configuration examples . 264

z/OS TCPCS4 . 264
z/OS TCPCS7 . 265

IPv4 dynamic routing using OMPROUTE . 267
Open Shortest Path First. 267
Routing Information Protocol . 268

IPv6 dynamic routing using router discovery . 270
Multiple routes from router advertisements . 270

IPv6 dynamic routing using OMPROUTE . 271
IPv6 OSPF protocol . 271
IPv6 RIP protocol . 272

OMPROUTE configuration . 272
Run-time environment . 272
Language Environment run-time considerations . 273
OMPROUTE tuning considerations . 274
Multiple TCP/IP stacks . 274
TCP/IP stack routing table management . 274

vi z/OS V1R12.0 Comm Svr: IP Configuration Guide

||

||
||
||

||

Using RIP, IPv6 RIP, OSPF, and IPv6 OSPF with OMPROUTE 274
Token-ring multicast . 275
Virtual IP addresses . 276
Service policy . 276
Multiple equal-cost routes . 276
Sysplex autonomics . 277
Steps for configuring OMPROUTE . 277

Starting and controlling OMPROUTE . 284
OMPROUTE parameters . 285
Controlling OMPROUTE . 286

Steps for configuring OSPF and RIP (IPv4 and IPv6) . 288
Minimizing the routing responsibility of z/OS Communications Server 309
Preventing futile neighbor state loops during adjacency formation. 311
Verification of OMPROUTE IPv4 configuration and state . 312

Displaying all OSPF configuration information . 313
Displaying information about configured OSPF areas . 313
Displaying configuration information about configured OSPF interfaces 314
Displaying information about configured Non-broadcast Multiple Access OSPF interfaces 314
Displaying information about configured OSPF virtual links. 314
Displaying information about configured OSPF neighbors 314
Displaying the contents of a single OSPF link state advertisement 314
Displaying statistics and parameters for OSPF areas . 315
Displaying the list of AS external advertisements . 315
Displaying a list of non-AS external advertisements . 316
Displaying current, run-time statistics and parameters for OSPF interfaces 316
Displaying current, run-time statistics and parameters for a specific OSPF interface 316
Displaying current, run-time statistics and parameters for OSPF neighbors 317
Displaying current run-time statistics and parameters for a specific OSPF neighbor 317
Displaying routes to other routers that have been calculated by OSPF 318
Displaying the number of LSAs currently in the link state database 318
Displaying statistics generated by the OSPF routing protocol 318
Displaying all of the RIP configuration information. 318
Displaying information about configured RIP interfaces 319
Displaying the routes to be unconditionally accepted . 319
Displaying current run-time information about RIP interfaces 319
Displaying current run-time information about a specific RIP interface 319
Displaying the global RIP filters . 320
Displaying the routes in the OMPROUTE main routing table 320
Displaying the routes to a specific destination in the main routing table 321
Displaying the routes in all OMPROUTE policy-based routing tables 321
Displaying the routes in an OMPROUTE policy-based routing table 323
Displaying the routes to a specific destination in a policy-based routing table 323
Displaying all of the generic configuration information 324
Displaying information about configured generic interfaces 324
Displaying current run-time information about generic interfaces 324

Verification of OMPROUTE IPv6 configuration and state . 324
Displaying all IPv6 OSPF information . 324
Displaying IPv6 OSPF area statistics and parameters . 325
Displaying IPv6 OSPF interface statistics and parameters 325
Displaying statistics and parameters for a specific IPv6 OSPF interface 326
Displaying IPv6 OSPF virtual link statistics and parameters 326
Displaying statistics and parameters for a specific IPv6 OSPF virtual link 326
Displaying IPv6 OSPF neighbor statistics and parameters 326
Displaying statistics and parameters for a specific IPv6 OSPF neighbor 327
Displaying IPv6 OSPF link state database statistics . 327
Displaying IPv6 OSPF link state advertisement . 327
Displaying IPv6 OSPF external advertisements . 328
Displaying IPv6 OSPF area link state database . 328
Displaying IPv6 OSPF router routes . 329
Displaying IPv6 OSPF routing protocol statistics. 329
Displaying all of the IPv6 RIP information. 330

Contents vii

Displaying information about IPv6 RIP interfaces . 330
Displaying information about a specific IPv6 RIP interface 330
Displaying the routes to be unconditionally accepted by IPv6 RIP 331
Displaying the global IPv6 RIP filters . 331
Displaying the routes in the OMPROUTE IPv6 routing table 331
Displaying the routes to a specific IPv6 destination. 333
Displaying all of the IPv6 generic information . 333
Displaying information about IPv6 generic interfaces . 333
Displaying information about a specific IPv6 generic interface 333

Sample OMPROUTE configuration files . 333
Policy-based routing . 337

Options for configuring policy-based routing . 337
Routing policy configuration . 339
Getting started with policy-based routing . 342
Considerations for using policy-based routing with IP security 344

Considerations for mixed routing environments . 345
Using static routing with OMPROUTE . 345
Using IPv6 static routing with router advertisements . 346
Using policy-based routing with static or dynamic routing 346

Verifying static, dynamic, and policy-based routing. 347
Verifying connections with Netstat, Ping, and Traceroute 347

Chapter 7. Virtual IP Addressing . 351
Terminology. 351
Introduction to VIPA . 351
Moving a VIPA (for TCP/IP outage). 353
Static VIPAs, dynamic VIPAs, distributed DVIPAs . 354
Using static VIPAs. 355

Steps for configuring static VIPAs for a z/OS TCP/IP stack 355
Configuring static VIPAs for Enterprise Extender . 358
Considerations when using static VIPAs with IPv6 . 358
Planning for static VIPA takeover and takeback . 358

Using dynamic VIPAs . 359
Configuring DVIPA support . 359
Planning for dynamic VIPA takeover . 360
Different application uses of IP addresses and DVIPAs 362
Configuring dynamic VIPAs . 363
Configuring the multiple application-instance scenario 363
Configuring the unique application-instance scenario . 364

Choosing which form of dynamic VIPA support to use . 370
Configuring distributed DVIPAs — sysplex distributor . 371

Manually quiescing DVIPA sysplex distributor server applications. 375
Route selection for distributing packets. 375
Generic routing encapsulation . 377
Dynamic port assignment . 378
Sysplex-wide source VIPA . 378
GLOBALCONFIG EXPLICITBINDPORTRANGE . 382
Timed affinities . 384
Sysplex-wide security associations . 388

Resolution of dynamic VIPA conflicts . 391
Restart of the original VIPADEFINE TCP/IP after an outage 391
Movement of unique application-instance (BIND) . 393
Movement of a unique APF-authorized application instance (ioctl) 395
Same dynamic VIPA for VIPADEFINE and BIND(), SIOCSVIPA or SIOCSVIPA6 ioctl, or MODDVIPA utility 396
Dynamic VIPA creation results . 396
TIER1, TIER2, and CPCSCOPE keyword DVIPA contention resolution 400

IPv6 considerations . 404
VIPARANGE . 404
VIPADEFINE and VIPABACKUP. 405
Unique application-instance scenario and IPv6-enabled applications 405

VIPAs, OSA-Express QDIO, and Spanning Tree Protocol . 406

viii z/OS V1R12.0 Comm Svr: IP Configuration Guide

Mixture of types of dynamic VIPAs within subnets . 406
MVS failure and sysplex failure management. 407
Applications and dynamic VIPAs. 407
Configuring VIPAs for activation with VIPABACKUP . 408
Example of configuring dynamic and distributed VIPAs . 410
Verifying the DVIPAs in a sysplex . 412

Using Netstat support to verify dynamic VIPA configuration 416
Verifying sysplex distributor workload . 421
Dynamic VIPAs and routing protocols . 425

IPv4 considerations for OMPROUTE . 425
IPv4 considerations for Routing Information Protocol . 427
IPv6 considerations . 427

Chapter 8. TCP/IP in a sysplex . 429
Connectivity in a sysplex . 430

Sysplex subplexing . 430
Dynamic XCF . 434
Network interfaces monitoring . 447
Sysplex problem detection and recovery . 449
Target server connection setup responsiveness monitoring 461

Workload balancing . 462
Single systemwide image . 463
Horizontal growth. 463
Ease of management . 463
Internal load balancing solutions . 464
Sysplex-aware external load balancing solutions . 464
External IP workload balancing solutions . 464
Choosing a load balancing solution . 466

Sysplex distributor . 469
BASEWLM - Distribution using WLM system weights. 469
SERVERWLM - Distribution using WLM server-specific weights 470
Choosing between the BASEWLM and SERVERWLM distribution methods 473
BASEWLM and SERVERWLM display example . 474
WEIGHTEDACTIVE - Distribution based on active connection load 475
Choosing between RoundRobin and WeightedActive distribution 476
Hot standby distribution . 477
Timed affinity . 480
SHAREPORT . 480
QDIO Accelerator . 480
QDIO inbound workload queueing . 480
Optimizing local connections . 480
Policy interactions . 481
Optimized connection load balancing using sysplex distributor in a network with CISCO routers (IPv4 only) 483
Steps for setting up sysplex distributor to be the service manager for the Cisco MNLB (IPv4 only) 484

Sysplex distribution optimizations for multi-tier z/OS workloads 485
Sysplex distributor optimization with the OPTLOCAL keyword 486
Sysplex distributor enhanced workload distribution for z/OS multi-tier, OPTLOCAL configurations 488
Sysplex distributor enhanced workload distribution for z/OS multi-tier, OPTLOCAL configurations with CPC
affinity . 489

Sysplex distribution with DataPower . 491
Scenario 1 overview - sysplex distributor load balancing to DataPower 494
Steps for configuring scenario 1 - sysplex distributor load balancing to DataPower 495
Scenario 2 overview - sysplex distributor load balancing to DataPower in a multi-tier and multisite
environment. 498
Steps for configuring scenario 2 - sysplex distributor load balancing to DataPower in a multi-tier and multisite
environment. 500

Chapter 9. TCP/IP in an ensemble . 505
Steps for configuring an interface for the intraensemble data network (CHPID type OSX) 506
Steps for enabling IPv6 on a stack for access to the intranode management network. 507

Contents ix

||
||
||
||
||
||
||
||
||
||
||
||

||
||
||

Steps for using the intranode management network (CHPID type OSM). 507
Routing considerations for the intraensemble data network 508
OMPROUTE considerations for the intraensemble data network 509
Sysplex distributor considerations for the intraensemble data network 509
Multilevel security and network access control considerations 510

Part 2. Server applications . 511

Chapter 10. Network connectivity with an SNA network 513
SNALINK LU0 environment . 513

Understanding the SNALINK environment . 513
Configuring SNALINK LU0 . 514
Stopping and starting SNALINK . 518
Verifying connection status using Netstat DEVLINKS/-d 520
Controlling the SNALINK LU0 interface with the MODIFY command 520

SNALINK LU6.2 . 520
Configuring SNALINK LU6.2 . 520
Sample console . 522

X.25 NCP Packet Switching Interface . 522
Configuring X.25 NPSI . 523

NCPROUTE . 529
Understanding the NCPROUTE environment. 530
Configuring NCPROUTE . 534

Chapter 11. Accessing remote hosts using Telnet 549
The TN3270E Telnet server . 549

Steps for starting the TN3270E Telnet server . 550
Managing Telnet . 558
Telnet diagnostic tools . 561
Telnet configuration data set customization details . 567

Configuring the z/OS UNIX Telnet server . 649
Installation information . 649
Environment variables . 650
Starting, stopping, and administration of z/OS UNIX Telnet. 651
otelnetd . 654
SMF record handling . 658
BPX.DAEMON considerations . 658
Kerberos . 658

Chapter 12. Transferring files using FTP . 659
Configuring PROFILE.TCPIP for FTP . 660
Configuring ETC.SERVICES . 661
Configuring /etc/syslog.conf . 661
Configuring the FTPD cataloged procedure . 662

Security for the FTP server . 663
Defining environment variables for the FTP server (optional) 669

Configuring FTP with multiple TCP/IP stacks . 670
Configuring TCPIP.DATA for FTP . 671
Configuring FTP.DATA . 671

Optionally configuring user-level server options using FTPS.RC 672
Data set attributes . 672
Specifying attributes for new MVS data sets . 673
Translation of data . 675
z/OS UNIX named pipes . 675
FTP code page conversion . 676

Master catalog access . 678
Customizing FTP message catalogs . 678

Steps for creating a message catalog from the shipped catalog and preserving its timestamp 679
Accounting . 680

Configure the FTP server for SMF (optional) . 680

x z/OS V1R12.0 Comm Svr: IP Configuration Guide

||
||
||
||
||

||

Customizing Transport Layer Security and Kerberos security 681
Steps for customizing the FTP server for TLS. 682
Steps for customizing the FTP server for Kerberos . 688
Steps for customizing the FTP client for TLS . 692
Steps for customizing the FTP client for Kerberos . 697
Port 990 . 700
Steps for migrating the FTP server and client to use AT-TLS. 700
Traversing firewalls with SSL/TLS secure FTP . 702

DB2 and JES. 706
Configuring the optional FTP user exits . 706

The FTPSMFEX user exit . 706
The FTCHKIP user exit . 707
The FTCHKPWD user exit . 707
The FTCHKCMD user exit . 707
The FTCHKJES user exit . 708
The FTPOSTPR user exit . 708

Customizing the FTP-to-JES interface for JESINTERFACELevel 2 (optional). 709
Configuring the FTP server for anonymous logins (optional) 710

Creating an anonymous directory structure in the z/OS UNIX file system 712
Configure the welcome banner page, login, and directory message (optional) 715

Using magic cookies to represent information . 716
Configuring the FTP server to log session (user ID) activity 716
Configuring to send detailed login failure replies to an FTP client (optional) 717
Install the SQL query function (optional) and access the DB2 modules 718

Accessing DB2 modules . 719
FTP.DATA updates for SQL query function . 720

Verifying the FTP server . 720
Verifying the FTP client . 721
Verifying FTP.DATA statements . 722
Verifying anonymous, banner, and other optional configuration information 723
Verifying the FTP-JES interface (optional) . 724

Chapter 13. Trivial File Transfer Protocol . 727
Starting TFTP from the command line . 727
Starting TFTPD as a procedure . 729
Stopping the TFTP server . 730

Chapter 14. The resolver . 731
Resolver API calls . 731
Starting the resolver . 732
The default resolver settings . 733
Customizing the resolver . 733

The resolver setup file . 733
The resolver address space . 738

Managing the resolver address space . 741
Steps for manually restarting the resolver . 741

Steps for applying an interim fix to the resolver . 742
IPv6 name servers and the resolver . 742
Resolver functions . 743

Resolver caching . 744
Monitoring the responsiveness of Domain Name System name servers 752
Extension Mechanisms for DNS standards and the resolver 758

Resolver configuration files. 759
Search orders used in the z/OS UNIX environment . 762
Search orders used in the native MVS environment. 769

Chapter 15. Domain Name System . 775
DNS and BIND overview . 775

Domain names . 776
Domain name servers . 777

Contents xi

||
||
||
||
||
||
||
||

||
||

||
||

Resolvers . 780
Recommended reading . 782

Performance issues . 783
Setting up and running the name server . 784

Configuring a master (primary) name server . 784
Configuring a secondary name server . 800
Configuring a caching-only name server . 802
Configuring a stealth name server . 805
Adding forwarding to your name server . 805
Configuring host resolvers: Name server considerations 805
Configuring host resolvers: onslookup considerations . 805
Creating the syslog file . 806
BIND 9 security considerations . 807
General VIPA considerations . 810
Special considerations when using dynamic VIPA . 810
Dynamic primary DNS movement using dynamic VIPA 811

Querying name servers . 811
nslookup command . 812

Diagnosing problems . 813
Checking messages sent to the operators console . 813
Checking the syslog messages . 814
Using name server signals to diagnose BIND 9 DNS problems 814
Using rndc to diagnose BIND 9 problems . 814
Checking name server logging files to diagnose BIND 9 814
Using nslookup to diagnose problems . 814
Using dig to diagnose problems . 815

Advanced BIND 9 name server topics . 815
Multiple TCP/IP stack (common INET) considerations 815
Dynamic update . 816
Incremental zone transfers . 816
Split DNS . 817
TSIG . 821
DNSSEC . 823
IPv6 support in BIND 9 . 825

DNS-related RFCs . 827
Proposed standards . 827
Proposed standards still under development . 827
Other important RFCs about DNS implementation . 827
Resource record types . 827
DNS and the Internet. 828
DNS operations . 828
Other DNS-related RFCs . 828

Chapter 16. Policy-based networking . 829
Policy types and infrastructure overview . 829
Configuration files and policy definition files . 831

Managing changes to configuration files and policy definition files 832
Storing configuration files and policy definition files . 832
Steps for managing policy changes . 833

Policy infrastructure components . 835
TCP/IP stack . 835
Policy Agent. 835
Traffic regulation management daemon. 840
IKE daemon . 840
Network security services daemon . 840
Defense Manager daemon . 840
SNMP Network SLAPM2 subagent . 840

Sample policy infrastructure . 841
Policy sample files. 841
Policy types . 843

QoS policy . 843

xii z/OS V1R12.0 Comm Svr: IP Configuration Guide

||

IDS policy . 844
IPSec policy . 844
AT-TLS policy . 845
Policy-based routing policy . 846

Steps for configuring the Policy Agent . 848
Step 1: Configure general information . 849
Step 2: Configure Policy Agent as a policy server . 852
Step 3: Configure Policy Agent as a policy client . 857
Step 4: Configure policies in Policy Agent configuration files 858
Step 5: Configure Policy Agent to use the LDAP server using the ReadFromDirectory statement 858
Step 6: Configure Policy Agent for configuration file import services 860
Step 7: Configuring Policy Agent to automatically monitor applications 861

Add SSL to Policy Agent connections . 864
Starting and stopping the Policy Agent . 865

AUTOLOG considerations . 865
Specifying environment variables. 866
Main configuration file search order . 867
Other considerations when starting the Policy Agent . 867
Stopping the Policy Agent . 868

Refreshing policies . 868
FLUSH and PURGE considerations . 869

Switching between local and remote policies . 871
Verifying that policies are correctly defined and functioning properly 872

Chapter 17. Quality of service . 873
Differentiated Services policies . 873
Integrated Services policies . 875
Sysplex distributor policies . 875
QoS-specific Policy Agent functions . 876

Sysplex distributor policy performance monitoring configuration 877
Policy performance collection configuration . 879
IPv4 type of service or IPv6 traffic class mapping configuration 879

Options for configuring QoS . 880
Option 1: Use the IBM Configuration Assistant for z/OS Communications Server 881
Option 2: Manual configuration . 882
Specifying the QoS configuration file based on Policy Agent role 882

Defining policies in a Policy Agent configuration file . 882
Differentiated Services policy examples. 882
RSVP policy example. 884
Sysplex distributor policy example . 884

Defining policies using LDAP . 885
RSVP . 886

Configuring the RSVP agent . 886
Starting and stopping RSVP . 887

SNMP Network SLAPM2 (nslapm2) performance monitor 888
Configuring the Network SLAPM2 subagent . 888
Starting and stopping the Network SLAPM2 subagent 888

Verification . 890
Verifying that the policies are installed in the TCP/IP stacks 890
Verifying that the expected traffic is mapping to the correct QoS policies 890
Verifying that the sysplex distributor policy functions are working correctly 890
Monitoring performance and tuning policies . 891
Using pasearch . 891
Using the Network SLAPM2 MIB to monitor policies . 891

Chapter 18. Intrusion Detection Services . 897
Scan policies. 897
Attack policies . 901
Traffic Regulation policies . 904

TR TCP . 904

Contents xiii

||
||
||
||
||

TR UDP . 905
Options for configuring IDS . 906

Option 1: Use the IBM Configuration Assistant for z/OS Communications Server 906
Option 2: Manual configuration . 907
Specifying the IDS configuration file based on Policy Agent role 907

Defining IDS policies . 908
IDS policy definition considerations . 908
IDS scan policy example. 910
IDS attack policy examples . 912
Traffic Regulation policy examples . 915

Verification . 918
Are the correct policies active? . 918
Is the expected traffic mapping to the correct policies? 918
Are the IDS policy functions working correctly? . 918

TRMD. 919
Running TRMD as a started task . 920
Running TRMD from the z/OS UNIX shell . 920
Stopping TRMD . 920
TRMDSTAT . 921

Defensive filtering . 921

Chapter 19. IP security . 923
Terms and concepts for IP security . 923
Terminology conventions for IP security . 928
Commands used to administer IP security. 928
Overview of using IP security . 929

FIPS 140 and IP security. 930
Configuring IP security . 933

IP filtering . 935
Filter rules and actions . 935
Filtering criteria in an IP packet . 936
Additional filtering criteria based on protocol . 937
Additional filtering criteria based on network attributes 937
IP traffic patterns . 940
Routed traffic and fragmented packets . 940
Conditionally controlling IP filters . 941

Special considerations when using IP security for IPv6 . 941
Neighbor discovery and multicast listener discovery . 941
Stateless address autoconfiguration . 942
IPv6-specific protocols . 942
IPv6 address types . 942
IPv6 extension headers . 942
Considerations for IPv6 OSPF security . 942

Default IP filter policy and IP security policy . 945
Modifying the default IP filter policy . 945

IP filter logging. 966
IP filter discard action . 966
Data encryption and authentication — IPSec . 967

AH and ESP protocols . 967
IPSec and symmetric key management . 973
Manual key management . 973
Dynamic key management - IKE and IPSec negotiations 974
IPSec and network address translation devices . 982
Dynamic structures used to map Security Associations 983

Steps for preparing the z/OS system for IP security . 985
IP security policy configuration . 990

Overview of configuring IP security policy . 990
Steps for configuring local IP security policy using only a common IP security configuration file 993
Steps for configuring remote IP security policy using only a common IP security configuration file. 993
Steps for configuring local IP security policy using only a stack-specific IP security configuration file 994
Steps for configuring remote IP security policy using only a stack-specific IP security configuration file . . . 994

xiv z/OS V1R12.0 Comm Svr: IP Configuration Guide

||

Steps for configuring local IP security policy using both a stack-specific file and a common file 995
Steps for configuring remote IP security policy using both a stack-specific file and a common file 996
Component policies of IP security policy configuration files 997
Quick start using IP filtering and IPSec host-to-host . 1008
Steps for configuring IP security policy . 1026
Configuring specific security models . 1028

Configuring the IKE daemon . 1100
Multiple TCP/IP stacks. 1100
Run-time environment . 1101
Language Environment run-time considerations . 1101
IKE daemon configuration source information . 1101
Policy Agent considerations . 1102
Using network security services . 1102
Certificate revocation checking . 1104
Steps for configuring the IKE daemon . 1105

Starting the IKE daemon . 1109
Stopping the IKE daemon . 1110
Controlling the IKE daemon . 1110
Verifying policy installation . 1110

Console messages . 1110
Displaying TCP/IP configuration . 1111
Displaying active filters with the ipsec command . 1111
Displaying Security Associations with the ipsec command 1130
Displaying filter rules with the pasearch command . 1132
Verifying filter action . 1133

Security Associations . 1137
Activating a Security Association . 1137
Verifying the activation of a Security Association . 1138
Verifying the use of an active Security Association. 1138
Refreshing Security Associations. 1139
Deactivating Security Associations . 1140

Modifying active IP security policy . 1141
IP security policy files . 1141
Policy Agent image configuration files. 1141
Policy Agent main configuration file . 1142
Active Security Associations and the ipsec -f default command 1142

Displaying NSS client information . 1143
Sysplex-wide Security Associations and IP security . 1144

FIPS 140 and sysplex-wide Security Associations . 1145
Sysplex-wide Security Associations in a mixed-level environment 1146
Shadow Security Associations . 1147

Sample IP security policy files . 1148

Chapter 20. Network security services . 1149
Terms and concepts for network security services . 1149
Network security services overview . 1150

NSS IPSec discipline overview . 1151
NSS XMLAppliance discipline . 1151

Preparing to provide network security services . 1152
Steps for authorizing resources for NSS . 1152
NSS server certificate label naming considerations . 1158
NSS client authorization example . 1159
NSS server configuration considerations . 1161
Using hash and URL certificate encoding types. 1166
Creating certificate bundles . 1168
Controlling the NSS server . 1170
NSS server failover considerations . 1171
NSS server capacity considerations . 1172
NSS server certificate revocation support . 1172

Managing network security services . 1172

Contents xv

||

||

||
||

||

Chapter 21. Defensive filtering . 1177
Global and stack-specific defensive filters. 1179
Defensive filter names . 1179
Defensive filter modes . 1179
Allowing administrative access . 1181
Filter-match logging . 1181
TRMD . 1181
Disabling defensive filters for a single stack . 1181
Relationship between Intrusion Detection Services and defensive filters 1182
Comparison of IP security filters and defensive filters . 1182
The DMD run-time environment . 1185
The DMD and Language Environment run-time options. 1185
Enabling defensive filtering . 1186

Enabling the IP security function . 1186
Steps for configuring the DMD . 1187

Steps for authorizing resources for the DMD and the ipsec command 1189
Starting the DMD . 1190
Stopping the DMD . 1190
Using the DMD MODIFY command . 1191

Chapter 22. Application Transparent Transport Layer Security data protection 1193
AT-TLS configuration in PROFILE.TCPIP . 1194
TCP/IP stack initialization access control . 1194
Options for configuring AT-TLS security . 1195

Option 1: Use the IBM Configuration Assistant for z/OS Communications Server 1195
Option 2: Manual configuration . 1196
Specifying the AT-TLS configuration file based on Policy Agent role 1196

AT-TLS policy configuration . 1196
AT-TLS rules . 1197
AT-TLS actions . 1197

Getting started with AT-TLS . 1199
Configuring the server system . 1199
Configuring the client systems . 1201
Steps for starting AT-TLS and verifying its operation . 1203

Application compatibility with AT-TLS . 1203
Policy considerations . 1204

Reusable objects . 1204
Common AT-TLS configuration file. 1204
Exempting specific connections from AT-TLS . 1205
Action refresh . 1205

Achieving the basic level of security . 1206
Picking the handshake roles . 1206
Specifying the key ring . 1207

Configuring more sophisticated security . 1207
Protocol versions . 1207
Cipher suite specification . 1207
Certificate validation . 1208
FIPS 140-2 support . 1208
LDAP servers . 1208
Encryption key refresh . 1208

Additional security customization considerations . 1208
Handshake timer . 1208
Diagnostic traces . 1209
Diagnosis considerations . 1210
TLS function negotiation . 1210
Session caching . 1211

AT-TLS access control considerations . 1211
Application model considerations . 1212

Client application model . 1212
Server application model . 1213
Forked server application model . 1214

xvi z/OS V1R12.0 Comm Svr: IP Configuration Guide

CICS transaction model . 1215
Advanced application considerations . 1216

AT-TLS aware application considerations . 1216
AT-TLS controlling application considerations . 1216
Secondary connection application model . 1217

Chapter 23. z/OS Load Balancing Advisor. 1219
z/OS Load Balancing Advisor system overview . 1220
TLS/SSL enablement for the z/OS Load Balancing Advisor 1220
Steps for configuring the z/OS Load Balancing Advisor . 1222

Step 1: Evaluate TCP/IP workloads to be load balanced and select a load balancing solution (optional) . . . 1223
Step 2: Decide who will have authority to start the Advisor (optional) 1224
Step 3: Decide who will have authority to start the Agents (optional) 1224
Step 4: Authorize the Agents to use WLM services . 1225
Step 5: Configure the Advisor and Agents to automatically restart in case of application or system failure
(optional) . 1225
Step 6: Configure and start syslogd. 1227
Step 7: Configure one Advisor per sysplex . 1228
Step 8: Configure one Agent per z/OS system in the sysplex 1233
Step 9: Customize the TCP/IP profiles of the TCP/IP stacks that the Advisor and Agents will run on
(optional) . 1235
Step 10: Start the TCP/IP stacks that the Advisor and the Agents will use. 1240
Step 11: Start the target applications that will be the targets of load balancing 1240
Step 12: Customize WLM policies for the Advisor and Agents (optional) 1240
Step 13: Start one Agent on each sysplex system you want to participate in this method of workload
balancing . 1240
Step 14: Start the one instance of the Advisor in the sysplex 1241
Step 15: Configure the external load balancers . 1241
Step 16: Start the load balancers . 1244
Step 17: Verify that the Advisor system is functioning correctly (optional) 1244

Configuring the z/OS Load Balancing Advisor in a multiple TCP/IP stack environment 1245
Step 5 (CINET): Configure the Advisor and Agents to automatically restart in case of application or system
failure (optional) . 1245
Step 7 (CINET): Configure one Advisor per sysplex . 1245
Step 8 (CINET): Configure one Agent per z/OS system in the sysplex 1246
Step 9 (CINET): Customize the TCP/IP profiles of the TCP/IP stacks that the Advisor and Agents will run
on (optional) . 1247
Step 10 (CINET): Start the TCP/IP stacks that the Advisor and the Agents will use 1247

Configuring the z/OS Load Balancing Advisor with subplexing 1247
Step 5 (subplex): Configure the Advisor and Agents to automatically restart in case of application or system
failure (optional) . 1248
Step 6 (subplex): Configure and start syslogd . 1249
Step 7 (subplex): Configure one Advisor per sysplex . 1249
Step 8 (subplex): Configure one Agent per z/OS system in the sysplex 1250
Step 9 (subplex): Customize the TCP/IP profiles of the TCP/IP stacks that the Advisor and Agents will run
on (optional) . 1250
Step 13 (subplex): Start one Agent on each sysplex system you want to participate in this method of
workload balancing . 1251
Step 14 (subplex): Start the one instance of the Advisor in the sysplex 1251
Step 15 (subplex): Configure the external load balancers. 1251

Operating the z/OS Load Balancing Advisor . 1251
Changing the logging level of the Advisor and Agents 1251
Interpreting Agent and Advisor display information . 1251
Stopping or resuming workload distribution to particular members (QUIESCE and ENABLE) 1264

z/OS Load Balancing Advisor configuration example . 1266
Load balancer configuration details . 1267
Advisor configuration details. 1268
Agent configuration file on SYSB . 1270
Agent configuration file on SYSA . 1270
Customization of PROFILE.TCPIP . 1270
Example displays. 1272

Contents xvii

Chapter 24. Automated domain name registration 1275
System overview . 1275

Interaction with name servers . 1277
Interaction with the z/OS Load Balancing Advisor . 1277

Enabling TLS/SSL for ADNR. 1278
Steps for configuring automated domain name registration. 1278

Step 1: Decide which sysplex resources should be managed by ADNR 1279
Step 2: Decide on one or more domain names to be managed by ADNR 1280
Step 3: Decide which name server or name servers are to be managed by ADNR 1280
Step 4: Configure the selected name servers to be the primary master name servers for the domain names
that ADNR is to manage . 1281
Step 5: Delegate the domain names to be managed by ADNR to the selected name servers from the parent
domain's name server . 1281
Step 6: Configure the z/OS Load Balancing Advisor function 1281
Step 7: Define security server profiles for ADNR . 1282
Step 8: Configure ADNR to automatically restart in case of application or system failure (optional) 1283
Step 9: Configure and start syslogd (optional, but required to have ADNR write log messages and trace data
to syslogd) . 1284
Step 10: Configure one ADNR application per sysplex 1285
Step 11: Customize the TCP/IP profiles of the TCP/IP stacks on which ADNR and the LBA applications are
to run (optional) . 1289
Step 12: Start the TCP/IP stacks on which ADNR and the LBA applications are to run 1290
Step 13: Start the z/OS Load Balancing Advisor and Agent 1290
Step 14: Start the target applications that are to be managed by ADNR. 1290
Step 15: Start the ADNR application . 1290
Step 16: Verify that the ADNR system is functioning correctly (optional) 1290

z/OS Load Balancing Advisor configuration considerations 1292
Connectivity considerations . 1292
Near real-time availability information of sysplex resources 1292

z/OS Load Balancing Advisor and Agent operational considerations 1293
Advisor operational considerations . 1293
Agent operational considerations . 1293

Name server configuration considerations . 1294
Initial zone configuration . 1294
Authorizing dynamic updates . 1294
Updates to an ADNR-managed zone . 1295
Authorizing zone transfers . 1296
Limiting the duration of an outbound zone transfer . 1296
Limiting the total number of simultaneous outbound zone transfers. 1297
The .digrc file . 1297
Split DNS (views) . 1297
Zone transfer formats . 1298

ADNR configuration considerations . 1299
Changing the ADNR configuration file . 1299
Maintaining zone data integrity . 1300

Steps for using the ADNR application in a sysplex subplexing environment 1300
Step 1: Plan how the new subdomains representing each subplex will fit into your DNS hierarchy 1301
Step 2: Configure the name servers that will be updated for the new subplex domains 1303
Step 3: Define and configure one Advisor per subplex 1303
Step 4: Update the Agent configuration files to communicate with the Advisor running in its subplex . . . 1303
Step 5: Define one ADNR application per subplex. 1304
Step 6: Assign the host_group and server_group statements from the sysplex ADNR configuration to their
correct subplex domains . 1304
Step 7: Configure the new ADNR instances to update the name server and zone for its subplex 1305
Step 8: Configure the new ADNR instances to communicate with the subplex Advisor 1305
Step 9: Update resolver configuration files (optional) . 1305
Step 10: Start the TCP/IP stacks, Advisor, Agent, ADNR, and target applications that are to be managed by
ADNR . 1305
Step 11: Verify that each subplex ADNR is functioning correctly 1305

Operating ADNR. 1306
Changing the logging level of ADNR . 1306

xviii z/OS V1R12.0 Comm Svr: IP Configuration Guide

Changing the ADNR configuration dynamically . 1306
Interpreting ADNR display information . 1306
Diagnosing problems . 1306

ADNR configuration example . 1307
ADNR display examples . 1315

Chapter 25. Simple Network Management Protocol. 1325
SNMP overview . 1325

Network management application . 1326
SNMP protocols . 1326
SNMP agent . 1327
SNMP subagents . 1328
Key generation commands . 1330
Distributed Protocol Interface . 1330
Trap forwarder daemon . 1331

Processing an SNMP request . 1331
Deciding on SNMP security needs . 1332

Community-based security . 1332
User-based security . 1332

Step 1: Configure the SNMP agent . 1334
Provide TCP/IP profile statements . 1334
Provide community-based security and notification destination information 1336
Provide community-based and user-based security and notification destination information 1338
Migrating community-based configuration to SNMPD.CONF format 1342
Provide secure access to agent from subagents . 1342
Allowing subagents with duplicate identifiers to connect 1343
Provide MIB object configuration information . 1343
Start the SNMP agent . 1345
Sample JCL procedure for starting OSNMPD from MVS. 1345
Starting OSNMPD from z/OS UNIX . 1346

Step 2: Configure the SNMP commands . 1346
Configure the z/OS UNIX snmp command . 1346
Configure the NetView SNMP command . 1349

Step 3: Configure the SNMP subagents . 1352
TCP/IP subagent configuration . 1353

Step 4: Configure the Open Systems Adapter support . 1353
OSA/SF prerequisites . 1355
Required TCP/IP profile statements . 1356
Subagent connection to OSA/SF when there are multiple TCP/IP instances 1356

Step 5: Configure the trap forwarder daemon . 1357
Provide PROFILE.TCPIP statements . 1358
Provide trap forwarder configuration information . 1358
Starting and stopping the trap forwarder daemon . 1358

Chapter 26. Remote print server . 1361
Configuring the Remote Print Server . 1361

Step 1: Configuring PROFILE.TCPIP for LPD . 1361
Step 2: Updating the LPD server cataloged procedure 1362
Step 3: Updating the LPD server configuration data set 1363
Step 4: Creating a banner page (optional). 1363

Chapter 27. Remote procedure calls . 1365
Steps for configuring the PORTMAP address space . 1365

Step 1: Configuring PROFILE.TCPIP for PORTMAP . 1365
Step 2: Updating the PORTMAP cataloged procedure 1366
Step 3: Defining the data set for well-known procedure names 1366
Starting the PORTMAP address space . 1367

Steps for configuring the z/OS UNIX PORTMAP address space 1367
Step 1: Configuring PROFILE.TCPIP for UNIX PORTMAP 1367
Step 2: Updating the PORTMAP cataloged procedure 1368

Contents xix

Starting the PORTMAP address space . 1368
Steps for configuring the rpcbind address space . 1368

Step 1: Configuring the PROFILE.TCPIP data set for rpcbind 1369
Step 2: Configuring security server (or RACF equivalent) items 1369
Step 3: Updating the RPCBIND cataloged procedure . 1370
Step 4: Updating the /etc/services file . 1370
Step 5: Configure SYS1.PARMLIB for rpcbind . 1370
Starting the rpcbind address space . 1371

Steps for configuring the NCS interface . 1372
Understanding the LLBD server . 1372
Understanding the NRGLBD server . 1372
Step 1: Configuring PROFILE.TCPIP for NCS . 1373
Step 2: Updating the NRGLBD cataloged procedure . 1373
Step 3: Updating the LLBD cataloged procedure . 1374

Chapter 28. Mail on z/OS . 1375
Configuring the CSSMTP application . 1375

Terms and concepts . 1376
Setting up CSSMTP . 1379
Customizing the CSSMTP configuration file to handle undeliverable mail 1382
Steps for granting authority to start CSSMTP . 1383
Security for CSSMTP . 1384
Steps for using Transport Layer Security for CSSMTP 1386
Steps for configuring SMF records for CSSMTP (optional) 1388
Monitoring CSSMTP . 1389
Differences between CSSMTP and SMTPD . 1389

Configuring the SMTP server (SMTPD) . 1392
Checklist for working within the SMTP environment . 1392
Configuration process . 1393

Configuring z/OS UNIX sendmail and popper . 1413
Overview . 1414
The sendmail samples directory . 1417
Steps for configuring z/OS UNIX sendmail . 1418
Configuration hints and tips . 1431
Environment variables . 1432
Configuring popper . 1432

Chapter 29. TIMED daemon . 1437
Starting TIMED from the z/OS shell . 1437
Starting TIMED as a procedure . 1437

Chapter 30. SNTPD daemon . 1439
Steps for starting SNTPD from the z/OS shell . 1439
Steps for starting SNTPD as a procedure . 1440
Stack affinity . 1441

Chapter 31. Remote Execution . 1443
UNIX REXEC . 1443
TSO REXEC . 1443
Configuring the TSO Remote Execution server . 1443

Step 1: Configuring PROFILE.TCPIP for TSO Remote Execution server 1444
Step 2: Determine whether Remote Execution client will send REXEC or RSH commands 1444
Step 3: Permit remote users to access MVS resources (optional) 1444
Step 4: Update the TSO Remote Execution cataloged procedure 1445
Step 5: Create a user exit routine (optional) . 1446
Step 6: Permit access to JESSPOOL files . 1447

Configuring the z/OS UNIX Remote Execution servers . 1447
Files for z/OS UNIX REXECD . 1447
Files for z/OS UNIX RSHD . 1448
Setting up the z/OS UNIX RSHD installation exit . 1448

xx z/OS V1R12.0 Comm Svr: IP Configuration Guide

||

||

||

Configuring TSO and z/OS UNIX Remote Execution servers to use the same port 1449

Chapter 32. Express logon services with the Digital Certificate Access Server 1451
Express Logon Feature . 1451
Web Express Logon . 1451
Using the DCAS server interface for your logon solutions 1451
What DCAS provides . 1451

Chapter 33. Miscellaneous server . 1453
Discard protocol . 1453
Echo protocol . 1453
Character generator protocol . 1453
Configuring the MISC server . 1454

Step 1: Configuring PROFILE.TCPIP for the MISC server 1454
Step 2: Updating the MISC server cataloged procedure 1455

Part 3. Appendixes . 1457

Appendix A. Setting up the inetd configuration file. 1459

Appendix B. TLS/SSL security . 1461
Secure Socket Layer overview . 1461

Server authentication . 1462
Client authentication . 1463
Encryption algorithms . 1464

Creating and managing keys and certificates at the server 1467
Certificate file types . 1467
Common terminology . 1468
Copying z/OS UNIX files to MVS data sets . 1468
Using the gskkyman utility . 1469
Using RACF's Common Keyring support. 1474
Migrating an existing gskkyman key database to RACF 1480

Creating and managing keys and certificates at the client 1481
Create a self-signed client certificate . 1481
Add server certificates to the client key ring. 1485

Appendix C. Express Logon Feature . 1489
Configuring RACF services for Express Logon . 1490
Configuring the Express Logon components. 1491

Configuring the Host On Demand Telnet client. 1491
Configuring the z/OS TN3270E Telnet server . 1492
Configuring the middle-tier Telnet server (CS/2 example) 1492

Appendix D. Using HCD . 1493

Appendix E. Steps for preparing to run IP security 1505
Step 1: Setting appropriate UNIX System Services parameters 1505
Step 2: Authorizing the IKE daemon to the external security manager 1505

Steps for authorizing the IKE daemon to RACF . 1505
Step 3: Authorizing the ipsec command to the external security manager 1506

Steps for authorizing the ipsec command to RACF . 1506
Step 4: Authorizing IP security to ICSF/MVS (optional) . 1507

Steps for setting up profiles in the CSFSERV resource class 1507
Step 5: Setting up the IKE daemon for digital signature authentication (optional) 1510

Steps for setting up the IKE daemon for digital signature authentication when the native certificate service is
used . 1511
Steps for setting up the IKE daemon for digital signature authentication using the certificate service of an
NSS server . 1513
IPSec certificate management . 1514

Contents xxi

||
||
||

|
||

Appendix F. Using an LDAP server for policy definitions 1519
Policy object model overview . 1519
Overview of the object classes . 1523
Considerations for defining LDAP objects . 1529
Policy Agent retrieval of LDAP objects . 1530
LDAP sample files . 1530
Installing the schema definition on the LDAP server . 1531
Using the sample LDAP objects . 1532
Defining QoS policies using LDAP . 1533

Differentiated Services policy example. 1533
RSVP policy example . 1538
Sysplex distributor routing policy example . 1539

Defining IDS policies using LDAP . 1542
IDS scan policy example . 1542
IDS attack policy example . 1545
IDS TCP traffic regulation policy example . 1550
IDS UDP traffic regulation policy example . 1553

Appendix G. Related protocol specifications 1555
Internet drafts . 1571

Appendix H. Accessibility . 1573

Notices . 1575
Policy for unsupported hardware . 1582
Trademarks . 1583

Bibliography . 1585

Index . 1589

Communicating your comments to IBM . 1605

xxii z/OS V1R12.0 Comm Svr: IP Configuration Guide

Figures

1. z/OS Communications Server TCP/IP protocol suite . 4
2. syslogd operation . 35
3. Generic server . 51
4. Server with affinity for a specific transport provider . 52
5. Example of binding an application to a specific transport provider 53
6. REXX program to switch TSO user to another TCP/IP stack 58
7. SYS1.PARMLIB(BPXPRMxx) for CINET . 59
8. Primary router per VLAN (shared OSA with multiple primary routers) 71
9. Single OSA and VLAN switch configuration . 73

10. Matching VLAN switch configuration to multiple OSAs (VLAN configuration) 74
11. Single stack using multiple OSAs on the same physical network 74
12. HiperSockets internal LAN . 82
13. HiperSockets multiple internal LANs . 82
14. Spanned IQD (HiperSockets) CHPID . 83
15. Candidate configuration for HiperSockets Accelerator 88
16. HiperSockets Accelerator configuration . 89
17. Elements of a secure TCP/IP deployment . 109
18. Stack access control overview . 116
19. Port access control overview . 117
20. Network access control example . 122
21. IP filtering at the z/OS communication endpoint . 129
22. Security protocols from a protocol layering perspective 131
23. e-business scenarios with virtual private networks . 133
24. TN3270E Telnet server security overview . 137
25. Using multiple Telnet ports to separate secure and non-secure traffic 138
26. Combining Telnet security with IPSec client-to-firewall authentication 138
27. Secure and non-secure traffic using a single Telnet port 139
28. FTP client and server TLS overview . 140
29. Intrusion Detection Services overview . 144
30. Defensive filtering overview . 145
31. IKE daemon acting as an NSS client for a single TCP/IP stack 148
32. IKE daemon acting as an NSS client for multiple TCP/IP stacks 149
33. Example of TCP/IP operating characteristics in PROFILE.TCPIP 215
34. Example of physical characteristics in PROFILE.TCPIP. 227
35. Example of reserved port number definitions . 236
36. Syntax for TCP/IP message IDs . 253
37. Sample network part 1 . 259
38. Sample network part 2, IPv6 OSPF AS . 260
39. Static VIPA configuration . 357
40. Sample DVIPA addressing in a sysplex environment 361
41. DVIPA takeover with SWSA . 389
42. Sysplex distributor with SWSA . 390
43. An example of TCP/IP and VTAM subplexes . 431
44. z/OS multi-tier application load balancing using sysplex distributor and the OPTLOCAL keyword 486
45. Enhanced z/OS multi-tier application load balancing using sysplex distributor 488
46. z/OS multi-tier application configuration using CPCSCOPE DVIPAs 490
47. DataPower load balancing overview . 492
48. Sysplex distributor load balancing for DataPower . 494
49. Sysplex distributor load balancing to DataPower in a multi-tier and multisite environment 499
50. SNALINK environment interfaces. 514
51. SNA DLC link . 515
52. APPL statement for SNALINK . 517
53. SNALINK console example . 519
54. APPL statement for SNALINK LU6.2 . 521
55. Sample MVS system console messages on SNALINK LU6.2 address space startup 522

© Copyright IBM Corp. 2000, 2011 xxiii

56. NCPROUTE environment . 530
57. NCPROUTE example configuration . 535
58. NCPROUTE data sets relationship . 544
59. NCPROUTE configuration example of a passive route 545
60. Configuring an active gateway. 546
61. Telnet connectivity . 549
62. Telnet parameter placement . 555
63. Telnet profiles and connections. 561
64. Port 1023 connection characteristics . 590
65. Mapping model. 595
66. Search method . 604
67. Session initiation failures scenarios . 627
68. Session ending scenarios . 628
69. Typical Telnet data flow . 644
70. Time buckets. 648
71. SSL/TLS-secured FTP session scenario 1 . 704
72. SSL/TLS-secured FTP session scenario 2 . 704
73. SSL/TLS-secured FTP session scenario 3 . 705
74. SSL/TLS-secured FTP session scenario 4 . 705
75. SSL/TLS-secured FTP session scenario 5 . 705
76. SSL/TLS-secured FTP session scenario 6 . 705
77. Local caching-only name server example . 744
78. Resolver caching example . 745
79. Resolver caching process; each stack specifies one NSINTERRADDR value 747
80. Resolver caching process; each stack specifies multiple NSINTERRADDR values 748
81. Resolver related configuration files in z/OS UNIX and native MVS environments 759
82. Hierarchical naming tree . 777
83. Activating changes to your policies . 834
84. Policy Agent roles . 836
85. Sample policy infrastructure . 841
86. Policy Agent configuration files . 848
87. Using SECCLASS to identify interfaces . 938
88. IPv4 packet encapsulated using AH in transport mode. 969
89. IPv4 packet encapsulated using ESP in transport mode 970
90. IPv6 packet encapsulated using AH in transport mode. 970
91. IPv6 packet encapsulated using ESP in transport mode 970
92. IPv4 packet encapsulated using AH in tunnel mode 971
93. IPv4 packet encapsulated using ESP in tunnel mode 971
94. IPv6 packet encapsulated using AH in tunnel mode 971
95. IPv6 packet encapsulated using ESP in tunnel mode 971
96. UDP-Encapsulated-Transport mode . 972
97. UDP-Encapsulated-Tunnel mode . 973
98. Symmetric encryption. 973
99. Sample worksheet for stack security . 986

100. Security model network . 1029
101. Trusted internal network model . 1030
102. Partner company model . 1040
103. Partner company with NAT model . 1055
104. Partner company with NAPT model . 1069
105. Branch office model . 1075
106. Branch office with NAT model . 1084
107. Cascaded tunnels . 1093
108. Nested tunnels. 1093
109. z/OS host to z/OS host, double NAT . 1096
110. z/OS host to non-z/OS host, double NAT . 1096
111. z/OS in a host-to-security gateway configuration . 1098
112. Enabling network security services . 1104
113. IKE cataloged procedure . 1106
114. NSS services by discipline . 1151
115. NSS client authorization example . 1160
116. Defensive filtering overview . 1178

xxiv z/OS V1R12.0 Comm Svr: IP Configuration Guide

||

||

117. Application Transparent TLS . 1193
118. Client application model . 1213
119. Server application model . 1214
120. Forked server application model . 1215
121. z/OS Load Balancing Advisor . 1220
122. Sample output for the MODIFY procname,DISPLAY,LB command 1256
123. Sample output for the MODIFY procname,DISPLAY,LB,INDEX=lbindex command 1258
124. Sample output for the MODIFY procname,DISPLAY,MEMBERS,DETAIL command 1263
125. z/OS Load Balancing Advisor configuration example 1267
126. System overview . 1276
127. ADNR configuration example. 1307
128. Overview of SNMP support . 1331
129. Configuration files for SNMP agent . 1334
130. Configuration files for snmp . 1346
131. Configuration files for NetView SNMP . 1349
132. Subagent connection to OSA/SF . 1357
133. CSSMTP forwards mail messages from spool to the network 1376
134. Sender MUA transmits the message to sendmail . 1414
135. sendmail transmits the message to an intermediate SMTP server 1415
136. A sendmail daemon receives the message from an SMTP client 1415
137. sendmail delivers the message to the local recipient 1415
138. Receiver's MUA has direct access to the mail spool file 1415
139. Receiver's MUA retrieves the message over a POP3 connection with a popper daemon 1416
140. Using a certificate to establish a secure connection . 1416
141. Mail filter processing . 1416
142. MISC server cataloged procedure (MISCSERV) . 1455
143. Adding applications to /etc/inetd.conf . 1459
144. Setting traces in /etc/inetd.conf . 1460
145. IBM Keys Management . 1482
146. Create New Self-Signed Certificate . 1482
147. IBM Key Management . 1483
148. Export/Import Key . 1483
149. Extract Certificate to a File . 1484
150. HOD connection using a client certificate . 1484
151. HOD security properties . 1485
152. Security Information . 1486
153. Extract a Certificate . 1486
154. Certificate was extracted . 1486
155. Creating a new CustomizedCAs.class . 1487
156. Default location displayed . 1487
157. Add CA's Certificate From a File . 1487
158. Add CA's Certificate From a File — continued . 1488
159. Express Logon network . 1489
160. Select processors . 1493
161. Work with attached channel paths . 1493
162. Initiate the Define Channel Path dialog . 1494
163. Add channel path. 1494
164. Specify Maximum Frame Size. 1495
165. Define the channel path access list . 1495
166. Channel path number FF defined . 1496
167. Work with attached control units . 1496
168. Add the control unit(s) . 1497
169. Define a control unit . 1497
170. Define it to the processor . 1498
171. Currently defined control unit . 1498
172. Define the devices . 1499
173. Empty device list . 1499
174. Define the devices for the control unit . 1500
175. Add devices of type IQD . 1500
176. Define number of devices . 1501
177. Define device to operating system . 1501

Figures xxv

178. Select systems . 1502
179. Complete the definition. 1502
180. Definition completed . 1503
181. Partial configuration for the IKE daemon and an NSS server 1511
182. Basic policy objects . 1519
183. Complex policy conditions. 1520
184. Complex policy conditions before explosion . 1521
185. Rule-specific conditions and actions. 1522
186. Reusable conditions and actions . 1522
187. Policy groups . 1523
188. LDAP schema object class hierarchy . 1525

xxvi z/OS V1R12.0 Comm Svr: IP Configuration Guide

Tables

1. TCP/IP configuration data sets . 21
2. Environment variables . 31
3. syslogd facilities . 35
4. BPX.DAEMON . 43
5. Program control . 44
6. How your own socket programs select a stack . 57
7. Communications Server CIM providers . 98
8. User identification, authentication, and access control for z/OS Communications Server applications 110
9. SERVAUTH resource names used by TCP/IP . 112

10. TCP/IP application load module and alias names . 124
11. Socket option resource names . 124
12. TCP/IP applications that set IPv6 advanced socket API options. 125
13. Mode to use for different logging requirements . 194
14. TCP/IP message catalogs . 248
15. Interior Gateway Protocol characteristics . 257
16. Multipath route limitations . 276
17. Route precedence . 309
18. Configuring policy-based routing . 342
19. Summary of dynamic VIPA creation results . 397
20. DVIPA contention resolution for DVIPA definitions on the same stack 401
21. DVIPA contention resolution between stacks in the same CPC 402
22. DVIPA contention resolution between stacks in different CPCs 403
23. Weight determination . 423
24. Sysplex problem monitoring . 455
25. Load balancing solution quick reference . 466
26. RIP route advertising rules . 532
27. NCPROUTE gateways summary . 534
28. Converting Telnet profile statements to AT-TLS policy statements 586
29. Client mappings . 604
30. Sliding-window round-trip average example . 647
31. Environment variables for z/OS UNIX Telnet . 650
32. PORTCOMMAND scenarios . 668
33. Migrating existing FTP server and client configuration 701
34. Migrating existing ciphers . 701
35. EZYFxxxx messages . 716
36. APIs that use resolver caching . 746
37. Local definitions available to resolver . 760
38. Policy components needed per policy type. 830
39. Configuration files and policy definition files . 831
40. Policy formats . 837
41. Configuration files used for various policy clients . 854
42. Configuration files used for various policy clients . 854
43. Where Policy Agent FLUSH and PURGE are configured 869
44. How Policy Agent FLUSH and PURGE are used . 870
45. Possible authentication and encryption combinations for a connection 968
46. Table of remote hosts and subnetworks . 987
47. Expanded filter rule for internal traffic . 1092
48. Expanded filter rule for remote traffic . 1092
49. Original and translated port values . 1129
50. SERVAUTH profile names for NSS . 1155
51. Mapped label names . 1159
52. Interaction between the mode setting on the DmStackConfig statement and the mode setting in individual

filters . 1180
53. Comparison of IP security filters and defensive filters. 1182
54. AT-TLS configuration for the server system . 1199

© Copyright IBM Corp. 2000, 2011 xxvii

||

||
||

55. AT-TLS configuration for the client system . 1201
56. ClientAuthType parameter settings . 1206
57. Summary of selected Advisor display output fields and flags 1252
58. Summary of selected Agent display output flags . 1255
59. WLM WEIGHT - CP, zAAP, and zIIP fields . 1260
60. Allowed quiesce and enable command sequences for members 1265
61. Dynamic updates of ADNR-managed zones by other entities 1295
62. Base sysplex and ADNR configuration . 1301
63. ADNR application in a sysplex subplexing environment; Example 1 1302
64. ADNR application in a sysplex subplexing environment; Example 2 1302
65. ADNR application in a sysplex subplexing environment; Example 3 1302
66. Security advantages and disadvantages . 1333
67. JES batch job and CSSMTP configuration combinations for secure mail 1386
68. Differences between CSSMTP and SMTPD . 1390
69. Summary of SMTP configuration statements . 1405
70. Required and recommended m4 items . 1420
71. M4 variables . 1428
72. Sendmail permission table . 1432
73. Environment variables for sendmail . 1432
74. Frame size specification. 1495

xxviii z/OS V1R12.0 Comm Svr: IP Configuration Guide

About this document

This document contains guidance material to enable you to configure IP address
spaces, servers, and applications for z/OS® Communications Server. This volume is
part of a two-volume set:
v z/OS Communications Server: IP Configuration Guide, which contains concepts and

guidance, explaining an overall approach to IP configuration.
v z/OS Communications Server: IP Configuration Reference, which describes

parameters, options, and syntax of statements.

The information in this document includes descriptions of support for both IPv4
and IPv6 networking protocols. Unless explicitly noted, descriptions of IP protocol
support concern IPv4. IPv6 support is qualified within the text.

For detailed information about configuration-related data sets and statements, see
z/OS Communications Server: IP Configuration Reference.

For detailed information about commands used during configuration, see z/OS
Communications Server: IP System Administrator's Commands.

This document refers to Communications Server data sets by their default SMP/E
distribution library name. Your installation might, however, have different names
for these data sets where allowed by SMP/E, your installation personnel, or
administration staff. For instance, this document refers to the hlq.SEZAINST
samples data set simply as SEZAINST. Your installation might choose a data set
name of SYS1.SEZAINST, CS390.SEZAINST, or other high level qualifiers for the
data set name.

Who should read this document
This document is intended for programmers and system administrators who are
familiar with TCP/IP, MVS™, z/OS UNIX, and the Time Sharing Option Extensions
(TSO/E).

How this document is organized
This document is divided into the following parts:

Part 1, “Base TCP/IP system,” on page 1 contains information on configuring the
base TCP/IP stack.

Part 2, “Server applications,” on page 511 contains information that explains the
server applications for z/OS Communications Server.

Part 3, “Appendixes” provides additional information for this document.

“Notices” contains notices and trademarks used in this document.

“Bibliography” contains descriptions of the documents in the z/OS
Communications Server library.

© Copyright IBM Corp. 2000, 2011 xxix

How to use this document
Use this document to perform the following tasks:
v Configure z/OS Communications Server
v Customize and administer z/OS Communications Server

Determining whether a publication is current

As needed, IBM® updates its publications with new and changed information. For
a given publication, updates to the hardcopy and associated BookManager®

softcopy are usually available at the same time. Sometimes, however, the updates
to hardcopy and softcopy are available at different times. The following
information describes how to determine if you are looking at the most current
copy of a publication:
v At the end of a publication's order number there is a dash followed by two

digits, often referred to as the dash level. A publication with a higher dash level
is more current than one with a lower dash level. For example, in the
publication order number GC28-1747-07, the dash level 07 means that the
publication is more current than previous levels, such as 05 or 04.

v If a hardcopy publication and a softcopy publication have the same dash level, it
is possible that the softcopy publication is more current than the hardcopy
publication. Check the dates shown in the Summary of Changes. The softcopy
publication might have a more recently dated Summary of Changes than the
hardcopy publication.

v To compare softcopy publications, you can check the last two characters of the
publication's file name (also called the book name). The higher the number, the
more recent the publication. Also, next to the publication titles in the CD-ROM
booklet and the readme files, there is an asterisk (*) that indicates whether a
publication is new or changed.

How to contact IBM service

For immediate assistance, visit this Web site: http://www.software.ibm.com/
network/commserver/support/

Most problems can be resolved at this Web site, where you can submit questions
and problem reports electronically, as well as access a variety of diagnosis
information.

For telephone assistance in problem diagnosis and resolution (in the United States
or Puerto Rico), call the IBM Software Support Center anytime (1-800-IBM-SERV).
You will receive a return call within 8 business hours (Monday – Friday, 8:00 a.m.
– 5:00 p.m., local customer time).

Outside the United States or Puerto Rico, contact your local IBM representative or
your authorized IBM supplier.

If you would like to provide feedback on this publication, see “Communicating
your comments to IBM” on page 1605.

xxx z/OS V1R12.0 Comm Svr: IP Configuration Guide

http://www.software.ibm.com/network/commserver/support/
http://www.software.ibm.com/network/commserver/support/

Conventions and terminology that are used in this document

Commands in this book that can be used in both TSO and z/OS UNIX
environments use the following conventions:
v When describing how to use the command in a TSO environment, the command

is presented in uppercase (for example, NETSTAT).
v When describing how to use the command in a z/OS UNIX environment, the

command is presented in bold lowercase (for example, netstat).
v When referring to the command in a general way in text, the command is

presented with an initial capital letter (for example, Netstat).

All the exit routines described in this document are installation-wide exit routines.
The installation-wide exit routines also called installation-wide exits, exit routines,
and exits throughout this document.

The TPF logon manager, although included with VTAM®, is an application
program; therefore, the logon manager is documented separately from VTAM.

Samples used in this book might not be updated for each release. Evaluate a
sample carefully before applying it to your system.

For definitions of the terms and abbreviations that are used in this document, you
can view the latest IBM terminology at the IBM Terminology Web site.

Clarification of notes

Information traditionally qualified as Notes is further qualified as follows:

Note Supplemental detail

Tip Offers shortcuts or alternative ways of performing an action; a hint

Guideline
Customary way to perform a procedure

Rule Something you must do; limitations on your actions

Restriction
Indicates certain conditions are not supported; limitations on a product or
facility

Requirement
Dependencies, prerequisites

Result Indicates the outcome

How to read a syntax diagram

This syntax information applies to all commands and statements that do not have
their own syntax described elsewhere.

The syntax diagram shows you how to specify a command so that the operating
system can correctly interpret what you type. Read the syntax diagram from left to
right and from top to bottom, following the horizontal line (the main path).

About this document xxxi

http://www.ibm.com/software/globalization/terminology/index.jsp

Symbols and punctuation

The following symbols are used in syntax diagrams:

Symbol
Description

�� Marks the beginning of the command syntax.

� Indicates that the command syntax is continued.

| Marks the beginning and end of a fragment or part of the command
syntax.

�� Marks the end of the command syntax.

You must include all punctuation such as colons, semicolons, commas, quotation
marks, and minus signs that are shown in the syntax diagram.

Commands

Commands that can be used in both TSO and z/OS UNIX environments use the
following conventions in syntax diagrams:
v When describing how to use the command in a TSO environment, the command

is presented in uppercase (for example, NETSTAT).
v When describing how to use the command in a z/OS UNIX environment, the

command is presented in bold lowercase (for example, netstat).

Parameters

The following types of parameters are used in syntax diagrams.

Required
Required parameters are displayed on the main path.

Optional
Optional parameters are displayed below the main path.

Default
Default parameters are displayed above the main path.

Parameters are classified as keywords or variables. For the TSO and MVS console
commands, the keywords are not case sensitive. You can code them in uppercase
or lowercase. If the keyword appears in the syntax diagram in both uppercase and
lowercase, the uppercase portion is the abbreviation for the keyword (for example,
OPERand).

For the z/OS UNIX commands, the keywords must be entered in the case
indicated in the syntax diagram.

Variables are italicized, appear in lowercase letters, and represent names or values
you supply. For example, a data set is a variable.

Syntax examples

In the following example, the USER command is a keyword. The required variable
parameter is user_id, and the optional variable parameter is password. Replace the
variable parameters with your own values.

xxxii z/OS V1R12.0 Comm Svr: IP Configuration Guide

�� USER user_id
password

��

Longer than one line

If a diagram is longer than one line, the first line ends with a single arrowhead
and the second line begins with a single arrowhead.

�� The first line of a syntax diagram that is longer than one line �

� The continuation of the subcommands, parameters, or both ��

Required operands

Required operands and values appear on the main path line. You must code
required operands and values.

�� REQUIRED_OPERAND ��

Optional values

Optional operands and values appear below the main path line. You do not have
to code optional operands and values.

��
OPERAND

��

Selecting more than one operand

An arrow returning to the left above a group of operands or values means more
than one can be selected, or a single one can be repeated.

��

�

,

REPEATABLE_OPERAND_OR_VALUE_1
REPEATABLE_OPERAND_OR_VALUE_2
REPEATABLE_OPER_OR_VALUE_1
REPEATABLE_OPER_OR_VALUE_2

��

Nonalphanumeric characters

If a diagram shows a character that is not alphanumeric (such as parentheses,
periods, commas, and equal signs), you must code the character as part of the
syntax. In this example, you must code OPERAND=(001,0.001).

�� OPERAND = (001 , 0.001) ��

About this document xxxiii

Blank spaces in syntax diagrams

If a diagram shows a blank space, you must code the blank space as part of the
syntax. In this example, you must code OPERAND=(001 FIXED).

�� OPERAND = (001 FIXED) ��

Default operands

Default operands and values appear above the main path line. TCP/IP uses the
default if you omit the operand entirely.

��
DEFAULT

OPERAND
��

Variables

A word in all lowercase italics is a variable. Where you see a variable in the syntax,
you must replace it with one of its allowable names or values, as defined in the
text.

�� variable ��

Syntax fragments

Some diagrams contain syntax fragments, which serve to break up diagrams that
are too long, too complex, or too repetitious. Syntax fragment names are in mixed
case and are shown in the diagram and in the heading of the fragment. The
fragment is placed below the main diagram.

�� Syntax fragment ��

Syntax fragment:

1ST_OPERAND , 2ND_OPERAND , 3RD_OPERAND

Prerequisite and related information

z/OS Communications Server function is described in the z/OS Communications
Server library. Descriptions of those documents are listed in “Bibliography” on
page 1585, in the back of this document.

Required information

Before using this product, you should be familiar with TCP/IP, VTAM, MVS, and
UNIX System Services.

xxxiv z/OS V1R12.0 Comm Svr: IP Configuration Guide

Softcopy information

Softcopy publications are available in the following collections.

Titles Order
Number

Description

z/OS V1R12 Collection SK3T-4269 This CD collection is shipped with the z/OS product. It includes the
libraries for z/OS V1R12, in both BookManager and PDF formats.

z/OS Software Products
Collection

SK3T-4270 This CD includes, in both BookManager and PDF formats, the
libraries of z/OS software products that run on z/OS but are not
elements and features, as well as the Getting Started with Parallel
Sysplex® bookshelf.

z/OS V1R12 and Software
Products DVD Collection

SK3T-4271 This collection includes the libraries of z/OS (the element and
feature libraries) and the libraries for z/OS software products in
both BookManager and PDF format. This collection combines
SK3T-4269 and SK3T-4270.

z/OS Licensed Product Library SK3T-4307 This CD includes the licensed documents in both BookManager and
PDF format.

IBM System z Redbooks
Collection

SK3T-7876 The Redbooks® selected for this CD series are taken from the IBM
Redbooks inventory of over 800 books. All the Redbooks that are of
interest to the zSeries® platform professional are identified by their
authors and are included in this collection. The zSeries subject areas
range from e-business application development and enablement to
hardware, networking, Linux, solutions, security, parallel sysplex,
and many others.

Other documents

For information about z/OS products, refer to z/OS Information Roadmap
(SA22-7500). The Roadmap describes what level of documents are supplied with
each release of z/OS Communications Server, as well as describing each z/OS
publication.

Relevant RFCs are listed in an appendix of the IP documents. Architectural
specifications for the SNA protocol are listed in an appendix of the SNA
documents.

The following table lists documents that might be helpful to readers.

Title Number

DNS and BIND, Fifth Edition, O'Reilly Media, 2006 ISBN 13: 978-0596100575

Routing in the Internet , Second Edition, Christian Huitema (Prentice Hall 1999) ISBN 13: 978-0130226471

sendmail, Fourth Edition, Bryan Costales, Claus Assmann, George Jansen, and
Gregory Shapiro, O'Reilly Media, 2007

ISBN 13: 978-0596510299

SNA Formats GA27-3136

TCP/IP Illustrated, Volume 1: The Protocols, W. Richard Stevens, Addison-Wesley
Professional, 1994

ISBN 13: 978-0201633467

TCP/IP Illustrated, Volume 2: The Implementation, Gary R. Wright and W. Richard
Stevens, Addison-Wesley Professional, 1995

ISBN 13: 978-0201633542

TCP/IP Illustrated, Volume 3: TCP for Transactions, HTTP, NNTP, and the UNIX Domain
Protocols, W. Richard Stevens, Addison-Wesley Professional, 1996

ISBN 13: 978-0201634952

TCP/IP Tutorial and Technical Overview GG24-3376

About this document xxxv

||

||

|
|
|

|
|
|

|
|
|

|
|
|

Title Number

Understanding LDAP SG24-4986

z/OS Cryptographic Services System SSL Programming SC24-5901

z/OS Integrated Security Services LDAP Server Administration and Use SC24-5923

z/OS JES2 Initialization and Tuning Guide SA22-7532

z/OS Problem Management G325-2564

z/OS MVS Diagnosis: Reference GA22-7588

z/OS MVS Diagnosis: Tools and Service Aids GA22-7589

z/OS MVS Using the Subsystem Interface SA22-7642

z/OS Program Directory GI10-0670

z/OS UNIX System Services Command Reference SA22-7802

z/OS UNIX System Services Planning GA22-7800

z/OS UNIX System Services Programming: Assembler Callable Services Reference SA22-7803

z/OS UNIX System Services User's Guide SA22-7801

z/OS XL C/C++ Run-Time Library Reference SA22-7821

System z10, System z9 and zSeries OSA-Express Customer's Guide and Reference SA22-7935

Redbooks

The following Redbooks might help you as you implement z/OS Communications
Server.

Title Number

IBM z/OS V1R11 Communications Server TCP/IP Implementation, Volume 1: Base
Functions, Connectivity, and Routing

SG24-7798

IBM z/OS V1R11 Communications Server TCP/IP Implementation, Volume 2: Standard
Applications

SG24-7799

IBM z/OS V1R11 Communications Server TCP/IP Implementation, Volume 3: High
Availability, Scalability, and Performance

SG24-7800

IBM z/OS V1R11 Communications Server TCP/IP Implementation, Volume 4: Security
and Policy-Based Networking

SG24-7801

IBM Communication Controller Migration Guide SG24-6298

IP Network Design Guide SG24-2580

Managing OS/390 TCP/IP with SNMP SG24-5866

Migrating Subarea Networks to an IP Infrastructure Using Enterprise Extender SG24-5957

SecureWay™ Communications Server for OS/390 V2R8 TCP/IP: Guide to Enhancements SG24–5631

SNA and TCP/IP Integration SG24-5291

TCP/IP in a Sysplex SG24-5235

TCP/IP Tutorial and Technical Overview GG24-3376

Threadsafe Considerations for CICS SG24-6351

Where to find related information on the Internet

z/OS

xxxvi z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|

|
|
|

|
|
|

|
|
|

This site provides information about z/OS Communications Server release
availability, migration information, downloads, and links to information
about z/OS technology

http://www.ibm.com/systems/z/os/zos/

z/OS Internet Library

Use this site to view and download z/OS Communications Server
documentation

www.ibm.com/systems/z/os/zos/bkserv/

IBM Communications Server product

The primary home page for information about z/OS Communications
Server

http://www.software.ibm.com/network/commserver/

IBM Communications Server product support

Use this site to submit and track problems and search the z/OS
Communications Server knowledge base for Technotes, FAQs, white
papers, and other z/OS Communications Server information

http://www.software.ibm.com/network/commserver/support/

IBM Communications Server performance information

This site contains links to the most recent Communications Server
performance reports.

http://www.ibm.com/support/docview.wss?uid=swg27005524

IBM Systems Center publications

Use this site to view and order Redbooks, Redpapers, and Technotes

http://www.redbooks.ibm.com/

IBM Systems Center flashes

Search the Technical Sales Library for Techdocs (including Flashes,
presentations, Technotes, FAQs, white papers, Customer Support Plans,
and Skills Transfer information)

http://www.ibm.com/support/techdocs/atsmastr.nsf

RFCs

Search for and view Request for Comments documents in this section of
the Internet Engineering Task Force Web site, with links to the RFC
repository and the IETF Working Groups Web page

http://www.ietf.org/rfc.html

Internet drafts

View Internet-Drafts, which are working documents of the Internet
Engineering Task Force (IETF) and other groups, in this section of the
Internet Engineering Task Force Web site

http://www.ietf.org/ID.html

Information about Web addresses can also be found in information APAR II11334.

About this document xxxvii

http://www.ibm.com/systems/z/os/zos/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.software.ibm.com/network/commserver/
http://www.software.ibm.com/network/commserver/support/
http://www.ibm.com/support/docview.wss?uid=swg27005524
http://www.redbooks.ibm.com
http://www.ibm.com/support/techdocs
http://www.rfc-editor.org/rfc.html
http://www.ietf.org/ID.html

Note: Any pointers in this publication to Web sites are provided for convenience
only and do not in any manner serve as an endorsement of these Web sites.

DNS Web sites

For more information about DNS, see the following USENET news groups and
mailing addresses:

USENET news groups
comp.protocols.dns.bind

BIND mailing lists
https://lists.isc.org/mailman/listinfo

BIND Users

v Subscribe by sending mail to bind-users-request@isc.org.
v Submit questions or answers to this forum by sending mail to

bind-users@isc.org.

BIND 9 Users (This list might not be maintained indefinitely.)

v Subscribe by sending mail to bind9-users-request@isc.org.
v Submit questions or answers to this forum by sending mail to

bind9-users@isc.org.

The z/OS Basic Skills Information Center

The z/OS Basic Skills Information Center is a Web-based information resource
intended to help users learn the basic concepts of z/OS, the operating system that
runs most of the IBM mainframe computers in use today. The Information Center
is designed to introduce a new generation of Information Technology professionals
to basic concepts and help them prepare for a career as a z/OS professional, such
as a z/OS system programmer.

Specifically, the z/OS Basic Skills Information Center is intended to achieve the
following objectives:
v Provide basic education and information about z/OS without charge
v Shorten the time it takes for people to become productive on the mainframe
v Make it easier for new people to learn z/OS

To access the z/OS Basic Skills Information Center, open your Web browser to the
following Web site, which is available to all users (no login required):
http://publib.boulder.ibm.com/infocenter/zoslnctr/v1r7/index.jsp

How to send your comments

Your feedback is important in helping to provide the most accurate and
high-quality information. If you have any comments about this document or any
other z/OS Communications Server documentation, do one of the following:
v Go to the z/OS contact page at http://www.ibm.com/systems/z/os/zos/

webqs.html. You can enter and submit your comments in the form provided at
this Web site.

v Send your comments by e-mail to comsvrcf@us.ibm.com. Be sure to include the
name of the document, the part number of the document, the version of z/OS

xxxviii z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|

|

|
|

|

|

|
|

http://www.isc.org/ml-archives/
http://publib.boulder.ibm.com/infocenter/zoslnctr/v1r7/index.jsp
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html

Communications Server, and, if applicable, the specific location of the text that
you are commenting on (for example, a section number, a page number or a
table number).

About this document xxxix

xl z/OS V1R12.0 Comm Svr: IP Configuration Guide

Summary of changes

Summary of changes
for SC31-8775-18
z/OS Version 1 Release 12

This document contains information previously presented in SC31-8775-17, which
supports z/OS Version 1 Release 12.

This document contains minor maintenance updates. This document also contains
the revision bars from SC31-8775-17 for reference purposes.

Summary of changes
for SC31-8775-17
z/OS Version 1 Release 12

This document contains information previously presented in SC31-8775-15 and
SC31–8775–16, which support z/OS Version 1 Release 11.

New information

v SMF event records for sysplex events, see “Accounting - SMF records” on page
36.

v Performance improvements for sysplex distributor connection routing, see the
following topics:
– “Steps for converting from IPv4 IPAQENET DEVICE, LINK, and HOME

definitions to the IPv4 IPAQENET INTERFACE statement” on page 64
– “Dynamic LAN idle timer” on page 77
– “QDIO inbound workload queueing” on page 79

v Performance improvements for streaming bulk data, see “QDIO inbound
workload queueing” on page 79.

v Operator command to query and display OSA information, see the following
topics:
– “Displaying OSA-Express QDIO interface information” on page 81
– “Verifying PROFILE.TCPIP” on page 245

v IKE version 2 support, see the following topics:
– Chapter 3, “Security,” on page 109
– Chapter 19, “IP security,” on page 923
– Chapter 20, “Network security services,” on page 1149
– Appendix E, “Steps for preparing to run IP security,” on page 1505

v Trusted TCP connections, see the following topics:
– Table 9 on page 112
– “Sysplex distributor optimization with the OPTLOCAL keyword” on page 486

v Configurable default address selection policy table, see “Source IP address
selection” on page 218.

v Verify Netstat message catalog synchronization, see “Customizing TCP/IP
messages” on page 248.

v IBM Health Checker for z/OS OMPROUTE checks, see Chapter 6, “Routing,” on
page 255.

© Copyright IBM Corp. 2000, 2011 xli

v Enhancements to IPv6 router advertisement, see “IPv6 dynamic routing using
router discovery” on page 270.

v Sysplex distributor support for hot-standby server, see the following topics:
– “Configuring distributed DVIPAs — sysplex distributor” on page 371
– “Hot standby distribution” on page 477

v Sysplex autonomics monitoring TCP/IP abends, see “Sysplex problem detection
and recovery” on page 449.

v Extend sysplex distributor support for DataPower® for IPv6, see “Sysplex
distribution with DataPower” on page 491.

v z/OS Communications Server in an ensemble, see Chapter 9, “TCP/IP in an
ensemble,” on page 505.

v Common storage reduction for TN3270E server, see “Reducing demand for
ECSA storage” on page 649.

v Resolver support for IPv6 connections to DNS name servers, see Chapter 14,
“The resolver,” on page 731.

v Improved resolver reaction to unresponsive DNS name servers, see the following
topics:
– “The resolver setup file” on page 733
– “Monitoring the responsiveness of Domain Name System name servers” on

page 752
v IPSec support for certificate trust chains and certificate revocation lists, see the

following topics:
– Chapter 19, “IP security,” on page 923
– Chapter 20, “Network security services,” on page 1149
– Appendix E, “Steps for preparing to run IP security,” on page 1505

v IPSec support for FIPS 140 cryptographic mode, see the following topics:
– Chapter 19, “IP security,” on page 923
– Appendix E, “Steps for preparing to run IP security,” on page 1505

v Management data for CSSMTP, see “Steps for configuring SMF records for
CSSMTP (optional)” on page 1388.

Moved information

v Information about resolvers, resolver caching, and resolver configuration files
has been moved to a new chapter, Chapter 14, “The resolver,” on page 731.

This document contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

You might notice changes in the style and structure of some content in this
document–for example, headings that use uppercase for the first letter of initial
words only, and procedures that have a different look and format. The changes are
ongoing improvements to the consistency and retrievability of information in our
documents.

Summary of changes
for SC31-8775-16
z/OS Version 1 Release 11

This document contains information previously presented in SC31-8775-15, which
supports z/OS Version 1 Release 11.

xlii z/OS V1R12.0 Comm Svr: IP Configuration Guide

This document contains minor maintenance updates. This document also contains
the revision bars from SC31-8775-15 for reference purposes.

Summary of changes
for SC31-8775-15
z/OS Version 1 Release 11

This document contains information previously presented in SC31-8775-13 and
SC31–8775–14, which support z/OS Version 1 Release 10.

New information

v Resolver DNS cache, see “Resolver caching” on page 744.
v Network management interface enhancements – stack configuration data, see

“Accounting - SMF records” on page 36.
v FTP large-volume access, see “Considerations for extended address volumes” on

page 63.
v QDIO support for OSA interface isolation, see:

– “OSA-Express port sharing” on page 75
– “OSA-Express connection isolation” on page 75

v OSA-Express3 optimized latency mode, see “Optimized latency mode” on page
77.

v QDIO routing accelerator, see “QDIO Accelerator” on page 91.
v QDIO enhancements for WLM IO priority, see “Prioritizing outbound

OSA-Express data using the Workload Manager service class” on page 94.
v Network management interface enhancements – OSA network traffic analyzer

data, see “TCP/IP OSAENTA trace service access control” on page 127.
v Syslogd enhancements, see:

– “Configuring syslogd for automatic archiving” on page 204
– “Step 7: Configuring Policy Agent to automatically monitor applications” on

page 861
v IPv6 stateless address autoconfiguration enhancements, see “Source IP address

selection” on page 218.
v Support for enhanced WLM routing algorithms, see:

– “Configuring distributed DVIPAs — sysplex distributor” on page 371
– “Sysplex distributor” on page 469

v Sysplex autonomics improvements for FRCA, see “Target server connection
setup responsiveness monitoring” on page 461.

v Sysplex distributor optimization for multi-tier z/OS workloads, see “Sysplex
distribution optimizations for multi-tier z/OS workloads” on page 485.

v Sysplex distributor support for DataPower, see “Sysplex distribution with
DataPower” on page 491.

v Customizable pre-logon banner for otelnetd, see “Configuring the z/OS UNIX
Telnet server” on page 649.

v FTP access to UNIX named pipes, see “z/OS UNIX named pipes” on page 675.
v Policy infrastructure management, see “Configuration files and policy definition

files” on page 831.
v IPSec enhancements, see:

– “Configuration scenarios supported for NAT traversal” on page 1095
– “Sysplex-wide Security Associations and IP security” on page 1144

Summary of changes xliii

v FTP passive mode enhancements, see “Considerations for IPSec-encapsulated
FTP traffic when traversing a NAT” on page 1098.

v NSS private key and certificate services for XML appliances, see Chapter 20,
“Network security services,” on page 1149.

v Configuration Assistant – Policy infrastructure simplification, see “Steps for
configuring the DMD” on page 1187.

v AT-TLS enhancements, see Chapter 22, “Application Transparent Transport Layer
Security data protection,” on page 1193.

v New SMTP client for sending Internet mail, see “Configuring the CSSMTP
application” on page 1375.

Changed information

v LDAP server information has been moved to an appendix. See Appendix F,
“Using an LDAP server for policy definitions,” on page 1519.

Deleted information

v Support for NDB, the DHCP server, BINL, and BIND 4.9.3 is removed from the
z/OS V1R11 Communications Server product; information describing this
support has been deleted.

This document contains terminology, maintenance, and editorial changes.

Summary of changes
for SC31-8775-14
z/OS Version 1 Release 10

This document contains information previously presented in SC31-8775-13, which
supports z/OS Version 1 Release 10.

This document contains minor maintenance updates. This document also contains
the revision bars from SC31-8775-13 for reference purposes.

Summary of changes
for SC31-8775-13
z/OS Version 1 Release 10

This document contains information previously presented in SC31-8775-11 and
SC31-8775-12, which support z/OS Version 1 Release 9.

New information

v Resolver support for EDNS0, see “Extension Mechanisms for DNS standards and
the resolver” on page 758.

v Network Management Interface (NMI) enhancements, see “Accounting - SMF
records” on page 36.

v ASID reuse for TCP/IP, TN3270E, and resolver, see “Nonreusable ASIDs” on
page 40.

v Allow DNS BIND 9 server to run with BPX.SUPERUSER authorization, see:
– “Other user IDs requiring z/OS UNIX superuser authority” on page 42
– “Setting up and running the name server” on page 784

v IBM Health Checker for z/OS enhancements, see “Specifying BPXPRMxx values
for a CINET configuration” on page 59.

xliv z/OS V1R12.0 Comm Svr: IP Configuration Guide

v Allow multiple sockets to share the same FRCA cache, see “Considerations for
Fast Response Cache Accelerator” on page 62.

v Multiple VLAN support and INTERFACE statement support for QDIO, see:
– “Considerations for networking hardware attachment” on page 63
– “Configuring PROFILE.TCPIP” on page 211

v HiperSockets™ multiple write, see:
– “HiperSockets multiple write” on page 90
– “HiperSockets multiple write assist with IBM zIIP” on page 90

v Enhanced port access control, see:
– “Port access control” on page 116
– “Setting up reserved port number definitions in PROFILE.TCPIP” on page 234

v DataPower integration: SAF access services, see:
– “Network security services for the XMLAppliance discipline” on page 149
– Chapter 20, “Network security services,” on page 1149

v Enhanced rpcbind application registration control, see:
– “z/OS UNIX rpcbind server” on page 170
– “Steps for configuring the rpcbind address space” on page 1368

v AUTOLOG support for AT-TLS dependent applications, see:
– “Setting up reserved port number definitions in PROFILE.TCPIP” on page 234
– “TCP/IP stack initialization access control” on page 1194

v INCLUDE file support for OMPROUTE, see “Steps for configuring
OMPROUTE” on page 277.

v OMPROUTE enhancements, see “Preventing futile neighbor state loops during
adjacency formation” on page 311.

v TN3270E Telnet server LU name coordination in a sysplex, see Chapter 11,
“Accessing remote hosts using Telnet,” on page 549.

v FTP enhancements, see Chapter 12, “Transferring files using FTP,” on page 659.
v FTP JES enhancements, see “DB2 and JES” on page 706.
v Configuration Assistant: Import of policy configuration data, see Chapter 16,

“Policy-based networking,” on page 829.
v IPSec RFC currency, see:

– Chapter 16, “Policy-based networking,” on page 829
– Chapter 19, “IP security,” on page 923

v Configuration Assistant: IP address groups, see “IPSec policy” on page 844.
v Security options for centralized policy server connections, see “Steps for

configuring the Policy Agent” on page 848.
v Defensive filtering, see Chapter 21, “Defensive filtering,” on page 1177.
v Subplex support for Load Balancing Advisor, see:

– Chapter 23, “z/OS Load Balancing Advisor,” on page 1219
– Chapter 24, “Automated domain name registration,” on page 1275

v TLS/SSL enablement for Load Balancing Advisor, see:
– Chapter 23, “z/OS Load Balancing Advisor,” on page 1219
– Chapter 24, “Automated domain name registration,” on page 1275

v SNMP enhancements, see:
– “Connecting to the agent through z/OS UNIX” on page 1342
– “Provide MIB object configuration information” on page 1343

Summary of changes xlv

Deleted information

v Support for traffic regulation policy in Policy Agent is removed from the z/OS
V1R10 Communications Server product; information describing this support has
been deleted.

This document contains terminology, maintenance, and editorial changes.

xlvi z/OS V1R12.0 Comm Svr: IP Configuration Guide

Part 1. Base TCP/IP system

© Copyright IBM Corp. 2000, 2011 1

2 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Chapter 1. Overview of z/OS Communications Server

z/OS Communications Server provides a set of communications protocols that
support peer-to-peer connectivity functions for both local and wide-area networks,
including the most popular wide-area network, the Internet. z/OS
Communications Server also provides performance enhancements that can benefit
a variety of TCP/IP applications.

z/OS Communications Server provides both SNA and TCP/IP networking
protocols for z/OS. The SNA protocols are provided by VTAM and include
Subarea, Advanced Peer-to-Peer Networking, and High Performance Routing
protocols. For more information on z/OS Communications Server SNA protocols,
see z/OS Communications Server: SNA Network Implementation Guide.

Figure 1 on page 4 shows the z/OS Communications Server TCP/IP protocol suite
(also called stack), whose functions include associated applications, transport- and
network-protocol layers, and connectivity and gateway functions. z/OS
Communications Server contains IPv6 support. See z/OS Communications Server:
IPv6 Network and Application Design Guide for more detailed information.

The z/OS Communications Server protocol suite supports two TCP/IP
environments:
v A native MVS environment in which users can exploit the popular TCP/IP

protocols in MVS application environments such as batch jobs, started tasks,
TSO, CICS® applications, and IMS™ applications.

v A z/OS UNIX System Services environment that lets you create and use
applications that conform to the POSIX or XPG4 standard (a UNIX specification).

Note: z/OS Communications Server exploits z/OS UNIX services even for
traditional MVS environments and applications. Prior to utilizing TCP/IP
services, therefore, a full-function mode z/OS UNIX
environment—including a Data Facility Storage Management Subsystem
(DFSMSdfp), a z/OS UNIX file system, and a security product (such as
Resource Access Control Facility, or RACF®)—needs to be defined and active
before z/OS Communications Server can be started successfully.

© Copyright IBM Corp. 2000, 2011 3

The application categories in Figure 1 do not list every application of the TCP/IP
protocol suite.

z/OS Communications Server TCP/IP protocol-suite functions include the
following categories:
v “TCP/IP protocol stack”
v “Connectivity and gateway functions” on page 5
v “Network protocol layer” on page 7
v “Transport layer” on page 7
v “File systems” on page 7
v “Application Programming Interfaces” on page 8

TCP/IP protocol stack
The Transmission Control Protocol (TCP) and the Internet Protocol (IP) refer to a
non-proprietary protocol suite that enables different packet-switched networks to
function as a single entity regardless of underlying network topology.

Figure 1. z/OS Communications Server TCP/IP protocol suite

4 z/OS V1R12.0 Comm Svr: IP Configuration Guide

z/OS Communications Server provides robustness and high performance with the
following features:
v A fully multiprocessor capable stack
v Exploitation of MVS Reliability, Availability, and Serviceability (RAS) services
v Exploitation of the z/OS architecture to optimize performance, CPU utilization,

and throughput
v Exploitation of the z/OS Sysplex functions to maximize availability and

scalability of TCP/IP workloads

In addition, z/OS Communications Server design includes a tightly integrated
storage and I/O model. I/O is provided by multipath channel (MPC) for network
communication; storage management is provided by Communications Storage
Manager (CSM).

Multipath channel I/O process
The term multipath channel (MPC) describes all z/OS Communications Server I/O
driver support. There are specific I/O drivers under this support that are also
referred to as MPC (such as MPCPTP).

MPC is a component of the I/O process model. MPC handles protocol headers and
data separately and executes multiple I/O dispatchable units of work. MPC
provides support for all devices supported by z/OS Communications Server. The
MPC I/O process and the CSM facilities that TCP/IP exploits are part of the
VTAM component of z/OS Communications Server. As a result, VTAM must be
configured and active when starting devices on the TCP/IP stack.

Communications Storage Manager
The Communications Storage Manager (CSM) facility is used by authorized
programs to manage subsystem storage pools. CSM reduces data moves by
providing a flat storage model that is accessible at multiple layers of the process
model and across MVS address space boundaries. In addition, CSM provides the
following technical advantages:
v MVS cellpool-like services
v Automatic handling of the contraction and expansion of storage resources
v Handling of different types and sizes of storage requests (for example, pageable

and fixed)

Connectivity and gateway functions
TCP/IP connectivity and gateway functions handle the physical interfaces and the
routing of IP data packets called datagrams. The following communication
interfaces are supported by z/OS Communications Server:

ATM Enables TCP/IP to send data to an asynchronous transfer mode (ATM)
network using an OSA-2 or OSA-Express ATM adapter over an ATM
virtual circuit.

CDLC Provides connectivity to a Network Control Program (NCP) through
3745/3746 network Front End Processor (FEP) controllers.

CLAW Provides access from IBM RS/6000® workstations directly to TCP/IP hosts
over a channel. The CLAW (common link access to workstation) interface
can also be used to provide connectivity to the original equipment
manufacturer (OEM), such as the Cisco Channel Interface Processor (CIP).

Chapter 1. Overview of z/OS Communications Server 5

CTC Provides access to TCP/IP hosts by way of a channel-to-channel (CTC)
connection established over a zSeries ESCON® channel.

HYPERchannel
Provides access to TCP/IP hosts by way of HYPERchannel series A devices
and series DX devices that function as series A devices.

LCS Provides access to TCP/IP hosts using the following devices or features:
v An IBM 3172 Interconnect Controller, which connects to a token ring, an

Ethernet, or Fiber Distributed Data Interface (FDDI) local area network
v An IBM 8232
v An IBM 2216 Multiaccess Connector Model 400
v An OSA-2 feature: FDDI, Ethernet/Token Ring (EN/TR), or ATM in

LAN emulation mode
v An OSA-Express feature: 1000BASE-T Ethernet, Fast Ethernet, ATM in

LAN emulation mode, or High Speed Token Ring (HSTR)
v An OSA-Express2 feature: 1000BASE-T Ethernet

MPCIPA
Provides access to:
v TCP/IP hosts using the following:

– OSA-Express feature: Gigabit Ethernet (GbE), 1000BASE-T Ethernet,
Fast Ethernet, HSTR, or ATM in LAN emulation mode

– OSA-Express2 feature: GbE, 10 GbE, or 1000BASE-T Ethernet
– OSA-Express3 feature: GbE or 10 GbE
– HiperSockets using the Internal Queued Direct I/O (iQDIO).

HiperSockets provides high-speed, low-latency IP message passing
between logical partitions (LPARs) within a single IBM eServer™

zSeries z800, z890, z900, z990, z9®, or z10™ server.
The OSA-Express features support the Queued Direct I/O (QDIO)
architecture. IPv6 is supported on all Ethernet features in QDIO mode.

v An ensemble using the following:
– OSA-Express3 feature configured as CHPID type OSX
– OSA-Express3 feature configured as CHPID type OSM

MPCOSA
Provides access to TCP/IP hosts by way of an OSA-2 adapter configured
in HPDT MPC mode for Fast Ethernet or FDDI.

MPCPTP
Provides access to TCP/IP hosts through multipath channel point-to-point
(MPCPTP) links. MPCPTP supports IPv4 and IPv6 protocols. MPCPTP can
be used in two ways to provide direct connectivity to other mainframe
hosts running z/OS Communications Server:
v By using a set of two or more zSeries channels
v By configuring to utilize XCF services, if the zSeries hosts are part of the

same sysplex

MPCPTP can also be used to provide the following connectivity options:
v Direct communication between two z/OS Communications Server

TCP/IP Services protocol stacks running on the same MVS host without
requiring any network attachments

v Connectivity to network attachments such as the IBM 2216 Multiaccess
Controller Model 400 or the IBM RS/6000

6 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|

SAMEHOST
Provides connectivity between the TCP/IP address space and other
program address spaces within the same MVS host. The SAMEHOST Data
Link Control (DLC) provides support for the SNA backbone network
(SNALINK LU0 and SNALINK LU6.2) and the X.25 network.

The VTAM component of z/OS Communications Server provides the I/O support
for each of these communication interfaces, and requires the creation (dynamically
or through definition) of Transport Resource List entries (TRLEs) to represent each
interface.
v TRLEs must be defined for the following communication interfaces:

– ATM
– MPCOSA
– MPCIPA devices not connected to an ensemble
– MPCPTP

For information about how to define these TRLEs, see z/OS Communications
Server: SNA Resource Definition Reference.

v For all other communication interfaces, VTAM dynamically creates TRLEs. For
information about dynamically created TRLEs for TCP/IP, see z/OS
Communications Server: SNA Network Implementation Guide.

Network protocol layer
The network protocol layer provides the support for the IP protocol. All TCP and
User Datagram Protocol (UDP) data goes through the IP layer when entering and
leaving the host. TCP and UDP will use the IPv4 routing layer or the IPv6 routing
layer.

The network layer also provides support for the Internet Control Message Protocol
(ICMP) and ICMPv6. This is used by the IP layer to exchange information and
error messages with IP layers on other hosts and routers. ICMP is used for the
IPv4 protocol and ICMPv6 is used for the IPv6 protocol.

Transport layer
The transport layer provides the support for the TCP, UDP, and RAW protocols.
All three protocols use IPv4 or IPv6 as the network layer. The TCP protocol
provides a connection-oriented, reliable transport layer, whereas UDP provides a
simpler, connectionless and unreliable transport layer. The RAW transport layer
provides for a more direct interface to the IP layer, which is primarily used by
system-management type applications.

File systems
The file system layer provides the main interface between the application
programming interfaces (APIs) and the transport layers. The first component of the
file system layer is the z/OS UNIX logical file system (LFS). The LFS provides the
API layer with a common interface to access files and sockets. In a
POSIX-compliant environment, applications can access both files and sockets in a
similar fashion. For example, both files and sockets are represented by a 32-bit
integer referred to as a descriptor. Common functions can be used to access both
file and socket resources.

Chapter 1. Overview of z/OS Communications Server 7

|
|
|
|

|

|

|

|

|

|
|

|
|
|

The layer beneath the LFS is the physical file system (PFS). The PFS layer is where
the distinction between files, sockets, and other resources is made. Based on the
resource type, the LFS passes the incoming function requests to the appropriate
PFS, which handles requests related to resources in the z/OS UNIX file system. For
more information about these physical file systems, see z/OS UNIX System Services
Planning.

From a TCP/IP perspective, the AF_INET and the AF_INET6 PFS are of main
interest. TCP/IP is enabled for IPv6 by defining an AF_INET6 PFS. Defining the
file systems is the responsibility of the installation's z/OS UNIX programmer. The
definitions are found in the BPXPRMxx member of SYS1.PARMLIB.

For information about defining AF_INET and AF_INET6 physical file systems, and
about customizing BPXPRMxx for INET and CINET systems, see z/OS UNIX
System Services Planning.

The AF_INET and the AF_INET6 PFS can be configured in two ways:

Integrated sockets PFS
The integrated sockets PFS can support the AF_INET PFS alone or
AF_INET and AF_INET6 PFS together, but not AF_INET6 PFS alone.

Common INET PFS
This configuration is commonly referred to as the C_INET PFS
configuration. It enables multiple AF_INET and AF_INET6 transport
providers to be configured and active concurrently. Applications using the
z/OS UNIX APIs do not know that multiple transport providers exist. For
example, multiple TCP/IP Services components of z/OS Communications
Server can be configured at the same time. The C_INET PFS is responsible
for selecting the PFS over which to flow the request, based on the IP
routing information from each of the AF_INET providers.

Under this configuration, it is also possible for TCP/IP application servers
using the z/OS UNIX socket APIs to field incoming client requests from all
AF_INET transport providers without knowing the particular transport
provider.

Application Programming Interfaces
This information provides a short description of each of the application
programming interfaces (APIs) that can be used to interface with the TCP/IP
Services protocol stack provided by z/OS Communications Server. All of the APIs,
with the exception of the PASCAL API, interface with the LFS layer.

The APIs are divided into the following two categories:
v TCP/IP socket APIs provided by z/OS Communications Server
v z/OS UNIX APIs

TCP/IP socket APIs provided by z/OS Communications Server
z/OS Communications Server provides several APIs to access TCP/IP sockets.
These APIs can be used in either or both integrated and common INET PFS
configurations. In a common INET PFS configuration, however, they function
differently from z/OS UNIX APIs. In this type of configuration, the z/OS
Communications Server APIs always bind to a single PFS transport provider, and
the transport provider must be the TCP/IP stack provided by z/OS
Communications Server.

8 z/OS V1R12.0 Comm Svr: IP Configuration Guide

The following TCP/IP socket APIs are included in z/OS Communications Server:

Pascal API
The Pascal application programming interface enables you to develop
TCP/IP applications in Pascal language. Supported environments are
normal MVS address spaces. The Pascal programming interface is based on
Pascal procedures and functions that implement conceptually the same
functions as the C socket interface. The Pascal routines, however, have
different names than the C socket calls. Unlike the other APIs, the Pascal
API does not interface directly with the LFS. It uses an internal interface to
communicate with the TCP/IP protocol stack.

Pascal API only supports AF_INET.

CICS sockets
The CICS socket interface enables you to write CICS applications that act
as clients or servers in a TCP/IP-based network. Applications can be
written in C language, using the C sockets programming, or they can be
written in COBOL, PL/I or assembler, using the Sockets Extended
programming interface.

CICS sockets only support AF_INET.

C sockets
The C sockets interface supports socket function calls that can be invoked
from C programs. However, note that for C application development, IBM
recommends the use of the UNIX C sockets interface. These programs can
be ported between MVS and most UNIX environments relatively easily if
the program does not use any other MVS specific services.

C sockets only support AF_INET.

IMS sockets
The Information Management System (IMS) IPv4 socket interface supports
client/server applications in which one part of the application executes on
a TCP/IP-connected host and the other part executes as an IMS application
program.

The IMS sockets API supports AF_INET.

Sockets Extended macro API
The Sockets Extended macro API is a generalized assembler macro-based
interface to sockets programming. It includes extensions to the socket
programming interface, such as support for asynchronous processing on
most sockets function calls.

The Sockets Extended macro API supports AF_INET and AF_INET6.

Sockets Extended Call Instruction API
The Sockets Extended Call Instruction API is a generalized call-based,
high-level language interface to sockets programming. The functions
implemented in this call interface resemble the C-sockets implementation,
with some extensions similar to the sockets extended macro interface.

The Sockets Extended Call Instruction API supports AF_INET and
AF_INET6.

REXX sockets
The REXX sockets programming interface implements facilities for socket
communication directly from REXX programs by using an address rxsocket
function. REXX socket programs can execute in TSO, online, or batch.

Chapter 1. Overview of z/OS Communications Server 9

The REXX sockets programming interface supports AF_INET and
AF_INET6.

See z/OS Communications Server: IP Sockets Application Programming Interface Guide
and Reference for complete documentation of the TCP/IP Services APIs.

z/OS UNIX APIs
The following APIs are provided by the z/OS UNIX element of z/OS and are
supported by the TCP/IP stack in z/OS Communications Server:

z/OS UNIX sockets
A set of C language functions provides support for the z/OS UNIX
sockets, which are used in the z/OS UNIX environment. Programmers use
this API to create applications that conform to the POSIX or XPG4
standard (a UNIX specification). Applications built with z/OS UNIX
sockets can be ported to and from platforms that support these standards.

The z/OS UNIX sockets support AF_INET and AF_INET6.

z/OS UNIX assembler callable services
z/OS UNIX assembler callable services is a generalized call-based,
high-level language interface to z/OS UNIX sockets programming. The
functions implemented in this call interface resemble the z/OS UNIX C
sockets implementation, with some extensions similar to the sockets
extended macro interface.

The z/OS UNIX assembler callable services support AF_INET and
AF_INET6.

For complete documentation of z/OS UNIX sockets, see z/OS XL C/C++ Run-Time
Library Reference. For information about z/OS UNIX callable services, see z/OS
UNIX System Services Programming: Assembler Callable Services Reference.

10 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Chapter 2. IP configuration overview

The objective of this topic is to help you be better prepared for installation related
activities. It is important to understand the terms, relationships, and dependencies
presented in this topic as a prerequisite to installation and customization. For
additional background information on TCP/IP, see TCP/IP Tutorial and Technical
Overview, GG24-3376, ISBN 0738421650.

IPv6 support
In this information, there might be no statement of support for a particular
function in an IPv6 network. To determine whether a given function is applicable
to IPv6, see the IPv6 support tables in z/OS Communications Server: IPv6 Network
and Application Design Guide.

IBM TCP/IP Configuration Demo for z/OS
z/OS Communications Server provides a Windows GUI application called IBM
TCP/IP Configuration Demo for z/OS, which collects TCP/IP customization
information and then generates TCP/IP configuration statements for inclusion in
the configuration files.

Restriction: The IBM TCP/IP Configuration Demo for z/OS has not been updated
since z/OS V1R6 and does not support parameters added in later releases. The
files generated by the application are valid in later releases.

You can download the IBM TCP/IP Configuration Demo for z/OS from the z/OS
Communications Server Web page.

Only a subset of the total configuration for TCP/IP is supported using the IBM
TCP/IP Configuration Demo for z/OS.

Included is support for all network devices, routing selections of OSPF or RIP, or
use of default routers and static routes. The TN3270E Telnet server can be
configured in a basic setup, or in advanced mode, which supports nearly all Telnet
options. Multiple FTP servers and FTP clients are completely configurable. The
configuration files created are those typically referred to as TCPIP.DATA,
PROFILE.TCPIP, FTP.DATA, and OMPROUTE.CONF, as well as TN3270 and
PORTS. Supported configuration statements are as follows:
v For TCPIP.DATA

DATASETPREFIX
DOMAINORIGIN
HOSTNAME
NSINTERADDR
TCPIPJOBNAME

Defaults are used for all other configuration statements.
v For PROFILE.TCPIP

ATMARPSV
ATMLIS

© Copyright IBM Corp. 2000, 2011 11

http://www.software.ibm.com/network/commserver/zos/support/
http://www.software.ibm.com/network/commserver/zos/support/

ATMPVC
AUTOLOG / ENDAUTOLOG
BEGINROUTES / ENDROUTES and ROUTE
DEVICE
HOME
LINK
START
TCPCONFIG RESTRICTLOWPORTS
TRANSLATE
UDPCONFIG RESTRICTLOWPORTS

Defaults are used for all other configuration statements.
v For FTP servers in FTP.DATA

ACCESSERRORMSGS
ADMINEMAILADDRESS
ANONYMOUS
ANONYMOUSFILEACCESS
ANONYMOUSFILETYPEJES
ANONYMOUSFILETYPESEQ
ANONYMOUSFILETYPESQL
ANONYMOUSFTPLOGGING
ANONYMOUSHFSDIRMODE
ANONYMOUSHFSFILEMODE
ANONYMOUSHFSINFO
ANONYMOUSLEVEL
ANONYMOUSLOGINMSG
ANONYMOUSMVSINFO
ASATRAMS
AUTOMOUNT
AUTORECALL
AUTOTAPEMOUNT
BANNER
BLKSIZE
CCXLATE
CHKPTINT
CIPHERSUITE
CONDDISP
CTRLCONN
DATACLASS
DATATIMEOUT
DB2
DB2PLAN
DCBDSN
DCONNTIME
DEBUGONSITE
DIRECTORY
DIRECTORYMODE
DUMPONSITE
EMAILADDRCHECK
ENCODING
EXTENSIONS
FILETYPE (only SEQ)
FTPKEEPALIVE
FTPLOGGING
HFSINFO

12 z/OS V1R12.0 Comm Svr: IP Configuration Guide

INACTIVE
ISPFSTATS
JESENTRYLIMIT
JESINTERFACELEVEL
JESLRECL
JESPUTGETTO
JESRECFM
KEYRING
LISTSUBDIR
LOGINMSG
LRECL
MBDATACONN
MGMTCLASS
MIGRATEVOL
MVSINFO
MVSURLKEY
PASSIVEDATAPORTS
PDSTYPE
PORTCOMMAND
PORTCOMMANDIPADDR
PORTCOMMANDPORT
PRIMARY
RDW
RECFM
REPLYSECURITYLEVEL
RETPD
SBDATACONN
SBSUB
SBSUBCHAR
SECONDARY
SECURE_CTRLCONN
SECURE_DATACONN
SECURE_FTP
SECURE_LOGIN
SECURE_PASSWORD
SMF
SMFAPPE
SMFDEL
SMFEXIT
SMFJES
SMFLOGN
SMFREN
SMFRETR
SMFSQL
SMFSTOR
SPACETYPE
SPREAD
SQLCOL
STARTDIRECTORY
STORCLASS
TLSTIMEOUT
TRAILINGBLANKS
TRUNCATE
UCOUNT
UMASK
UNITNAME

Chapter 2. IP configuration overview 13

VCOUNT
VOLUME
WRAPRECORD
WRTAPEFASTIO

Note: The FTP server support is designed to create configuration files for the
FTP server. Many of the statements also apply to the configuration of FTP
clients. If you share the same FTP configuration file for both your server
and client, be aware that not all parameters are supported for clients.

v For FTP clients in FTP.DATA

ASATRANS
AUTOMOUNT
AUTORECALL
AUTOTAPEMOUNT
BLKSIZE
CCONNTIME
CCTRANS
CHKPTINT
CHKPTPREFIX
CIPHERSUITE
CLIENTERRCODES
CONDDISP
CTRLCONN
DATACLASS
DATACTTIME
DB2
DB2PLAN
DCBDSN
DCONNTIME
DIRECTORY
DIRECTORYMODE
ENCODING
EPSV4
EXTENSIONS UTF8
FILTETYPE
FTPKEEPALIVE
FWFRIENDLY
INACTTIME
ISPFSTATS
KEYRING
LISTSUBDIR
LOGCLIENTERR
LRECL
MBDATACONN
MGMTCLASS
MIGRATEVOL
MYOPENTIME
NETRCLEVEL
PDSTYPE
PRIMARY
RDW
RECFM
RESTGET
RETPD
SBDATACONN

14 z/OS V1R12.0 Comm Svr: IP Configuration Guide

SBSUB
SBSUBCHAR
SECONDARY
SECURE_CRTLCONN
SECURE_DATACONN
SECURE_FTP
SECURE_MECHANISM
SOCKSCONFIGFILE
SPACETYPE
SPREAD
SQLCOL
STORCLASS
TLSTIMEOUT
TRAILINGBLANKS
TRUNCATE
UCOUNT
UMASK
UNITNAME
VCOUNT
VOLUME
WRAPRECORD
WRTAPEFASTIO

v For OMPROUTE

INTERFACE
OSPF_INTERFACE
RIP_INTERFACE

Defaults are used for all other configuration statements.
v For the TN3270E Telnet server

ALLOWAPPL
BEGINVTAM / ENDVTAM
CLIENTAUTH
CONNTYPE
DEFAULTAPPL
DEFAULTLUS
DEFAULTLUSSPEC
DEFAULTPRT
DEFAULTPRTSPEC
DESTIPGROUP
DROPASSOCPRINTER
ENCRYPTION
EXPRESSLOGON
HNGROUP
INACTIVE
IPGROUP
KEYRING
LINEMODEAPPL
LINKGROUP
LUGROUP
LUMAP
LUSESSIONPEND
MSG07
PORT / SECUREPORT

Chapter 2. IP configuration overview 15

PRTDEFAULTAPPL
PRTGROUP
PRTMAP
SCANINTERVAL / TIMEMARK
SMFINIT / SMFTERM
SNAEXT
TELNETDEVICE
TELNETGLOBALS / ENDTELNETGLOBALS
TELNETPARMS / ENDTELNETPARMS
TKOSPECLU
USERGROUP
USSTCP

Defaults are used for all other configuration statements.
v For PORTS

PORT
PORTRANGE

z/OS UNIX System Services concepts
Beginning with MVS/ESA Version 4.3, an application programming interface was
added to the MVS platform with the intent of integrating a UNIX operating system
into MVS. Both a C programming API and an interactive environment called the
shell were defined to interoperate with UNIX-style files. Over time, other
organizations developed approaches to working with UNIX on various platforms
until an organization named X/Open documented standards of what to implement
for UNIX interfaces in a series of guides published as the X/Open Portability
Guides (XPG). X/Open now owns the term UNIX and certifies different
implementations of UNIX according to the UNIX definitions contained in XPG 4.2.

z/OS UNIX System Services, or z/OS UNIX, is a certified UNIX system as defined
by X/Open in XPG 4.2. z/OS UNIX coexists with traditional MVS functions and
traditional MVS data set types such as partitioned data sets and sequential data
sets. It enables access to z/OS UNIX files and utilities concurrently by means of
application programming interfaces (APIs) and the interactive shell environment.
Two variants of the z/OS UNIX shell environment are available:
v The z/OS UNIX shell, much like a native UNIX environment
v The ISPF shell, an interface with access to menu-driven command interfaces

With the APIs, programs can run in any environment including batch jobs, in jobs
submitted by TSO/E interactive users, and in most other started tasks, or in any
other MVS application task environment. The programs can request:
v Only MVS services
v Only z/OS UNIX services
v Both MVS and z/OS UNIX services

The shell interface is an execution environment analogous to TSO/E, with a
programming language of shell commands analogous to Restructured eXtended
eXecutor (REXX) language. The shell support consists of:
v Programs that are run interactively by shell users
v Shell commands and scripts that are run interactively by shell users
v Shell commands and scripts that are run as batch jobs

16 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Prior to OS/390® V2R5, OS/390 UNIX required APPC/MVS for programs issuing
the fork() or spawn() function. APPC/MVS is no longer required for this purpose.
Forked and spawned address spaces are implemented in z/OS for UNIX
processing by the Work Load Manager (WLM) component of MVS.
v For a fork(), the system copies one process, called the parent process, into a new

process, called the child process, and places the child process in a new address
space, the forked address space.

v Spawn() also starts a new process in a new address space. Unlike a fork(), in a
spawn() call the parent process specifies a name of a program to start the child
process.

The types of processes can be:
v User processes, which are associated with a user
v Daemon processes, which perform continuous or periodic functions, such as a

Web server
Daemons are programs that are typically started when the operating system is
initialized and remain active to perform standard services. Some programs that
initialize processes for users are considered daemons, even though these
daemons are not long-running processes. Examples of daemons provided by
z/OS UNIX are cron, which starts applications at specific times, and inetd, which
starts applications on demand.

A user or daemon process can have one or more threads. A thread is a single flow
of control within a process. Application programmers create multiple threads to
structure an application in independent sections that can run in parallel for more
efficient use of system resources.

Overview of data sets and UNIX files
Data set and file are comparable terms. If you are familiar with MVS, you probably
use the term data set to describe a unit of data storage. If you are familiar with
AIX® or UNIX, you probably use the term file to describe a named set of records
stored or processed as a unit. In the TCP/IP environment, in addition to the
traditional MVS data set organizations (such as sequential and partitioned), UNIX
files are arranged in a hierarchical directory structure.

Some MVS data sets and UNIX files have special importance because of their
function. For example, certain data sets and files are used when configuring the
TCP/IP environment. Other data sets are used by the Telnet server when
performing specific communication functions. For descriptions of the MVS data
sets and UNIX files necessary for configuring the TCP/IP environment and the
search orders used to find them, see Table 1 on page 21. A search order can include
both MVS data sets and UNIX files, and these MVS data sets and UNIX files are
collectively referred to as the configuration files in this information.

Note: Not all applications support UNIX files.

Hierarchical file system concepts
A hierarchical file system consists of the following:
v Files, which contain data or programs. A file containing a program object, shell

script, or REXX program is called an executable file. Files are kept in directories.
v Directories that contain files, other directories, or both. Directories are arranged

hierarchically, in a structure that resembles an upside down tree, with root

Chapter 2. IP configuration overview 17

directory at the top and the branches at the bottom. The root is the first
directory for the file system at the peak of the tree and is designated by a slash
(/).

v Named pipes, links, and other UNIX items, such as character special files like
/dev/console that are used by applications like syslogd. See z/OS UNIX System
Services Planning for more information about UNIX items like character special
files.

The term file system has all of the following meanings:
v A logical collection of files, directories, named pipes, links, and other UNIX

items and metadata that are arranged in a hierarchy.
v A particular instance of a logical collection of these items that are arranged in a

hierarchy. They might reside on local or remote disks or in computer memory.
v A program that is designed to provide the functions and data of one type of file

system.

The context indicates which meaning is intended. Often more than one meaning is
intended; this is an industry convention.

To the z/OS system, the file hierarchy is a collection of file systems. Additional
instances of local or remote file systems might be mounted (logically connected) on
directories of the root file system or of additional file systems.

Several types of file systems are supported by z/OS, including the following:
v zSeries File System

Each instance of zSeries File System resides in a linear data set.
v HFS (hierarchical file system)

Each instance of HFS resides in an HFS data set.
v TFS (temporary file system)

Each instance of TFS resides in computer memory.
v NFS (Network File System)

NFS server provides access to file systems that reside on other computers.

For most application programs, these types of file systems are interchangeable. The
root file system is the first file system that is mounted. Subsequent file systems can
be logically mounted on a directory within the root file system or on a directory
within any mounted file system.

References to installation data sets
This information refers to Communications Server installation data sets by their
default SMP/E distribution library name. Your installation might, however, have
different names for these data sets where allowed by SMP/E, your installation
personnel, or administration staff. For instance, this information refers to sample
members of the hlq.SEZAINST library as SEZAINST(member), where the hlq value
is the high-level qualifier specified during TCP/IP installation. Your installation
can choose a data set name of SYS1.SEZAINST, CS390.SEZAINST, or other high
level qualifiers for the data set name.

18 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Understanding search orders of configuration information
It is important to understand the search order for configuration files used by
TCP/IP functions, and when you can override the default search order with
environment variables, JCL, or other variables you provide. This knowledge allows
you to accommodate your local data set and file naming standards, and it is
helpful to know the configuration data set or file in use when diagnosing
problems.

It is important to note that the z/OS Communications Server environment consists
of the TCP/IP address space, z/OS Communications Server applications, and the
TCP/IP MVS applications. The TCP/IP address space functions are also referred to
as the stack. The z/OS Communications Server applications refer to those
applications using the z/OS UNIX socket API. The TCP/IP MVS applications refer
to those applications written to the MVS APIs (for example, C, Sockets-Extended,
CICS, IMS, and REXX). The TCP/IP stack and both sets of applications have some
common (or global) configuration files, but they also use configuration files that
are different.

Another important point to note is that when a search order is applied for any
configuration file, the search ends with the first file found. Therefore, unexpected
results are possible if you place configuration information in a file that never gets
found, either because other files exist earlier in the search order, or because the file
is not included in the search order chosen by the application.

Configuration data set naming conventions
When searching for configuration files, you can explicitly tell TCP/IP where most
configuration files are by using DD statements in the JCL procedures or by setting
environment variables. Otherwise, you can let TCP/IP dynamically determine the
location of the configuration files, based on search orders shown in Table 1 on page
21.

For example, in Table 1 on page 21, for the FTP server application, if the
installation did not code the //SYSFTPD DD statement, the FTP server would
search for jobname.FTP.DATA, then file /etc/ftp.data, then data set
SYS1.TCPPARMS(FTPDATA), and finally hlq.FTP.DATA.

Dynamic data set allocation
TCP/IP makes extensive use of dynamically allocated data sets using the MVS
dynamic data set allocation function to search for configuration files. Multiple
versions of a configuration data set can exist, each having a different high-level
qualifier or middle-level qualifier. The search order for any configuration file will
determine which data set is found and used.

High-level qualifier: High-level qualifiers (HLQ) permit you to associate an
application's configuration data set with a particular jobname or TSO user ID, or
permit you to use a default configuration data set for the application. The possible
high-level qualifiers are:
v userid

Userid is the TSO user ID which invoked the application.
v jobname

Jobname is the application's batch JCL jobname or the name of the application's
started procedure.

v hlq

Chapter 2. IP configuration overview 19

TCP/IP is distributed with a default high-level qualifier (HLQ) of TCPIP. To
override the default HLQ used by dynamic data set allocation, specify the
DATASETPREFIX statement in the TCPIP.DATA configuration file. For most
configuration files, the DATASETPREFIX value is used as the high-level qualifier
of the data set name in the last step in the search order. Note that the
DATASETPREFIX value is not used as the high-level qualifier of the data set
name used as the last step in the search order for the PROFILE.TCPIP and
TCPIP.DATA configuration files.

Middle-level qualifiers: Multiple middle-level qualifiers (MLQ) permit the
isolation of certain profile and translation table data sets. Two of the possible
middle-level qualifiers are:
v Node name

Node name is an MLQ used in the search order for finding the configuration file
PROFILE.TCPIP. Node name is determined by the parameters specified during
VMCF initialization. For further information on initializing VMCF, see z/OS
Program Directory.

v Function name
The TCP/IP implementation of multicultural support and double-byte character
set (DBCS) support requires the use of multiple translation tables. To facilitate
the concurrent use of multiple languages and code pages, TCP/IP uses a
middle-level qualifier to designate which server or client uses a particular
translation table. STANDARD, the default MLQ, is available for use if a single
translation table can be used by multiple servers or clients. The TCP/IP Telnet
client and FTP provide a TRANSLATE parameter that permits you to specify
your chosen MLQ to replace the function name for that invocation of the
command. For example, SRVRFTP is used as an MLQ by the File Transfer
Protocol server.

Following are some of the data sets that are only dynamically allocated by TCP/IP
in a configuration file search order (you cannot specify them with DD statements
in JCL):
ETC.PROTO ETC.RPC
HOSTS.ADDRINFO HOSTS.SITEINFO
SRVRFTP.TCPCHBIN SRVRFTP.TCPHGBIN
SRVRFTP.TCPKJBIN SRVRFTP.TCPSCBIN
SRVRFTP.TCPXLBIN STANDARD.TCPCHBIN
STANDARD.TCPHGBIN STANDARD.TCPKJBIN
STANDARD.TCPSCBIN STANDARD.TCPXLBIN

For each of these data sets, the fully qualified name is established by using one of
the following values as the data set HLQ:
v User ID or job name
v DATASETPREFIX value

Naming conventions for dynamically allocated data sets: A data set that you
allocate explicitly (with a DD statement in JCL) can have any valid MVS data set
name or z/OS UNIX file name. A data set that you create for the purpose of being
allocated dynamically by TCP/IP must use the following naming conventions.

Note: In these examples, xxxx indicates an appropriate high-level qualifier, yyyy
indicates an appropriate middle-level qualifier, and zzzz indicates an
appropriate low-level qualifier.

v userid.yyyy.zzzz

userid is the user ID of the logged on TSO user.

20 z/OS V1R12.0 Comm Svr: IP Configuration Guide

v TSOprefix.yyyy.zzzz

TSOprefix is the data set prefix established by the TSO PROFILE command.
userid is the default value of TSOprefix.

v jobname.yyyy.zzzz

jobname is the job name specified on the JOB statement for a job stream or the
procedure name for a started procedure.

v hlq.yyyy.zzzz

hlq is the TCP/IP HLQ distributed as the system default, which can be
overridden by the value in the DATASETPREFIX statement.

v xxxx.nodename.zzzz

nodename is an MLQ that is used to define the data set name for the TCP/IP
stack profile data set.

v xxxx.function_name.zzzz

function_name denotes an acronym specifying a particular TCP/IP server (for
example SRVRFTP for the FTP server) and is used as an MLQ for the translation
table data set for that application.

v xxxx.private_name.zzzz

private_name is a user-specified private qualifier that can be specified as an
option on some TCP/IP commands.

v SYS1.TCPPARMS(TCPDATA)
The member of a system data set used to find the configuration file TCPIP.DATA.

TCP/IP configuration data sets
Table 1 lists the configuration MVS data sets and z/OS UNIX files used by the
TCP/IP servers and functions. The table includes the name of the sample data set
or file that is provided by Communications Server, and the way the data set or file
is used.

Table 1. TCP/IP configuration data sets

Name (search order) Copied from Usage

ADNR.CONF

The MVS data set or z/OS UNIX
file specified on the CONFIG DD
statement in the automated
domain name registration started
procedure

SEZAINST(ADNRCNF) Contains automated domain
name registration
configuration statements.

CSSMTP.CONF
1. The MVS data set or z/OS

UNIX file referenced by the
CONFIG DD statement in the
CSSMTP application started
procedure

2. jobname.CSSMTP.CONF

SEZAINST(CSSMTPCF) Contains CSSMTP
application configuration
statements.

Defense Manager daemon (DMD)
configuration
1. The MVS data set or z/OS

UNIX file specified by the
DMD_FILE environment
variable

2. /etc/security/dmd.conf

/usr/lpp/tcpip/samples/dmd.conf Contains DMD
configuration statements.

Chapter 2. IP configuration overview 21

Table 1. TCP/IP configuration data sets (continued)

Name (search order) Copied from Usage

/etc/hosts No sample provided. One of the possible local
host files used for IPv4
name query. See “Creating
/etc/hosts” on page 243.

hlq.ETC.IPNODES SEZAINST(EZBREIPN) One of the local host files
used for IPv6 name query,
or IPv4 and IPv6 name
query when
COMMONSEARCH is
specified in the resolver
setup file.

/etc/mail/sendmail.cf /usr/lpp/tcpip/samples/sendmail/cf/sample.cf Provides configuration
information for the
sendmail daemon when
being used as a message
transfer agent (MTA). If
/etc/mail/submit.cf does
not exist, this data set also
provides configuration
information for the end-user
sendmail application when
being used as a mail user
agent (MUA).

/etc/mail/submit.cf /usr/lpp/tcpip/samples/sendmail/cf/submit.cf Provides configuration
information for the end-user
sendmail application when
being used as a mail user
agent (MUA).

/etc/mail/zOS.cf /usr/lpp/tcpip/samples/sendmail/cf/zOS.cf Provides z/OS-specific
information for the
sendmail daemon when
being used as a message
transfer agent (MTA).
Currently the file consists of
Secure Sockets Layer (SSL)
information only.

ETC.PROTO usr/lpp/tcpip/samples/protocol Used to map types of
protocol to integer values to
determine the availability of
the specified protocol.
Required by several z/OS
Communications Server
components. The search
order depends on the type
of application (z/OS UNIX
or native MVS).

ETC.RPC SEZAINST(ETCRPC) Defines RPC applications to
the Portmapper function.

22 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Table 1. TCP/IP configuration data sets (continued)

Name (search order) Copied from Usage

ETC.SERVICES usr/lpp/tcpip/samples/services Establishes port numbers
for servers using TCP and
UDP. Required for z/OS
UNIX SNMP and
OMPROUTE (if the RIP
protocol is used). The search
order depends on the type
of application (z/OS UNIX
or native MVS).

/etc/syslog.conf /usr/lpp/tcpip/samples/syslog.conf Configuration file for the
syslog daemon (syslogd).

FTP.DATA
1. -f command line parameter

(FTP client only)
2. The MVS data set or z/OS

UNIX file specified on the
SYSFTPD DD statement in the
FTP server started procedure

3. userid/jobname.FTP.DATA
4. /etc/ftp.data
5. SYS1.TCPPARMS(FTPDATA)
6. hlq.FTP.DATA

SEZAINST(FTCDATA) for the client and
(FTPSDATA) for the server

Overrides default FTP client
and server parameters for
the FTP server. For more
information about the hlq,
jobname, or userid values, see
Chapter 12, “Transferring
files using FTP,” on page
659.

HOSTS.LOCAL SEZAINST(HOSTS) Input data set to
MAKESITE for generation
of HOSTS.ADDRINFO and
HOSTS.SITEINFO.

IKE daemon configuration

1. The MVS data set or z/OS
UNIX file specified by the
IKED_FILE environment
variable

2. /etc/security/iked.conf

/usr/lpp/tcpip/samples/iked.conf Contains IKE configuration
statements.

LBADV.CONF

The MVS data set or z/OS UNIX
file specified on the CONFIG DD
statement in the z/OS Load
Balancing Advisor started
procedure

SEZAINST(LBADVCNF) Contains z/OS Load
Balancing Advisor
configuration statements.

LBAGENT.CONF

The MVS data set or z/OS UNIX
file specified on the CONFIG DD
statement in the z/OS Load
Balancing Agent started
procedure.

SEZAINST(LBAGECNF) Contains z/OS Load
Balancing Agent
configuration statements.

LPD.CONFIG SEZAINST(LPDDATA) Configures the Line Printer
Daemon for the Remote
Print Server.

LU62CFG SEZAINST(LU62CFG) Provides configuration
parameters for the
SNALINK LU6.2 interface.

Chapter 2. IP configuration overview 23

Table 1. TCP/IP configuration data sets (continued)

Name (search order) Copied from Usage

MASTER.DATA No sample provided DNS database input
required for authoritative
name servers.

MIBS.DATA

1. The name of a z/OS UNIX file
or an MVS data set specified
by the MIBS_DATA
environment variable

2. /etc/mibs.data z/OS UNIX
file

No sample provided Defines textual names for
MIB objects for the z/OS
UNIX snmp command.

Network security services (NSS)
server configuration

1. The name of a z/OS UNIX file
or MVS data set specified by
the NSSD_FILE environment
variable.

2. /etc/security/nssd.conf

/usr/lpp/tcpip/samples/nssd.conf Contains NSS server
configuration statements.

NPSIDATE SEZAINST(NPSIDATE) v Operates the TCP/IP X.25
NCP Packet Switching
Interface.

v NCP and X.25 definition
statements supplied as
input to the NCP/EP
Definition Facility (NDF)
procedure. See NCP X.25
Planning and Installation
for details.

NPSIGATE SEZAINST(NPSIGATE) v Supports GATE MCHs
for X.25 NCP Packet
Switching Interface.

v NCP and X.25 definition
statements supplied as
input to the NCP/EP
Definition Facility (NDF)
procedure. See Network
Control Program X.25
Planning and Installation
for details.

OMPROUTE configuration

1. The MVS data set or z/OS
UNIX file specified on the
OMPCFG DD statement in the
OMPROUTE started
procedure.

2. The MVS data set or z/OS
UNIX file specified by the
OMPROUTE_FILE
environment variable

3. /etc/omproute.conf

4. hlq.ETC.OMPROUTE.CONF

SEZAINST(EZAORCFG) Contains OMPROUTE
configuration statements.

24 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Table 1. TCP/IP configuration data sets (continued)

Name (search order) Copied from Usage

OSNMP.CONF

1. /etc/osnmp.conf

2. /etc/snmpv2.conf

/usr/lpp/tcpip/samples/snmpv2.conf Defines target host security
parameters for the osnmp
command.

OSNMPD.DATA

1. The MVS data set or z/OS
UNIX file specified by the
OSNMPD_DATA environment
variable

2. /etc/osnmpd.data file system
file

3. The MVS data set z/OS UNIX
file specified on the OSNMPD
DD statement in the agent
started procedure

4. jobname.OSNMPD.DATA,
where jobname is the name of
the job used to start the
SNMP agent

5. SYS1.TCPPARMS(OSNMPD)

6. hlq.OSNMPD.DATA, where hlq
either defaults to TCPIP or is
specified on the
DATASETPREFIX statement in
the TCPIP.DATA file being
used

/usr/lpp/tcpip/samples/osnmpd.data Used by SNMP for setting
values for selected MIB
objects.

PAGENT.CONF

1. File or data set specified with
-c startup option

2. File or data set specified with
PAGENT_CONFIG_FILE
environment variable

3. /etc/pagent.conf

/usr/lpp/tcpip/samples/pagent.conf Defines Policy Agent
configuration parameters
and optionally defines QoS
service policies (rules and
actions).

PROFILE.TCPIP

1. The MVS data set specified on
the PROFILE DD statement in
the TCP/IP stack started
procedure.

2. job_name.node_name.TCPIP

3. hlq.node_name.TCPIP

4. job_name.PROFILE.TCPIP

5. hlq.PROFILE.TCPIP

SEZAINST(SAMPPROF) Provides TCP/IP
initialization parameters
and specifications for
network interfaces and
routing.

Chapter 2. IP configuration overview 25

Table 1. TCP/IP configuration data sets (continued)

Name (search order) Copied from Usage

PW.SRC

1. The MVS data set or z/OS
UNIX file specified by the
PW_SRC environment variable

2. /etc/pw.src file system file

3. The MVS data set or z/OS
UNIX file specified on
SYSPWSRC DD statement in
the started agent procedure

4. jobname.PW.SRC, where
jobname is the name of the job
used to start the SNMP agent

5. SYS1.TCPPARMS(PWSRC)

6. hlq.PW.SRC, where hlq either
defaults to TCPIP or is
specified on the
DATASETPREFIX statement in
the TCPIP.DATA file being
used

No sample provided Defines a list of community
names used when accessing
objects on a destination
SNMP agent.

Resolver Setup File SEZAINST (RESSETUP) Provides configuration
statements for the resolver.

RSVPD.CONF

1. File or data set specified with
-c startup option

2. File or data set specified with
RSVPD_CONFIG_FILE
environment variable

3. /etc/rsvpd.conf

4. hlq.RSVPD.CONF

/usr/lpp/tcpip/samples/rsvpd.conf Defines RSVP Agent
configuration parameters.

SMTPCONF

The MVS data set referenced by
CONFIG DD statement in the
SMTP started procedure.

SEZAINST(SMTPCONF) Provides configuration
parameters for the Simple
Mail Transfer Protocol
(SMTP).

SMTPNOTE clist

System CLIST data set

SEZAINST(SMTPNOTE) Defines the note parameters
for Simple Mail Transfer
Protocol (SMTP) and the
CSSMTP application.

26 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Table 1. TCP/IP configuration data sets (continued)

Name (search order) Copied from Usage

SNMPD.BOOTS

1. The name of a z/OS UNIX file
system file or an MVS data set
specified by the
SNMPD_BOOTS environment
variable.

2. /etc/snmpd.boots

No sample provided Defines the SNMP agent
security and notification
destinations.
Note: If the
SNMPD.BOOTS file is not
provided, the SNMP agent
creates the file. If multiple
SNMPv3 agents are running
on the same MVS image,
use the environment
variable to specify different
SNMPD.BOOTS files for the
different agents. For
security reasons, ensure
unique engine IDs are used
for different SNMP agents.

SNMPD.CONF

1. The name of a z/OS UNIX file
system file or an MVS data set
specified by the
SNMPD_CONF environment
variable.

2. /etc/snmpd.conf

Note: The first file found in the
search order is used.

/usr/lpp/tcpip/samples/snmpd.conf Defines the SNMP agent
security and notification
destinations.
Note: If the SNMPD.CONF
file is found, the PW.SRC
file and the
SNMPTRAP.DEST files are
not used.

SNMPTRAP.DEST

1. The MVS data set or z/OS
UNIX file specified by the
SNMPTRAP_DEST
environment variable

2. /etc/snmptrap.dest file
system file

3. The MVS data set or z/OS
UNIX file specified on
SNMPTRAP DD statement in
the agent started procedure

4. jobname.SNMPTRAP.DEST,
where jobname is the name of
the job used to start the
SNMP agent

5.
SYS1.TCPPARMS(SNMPTRAP)

6. hlq.SNMPTRAP.DEST, where
hlq either defaults to TCPIP or
is specified on the
DATASETPREFIX statement in
the TCPIP.DATA file being
used

No sample provided Defines a list of managers
to which the SNMP agent
sends traps.

Chapter 2. IP configuration overview 27

Table 1. TCP/IP configuration data sets (continued)

Name (search order) Copied from Usage

TCPIP.DATA SEZAINST(TCPDATA) Provides parameters for
TCP/IP client programs.
The search order depends
on the type of application
(z/OS UNIX or native
MVS). For more information
about TCPIP.DATA, see
z/OS Communications Server:
IP Configuration Reference.

TNDBCSCN

The MVS data set specified on the
TNDBCSCN DD statement in the
TN3270E Telnet server started
procedure

SEZAINST(TNDBCSCN) Provides configuration
parameters for Telnet 3270
Transform support.

TRAPFWD.CONF

1. A z/OS UNIX system file or
an MVS data set specified by
the TRAPFWD_CONF
environment variable

2. /etc/trapfwd.conf

No sample provided Defines addresses to which
the Trap Forwarder Daemon
forwards traps.
Note: If the environment
variable is set and if the file
specified by the
environment variable is not
found, the Trap Forwarder
daemon terminates.

VTAMLST

The VTAM definitions added to
the ATCCONxx member of the
MVS data set specified on the
VTAMLST DD statement in the
VTAM started procedure

SEZAINST(VTAMLST) Defines VTAM applications
and their characteristics.
Entries required for
TN3270E Telnet server,
SNALINK LU0, SNALINK
LU6.2, and X.25 NPSI
Server.

X25CONF

The MVS data set specified on the
X25IPI DD statement in the
X25PROC started procedure

SEZAINST(X25CONF) Provides configuration
parameters for the X.25
NCP Packet Switching
Interface.

X25VSVC

The VTAM switched major node
definition, added as a member of
the MVS data set specified on the
VTAMLST DD statement in the
VTAM started procedure

SEZAINST(X25VSVC) Provides switched virtual
circuit configuration for the
X.25 NCP Packet Switching
Interface.

Configuration files for the TCP/IP stack
Two configuration files are used by the TCP/IP stack, PROFILE.TCPIP and
TCPIP.DATA. PROFILE.TCPIP is used only for the configuration of the TCP/IP
stack. TCPIP.DATA is used during configuration of both the TCP/IP stack and
applications; the search order used to find TCPIP.DATA is the same for both the
TCP/IP stack and applications.

28 z/OS V1R12.0 Comm Svr: IP Configuration Guide

PROFILE.TCPIP search order
During initialization of the TCP/IP stack, system operation and configuration
parameters for the TCP/IP stack are read from the configuration file
PROFILE.TCPIP. As shown in Table 1 on page 21, the search order used by the
TCP/IP stack to find PROFILE.TCPIP involves both explicit and dynamic data set
allocation as follows:
v //PROFILE DD DSN=aaa.bbb.ccc(anyname)

v jobname.nodename.TCPIP
v hlq.nodename.TCPIP
v jobname.PROFILE.TCPIP
v TCPIP.PROFILE.TCPIP

Note: Explicitly specifying the PROFILE DD statement in the TCPIPROC JCL is
the recommended way to specify PROFILE.TCPIP. If this DD statement is
present, the data set it defines is explicitly allocated by MVS and no
dynamic allocation is done. If this statement is not present, the search order
continues to use dynamic allocation for the PROFILE.TCPIP.

Examples
These examples show the search order used by TCP/IP to find the configuration
file PROFILE.TCPIP. These examples use the sample TCP/IP started procedure,
TCPIPROC, installed in the SEZAINST data set.

Example when DD cards are in your TCP/IP startup procedure: In this example,
the PROFILE DD cards are specified as follows:
//TCPIP PROC PARMS=’CTRACE(CTIEZB00)’
//*
//* z/OS Communications Server
//* SMP/E Distribution Name: EZAEB01G
//*
//* 5694-A01 (C) Copr. IBM Corp. 1991,2001.
//* All rights reserved.
//* US Government Users Restricted Rights -
//* Use, duplication or disclosure restricted
//* by GSA ADP Schedule Contract with IBM Corp.
//* See IBM Copyright Instructions
//*
//TCPIP EXEC PGM=EZBTCPIP,
// PARM=’&PARMS’,
// REGION=0K,TIME=1440
//*...
//PROFILE DD DISP=SHR,DSN=MVSA.PROD.PARMS(PROFILE)...

Because the PROFILE DD is the first step in the search order, TCP/IP uses the data
set MVSA.PROD.PARMS(PROFILE) as the PROFILE.TCPIP configuration file.

Example when no DD cards are in your TCP/IP startup procedure: In this
example, the PROFILE DD statement is not specified:
//TCPIP PROC PARMS=’CTRACE(CTIEZB00)’
//*
//* z/OS Communications Server
//* SMP/E Distribution Name: EZAEB01G
//*
//* 5694-A01 (C) Copr. IBM Corp. 1991,2001.
//* All rights reserved.
//* US Government Users Restricted Rights -

Chapter 2. IP configuration overview 29

//* Use, duplication or disclosure restricted
//* by GSA ADP Schedule Contract with IBM Corp.
//* See IBM Copyright Instructions
//*
//TCPIP EXEC PGM=EZBTCPIP,
// PARM=’&PARMS’,
// REGION=0K,TIME=1440
//*...

For the configuration file PROFILE.TCPIP, the search order used is as follows:
1. PROFILE DD

No PROFILE DD exists...search continues.
2. jobname.nodename.TCPIP

If jobname.nodename.TCPIP is found, the search stops here.
3. hlq.nodename.TCPIP

If hlq.nodename.TCPIP is found, the search stops here.
4. jobname.PROFILE.TCPIP

If jobname.PROFILE.TCPIP is found, the search stops here.
5. TCPIP.PROFILE.TCPIP

TCPIP.PROFILE.TCPIP is searched last if necessary.

TCPIP.DATA search order
The TCP/IP stack's configuration component uses the TCPIP.DATA configuration
file during TCP/IP stack initialization to determine the stack's host name. To find
the TCPIP.DATA information, the z/OS UNIX environment search order is used.
For a description of this search order, see “Search orders used in the z/OS UNIX
environment” on page 762. This host name value is the value that is returned on
gethostname socket function calls processed by this stack.

For details on the z/OS UNIX environment and native MVS environment search
orders and the usage of z/OS UNIX environment variables, see “Resolver
configuration files” on page 759.

Configuration files for TCP/IP applications
This information describes environment variables, the resolver configuration files
that can be used by TCP/IP applications, and the search orders for those files. In
addition to resolver files, an application can also have its own configuration files
that are specific to that application. For more information about application-specific
configuration files, see the descriptions of the individual applications in Part 2,
“Server applications,” on page 511.

Environment variables
Environment variables are named variables with assigned values that can be
accessed by various processes in the Communications Server configuration.
Applications use environment variables to define the characteristics of their specific
environment.

Table 2 on page 31 lists where to find more information about the environment
variables that are explicitly set or used by z/OS Communications Server and its
applications. Language Environment® and UNIX System Services also provide
environment variables. For information regarding these other variables, see
Understanding Shell Variables in z/OS UNIX System Services User's Guide.

30 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Table 2. Environment variables

Application For environment variable information, see:

Bind 9 - DNS Bind 9-based DNS environment variables in
z/OS Communications Server: IP Configuration
Reference

Communications Server SMTP (CSSMTP) CSSMTP application environment variables
in z/OS Communications Server: IP
Configuration Reference

Defense Manager daemon (DMD) “Steps for configuring the DMD” on page
1187

Digital certificate access server (DCAS) DCAS environment variables in z/OS
Communications Server: IP Configuration
Reference

FTP client Environment variables in z/OS
Communications Server: IP User's Guide and
Commands

FTP server FTP server environment variables in z/OS
Communications Server: IP Configuration
Reference

IKE daemon IKE environment variables in z/OS
Communications Server: IP Configuration
Reference

MIBDESC MIBDESC environment variables in z/OS
Communications Server: IP Configuration
Reference

Motif Motif environment variables in z/OS
Communications Server: IP Programmer's Guide
and Reference

Network security services (NSS) server “Steps for configuring the NSS server” on
page 1162

OMPROUTE OMPROUTE environment variables in z/OS
Communications Server: IP Configuration
Reference

ORSHD RSHD command (orshd) environment
variables in z/OS Communications Server: IP
Configuration Reference

OSNMP OSNMP environment variables in z/OS
Communications Server: IP Configuration
Reference

Policy Agent Policy Agent environment variables in z/OS
Communications Server: IP Configuration
Reference

Resolver “Setting z/OS XL C/C++ environment
variables for configuration files” on page 763

SLAPM2 subagent (nslapm2) Network SLAPM2 subagent environment
variables in z/OS Communications Server: IP
Configuration Reference

SNMP agent OSNMPD environment variables in z/OS
Communications Server: IP Configuration
Reference

Chapter 2. IP configuration overview 31

Table 2. Environment variables (continued)

Application For environment variable information, see:

SNMP DPI SNMP DPI environment variables in z/OS
Communications Server: IP Programmer's Guide
and Reference

TRAPFWD daemon TRAPFWD environment variables in z/OS
Communications Server: IP Configuration
Reference

UNIX sendmail “Environment variables” on page 1432

UNIX Telnet server (otelnetd) “Environment variables” on page 650

X Window System interface V11R4 and
Motif version 1.1

Environment variables in z/OS
Communications Server: IP Programmer's Guide
and Reference

X Window System X Window System environment variables in
z/OS Communications Server: IP Programmer's
Guide and Reference

MVS-related considerations
This topic includes an overview of MVS-related considerations for configuring
z/OS Communications Server.

MVS system symbols
Use of MVS system symbols in the PROFILE.TCPIP data set, and data sets
referenced by VARY TCPIP,,OBEYFILE commands, is automatically supported. This
automatic support first tries to use hiperspace memory files to perform the symbol
translation, but if an error occurs, a temporary file is used. The temporary file is
created in either the directory specified by the TMPDIR environment variable or, if
the TMPDIR environment variable is not defined, in the /tmp directory.

Use of MVS system symbols in the resolver setup file and the TCPIP.DATA file is
also automatically supported. The resolver reads and processes the TCPIP.DATA
file on behalf of TCP/IP applications that invoke resolver services. System symbols
are resolved as file records are read.

Use of MVS system symbols is also supported in the following cases:
v Values of resolver environment variables, like RESOLVER_CONFIG and

RESOLVER_TRACE
v OMPROUTE configuration file
v Communications Server SMTP (CSSMTP) configuration file
v BeginArchiveParms DSNPrefix parameter in the syslogd configuration file

For MVS system symbols in other configuration files, use the symbol translator
utility, EZACFSM1, to translate the symbols before the files are read by TCP/IP.
EZACFSM1 reads an input file and writes to an output file, translating any
symbols in the process. For lists of the static system symbols and dynamic system
symbols supported by EZACFSM1, see z/OS MVS Initialization and Tuning Reference.

Guideline: The input file and output file can be MVS data sets or z/OS UNIX
files; however, do not specify the same file for both the input and output file. If
you specify the same file, a return code of 45 is returned and no translation is
attempted.

32 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|

|
|

|

Restriction: The record length of the input file cannot exceed 80 bytes.

For more information about the use of MVS system services, see z/OS MVS
Initialization and Tuning Guide.

Following is the symbol translator JCL, found in SEZAINST(CONVSYM), which is
used to start EZACFSM1:
//________ JOB (accounting,information),programmer.name,
// MSGLEVEL=(1,1),MSGCLASS=A,CLASS=A
//*
//* CS for z/OS
//* SMP/E distribution name: EZACFCSY
//*
//* 5694-A01 (C) Copyright IBM Corp. 1998, 2005
//* Licensed Materials - Property of IBM
//*
//* Function: System Symbols Translator JCL
//*
//* This JCL kicks off a utility that will read from
//* an input file that contains MVS System Symbols
//* and produce an output file which has those symbols
//* replaced with their substitution text, as defined
//* in the appropriate IEASYMxx PARMLIB data set; see MVS
//* Initializaton and Tuning Reference for rules about symbols.
//*
//* This JCL can be run against any of the TCP/IP configuration
//* files that contain MVS System Symbols. An example of how it
//* could be used is this; a customer could have one base TCPIP.DATA
//* file containing MVS System Symbols which they edit and maintain.
//* They would run this utility against this one file the various
//* MVS systems to produce the TCPIP.DATA file for each different
//* system.
//*
//STEP1 EXEC PGM=EZACFSM1,REGION=0K
//SYSIN DD DSN=TCP.DATA.INPUT,DISP=SHR
//*SYSIN DD PATH=’/tmp/tcp.data.input’
//* The input file can be either an MVS data set or an z/OS
//* UNIX file.
//*
//*
//SYSOUT DD DSN=TCP.DATA.OUTPUT,DISP=SHR
//*SYSOUT DD PATH=’/tmp/tcp.data.output’,PATHOPTS=(OWRONLY,OCREAT),
//* PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)
//* The output file can be either an MVS data set or an z/OS
//* UNIX file.
//*
//* The output file cannot be the same file as the input file-
//* doing so will result in a return code of 45.
//*
//* You can mix input and output file types (i.e., the input
//* can be an MVS data set with the output being a z/OS UNIX
//* file or visa versa).
//* Note: Other pathmodes for sysout may be used if needed.

The symbol translator utility can be used on any of the TCP/IP configuration files,
but because the PROFILE.TCPIP file is automatically translated during TCP/IP
initialization, there is no need to run the utility against that file.

Chapter 2. IP configuration overview 33

|

Automatic restart manager
Automatic restart manager (ARM) is an MVS component that can automatically
restart the TCP/IP stack after an abnormal end (ABEND).

During initialization, TCP/IP automatically registers with the automatic restart
manager, using the following options:
REQUEST=REGISTER
ELEMNAME=EZAsysclonetcpname

where:
v sysclone is a 1– or 2–character shorthand notation for the name of the MVS

system. For a complete description of the SYSCLONE static system symbol, see
z/OS MVS Initialization and Tuning Reference.

v tcpname is a 1– to 8–character name of the TCP/IP stack which registers with the
automatic restart manager. For example, if the SYSCLONE value is 02 and the
TCP/IP stack name is TCPCS, the resulting ELEMENT value is EZA02TCPCS.

ELEMTYPE=SYSTCPIP
TERMTYPE=ELEMTERM

For more information about automatic restart manager, see z/OS MVS Setting Up a
Sysplex.

Logging of system messages
Syslog daemon (syslogd) is a server process that must be started as one of the first
processes in your z/OS UNIX environment. TCP/IP server applications and
components use syslogd for logging purposes and can also send trace information
to syslogd. Servers on the local system use AF_UNIX sockets to communicate with
syslogd; remote servers use AF_INET sockets. z/OS Communications Server
components use the local1, local4, daemon, mail, user, and auth facilities names.

Note: Each application activates and deactivates traces in a slightly different
manner. For details, see the information about the individual application.

The syslog daemon reads and logs system messages to the MVS console, log files,
SMF, other machines, the operlog log stream, or users as specified by the
configuration file. If syslogd is not started, log data from some applications will be
displayed on the MVS console. For more information on syslogd, see Chapter 5,
“TCP/IP Customization,” on page 185.

34 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Note: /var/???.log is the file specified in the syslogd.conf file.

The syslogd facility uses a common mechanism for segregating messages. Table 3
shows the facilities used by z/OS Communications Server functions which write
messages to syslogd. The Primary syslog facility column shows the syslog facility
used for most messages logged by the application. Some applications use other
facilities for certain messages. Table 3 also shows any additional facilities.

Table 3. syslogd facilities

Application syslogd record
identifications

Primary syslog
facility

Other syslog facility

Application
Transparent
Transport Layer
Security (AT-TLS)

TTLS daemon auth

Automated domain
name registration
(ADNR)

adnr daemon None

Communications
Server SMTP
(CSSMTP)

CSSMTP mail None

Defense Manager
daemon (DMD)

DMD local4 None

FTP server ftpd, ftps daemon None

IKE daemon IKED local4 None

NAMED named daemon None

Network security
services (NSS) server

NSSD local4 None

Figure 2. syslogd operation

Chapter 2. IP configuration overview 35

Table 3. syslogd facilities (continued)

Application syslogd record
identifications

Primary syslog
facility

Other syslog facility

Network SLAPM2
subagent

NSLAPM2 daemon None

OMPROUTE omproute user None

OPORTMAP server oportmap daemon None

OREXECD rexecd daemon auth

ORSHD rshd daemon auth

OTELNETD telnetd local1 auth

Policy Agent Pagent daemon None

POPPER popper mail None

PWCHANGE
command

pwchange daemon None

PWTOKEY command pwtokey daemon None

rpcbind rpcbind daemon None

SENDMAIL sendmail mail None

Simple Network
Time Protocol
daemon

sntpd daemon None

SNMP agent
(OSNMPD)

snmpagent daemon None

syslogd syslogd daemon None

TCP/IP subagent M2SubA daemon None

TFTP server tftpd user None

TIMED daemon timed user None

TN3270E Telnet
subagent

TNSubA daemon None

Traffic Regulation
Management
Daemon (TRMD)

TRMD daemon (used for
IDS logging)

local4 (used for
IPSEC logging and
defensive filter
logging)

Trap Forwarder
daemon

trapfwd daemon None

z/OS Load Balancing
Advisor

lbadv daemon None

z/OS Load Balancing
Agent

lbagent daemon None

Accounting - SMF records
Installations use Systems Management Facilities (SMF) records for the following
reasons:

Performance management
Performance management includes the tasks that are related to verifying
that defined service levels are met, and if not, identifying possible causes.

Aggregated information about delivered service, structured by
organizational units (for which service levels have been defined) is needed

36 z/OS V1R12.0 Comm Svr: IP Configuration Guide

to perform these tasks. These reports are typically time series with varying
levels of time intervals, ranging from weeks through days to a time
interval that matches the SMF interval. Some examples of potential reports
related to performance management are:
v TCP connection elapsed time per server port number per time of day

(potentially broken down on source IP address, or netmask)
v Number of TCP connections per server port number per time of day

(potentially broken down on source IP address, or netmask)
v Number of inbound/outbound bytes transferred in TCP connections per

time of day (potentially broken down in various ways: per destination or
source port, per destination IP address, netmask, or in total, etc.)

v TCP retransmission activity per time of day (potentially broken down
per destination IP address, or netmask)

v Number of outbound TCP connections per time of day (potentially
broken down per destination IP address, or netmask)

v Number of inbound/outbound UDP datagrams per time of day
(potentially broken down on server port number)

v Number of discards, error packets, and unknown protocol packets
inbound and outbound per time of day (potentially broken down per
interface)

Capacity planning
Capacity planning includes tasks that are related to forecasting capacity in
terms of central processing power, memory, channel-based I/O subsystem,
network attachments, and network bandwidth. Such planning tasks are
based on analyzing trends for use of capacity during a preceding period
(typically one to two years), and applying forecasting metrics, along with
knowledge about planned launches of new applications or use of existing
applications, to this trend in order to predict capacity needs during the
next one to two year period. Some examples of potential reports related to
capacity planning are:
v Total number of TCP connections per reserved server port number per

day including analysis of average and variations around average during
daily peak periods

v Total number of UDP inbound/outbound UDP datagrams per reserved
server port number per day including average and variations around
average during daily peak periods

v Number of bytes and/or packets transferred inbound and outbound per
interface (LINK) per time of day (potentially broken down into unicasts,
broadcasts, and multicasts)

v Size of queue length per interface per time of day

Auditing
Auditing involves tasks that are related to identifying and proving that
individual events have taken place. Some examples of potential reports
related to auditing are:
v Detailed information about specific TCP connections or UDP sockets, IP

addresses, server/client identification, duration, number of bytes, and so
on

v Details about activity that involves a specific client or server
v Details about a given application session based on server-specific SMF

recording, such as individual Telnet sessions or FTP sessions

Chapter 2. IP configuration overview 37

v Details about changes to the TCP/IP stack profile and the user that
requested the change

v Details about changes to the status of dynamic virtual IP addresses
(DVIPAs) and sysplex distributor targets

Accounting
Accounting involves tasks that are related to calculating how much each
individual user or organizational unit should be charged for use of the
shared central IS resources. Input to such calculations vary, but is often
based on CPU cycle use, data quantities, bandwidth usage, and memory
use. For TCP/IP additional metrics may be defined, such as type of service
used (FTP, LPD, Web server, and so on), and TCP connection-related
information (number of connections, duration, byte transfer counts, and so
on). Some examples of potential reports related to accounting are:
v Aggregated number of connections to a given server from a given source

in terms of a specific client IP address, or netmask
v Accumulated connect time to a given server from a given source in

terms of a specific client IP address, or netmask.
v Number of bytes transferred to or from a given source in terms of a

specific client IP address, or netmask.
v Amount of data protected by specific manual or dynamic tunnels.
v Application-level accounting information specific to each individual

server, for example:
– For CSSMTP: Information about mail message processing
– For FTP: Number of transfer operations and bytes retrieved or stored

per user ID
– For IKED: Information about IKE tunnels
– For TN3270: Number of sessions and session type

(TN3270/TN3270E/LINEMODE)

In general, SMF records are created for deferred processing and analysis. SMF
recording is generally not used for real-time monitoring purposes. In a TCP/IP
environment, real-time monitoring is implemented using the SNMP protocol and is
based on internal variables that are maintained by SNMP subagents, but on z/OS
a lot of the information that is written in SMF records is useful from a real-time
monitoring perspective, too.

As can be seen, all disciplines require detailed data as input. Depending on the
discipline, certain levels of aggregation is performed on the raw detailed data in
order to perform the tasks of that discipline. The objective of the TCP/IP product
is to define and generate the lowest level of detail that is needed by all disciplines.
How to aggregate and the actual aggregation is performed by other products, such
as Performance Reporter for z/OS (PR), MVS Information Control System (MICS),
or SAS-based tools or, in many cases, customer-written programs.

TCP/IP– produced SMF records should not be viewed isolated. Other components
in MVS produce SMF records for the same purposes as those produced by TCP/IP.
An installation is likely to combine information from a series of subsystems in
performing detailed performance, or capacity planning. SMF records with
information about use of CPU resources and memory resources per address space
is, for example, produced by other components in MVS, and TCP/IP produced
SMF records should not duplicate that information.

38 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|

|

The events that trigger SMF records to be written and the information included in
the SMF records must accommodate the intended purposes. There can be multiple
purposes for given SMF records.

SMF records can be cut at multiple levels in the TCP/IP protocol stack, and the
type of information that can be included depends on where the SMF record is
created:
v At the IP and interface layer, there is information about ICMP activity, IP packet

fragmentation and reassembly activity, IP checksum errors, IGMP activity, and
ARP activity. At this layer, it is difficult to relate the information to specific users
(remote clients, local socket address spaces, and so on), so from an accounting
point of view, this information is not very interesting. Because you can aggregate
network-layer activity to physical interfaces, the information at the IP and
interface layer is an important aspect of both performance and capacity
management.

v At the transport protocol layer, there is information about IP addresses, port
numbers, and host names. For TCP-related workload, there is information about
connections and information that is related to TCP connections, such as byte
counts, connection times, reliability metrics, and performance metrics. For
UDP-related workload, each UDP datagram is a separate entity; the only way to
aggregate information for UDP is on a UDP socket level, where SMF records
could be created every time a UDP socket is closed.

v At the application layer, there are more details about what goes on, but every
application is different and requires separate SMF record definitions and ability
to write the SMF records to implement application-layer SMF recording.
Currently, application-layer SMF recording is done for the TN3270E Telnet server
(Telnet), the FTP server, and the IKE daemon, but not for any other servers.

For more information about the SMF records provided by z/OS Communications
Server functions, see z/OS Communications Server: IP Programmer's Guide and
Reference.

Security considerations
Multilevel security is an enhanced security environment that can be configured on
a z/OS system. In this environment, the security server and trusted resource
managers enforce mandatory access control policies in addition to the usual
discretionary access control policies. To participate in a multilevel secure
environment, the user IDs associated with z/OS CS tasks and the resource profiles
in the SERVAUTH class need to have security labels defined. For more information
on the multilevel secure environment and configuring z/OS CS in that
environment, see Chapter 4, “Preparing for TCP/IP networking in a multilevel
secure environment,” on page 153.

z/OS Communications Server relies on a System Authorization Facility (SAF) to
protect several resources:
v Started tasks require access to a STARTED resource. This is documented in the

server information in the z/OS Communications Server: IP Configuration Reference.
Also, see SEZAINST(EZARACF) for SAF authorizations required for the TCP/IP
stack and servers started tasks.

v Restricting access to a network, subnetwork or particular IP address in the
network is provided by resources in the SERVAUTH class. Using NETACCESS
statements, z/OS CS can map networks, subnetworks and IP addresses to SAF
resource names. Users that are not permitted access to a particular SAF resource
are not allowed to communicate with the corresponding network, subnetwork,

Chapter 2. IP configuration overview 39

|
|
|

or IP address. See the NETACCESS statement in z/OS Communications Server: IP
Configuration Reference or “Setting up the System Authorization Facility server
access authorization class (optional)” on page 240 for more information.
Restricting the ability of the users to run applications that access specific TCP
and UDP ports is also provided by resources in the SERVAUTH class. z/OS
Communications Server provides a one-to-one mapping between port numbers
and SAF resource names. See the PORTACCESS statement in the z/OS
Communications Server: IP Configuration Reference or “Setting up the System
Authorization Facility server access authorization class (optional)” on page 240
for more information.
Similar to the function provided by the PORTACCESS statement, z/OS
Communications Server ensures that a user attempting to connect to a TN3270E
Telnet server secure port is allowed access to the port. This support is used in
conjunction with Telnet client authentication support. See the CLIENTAUTH
statement in the z/OS Communications Server: IP Configuration Reference or
“Setting up the System Authorization Facility server access authorization class
(optional)” on page 240 for more information.
Restricting access to the TCPIP stack is also controlled under z/OS CS by
defining a resource in the SERVAUTH class. See “Setting up the System
Authorization Facility server access authorization class (optional)” on page 240
for more information.

v Restricting access to operator commands is provided through the OPERCMDS
resource. z/OS Communications Server verifies that users have access to specific
OPERCMDS resources before executing the operator command. See the operator
commands information in z/OS Communications Server: IP System Administrator's
Commands or “Setting up the System Authorization Facility server access
authorization class (optional)” on page 240 for more information about limiting
access to z/OS Communications Server commands.

v Restricting access to the TSO and UNIX shell Netstat command is provided by
SERVAUTH resources. z/OS Communications Server verifies that users have
access to specific SERVAUTH resources before executing the Netstat command.
See the Netstat command information in the z/OS Communications Server: IP
System Administrator's Commands for more information about limiting access to
Netstat command. The security product resource names in the SERVAUTH class
do not apply to DISPLAY TCPIP,,NETSTAT command. If you wish to restrict
access to DISPLAY TCPIP,,NETSTAT command, you can do so using standard
operator command restriction facility, OPERCMDS class profiles. See z/OS MVS
Planning: Operations for more information.

Nonreusable ASIDs
The following Communications Server address spaces provide PC-entered services
that must be accessible to all address spaces, so a system LX is obtained.
v Resolver
v TCP/IP stack
v TN3270 Telnet server
v VMCF and TNF subsystems

The following applications use these subsystems:
– SNMP Query Engine application
– Pascal Socket Interface
– SMTP and LPD servers
– TSO TELNET, HOMETEST, TESTSITE, RSH, REXEC, and LPR commands

40 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Unless you specify REUSASID=YES on the START command, the Address Space
Identifiers (ASIDs) associated with these address spaces will be nonreusable when
these address spaces are stopped or restarted. If these address spaces are stopped
enough times and you do not specify REUSASID=YES when you start the address
space, all available ASIDs might be exhausted, which prevents a new address
space from being created on the system. In this case, an IPL is required. Specifying
REUSASID=YES when starting these address spaces ensures that the ASIDs
associated with them can be reused and can help avoid an IPL. For more
information about tuning parameters for the maximum number of ASIDs on a
system, see the MAXUSER parameter in z/OS MVS Initialization and Tuning
Reference.

Restriction: Do not specify REUSASID=YES when you are starting the VMCF and
TNF subsystems or any applications that use these subsystems.

TSO command authorization
The LPR, MODDVIPA, PING, and TRACERTE commands should be listed in the
AUTHCMD NAMES section of your IKJTSOxx member of SYS1.PARMLIB.

If a command such as PING or TRACERTE is invoked using another method other
than a TSO command, you might have to do additional authorization
customization, such as also adding the program names to the AUTHPGM NAMES
section of your IKJTSOxx SYS1.PARMLIB member.

UNIX System Services security considerations
This information describes some security considerations that have a product-wide
effect. Descriptions of security considerations that affect specific servers or
components are described with the information for each server and component.

Requirement for an OMVS segment
Many TCP/IP Services components in z/OS Communications Server now exploit
z/OS UNIX services in both the native MVS environment and in the z/OS UNIX
environment. For example, all TCP/IP socket APIs and TCP/IP applications
(whether they are provided by z/OS Communications Server, z/OS, other IBM and
non-IBM products, or written by users) now make use of z/OS UNIX services.

Use of z/OS UNIX services requires a z/OS UNIX security context, referred to as
an OMVS segment, for the user ID associated with any unit of work requesting
these services. In other words, most user IDs requiring access to TCP/IP functions
now require an OMVS segment to be defined in Resource Access Control Facility
(RACF).

Note: The tasks, examples, and references in this information assume that you are
using the z/OS Communications Server Security Server (RACF). If you are
using a security product from another vendor, read the documentation for
that product for instructions on task performance.

To satisfy the requirement for an OMVS segment in RACF, do one of the following:
v Identify all the users in your environment that use TCP/IP services and then

define OMVS RACF segments for the associated user IDs.
v Use the unique OMVS segment support provided by RACF and z/OS UNIX for

users and groups.

Chapter 2. IP configuration overview 41

|

Unique OMVS segment support is enabled when you define the
BPX.UNIQUE.USER profile in the FACILITY class. RACF automatically generates
unique UIDs and GIDs on demand for users and groups that do not have OMVS
segments defined. RACF saves the generated UIDs and GIDs in unique OMVS
segments created for user and group profiles in the RACF database.

Guideline: If you currently use default OMVS segment support, switch to unique
OMVS segment support to improve security. Default OMVS segment support
assigns default OMVS segments that share the same UID and GID, while unique
OMVS segment support uses unique IDs.

For more information about unique OMVS segment support, see z/OS UNIX
System Services Planning. For steps to use unique OMVS segment support, see z/OS
Security Server RACF Security Administrator's Guide.

Authorization of TCP/IP started task user ID
The TCP/IP address space operates as a transport provider for the INET physical
file system. For this to occur, the TCP/IP system address space must connect to
z/OS UNIX and become a z/OS UNIX process. Therefore, the started task UID
that is assigned to the TCP/IP system address space must have a valid OMVS
segment.

As a transport provider, the TCP/IP address space requires superuser privileges in
z/OS UNIX. Define the TCP/IP system address space started task UID as UID=0,
or define the TCP/IP system address space as a trusted environment in the RACF
started class profile for the TCP/IP system address space. Use the following
command to assign an OMVS segment to the TCP/IP started task user ID specified
as UID=0:
ALU tcpip_userid OMVS(UID(0) HOME(/) PGM(/bin/sh))

Other user IDs requiring z/OS UNIX superuser authority
When a started procedure is used to start the following servers, daemons, and
agents, the user must be a superuser [UID(0)] or permitted to BPX.SUPERUSER
class profile.
v Domain Name System (DNS) BIND v9 name server
v Network Print Facility (NPF) queue manager
v OMPROUTE server
v Sendmail Mail Transfer Agent (MTA)
v SNMP agent (OSNMPD)
v TN3270E Telnet server

The File Transfer Protocol (FTP) daemon requires UID(0). For more information,
see “Security for the FTP server” on page 663.

The following daemons are managed by the inetd server, and the user specified in
file /etc/inetd.conf must be defined to RACF with UID(0). For details on inetd, see
z/OS UNIX System Services Planning. For details on individual daemons, see z/OS
Communications Server: IP Configuration Reference.
v z/OS UNIX remote execution daemon (REXECD)
v z/OS UNIX remote shell daemon (RSHD)
v z/OS UNIX Telnet daemon

42 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|

|
|
|
|

|
|
|

BPX.DAEMON FACILITY class profile
Certain z/OS Communications Server TCP/IP Services servers need to change the
security environment of the process in which they currently execute. For example,
the FTPD daemon creates a new z/OS UNIX process for every FTP client
connecting to it. After the new process is created, the daemon changes the security
environment of the process so that it is associated with the security context of the
logged-in user. The RACF FACILITY class resource BPX.DAEMON is used for this
purpose. Table 4 contains information about using the BPX.DAEMON resource.

Table 4. BPX.DAEMON

Task Details

Decide if you want to activate the BPX.DAEMON level
of security by reviewing the information about
BPX.DAEMON authority in z/OS UNIX System Services
Planning to determine whether this level of security is
appropriate for your installation.

This is not required. It is recommended, however,
because it provides additional security in the z/OS UNIX
environment.

The following TCP/IP Services servers and daemons in
z/OS Communications Server change the security
environment of their processes:

v FTPD

v Network security services (NSS) server

v Policy Agent

v z/OS UNIX REXECD

v z/OS UNIX RSHD

v z/OS UNIX TELNETD

Plan the time at which you define BPX.DAEMON
carefully.

As soon as you define the BPX.DAEMON resource, MVS
will not let programs change the security environment
unless the programs are retrieved from a
program-controlled library and unless the UID under
which the program executes has access to
BPX.DAEMON.

If you decide not to define the BPX.DAEMON FACILITY
class profile, assign UID(0) for the UIDs associated with
these servers and daemons.

This is sufficient for processing. It is described in “Other
user IDs requiring z/OS UNIX superuser authority” on
page 42.

If you do decide to define the BPX.DAEMON FACILITY
class profile, grant READ access to this profile for the
UIDs associated with the listed daemons. Also, enable
BPX.DAEMON security by defining the BPX.DAEMON
FACILITY class profile in RACF.

To define the BPX.DAEMON FACILITY class profile in
RACF, use the following command:

RDEFINE FACILITY BPX.DAEMON UACC(NONE)

Note: You must specify the name BPX.DAEMON in this
command. Substitutions for the name are not allowed.

If all the required conditions are not met, your server programs will fail as soon as
you define BPX.DAEMON. If the server programs fail, delete BPX.DAEMON, and
the setup reverts to its previous state. Check all your definitions, and make the
required corrections before trying to define BPX.DAEMON again.

If this is the first FACILITY class profile that your installation is using, activate the
FACILITY class using the following commands:
SETROPTS CLASSACT(FACILITY) GENERIC(FACILITY) AUDIT(FACILITY)
SETROPTS RACLIST(FACILITY)

If you start server programs using MVS start commands or from shell scripts that
execute after startup of z/OS UNIX, you must allow the UIDs access to the
BPX.DAEMON FACILITY class resource. The following example shows the UID
(ftpd_user_ID) with which you can start the FTPD daemon:

Chapter 2. IP configuration overview 43

PERMIT BPX.DAEMON CLASS(FACILITY) ID(ftpd_user_ID) ACCESS(READ)

Authorization to change the user security environment is granted only if both of
the following two conditions are true:
v The server program is executing under a UID that has READ permission to the

BPX.DAEMON FACILITY class profile and a UID=0.
v All programs running in the address space have been retrieved from a controlled

library.

Program control
There are additional security concerns when you are loading programs that are
considered trusted into the z/OS UNIX file system. Program control facilities in
RACF and z/OS UNIX provide a mechanism for ensuring that the z/OS UNIX
program loading process has the same security features that APF authorization
provides in the native MVS environment.

It is recommended that you enable program control in your installation. If you
define the BPX.DAEMON FACILITY class profile, you must enable program control
for certain z/OS Communications Server load libraries. Review the information on
program control in z/OS UNIX System Services Planning to decide whether program
control is appropriate for your installation.

To enable program control, follow the tasks in Table 5.

Table 5. Program control

Task Details

Activate program control. Use the following command:

SETROPTS WHEN(PROGRAM)

Set the universal access for
public library data sets (those
in LINKLSTxx) to READ. This
allows access to the controlled
programs and any other
program in those libraries.
(MVS opens the LNKLSTxx
libraries during IPL and makes
these programs public.
However, users cannot make
changes.)

Use the following commands to create RACF data set profiles:

ADDSD ’cee.version.SCEERUN’ UACC(READ)
ADDSD ’SYS1.LINKLIB’ UACC(READ)
ADDSD ’TCPIP.SEZALOAD’ UACC(READ)
ADDSD ’TCPIP.SEZATCP’ UACC(READ)

44 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Table 5. Program control (continued)

Task Details

Ensure all load modules that
are loaded by the
BPX.DAEMON servers into an
address space come from
controlled libraries.

If the MVS contents supervisor loads a module from a noncontrolled library, the
address space becomes dirty and loses its authorization. To prevent this from
happening, define all the libraries from which load modules can be loaded as
program controlled. At a minimum, this should include the C run-time library, the
TCP/IP Services SEZALOAD and SEZATCP libraries, SYS1.LINKLIB, and any load
libraries containing FTP security exits.

Use the following commands:

RDEFINE PROGRAM * ADDMEM(’SYS1.LINKLIB’/volser/NOPADCHK) UACC(READ)
RALTER PROGRAM * ADDMEM(’SYS1.SIEALNKE’/volser/NOPADCHK)
RALTER PROGRAM * ADDMEM(’cee.version.SCEERUN’/volser/NOPADCHK)
RALTER PROGRAM * ADDMEM(’TCPIP.SEZALOAD’/volser/NOPADCHK)
RALTER PROGRAM * ADDMEM(’TCPIP.SEZATCP’/volser/NOPADCHK)
RALTER PROGRAM * ADDMEM(’db2.DSNLOAD’/volser/NOPADCHK)
RALTER PROGRAM * ADDMEM(’db2.DSNEXIT’/volser/NPPADCHK)
RALTER PROGRAM * ADDMEM(’ftp.userexits’/volser/NOPADCHK)

Note: If you define the load libraries as controlled, do not specify a universal
access of NONE for the PROGRAM resources. If you do so for your SYS1.LINKLIB
programs, you cannot IPL your z/OS system. Be aware also that in z/OS, the
volser specification is optional.

Activate RACF changes. Use the following command:

SETROPTS WHEN(PROGRAM) REFRESH

Defining TCP/IP as a UNIX System Services physical file system
The TCP/IP services stack in z/OS Communications Server must be defined as a
z/OS Communications Server UNIX System Services physical file system (PFS)
before it can be started. This involves updating the BPXPRMxx parmlib member.
The following sample definition in BPXPRMxx defines TCP/IP as a z/OS
Communications Server UNIX System Services PFS, where the network layer is IP
Version 4 (IPv4) and communication at the sockets layer is through the AF_INET
family:
FILESYSTYPE TYPE(INET) ENTRYPOINT(EZBPFINI)

NETWORK DOMAINNAME(AF_INET)
DOMAINNUMBER(2)
MAXSOCKETS(60000)
TYPE(INET)

This sample definition shows how to define a single TCP/IP stack as IPv4 only. To
define a single TCPIP stack as both IPv4 and IPv6, add an additional NETWORK
statement in the BPXPRMxx member. The following sample definition in
BPXPRMxx defines TCP/IP as a z/OS Communications Server UNIX System
Services PFS, where the network layer is IP Version 6 (IPv6) and communication at
the sockets layer is through the AF_INET6 family:
NETWORK DOMAINNAME(AF_INET6)

DOMAINNUMBER(19)
MAXSOCKETS(60000)
TYPE(INET)

The BPXPRMxx member contains additional parameters that are crucial to the
proper operation of TCP/IP. Carefully examine and specify these parameters:
v MAXPROCSYS — Specifies the maximum number of z/OS UNIX processes that

the system allows.

Chapter 2. IP configuration overview 45

|
|
|
|
|
|
|
|

|

v MAXPROCUSER — Specifies the maximum number of processes that a single
z/OS UNIX user ID can have concurrently active, regardless of how the
processes were created.

v MAXUIDS — Specifies the maximum number of z/OS UNIX user IDs that can
operate concurrently.

v MAXFILEPROC — Specifies the maximum number of descriptors for files,
sockets, directories, and any other file system objects that a single z/OS UNIX
process can have concurrently allocated. This includes access to both z/OS
UNIX files and socket descriptors. In z/OS Communications Server, most
TCP/IP applications access TCP/IP sockets, either directly or indirectly, using
the TCP/IP socket APIs. You should set the MAXFILEPROC value high enough
to accommodate the largest number of sockets that a single TCP/IP application
(or z/OS UNIX process) can allocate.
Be aware that the TN3270E Telnet server is exempt from the limit specified in
this parameter. The TN3270E Telnet server can obtain the maximum number of
socket connections for a single z/OS Communications Server UNIX System
Services process.

v MAXPTYS — Specifies the maximum number of pseudo-terminals for the
system.

v MAXTHREADTASKS — Specifies the maximum number of MVS tasks that a
single process can have concurrently active.

v MAXTHREADS — Specifies the maximum number of threads that a single
process can have concurrently active.

v MAXQUEUEDSIGS — The sum of MAXQUEUEDSIGS and MAXFILEPROC
multiplied by 2 is the system wide maximum for the total number of
asynchronous z/OS UNIX socket calls that can be outstanding. When specifying
this number, consider the following:
– For every TCP/IP connection that the TN3270E Telnet server has, there is an

asynchronous z/OS UNIX socket call outstanding. This is true for both
TN3270 and TN3270E clients.

– Any TCP/IP application, IBM or vendor supplied, that uses either the z/OS
UNIX asyncio callable service or the TCP/IP-provided Sockets Extended
asynchronous API could have one or more outstanding asynchronous socket
calls.

The MAXSOCKETS parameter specifies the maximum number of sockets that can
be obtained for a given file system type. You must ensure that this specification is
large enough to accommodate your installation's workload. For example, each
connection to your TN3270E Telnet server or FTP server requires one z/OS
Communications Server UNIX System Services socket. Once the maximum number
of sockets is allocated, then no more Telnet sessions, FTP sessions, or other
applications that require z/OS Communications Server UNIX System Services
sockets can be started.

Note: If multiple NETWORK statements are defined, MAXSOCKETS can be
specified for each NETWORK statement and will be enforced separately.

For details on the BPXPRMxx member, see the following guides:
v z/OS UNIX System Services Planning

v z/OS MVS Initialization and Tuning Reference

46 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Performance considerations
Follow the guidelines found in the z/OS MVS Initialization and Tuning Reference. If
your installation is running Workload Manager, follow the guidelines found in
z/OS MVS Planning: Workload Management.

VTAM, TCP/IP, and some associated server applications must be able to obtain
cycles to maintain their network presence. The following dispatching priority
guidelines apply for these functions:
v In general, you should set VTAM and TCP/IP to a higher dispatching priority

than that of the applications that use their services.
v For server applications such as OMPROUTE, TN3270E Telnet server, IKED, and

FTPD, you should set the priority value to the same value to which TCP/IP is
set, or to a priority that is just below that value. If you are using WLM, assign
these tasks to the SYSSTC service class. Additionally, if you make these tasks
non-swappable, they will be available during periods of high CPU usage. The
MVS default program property table sets Telnet to be non-swappable and
privileged, which automatically assigns the task to the SYSSTC service class.

v Set non-critical applications, such as Policy Agent and TRMD, to a lower
priority.

v Set the SNMP agent and all the SNMP subagents to the same WLM service class
so that they all have the same dispatching priority. Timeouts can occur if the
SNMP subagents are set to a lower dispatching priority than the SNMP agent.

On systems with significant FTP activity, you can improve performance by placing
the FTP program objects into the dynamic link pack area (LPA). Putting the FTP
program objects into the dynamic LPA eliminates the need to load these program
objects from DASD for each FTP session. You can place these program objects into
the dynamic LPA using either of the following methods:
v Include the following statement in the PROGxx member of SYS1.PARMLIB and

then issue a SET PROG=xx command:
LPA,ADD,MODNAME(EZAFTPLS,FTPDNS,EZAFTPLC,FTP),DSNAME(LNKLST)

v Issue the following SETPROG command:
SETPROG LPA,ADD,MODNAME(EZAFTPLS,FTPDNS,EZAFTPLC,FTP),DSNAME(LNKLST)

Tip: You can also place the SET PROG=xx command or the SETPROG command in
a COMMNDxx SYS1.PARMLIB member to have the command issued at IPL time.

Requirement: If maintenance is applied to these program objects, you must update
the program objects in storage using one of the following methods:
v Issue an LLA refresh command, and then issue a SET PROG=xx command that

points to a PROGxx member that contains the following command:
LPA,ADD,MODNAME(EZAFTPLS,FTPDNS,EZAFTPLC,FTP),DSNAME(LNKLST)

v Issue an LLA refresh command, and then issue the following SETPROG
command:
SETPROG LPA,ADD,MODNAME(EZAFTPLS,FTPDNS,EZAFTPLC,FTP),DSNAME(LNKLST)

For more information, see z/OS MVS System Commands.

Chapter 2. IP configuration overview 47

|
|
|

|
|

|
|
|
|
|
|
|

|
|

|
|
|

|
|
|
|

|
|

|

|

|
|

|
|

|
|

|

|
|

|

Fast path support
For applications that have extremely strict communications path-length
requirements, an optional extension has been provided to further reduce overhead
resulting from the z/OS UNIX-to-TCP/IP stack communications. This extension is
only available to applications using the UNIX System Services socket API or the
z/OS XL C/C++ Run-time Library functions. It is not available to applications
using the native MVS socket APIs (such as C/C++, EZASMI macro, EZASOKET,
REXX, or CICS socket APIs) provided by the Communications Server. Exploitation
of this extension is entirely optional.

This feature can be activated for an entire z/OS UNIX process using the z/OS
UNIX environment variable _BPXK_INET_FASTPATH. The value of this variable
determines whether a socket application is marked fast path. An XL C/C++
application can set the variable by invoking the setenv function, or you can export
the variable to the z/OS UNIX shell environment before the socket application is
invoked. An application using the z/OS UNIX API can set this variable using the
BPX1ENV service.

Note: z/OS UNIX environmental variables have a process-wide scope only—that
is, they usually affect a single MVS address space only. It is possible,
however, to have multiple UNIX processes within a single address space. In
this scenario, the setting of this environmental variable might vary for each
process within the address space. It is not a problem if some of your
applications exploit fast path services, while others do not. When a socket
application is marked as fast path, the communications overhead is reduced
on the following socket syscalls:
v - send()
v - recv()
v - sendto()
v - recvfrom()
v - sendmsg()
v - recvmsg()

Although applications are more efficient when using the environmental variable,
they are not XPG compliant, and POSIX signals are not supported. Applications
can be interrupted only with the SIGKILL terminating signal, and they cannot be
debugged using the interactive z/OS UNIX dbx debugger. You can, however,
develop and test an application using the dbx debugger without setting the
environmental variable, and then execute the application in production with the
environmental variable set. Also, note that applications using the z/OS UNIX
asynchronous socket interface (BPX1AIO) to invoke synchronous socket operations
(that is, setting the AioSync bit in the AIOCB) cannot use the BPX1AIO service to
cancel outstanding synchronous calls on sockets that are marked as fast path.
Doing so will cause the cancel operation to hang.

For environments that do not use common INET, the value of this variable should
be set to the name specified on the TYPE parameter of the FILESYSTYPE statement
in the BPXPRMxx parmlib member.

For common INET environments, the value used to set the environmental variable
depends on whether the application is using the TCP or UDP protocols. In a
common INET environment, the variable should be set as follows:

48 z/OS V1R12.0 Comm Svr: IP Configuration Guide

v For UDP applications, it should be set to the name of the TCP/IP stack as
specified on the NAME parameter of the SUBFILESYSTYPE statement in the
BPXPRMxx parmlib member. The socket application is explicitly associated with
the TCP/IP stack named in the environmental variable (that is, the TCP/IP stack
name). This means that the socket application can communicate with partners
that are accessible only through the specific TCP/IP stack interfaces. For UDP,
the environmental variable effectively overrides the support provided by
common INET. You should take this contingency into account before activating
fast path for a UDP-based application.
Note that if the UDP application already establishes affinity to a specific TCP/IP
stack using other means, such as setting the _BPXK_SETIBMOPT_TRANSPORT
environment variable, using setibmopt(), BPX1PCT, and so on, the setting of the
fast path variable is ignored. As a result, UDP applications that require fast path
support and affinity to a specific TCP/IP stack must do so using the
_BPXK_INET_FASTPATH environmental variable.

v For TCP applications, the variable can be set to an asterisk (*), indicating that
any TCP/IP stack in the common INET configuration can be used. This allows
all TCP/IP stacks that support the fast path model to obtain the fast path
performance benefits automatically. TCP servers are not bound to a specific
TCP/IP stack, even if they specify a specific TCP/IP stack name on the
environmental variable; instead, they can listen for inbound connections across
all TCP/IP stacks. When a connection arrives from the TCP/IP stack named in
the environmental variable [at the time of the accept()], it is automatically
marked as fast path. Connections that arrive from TCP/IP stacks that are not
named by the current environmental variable value are not marked as fast path.
Note, however, that certain TCP/IP API functions, such as the resolver services
[that is, gethostbyname(), gethostbyaddr(), getaddrinfo(), and getnameinfo()] and
the network interface identification services [that is, if_nameindex(),
if_nametoindex(), and if_indextoname()] use UDP sockets internally to perform
their processing. Consequently, if a specific TCP/IP stack name is specified on
the environmental variable, these hidden UDP sockets will only be associated
with the named TCP/IP stack, which might have undesirable effects. For
example, any resolver API queries resulting in communications with a domain
name server will occur only over the specified TCP/IP stack. As a result, it is
strongly recommended that TCP applications set the environmental variable to
the special asterisk (*) value. If the application requires affinity to a specific
TCP/IP stack, it should do so using any of the facilities that are provided by
z/OS UNIX, such as setibmopt(), BPX1PCT, and so on. For more details on
establishing affinity to a specific TCP/IP stack, see z/OS UNIX System Services
Planning.

Applications can also enable fast path processing for a single socket by issuing the
Iocc#FastPath IOCTL for the socket, using the w_ioctl() or the BPX1IOC APIs. Note
that this IOCTL is only effective if it is issued against a socket that is already
associated with a specific TCP/IP stack. Sockets are considered associated with a
specific TCP/IP stack if they meet any of the following conditions:
v The application has explicit process affinity to a specific TCP/IP stack [that is,

by setting the _BPXK_SETIBMOPT_TRANSPORT environmental variable, using
setibmopt(), BPX1PCT, and so on].

v TCP/IP stack affinity has been explicitly established for this socket (that is, using
the SIOCSETRTTD IOCTL).

v A bind() has already been issued for the socket using a specific IP address (that
is, not the IPv4 INADDR_ANY address, nor the IPv6 unspecified address,
in6addr_any).

Chapter 2. IP configuration overview 49

v A TCP (that is, streams) socket that is connected. This includes TCP sockets that
are returned as a result of accept() or sockets that a connect() was issued for.

The Iocc#FastPath constant is defined in the BPXYIOCC. Note that this IOCTL
requires a 4-byte argument as input. This argument should be set to a nonzero
value to activate fast path, or a zero value to disable fast path on the specified
socket.

Considerations for multiple instances of TCP/IP
The z/OS Communications Server TCP/IP stack is a multiple-processor capable
stack, which means that it can concurrently exploit all available processors on a
system. Starting multiple stacks will not yield a significant increase in throughput.

In addition, running multiple z/OS Communications Server TCP/IP stacks
requires additional system resources, such as storage, CPU cycles, and DASD. It
also adds a significant level of complexity to the system administration tasks for
TCP/IP.

For these reasons, it is suggested that in most cases you use the INET
configuration, which supports a single TCP/IP stack. However, there are some
special situations where running multiple stacks can provide a benefit. For
example, you might want to run two separate stacks for intranet and Internet
traffic.

Common INET PFS
If you wish to run multiple z/OS Communications Server TCP/IP stacks
concurrently, you must use the Common INET (CINET) configuration. In this
configuration, up to a maximum of eight TCP/IP stacks can be active at any time.

When the CINET configuration is used, the CINET PFS is inserted between the
LFS and the TCP/IP PFS for each stack. The CINET PFS maintains an internal
copy of each TCP/IP stack's IP configuration, so that it can preroute a socket call
to the correct TCP/IP stack. This allows most socket programs to run with
multiple stack support with no change to the application. In addition, CINET
supports IPv6, and is capable of supporting underlying TCP/IP stacks in
IPv4/IPv6 dual mode or in IPv4-only mode.

You can specify your choice of INET (single stack) or CINET (multiple stack)
support on the NETWORK, DOMAINNAME, FILESYSTYPE, and
SUBFILESYSTYPE statements of SYS1.PARMLIB(BPXPRMxx). For more
information about the BPXPRMxx statements, see “Specifying BPXPRMxx values
for a CINET configuration” on page 59 and z/OS UNIX System Services Planning.

Port management overview
When there is a single transport provider, and the relationship of server to
transport provider is 1:1, port management is relatively simple. Using the PORT
statement, the port number can be reserved for the server in the PROFILE.TCPIP
for that single transport provider.

Port management becomes more complex in a CINET environment where there are
multiple transport providers (multiple instances of TCP/IP) and a potential for
multiple combinations of the same server (for example, z/OS UNIX and TN3270E
Telnet servers).

50 z/OS V1R12.0 Comm Svr: IP Configuration Guide

In a multiple transport provider environment, the following questions need to be
answered for each server in an installation:
v Is the server generic so that it can communicate with multiple TCP/IPs or does

the server have an affinity for one instance of the transport providers and can
only communicate with one TCP/IP?

v How can ports be reserved across multiple transport providers? When is the
port reservation determined by MVS rather than by the job name, procedure
name, or user ID?

v How can you synchronize between BPXPARMS and PORTRANGE for
ephemeral port reservation?

v How can TCP/IP distinguish between two different instances of Telnet (z/OS
UNIX Telnet and TN3270E Telnet servers)?

Generic server versus server with affinity for a specific transport
provider
This information describes the differences between generic servers and servers
with affinities for specific transport providers.

Generic server: A generic server, a server without an affinity for a specific
transport provider, provides service to any client on the network. (See Figure 3.)
FTP is an example of a generic server. The transport provider is merely a
connection linking client and server. The service File Transfer is not related to the
internal functioning of the transport provider, and the server can communicate
concurrently over any number of transport providers.

Server with an affinity for a specific transport provider: When the service is
related to the internal functioning of the transport provider (for example, Telnet,
OMPROUTE, OSNMPD, and the Netstat command), there must be an explicit
binding of the server application to the chosen transport provider. (See Figure 4 on
page 52

FTP
Server

C-INET

HFS
or

MVS
Data Set

TCPIPA TCPIPB TCPIPC

IP Network

FTP
Client

Figure 3. Generic server

Chapter 2. IP configuration overview 51

page 52.) There must also be a way to specify the single transport to be chosen.

With the exception of applications that use the socket API provided by TCP/IP,
other IBM-supplied applications that use the z/OS UNIX socket API and that must
bind to a specific transport provider use the z/OS UNIX socket call setibmopt()
(see z/OS XL C/C++ Run-Time Library Reference) to specify which TCP they have
chosen. A C function __iptcpn(), described in the z/OS XL C/C++ Run-Time Library
Reference, enables the application to search the TCPIP.DATA file to find the name of
the specific TCP/IP. (See Figure 5 on page 53.) An application that uses the z/OS
Language Environment runtime can also establish stack affinity by setting the
environment variable _BPXK_SETIBMOPT_TRANSPORT.

Figure 4. Server with affinity for a specific transport provider

52 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Generic servers in a CINET environment
In z/OS Communications Server, you can configure multiple TCP/IP stacks in a
single MVS image using the CINET feature. In a CINET configuration, an
application using the z/OS UNIX socket interface can get transparent access to all
the TCP/IP protocol stacks configured under CINET. For example, when an
application coded to z/OS UNIX sockets performs a SOCKET/BIND/LISTEN in a
CINET environment, the request is propagated by CINET to all the TCP/IP stacks.
This application can then service client requests that arrive into any of the
configured TCP/IP stacks without having any awareness of this fact. This type of
application is often referred to as a generic server or daemon.

The following servers or daemons shipped by z/OS Communications Server are
generic:
v DCAS
v FTPD
v RPCBIND
v SNTPD
v syslogd
v TFTPD
v TIMED
v TN3270E Telnet
v z/OS UNIX POPPER
v z/OS UNIX Portmap
v z/OS UNIX REXECD
v z/OS UNIX RSHD
v z/OS UNIX SENDMAIL
v z/OS UNIX TELNETD

_ ()
()

iptcpn
setibmopt TCPIP25S

UNIX System Services CINET PFS

TCPIP25S TCPIP25BTCPIP25A

TCPIP25S

TCPIP DATA.Application X

C-INET binds Application X socket Y to this stack" "

Figure 5. Example of binding an application to a specific transport provider

Chapter 2. IP configuration overview 53

z/OS UNIX RSHD, REXECD and TELNETD are usually started by the INETD
daemon, which is shipped as part of the z/OS UNIX. Because INETD is also a
generic daemon, any server processes started by INETD inherently become generic
servers as well.

If a server started by INETD (a generic server) requires affinity to a specific stack,
this affinity can be accomplished by use of the _BPXK_SETIBMOPT_TRANSPORT
environment variable. For more information about the
_BPXK_SETIBMOPT_TRANSPORT environment variable, see z/OS UNIX System
Services Planning.

The _BPXK_SETIBMOPT_TRANSPORT environment variable, when set, has an
effect similar to the setibmopt() function call provided by the XL C/C++ compiler
and described in the z/OS XL C/C++ Run-Time Library Reference. This variable can
be set in the JCL for a started procedure or batch job that executes a z/OS UNIX
C/C++ program to indicate which TCP/IP stack instance the application should
bind to. TCP/IP applications that require affinity to a specific TCP/IP stack, like
OSNMPD and OMPROUTE, use the setibmopt() function call directly. The
_BPXK_SETIBMOPT_TRANSPORT environment variable basically provides the
ability to bind a generic server type of application to a specific stack.

For example, if you had two TCP/IP stacks configured under CINET, one named
TCPIP and the other TCPIPOE, and you wanted to start an FTPD server instance
that was associated with TCPIPOE, you could modify the FTPD procedure as
follows:
//FTPD PROC MODULE=’FTPD’,PARMS=’TRACE’
//FTPD EXEC PGM=&MODULE,REGION=7M,TIME=NOLIMIT,
// PARM=(’POSIX(ON) ALL31(ON)’,
// ’ENVAR("_BPXK_SETIBMOPT_TRANSPORT=TCPIPOE")’,
// ’/&PARMS’)
//CEEDUMP DD SYSOUT=*
//SYSFTSX DD DISP=SHR,DSN=TCPV34.STANDARD.TCPXLBIN

All the parameters specified prior to the slash (/) in the parameter statement are
processed by the XL C/C++ run-time library. Parameters to be passed to the FTPD
program must appear after the slash (/). Also note how the parameters were split
over three lines in this example because they could not fit on a single line.

The following example uses JCL for the started procedure for INETD:
//INETD PROC
//**
//INETD EXEC PGM=BPXBATCH,
//* PARM=’PGM /usr/sbin/inetd -d /etc/inetd.conf’
// PARM=’PGM /usr/sbin/inetd //’’USER1.INETD.CONF’’’
//*
//STDERR DD PATH=’/tmp/inetd.debug.stderr’,
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=SIRWXU
//STDOUT DD PATH=’/tmp/inetd.debug.stdout’,
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=SIRWXU
//STDENV DD DISP=SHR,DSN=USER1.INETD.ENVIRON

The STDENV data set would contain the _BPX_SETIBMOPT_TRANSPORT variable
as follows:
_BPXK_SETIBMOPT_TRANSPORT=TCPIPOE

54 z/OS V1R12.0 Comm Svr: IP Configuration Guide

In these examples, INETD was also passed its configuration file as a parameter. In
our examples, this file is an MVS data set rather than a z/OS UNIX file; therefore,
it requires the additional double slash (//) and quotes that the example shows.

Multiple instances of INETD are not allowed, even if each instance is bound to a
different TCP/IP stack. This is an INETD restriction, not a TCP/IP restriction.
Therefore, if you decide to make INETD have affinity to a specific stack, then that
is the only INETD instance that you will be able to have running in that MVS
image.

Notes:

1. The _BPXK_SETIBMOPT_TRANSPORT variable should be specified only for a
generic server type of application.
If specified for a non-generic server and/or non-z/OS UNIX application it will
not have any effect.

2. The name specified for _BPXK_SETIBMOPT_TRANSPORT must match the job
name associated with the TCP/IP stack.
If the name specified does not match the job name of any TCP/IP stacks
defined for CINET, the application will receive a z/OS UNIX return code of
X'3F3' and a return value of X'005A' and may be accompanied by the following
message:
EDC8011I A name of a PFS was specified that either is
not configured or is not a Sockets PFS.

If the name specified does not match the job name of any currently active
TCP/IP stack defined under CINET, the application will receive a z/OS UNIX
return code of X'70' and a return value of X'0296' and may be accompanied by
the following message:
EDC5112I Resource temporarily unavailable.

3. For more detailed information about requesting transport affinity, see z/OS
UNIX System Services Planning.

Port reservation across multiple transport providers
When there are multiple transport providers, be sure to synchronize the PORT
statements in each of the PROFILE.TCPIP files to ensure that the port reservations
for each stack match the port definitions for the servers that will be using that
stack.

For more information about reserving ports with the PORT statement, see
Chapter 5, “TCP/IP Customization,” on page 185.

Ephemeral ports: When running with multiple transport providers, just as it is
necessary to synchronize PORT reservations for specific applications across all
stacks, it is required to synchronize reservations for port numbers that will be
dynamically assigned across all stacks. These are the ephemeral ports above 1023,
which are assigned by the stack when none is specified on the application bind().
To reserve a group of ports in the PROFILE.TCPIP, use PORTRANGE. For more
information about PORTRANGE, see Chapter 5, “TCP/IP Customization,” on page
185. Specify the same PORTRANGE for every stack. In addition, you need to let
the z/OS UNIX CINET know which ports are guaranteed to be available on every
stack. The following is an example of reserving ports 40000 to 41999 in the two
required files:
v PROFILE.TCPIP

– PORTRANGE 40000 2000 TCP OMVS ; Reserved for OMVS
– PORTRANGE 40000 2000 UDP OMVS ; Reserved for OMVS

Chapter 2. IP configuration overview 55

v BPXPRMxx parmlib member
– NETWORK DOMAINNAME(AF_INET)
– INADDRANYPORT(40000)
– INADDRANYCOUNT(2000)

Notes:

1. When IPv6 is configured and there are two NETWORK statements,
INADDRANYPORT and INADDRANYCOUNT only need to be specified for
the NETWORK statement for AF_INET and not for AF_INET6. If they are
specified for AF_INET6, they are ignored and the values from the
NETWORK statement for AF_INET are used if provided. Otherwise, the
default values are used.

2. In a CINET environment, you can use IBM Health Checker for z/OS to
check whether the range of ports specified by the INADDRANYPORT and
INADDRANYCOUNT operands of the BPXPRMxx parmlib member is
reserved for OMVS on the TCP/IP stack. For more information about IBM
Health Checker for z/OS, see z/OS Communications Server: IP Diagnosis Guide.

Selecting a stack when running multiple instances of TCP/IP
Socket application programs in a multi-stack (CINET) environment must contend
with the following:
v How the socket program selects which TCP/IP stack to use for its socket

communication
v How the TCP/IP resolver code executing in the socket application address space

decides which TCP/IP resolver configuration data sets to allocate

Note: If a resolver GLOBALTCPIPDATA setup file is used, a local TCPIP.DATA
cannot override any explicit statements in the global file and cannot
override any resolver statements. Therefore, in a CINET environment, the
TCPIPJOBNAME statement should not be specified in the
GLOBALTCPIPDATA file. Also, using the GLOBALTCPIPDATA file with
CINET requires that the resolver TCPIP.DATA statements are able to be
used by all stacks. For example, the IP addresses specified by the
NameServer statement must be accessible from all stacks. If they are not,
then the GLOBALTCPIPDATA file should not be used and you should
continue with multiple TCPIP.DATA data sets. For details, see Chapter 14,
“The resolver,” on page 731.

To answer these questions, a distinction must be made between standard servers
and clients (those that come with the z/OS Communications Server product), and
other socket application programs, including those you might have written
yourself.

Standard servers and clients
The anchor configuration data set is the TCPIP.DATA data set. This is the base
resolver configuration data set with information on host name, domain origin, and
so on. It holds the TCPIPJOBNAME statement, which identifies the TCP/IP stack
to use, and the DATASETPREFIX statement, which is used by the resolver code
and other services when allocating configuration data sets. For more information
on these data sets, see “Configuration files for TCP/IP applications” on page 30.

The key to selecting both a specific stack and resolver configuration data sets is to
control which TCPIP.DATA data set a standard server or client address space
allocates. Applications that use the z/OS UNIX API can use Common INET to

56 z/OS V1R12.0 Comm Svr: IP Configuration Guide

determine which stack an application will use. But, it is important to ensure that
the search order and the contents of the resolver configuration data set are
understood.

Native MVS servers and clients search for TCPIP.DATA in sequences as described
in “Search orders used in the native MVS environment” on page 769.

z/OS UNIX servers and clients will search for TCPIP.DATA in sequences as
described in “Search orders used in the z/OS UNIX environment” on page 762.

Nonstandard servers and clients
Nonstandard servers and clients (those that do not come with the z/OS CS
product) also use TCPIP.DATA to decide which resolver configuration data sets to
allocate. Depending on the socket API used, they might or might not use the
TCPIPJOBNAME parameter to select a stack.

If you run sockets programs from other products or vendors, you may want to
know which sockets API was used to develop the program, and which techniques,
if any, the program uses to specify the name of the TCP/IP system address space.
As long as application programs that use a TCP/IP socket library do not specify
anything specific on calls setibmopt(), Initialize, or INITAPI, the
TCPIPJOBNAME from a TCPIP.DATA data set will be used for finding a TCP/IP
system address space name.

Table 6 depicts the differences that prevail in stack selection depending on the
TCP/IP socket API under which you are running the socket program.

Table 6. How your own socket programs select a stack

C sockets Callable and Macro Pascal sockets REXX sockets

SETIBMOPT or
TCPIPJOBNAME from
TCPIP.DATA

TCPNAME on
INITAPI or
TCPIPJOBNAME
from TCPIP.DATA

TCPIPJOBNAME
from TCPIP.DATA

Service on Initialize
or TCPIPJOBNAME
from TCPIP.DATA

Callable and Macro programs might have a configuration option to specify the TCP/IP
system address space name, or might interrogate the available stacks via the getibmopt()
call.

A Callable or Macro program does not have to call INITAPI. If INITAPI is not
called, an implicit INITAPI is performed with the value taken from
TCPIPJOBNAME in a TCPIP.DATA data set. If INITAPI is called with the
TCPNAME parameter specified as a space, the TCP/IP system address space name
results in the TCPIPJOBNAME keyword value.

In a z/OS UNIX INET (single stack) environment, the socket application program
is always associated with the single TCP/IP stack. In the z/OS UNIX Common
INET (CINET) environment, your application will be associated with multiple
TCP/IP stacks unless the application specifically associates with a particular stack
using the z/OS UNIX socket call setibmopt(). For other ways of requesting stack
affinity in a CINET environment, see z/OS UNIX System Services Planning.

TCP/IP TSO clients
TSO client functions can be directed against any of a number of TCP/IP stacks.
Obviously, the client function must be able to find the TCPIP.DATA appropriate to
the stack of interest at any one time. Some TSO client commands provide a

Chapter 2. IP configuration overview 57

parameter to specify the stack to be used. For those that do not, the following
methods are available for finding the relevant TCPIP.DATA:
v Add a SYSTCPD DD statement to your TSO logon procedure. The issue with

this approach is that a separate TSO logon procedure per stack is required, and
users have to log off TSO and log on again using another TSO logon procedure
in order to switch from one stack to another.

v Use one common TSO logon procedure without a SYSTCPD DD statement.
Before a TSO user starts any TCP/IP client programs, the user has to issue a
TSO ALLOC command wherein the user allocates a TCPIP.DATA data set to DD
name SYSTCPD. To switch from one stack to another, the user simply has to
deallocate the current SYSTCPD allocation (for example, TSO FREE command)
and allocate another TCPIP.DATA data set.

v Combine the first and second methods. Use one logon procedure to specify a
SYSTCPD DD for a default stack. To switch stacks, issue TSO ALLOC to allocate
a new SYSTCPD. To switch back, issue TSO ALLOC again with the name that
was on the SYSTCPD DD in the logon procedure. The disadvantage to this
approach is that the name that was on the SYSTCPD DD is hidden in the logon
procedure and needs to be retrieved or remembered.

The last method can be implemented by creating a small REXX program for every
TCP/IP stack on your MVS system. For each stack create a REXX program with
the name of the stack (for example, T18A or T18B). Whenever TSO users want to
use the T18A stack, they run the T18A REXX program. Any TCP/IP functions
invoked thereafter will use the T18A stack for socket communication. If users want
to switch to the T18B stack, they run the T18B REXX program. See Figure 6 for an
example.

Selecting configuration data sets
The resolver code and other services that execute as part of the socket program
address space to service calls such as gethostbyname(), getservbyname() and
getprotobyname() allocate one or more resolver configuration files to service these
calls. All socket programs, including standard servers and clients and homegrown
socket programs, need access to resolver configuration files. For information on
how the resolver configuration files are found and used, see “Configuration files
for TCP/IP applications” on page 30.

Figure 6. REXX program to switch TSO user to another TCP/IP stack

58 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Sharing resolver configuration data sets
The general recommendation is to use separate DATASETPREFIX values for each
stack and create separate copies of the required configuration data sets; at the very
least, create separate copies of the resolver configuration data sets. For a test and a
production stack, however, you would probably use different DATASETPREFIX
values. However, if the stacks are functionally identical, you may share the same
DATASETPREFIX values and many of the same configuration data sets. You need
separate TCPIP.DATA data sets because of the two different TCPIPJOBNAMEs. On
the other hand, you may choose to share the resolver configuration data sets
between the stacks by using the same DATASETPREFIX value in each TCPIP.DATA
data set.

In addition to separate TCPIP.DATA data sets, separate /etc/resolv.conf files might
also be necessary. If this is the case, use the environment variable
RESOLVER_CONFIG to point to the appropriate resolver information.

Exercise caution if servers use DATASETPREFIX to allocate server-specific
configuration data sets. Try to use explicit allocation as far as possible in your
server JCL procedures. Most servers allow you to explicitly allocate their
configuration data sets using DD statements.

Some servers may use DATASETPREFIX to create new data sets. Servers that do
create new data sets allow you to specify an alternate data set prefix for the data
sets that are created. NPF creates new sequential data sets with captured print
data. NPF has a special keyword in NPF.DATA for this purpose; it is called
NPFPRINTPREFIX. If this keyword is specified, NPF will use that as the high-level
qualifier for newly created print data sets instead of taking the DATASETPREFIX
value from TCPIP.DATA. Another example of a server that creates new data sets is
the SMTP server.

Specifying BPXPRMxx values for a CINET configuration
For a detailed description of parameters in SYS1.PARMLIB(BPXPRMxx), see z/OS
UNIX System Services Planning and z/OS MVS Initialization and Tuning Guide.

�1� CINET and BPXTCINT specify the use of CINET.

/* AF_INET file system for sockets */
/* CINET support - BPXTCINT */

FILESYSTYPE TYPE(CINET)
ENTRYPOINT(BPXTCINT) �1�

NETWORK DOMAINNAME(AF_INET)
DOMAINNUMBER(2)
MAXSOCKETS(10000) �2� TYPE(CINET)
INADDRANYPORT(40000) �3�
INADDRANYCOUNT(2000)

NETWORK DOMAINNAME(AF_INET6)�4�
DOMAINNUMBER(19)
MAXSOCKETS(10000) �2� TYPE(CINET)

SUBFILESYSTYPE NAME(TCPIP1A) �5�
TYPE(CINET)
ENTRYPOINT(EZBPFINI) �6�
DEFAULT �7�

SUBFILESYSTYPE NAME(TCPIP1B) �5�
TYPE(CINET)
ENTRYPOINT(EZBPFINI)

Figure 7. SYS1.PARMLIB(BPXPRMxx) for CINET

Chapter 2. IP configuration overview 59

�2� The MAXSOCKETS operand specifies the maximum number of sockets that
can be obtained for the given file system type. It should be large enough for the
number of sockets needed for applications using z/OS Communications Server.
MAXSOCKETS is enforced independently for AF_INET (IPv4 sockets) and
AF_INET6 (IPv6 sockets).

�3� The INADDRANYPORT and INADDRANYCOUNT operands specify the first
ephemeral port number and the range of ports to be used by z/OS UNIX CINET.
The port range specified should also be reserved for CINET use in the TCP/IP
profile using the port reservation statements. For details, see “Port reservation
across multiple transport providers” on page 55. You can use IBM Health Checker
for z/OS to check whether the range of ports specified is reserved for OMVS on
the TCP/IP stack. For more information about IBM Health Checker for z/OS, see
z/OS Communications Server: IP Diagnosis Guide.

�4� This additional NETWORK statement is required if you want a TCP/IP stack
to also support IPv6. Omit this statement if you do not want the stack to support
IPv6 (that is, the stack will support IPv4 only).

�5� A transport provider stack for CINET is specified with a SUBFILESYSTYPE
statement. The NAME field must match the address space name for the TCP/IP
started task as well as the TCPIPJOBNAME parameter in TCPIP.DATA. In our
example, the name of the first stack is TCPIP1A and the name of the second stack
is TCPIP1B.

�6� EZBPFINI identifies a z/OS Communications Server TCP/IP stack. For a z/OS
Communications Server TCP/IP stack, this is the only valid value.

�7� Keyword DEFAULT specifies which transport provider stack is to be used as
the default stack for z/OS UNIX. If DEFAULT is not specified, the first active stack
will be used as the default stack. The sequence of SUBFILESYSTYPE statements is
arbitrary if one stack is identified with the keyword DEFAULT. TCPIP1A is the
default stack in Figure 7 on page 59.

Considerations for Enterprise Extender
The Enterprise Extender (EE) network connection is a simple set of extensions to
the existing open high-performance routing (HPR) technology. It performs an
efficient integration of the HPR frames using UDP/IP packets. To the HPR
network, the IP backbone is a logical link. To the IP network, the SNA traffic is
UDP datagrams that are routed without any hardware or software changes to the
IP backbone. Unlike gateways, there is no protocol transformation and unlike
common tunneling mechanisms, the integration is performed at the routing layers
without the overhead of additional transport functions. The advanced technology
enables efficient use of the intranet infrastructure for support of IP-based client
accessing SNA-based data (for example, Telnet emulators or Web browsers using
services such as IBM's Host On-Demand) as well as SNA clients using any of the
SNA LU types.

Enterprise Extender seamlessly routes packets through the network protocol edges,
eliminating the need to perform costly protocol translation and the
store-and-forward associated with transport-layer functions. Unlike Data Link
Switching (DLSw), for example, there are no TCP retransmit buffers and timers
and no congestion control logic in the router because it uses connectionless UDP
and the congestion control is provided end system to end system. Because of these
savings, the edge routers have less work to do and can perform the job they do

60 z/OS V1R12.0 Comm Svr: IP Configuration Guide

best, which is forwarding packets instead of incurring protocol translation
overhead and maintaining many TCP connections. Data center routers can handle
larger networks and larger volumes of network traffic, thus providing more
capacity.

Enterprise Extender supports both the IPv4 and IPv6 addressing models. For more
information about EE, see z/OS Communications Server: SNA Network Implementation
Guide and the EE information in Migrating Subarea Networks to an IP Infrastructure
Using Enterprise Extender (IBM Redbooks).

Considerations for VIPA
The Internet Protocol (IP) is a connectionless protocol. IP packets are routed from
the originator through a network of routers to the destination. All physical adapter
devices in such a network, including those for client and server hosts, are
identified by an IP Address which is unique within the network. The important
point about IP is that a failure of an intermediate router node or adapter will not
prevent a packet from moving from source to destination, as long as there is an
alternate path through the network.

TCP sets up a connection between two endpoints, identified by the respective IP
addresses and a port number on each. Unlike failures of an adapter in an
intermediate node, if one of the endpoint adapters (or the link leading to it) fails,
all connections through that adapter fail and must be reestablished. If the failure is
on a client workstation host, only the relatively few client connections are
disrupted and usually only one person is inconvenienced. However, an adapter
failure on a server means that hundreds or thousands of connections may be
disrupted. On an S/390® or zSeries server with large capacity, the number may run
to tens of thousands.

A Virtual IP Address, or VIPA in TCP/IP for z/OS , alleviates this situation. A
VIPA is configured in the same way as a normal IP address for a physical adapter,
except that it is not associated with any particular device. To an attached router,
the TCP on z/OS simply looks like another router. When the TCP receives a packet
destined for one of its VIPAs, the inbound IP function of the stack notes that the IP
address of the packet is in the stack's Home list and passes the packet up the stack.
Assuming the stack has multiple adapters or paths to it (including XCF from other
TCP stacks in a sysplex), if a particular physical adapter fails, the attached routing
network will simply route VIPA-targeted packets to the stack via an alternate
route.

While this removes hardware and associated transmission media as a single point
of failure for large numbers of connections, the connectivity of a server can still be
lost through a failure of a single stack or an MVS image. The VIPA can be
configured on another stack with a manual process, but this requires the presence
of an operator or programmed automation.

Dynamic VIPA Takeover enables Dynamic VIPAs to be moved without human
intervention or programmed automation to allow new connections to a server at
the same IP address as soon as possible. This can reduce downtime significantly.
With Dynamic VIPA Takeover you can configure one or more TCP/IP stacks to be
backups (VIPABACKUP statement) for a particular Dynamic VIPA. If the stack or
MVS image where the Dynamic VIPA is active is terminated, one of the backup
stacks automatically activates that Dynamic VIPA. The existing connections will be
terminated but can be quickly reestablished on the stack that is taking over.

Chapter 2. IP configuration overview 61

Notes:

1. Because a VIPA is associated with a z/OS TCP/IP stack and is not associated
with a specific physical network attachment, it can be moved to a stack on any
image in the sysplex, or even to a z/OS TCP/IP stack not in the sysplex as
long as the address fits into the installation's network configuration.

2. If using VIPA along with an intelligent bridge or switch, ensure that 'Port fast
mode' (Cisco) is enabled. This helps to decrease the amount of time the VIPA is
unreachable in scenarios where there is dynamic movement of VIPA (dynamic
or static). For more information, see your bridge or switch manual.

You may also associate a particular Dynamic VIPA address with an application
using the SIOCSVIPA or SIOCSVIPA6 ioctl command or by BINDing explicitly to
the Dynamic VIPA address. If the Dynamic VIPA address is within the
VIPARANGE profile statement, then this Dynamic VIPA address will be created
dynamically. This type of configuration enables a Dynamic VIPA to become an
address of an application in a sysplex.

With sysplex distributor you can spread connection requests destined for Dynamic
VIPAs to other stacks in the sysplex. You can use the VIPADISTRIBUTE profile
statement to designate up to 32 stacks and 64 ports where connections for a
particular DVIPA can be distributed, including the stack where the DVIPA is
defined.

The distributing stack (the stack where the VIPADISTRIBUTE statement was
coded) might use either WLM or a combination of WLM and Quality of Service
(QoS) performance information to determine where to forward new connection
requests. If the distributing stack/MVS image fails, connections forwarded to target
stacks can be preserved by having the Dynamic VIPA address backed up on
another stack.

Similarly, a stack can immediately take back a Dynamic VIPA address from another
stack. If the original stack used an address specified with VIPADEFINE with the
keyword MOVEABLE IMMEDIATE (the default), then the Dynamic VIPA is moved
as soon as the second stack requests ownership. The second stack assumes
responsibility for forwarding packets for existing connections to the appropriate
stack. If MOVEABLE WHENIDLE was specified, ownership does not pass until all
existing connections on the current stack are closed.

For detailed information about VIPA, see Chapter 7, “Virtual IP Addressing,” on
page 351.

Considerations for Fast Response Cache Accelerator
Fast Response Cache Accelerator (FRCA) is a Communications Server function that
can significantly improve the performance of the z/OS HTTP Server and the
WebSphere® Application Server on z/OS. Web pages are cached within the
operating system kernel and requests are handled without traversing the entire
kernel or entering the user space. For more information about configuring the
z/OS HTTP Server to use the FRCA function, see z/OS HTTP Server Planning,
Installing, and Using. For more information about configuring the WebSphere
Application Server to use the FRCA function, see the WebSphere Application
Server Information Center.

FRCA also provides the ability to perform content-based quality-of-service (QoS)
classification by selecting an appropriate QoS policy for each individual URI in the

62 z/OS V1R12.0 Comm Svr: IP Configuration Guide

http://www.ibm.com/software/webservers/appserv/infocenter.html
http://www.ibm.com/software/webservers/appserv/infocenter.html

HTTP request. For more information on specifying individual URIs, see the Policy
Agent and policy applications topic in z/OS Communications Server: IP Configuration
Reference.

Use the Netstat CACHINFO/-C commands to display information about FRCA
statistics. Statistics are displayed for each listening socket configured for FRCA
support. For more information on the Netstat CACHINFO/-C reports, see z/OS
Communications Server: IP System Administrator's Commands.

Considerations for extended address volumes
As of Version 1 Release 10, z/OS supports extended address volumes (EAVs).
EAVs are volumes greater than 65 520 cylinders. The part of an EAV beyond the
first 65 536 cylinders is called the extended address space (EAS). Not all data sets
on an EAV can reside in the EAS. A data set that could reside in the EAS, whether
it actually resides in the EAS or not, is said to be an EAS-eligible data set.

Rule: Do not allocate data sets that are used by Communications Server as
EAS-eligible data sets, except as follows:
v The FTP client and server allow transfer to or from existing non-VSAM,

EAS-eligible data sets.
v The following FTP configuration files can be EAS-eligible data sets:

– ANONYMOUSLOGINMSG
– ANONYMOUSMVSINFO
– BANNER
– FTP.DATA

Restriction: The TSO HOMETEST command cannot process FTP.DATA when
it is an EAS-eligible data set.

– LOGINMSG
– MVSINFO
– NETRC
– SOCKSCONFIGFILE

For more information about using extended address volumes, see z/OS DFSMS
Using the New Functions.

Considerations for networking hardware attachment
This information provides general networking hardware attachment information
and considerations associated with the IBM zSeries platform. Most of the
information included here is associated with the IBM Open Systems Adapter
(OSA) and the QDIO system architecture.

OSA-Express feature in QDIO mode
When an OSA is configured with a DEVICE and LINK definition, the z/OS
TCP/IP stack has only one connection to the OSA-Express feature. You define this
connection with a combination of the DEVICE, LINK, and HOME statements for
IPv4, an INTERFACE statement for IPv6, or both. This single connection uses one
channel unit address for communication, which is assigned by VTAM from the
DATAPATH parameter of the TRLE definition that represents this OSA-Express
feature. Both IPv4 and IPv6 traffic share this one connection and channel unit
address. For an overview of the OSA-Express feature and QDIO mode, and how to

Chapter 2. IP configuration overview 63

configure VTAM to use the OSA-Express feature in this mode, see z/OS
Communications Server: SNA Network Implementation Guide.

When you configure an OSA-Express feature for IPv4 using the INTERFACE
statement and also configure the same OSA-Express feature for IPv6, then the
z/OS TCP/IP stack has two connections to the OSA-Express feature and requires
two DATAPATH devices.

Steps for converting from IPv4 IPAQENET DEVICE, LINK, and
HOME definitions to the IPv4 IPAQENET INTERFACE
statement

You can use the INTERFACE statement in the TCP/IP profile to configure IPv4
definitions for OSA-Express QDIO rather than using the DEVICE, LINK, and
HOME statements. Using the INTERFACE statement improves stack configuration
for IPAQENET interfaces. In addition, you can enable some functions, such as
multiple VLAN support, only when the QDIO interface is defined by using the
INTERFACE statement.

Perform the following steps to convert your TCP/IP profile so that it uses the
INTERFACE statement to configure IPv4 definitions for OSA-Express QDIO.

1. Convert the IPv4 IPAQENET DEVICE, LINK, and HOME statements to an
IPv4 IPAQENET INTERFACE statement.
The values used in the following sub-steps are based on the sample profile
that appears after the sub-steps.
a. Copy the LINK name (QDIO4101L in the example) and specify this name as

the interface name on the INTERFACE statement.
Tip: When you use the original LINK name as the new INTERFACE name,
you do not have to make changes to the static route definitions,
OMPROUTE definitions, PKTTRACE statement, and
PRIMARYINTERFACE statement.

b. Copy the IPAQENET parameter from the LINK statement and specify this
parameter after the DEFINE parameter of the INTERFACE statement.

c. Copy the remaining LINK parameters and values (INBPERF DYNAMIC in
the example) to the INTERFACE statement.

d. Copy the DEVICE name (QDIO4101 in the example) and specify this name
on the PORTNAME parameter of the INTERFACE statement. This
PORTNAME value must match the corresponding PORTNAME value in
the SNA TRLE definition.

e. Copy the remaining DEVICE parameters (PRIROUTER in the example) to
the INTERFACE statement.

f. Copy the HOME list entry IP address (172.16.1.1 in the example) and
specify this address on the IPADDR parameter of the INTERFACE
statement.

g. Append a value (/24 in the example) to the end of the IP address to define
the subnet mask.

h. Remove the HOME list entry.
Example of the profile before conversion:

64 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|

|

|
|
|
|
|
|

|
|

|
|

|
|

|
|

|
|
|
|

|
|

|
|

|
|
|
|

|
|

|
|
|

|
|

|

|

DEVICE QDIO4101 MPCIPA PRIROUTER
LINK QDIO4101L IPAQENET QDIO4101

INBPERF DYNAMIC
;
HOME

172.16.1.1 QDIO4101L

Example of the profile after conversion:
INTERFACE QDIO4101L

DEFINE IPAQENET
INBPERF DYNAMIC
IPADDR 172.16.1.1/24
PORTNAME QDIO4101
PRIROUTER

Tip: Optionally, take a dump of the TCP/IP address space and use the
CONVERT parameter on the TCPIPCS PROFILE subcommand to display the
configuration information at the time of the dump. The resulting output will
reflect your IPAQENET DEVICE, LINK, and HOME definitions in INTERFACE
statement format, so this might be helpful in converting your profile to use
INTERFACE statements. You should thoroughly review the output before you
implement any changes. For more information about using the CONVERT
parameter on the TCPIPCS PROFILE subcommand, see z/OS Communications
Server: IP Diagnosis Guide.
For more information about the IPv4 IPAQENET INTERFACE statement, see
z/OS Communications Server: IP Configuration Reference.

2. Remove any BSDROUTINGPARMS entries for the interface.

3. If you are using a virtual IP address as the source address for outbound
datagrams that do not have an explicit source address (IPCONFIG
SOURCEVIPA is configured), perform the following steps:
a. Find the IPAQENET LINK in the original HOME list and search backwards

to locate the static VIPA (if any) that is located closest to this link in the
HOME list.

b. If you find a static VIPA, add the SOURCEVIPAINTERFACE parameter to
the IPv4 INTERFACE statement. Use the static VIPA link name as the
SOURCEVIPAINTERFACE value.

4. If you are using the START statement to start the IPv4 device, change the
START statement to specify the name of the IPv4 INTERFACE.

5. If you are using the GATEWAY statement to configure any static routes over
the interface, convert the GATEWAY statement to a BEGINROUTES block.
Tip: Optionally, take a dump of the TCP/IP address space and use the
CONVERT parameter on the TCPIPCS PROFILE subcommand to display the
configuration information at the time of the dump. The resulting output might
be helpful in converting your profile to use a BEGINROUTES block rather
than the GATEWAY statement. You should thoroughly review the output
before you implement any changes. For more information about using the
CONVERT parameter on the TCPIPCS PROFILE subcommand, see z/OS
Communications Server: IP Diagnosis Guide.

6. If you also have an IPAQENET6 definition for the OSA, perform the following
steps:
a. If you configure the same virtual MAC address (VMAC) on both the

IPAQENET LINK statement and IPAQENET6 INTERFACE statement, either
change one of the VMAC addresses so that they are unique or let OSA
generate the VMAC addresses.

Chapter 2. IP configuration overview 65

|
|
|
|
|
|

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|

|

|
|
|

|
|
|

|
|
|

|
|

|
|

|
|
|
|
|
|
|
|

|
|

|
|
|
|

b. Ensure that the corresponding TRLE definition has at least two
DATAPATH devices available so that one device is available for the IPv4
interface and one device is available for the IPv6 interface.

For information about the TCP/IP profile (PROFILE.TCPIP) and configuration
statements, see z/OS Communications Server: IP Configuration Reference.

The following examples show some additional changes that you might need to
make to the definitions for OSA-Express QDIO.

Example of the profile before conversion:
IPCONFIG

SOURCEVIPA
;
DEVICE VIPA4811 VIRTUAL 0
LINK VIPA4811L VIRTUAL 0 VIPA4811
;
DEVICE QDIO4101 MPCIPA PRIROUTER
LINK QDIO4101L IPAQENET QDIO4101

INBPERF DYNAMIC
;
HOME

10.81.1.1 VIPA4811L
172.16.1.1 QDIO4101L

;
PRIMARYINTERFACE QDIO4101L
;
BSDROUTINGPARMS TRUE

VIPA4811L 1492 0 255.255.255.0 0
QDIO4101L 1492 0 255.255.255.0 0

ENDBSDROUTINGPARMS
;
GATEWAY

172.16 = QDIO4101L 1492 0
;
START QDIO4101

Example of the profile after conversion:
IPCONFIG

SOURCEVIPA
;
DEVICE VIPA4811 VIRTUAL 0
LINK VIPA4811L VIRTUAL 0 VIPA4811
;
; Converted INTERFACE statement
;
; - QDIO4101L is from the LINK statement
; - DEFINE IPAQENET is from the LINK statement
; - INBPERF DYNAMIC is from the LINK statement
; - IPADDR 172.16.1.1 is from the HOME list entry, /24 is from the
; BSDROUTINGPARMS entry subnet mask
; - PORTNAME QDIO4101 is from the DEVICE statement
; - PRIROUTER is from the DEVICE statement
; - SOURCEVIPAINTERFACE VIPA4811L is from the order of the HOME list
; entries
;
INTERFACE QDIO4101L

DEFINE IPAQENET
INBPERF DYNAMIC
IPADDR 172.16.1.1/24
PORTNAME QDIO4101
PRIROUTER
SOURCEVIPAINTERFACE VIPA4811L

;

66 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|

|
|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

; QDIO4101L is removed from the HOME list
;
HOME

10.81.1.1 VIPA4811L
;
PRIMARYINTERFACE QDIO4101L
;
; QDIO4101L is removed from BSDROUTINGPARMS
;
BSDROUTINGPARMS TRUE

VIPA4811L 1492 0 255.255.255.0 0
ENDBSDROUTINGPARMS
;
; GATEWAY statement is converted to BEGINROUTES
;
BEGINROUTES

ROUTE 172.16.0.0/16 = QDIO4101L MTU 1492
ENDROUTES
;
; START statement uses the interface name
;
START QDIO4101L

Virtual LAN
A local area network (LAN) is a broadcast domain. Nodes on a LAN can
communicate with each other without a router, and nodes on different LANs need
a router to communicate. A virtual LAN (VLAN) is a configured logical grouping
of nodes using switches. Nodes on a VLAN can communicate with each other as if
they were on the same LAN, and nodes on different VLANs need a router to
communicate.

OSA VLAN
The IBM Open Systems Adapter provides support for IEEE standards 802.1p/q,
which describes priority tagging and VLAN identifier tagging. Deploying VLAN
IDs allows a physical LAN to be partitioned or subdivided into discrete virtual
LANs. This support is provided by the z/OS TCP/IP stack and the OSA-Express
feature in QDIO mode.

When you use VLAN IDs, the z/OS TCP/IP stack can have multiple connections
to the same OSA-Express feature. One connection is allowed for each unique
combination of VLAN ID and IP version (IPv4 or IPv6). Each connection is defined
by an INTERFACE statement and uses one channel unit address for
communication, which is assigned by VTAM from the DATAPATH parameter of
the TRLE definition. To configure one or more VLANs for a single OSA-Express
feature, do the following:
v Configure each IPv4 interface for this OSA-Express feature in the TCP/IP profile

using the INTERFACE statement for IPAQENET, rather than the DEVICE, LINK,
and HOME statements. Configure each IPv6 interface for this OSA-Express
feature in the TCP/IP profile using the INTERFACE statement for IPAQENET6.

v Configure a VLANID value on each IPv4 INTERFACE statement and each IPv6
INTERFACE statement on this stack for this OSA-Express feature. For each IP
version, these VLANID values must be unique.

v Configure the VMAC parameter on each of the INTERFACE statements with the
default ROUTEALL attribute. You can specify the VMAC address or OSA can
generate it. If you specify a VMAC address, it must be unique for each
INTERFACE statement.

Chapter 2. IP configuration overview 67

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

v Configure a unique subnet for each IPv4 interface for this OSA-Express feature,
using the subnet mask specification on the IPADDR parameter on the
INTERFACE statement.

v If you are using OMPROUTE and OMPROUTE is not configured to ignore this
interface, ensure that the subnet mask value that you configure on the
INTERFACE statement in the TCP/IP profile matches the subnet mask that is
used by OMPROUTE for this interface. The subnet mask that OMPROUTE uses
is the subnet mask value that is defined on the corresponding OMPROUTE
statement (OSPF_INTERFACE, RIP_INTERFACE, or INTERFACE) for this
interface. If no OMPROUTE statement is specified for this interface, the subnet
mask that OMPROUTE uses is the class mask for the interface IP address.

v Ensure that a DATAPATH device is available in the TRLE definition for each
IPv4 interface and for each IPv6 interface for this OSA-Express feature.

v Ensure that you understand the fixed storage requirements for this
configuration; each interface requires its own DATAPATH device, and each
DATAPATH device requires fixed storage for read processing. For more details,
see “Fixed storage requirements for OSA-Express QDIO and HiperSockets
interfaces” on page 95.

Restrictions:

v The stack supports a maximum of eight VLAN interfaces per IP version to the
same OSA-Express feature.

v For a given OSA-Express feature, a device and link definition is precluded in the
following scenarios:
– An IPv4 interface is or was previously defined.
– Multiple IPv6 definitions are or were previously defined.

OSA routing
For QDIO devices, z/OS Communications Server and the OSA-Express feature
provide functions that control how incoming unicast datagrams are routed,
especially when the OSA-Express feature is shared by multiple TCP/IP instances.

When TCP/IP activates a QDIO device, each TCP/IP registers each of its home IP
addresses with the OSA-Express feature. (TCP/IP also dynamically registers any
updates to its set of home IP addresses with the OSA-Express feature.) This
enables the OSA-Express feature to route datagrams destined for a registered IP
address to the correct TCP/IP instance.

However, when packets are received for IP addresses that are not registered by any
TCP/IP stack, the device needs a method for determining which stack, if any,
should receive the packet. Two functions are available to accomplish this:
v OSA-Express Virtual MAC (VMAC) routing
v Primary and secondary routing

OSA-Express virtual MAC routing
If multiple TCP/IP instances are sharing an OSA-Express feature, the preferred
method of routing is to define or generate a virtual MAC (VMAC) for each stack
and for each protocol being used (IPv4 or IPv6). For IPv4, this results in the
OSA-Express feature using the VMAC address rather than the physical burned in
MAC for all ARPs sent for that TCP/IP stack's registered IP addresses, and using
the VMAC as the source MAC address for all packets sent from that stack. In this
way, all routers on the same LAN as the OSA-Express feature use only the VMAC
address as the destination for all packets destined for that specific TCP/IP stack.

68 z/OS V1R12.0 Comm Svr: IP Configuration Guide

From a network routing perspective, the OSA-Express feature with this VMAC
appears as a dedicated device to that TCP/IP stack.

This simplifies a shared OSA configuration significantly. The routers on the LAN
always send any packets destined for a particular TCP/IP stack to the VMAC
defined for that stack. The OSA-Express feature knows by VMAC address exactly
which stack should receive a given packet. Even if the IP address is not registered
with the OSA-Express feature, if the packet is destined for that VMAC, the router
has determined which stack should be the intermediate router, and the OSA can
forward the packet directly to that stack. If the stack is not an intermediate router,
the capability is provided for a stack to indicate to the OSA that it wants to receive
packets to registered IP addresses only.

This simplification is true for IPv6 as well. TCP/IP uses the VMAC address for all
neighbor discovery address resolution flows for that stack's IP addresses, and
likewise uses the VMAC as the source MAC address for all IPv6 packets sent from
that stack. Again, from a network perspective, the OSA-Express feature with this
VMAC appears as a dedicated device to that stack.

The VMAC address can be defined in the stack, or it can be generated by the OSA.
If generated by the OSA, it is guaranteed to be unique from all other physical
MAC addresses and from all other VMAC addresses generated by any
OSA-Express feature.

Rule: If VMACs are defined in the stack, they should be defined as locally
administered MAC addresses, and should be unique addresses for the local LAN
on which they reside.

Guidelines:

v If the OSA is configured for both IPv4 (using DEVICE and LINK) and IPv6 for a
stack, then you can define the same VMAC for both the INTERFACE statement
and the LINK statement, or you can define one VMAC on the LINK statement
for IPv4 usage and a different VMAC on the INTERFACE statement for IPv6
usage. If the OSA is configured for both IPv4 (using the INTERFACE statement)
and IPv6 for a stack, then you must define one VMAC on the INTERFACE
statement for IPv4 usage, and a different VMAC on the INTERFACE statement
for IPv6 usage.

v A VLAN ID can be associated with an OSA-Express link or interface that is
defined with a VMAC. For more information about VMAC routing, see z/OS
Communications Server: SNA Network Implementation Guide.

To enable virtual MAC support, you must be running at least an IBM System z9®

Enterprise Class (z9 EC) or z9 Business Class (z9 BC), and an OSA-Express feature
with OSA Layer 3 Virtual MAC support. OSA Layer 3 Virtual MAC support is not
available for Fast Ethernet. For more information, see the 2094DEVICE Preventive
Service Planning (PSP) bucket and the 2096DEVICE Preventive Service Planning
(PSP) bucket.

Primary router
If only one TCP/IP instance is using the OSA-Express device, or when multiple
TCP/IP instances are using the same OSA-Express device but you want all
instances to share the same physical MAC address of the device, you can
optionally have the OSA route unicast packets to unregistered IP addresses by
using OSA's primary (PRIROUTER) and secondary (SECROUTER) router support.
This function enables a single TCP/IP stack, on a per-protocol (IPv4 and IPv6)
basis, to register and act as a router stack on a per-OSA basis. Secondary routers

Chapter 2. IP configuration overview 69

|

|

can also be configured to provide for conditions in which the primary router
becomes unavailable and the secondary router takes over for the primary router.
The primary router stack is the only stack to which OSA forwards packets when
the destination IP address has not been previously registered with OSA. If no
active TCP/IP instance using this device is defined as the primary router
(PRIROUTER) or secondary router (SECROUTER), the device discards the
datagram. If the PRIROUTER or SECROUTER value is not specified, the default
value is NONROUTER.

Relationship of VLAN and primary router
The OSA primary router support takes into consideration and interacts with the
VLAN ID support (VLAN ID registration and tagging). OSA supports a primary
and secondary router on a per VLAN basis (per registered VLAN ID). Therefore, if
TCP/IP is configured with a specific VLAN ID and also configured as a primary
or secondary router, that stack serves as a router for just that specific VLAN. This
allows each OSA (CHPID) to have a primary router per VLAN. Configuring
multiple primary routers (one per VLAN) has many advantages and preserves
traffic isolation for each VLAN.

This support becomes more important when a single OSA is shared by multiple
stacks. In this type of configuration, when each stack was configured with a
unique VLAN ID, each stack could also be configured as a primary router for its
respective VLANs.

OSA also continues to support a primary and secondary router that is not
associated with a specific VLAN. This primary router is referred to as the default
primary router. It continues to function as the router for inbound packets that are
not VLAN ID tagged, or packets that are VLAN ID tagged with a VLAN ID that is
not registered to OSA. This is the same primary router support that existed prior
to introduction of the VLAN ID support. Therefore, multiple specific VLAN
primary routers and a single default primary router can concurrently activate and
share a single OSA.

Each VLAN-specific primary and secondary router is subject to the same OSA
rules (that is, supporting a single primary router and allowing multiple secondary
routers) as the default primary router.

Figure 8 on page 71 shows a configuration where multiple TCP/IP stacks are
sharing a single OSA, and multiple VLANs with primary routers are configured.

70 z/OS V1R12.0 Comm Svr: IP Configuration Guide

In this example, TCP/IP x serves as the default primary router (PRIRouter without
a VLANID configured). The other three TCP/IP stacks serve as a PRIRouter for
just their specific VLANs.

For additional information regarding the details and syntax for configuring a
VLAN Identifier (VLANID), and how to configure a TCP/IP stack as a primary or
secondary router, see z/OS Communications Server: IP Configuration Reference. For
IPv4 information on the PRIRouter, SECRouter, NONRouter, and VLANID
parameters, see DEVICE and LINK – MPCIPA OSA-Express QDIO devices or
INTERFACE - IPAQENET OSA-Express QDIO interfaces. For IPv6 information
regarding these parameters, see INTERFACE - IPAQENET6 OSA-Express QDIO
interfaces.

Network configuration strategy with VLAN
The IBM OSA-Express VLAN support allows a TCP/IP stack to register a specific
VLAN identifier for both IPv4 and IPv6. Note that the VLAN ID for IPv4 can be
different than the VLAN ID for IPv6. When a VLAN ID is configured, the
following occurs:
1. TCP/IP becomes VLAN aware or enabled, and this TCP/IP (IPv4 or IPv6

connection) is considered to be part of the configured VLAN.
2. During activation, TCP/IP registers the configured VLAN ID value to OSA.
3. A VLAN ID tag is added to all outbound packets.
4. OSA filters inbound VLAN ID tagged packets based on the configured VLAN

ID.

Various IP networks accessed by z/OS TCP/IP primary routers

IP network 1 IP network 2 IP network 3

z/OS
TCP/IP x

no VLAN
Default
PriRouter

z/OS
TCP/IP A

VLAN 2
PriRouter

z/OS
TCP/IP B

VLAN 3
PriRouter

z/OS
TCP/IP C

VLAN 4
PriRouter

OSA-ExpressIBM zSeries server

OSA filters by VLAN ID
VLANs 2, 3, 4 and non-VLAN ID tagged

MAC 1

single physical LAN in trunk mode

Figure 8. Primary router per VLAN (shared OSA with multiple primary routers)

Chapter 2. IP configuration overview 71

|
|

5. If this stack is also configured as a router (for example, PRIRouter), the OSA
primary router support is extended to this stack, allowing it to serve as the
primary router for the configured VLAN ID.

When configuring a z/OS TCP/IP stack with a VLAN ID, consideration must also
be given to how the LAN is partitioned and how the VLAN aware switches are
configured.

VLAN switch concepts
In conjunction with the IEEE standards, most VLAN aware switches recognize and
support at least two modes, referred to as trunk and access modes. This support is
provided on a switch port basis. The general concepts of the two modes are as
follows:

Trunk mode
Indicates that the switch should allow all VLAN ID tagged packets to pass
through the switch port without altering the VLAN ID. Trunk mode is
intended for servers that are VLAN capable, and filters and processes all
VLAN ID tagged packets. In trunk mode, the switch expects to see VLAN
ID tagged packets inbound to the switch port.

Access mode
Indicates that the switch should filter on specific VLAN IDs and only
allow packets that match the configured VLAN IDs to pass through the
switch port. The VLAN ID is then removed from the packet before it is
sent to the server (that is, VLAN ID filtering is controlled by the switch). In
access mode, the switch expects to see packets without VLAN ID tags
inbound to the switch port.

For the specific details regarding how to configure a VLAN switch, consult the
specific product documentation.

VLAN configuration recommendations
When deploying the z/OS TCP/IP VLAN ID support in conjunction with the IBM
OSA-Express feature in QDIO mode, it is recommended that deployment be
symmetrical with the configuration of the corresponding VLAN switch. Specific
recommendations are as follows:
v When using a VLAN ID, configure the switch port in trunk mode.

When a VLAN ID is configured in any z/OS TCP/IP stack that is sharing an
OSA, the corresponding switch port associated with the OSA should be
configured in trunk mode. In this mode, OSA performs VLAN ID filtering.
Conversely, access mode should not be configured on the switch port if a VLAN
ID is configured on any stack sharing this OSA.

v When not using a VLAN ID, configure the switch port in access mode.
When a VLAN ID is not configured on any z/OS TCP/IP stack that is sharing
an OSA, access mode should be configured at the switch (if VLAN filtering is
desired and therefore required at the switch).
Conversely, trunk mode should not be configured on the switch port if a VLAN
ID is not configured on any stack sharing this OSA.

v Multiple OSAs on the same physical LAN
When a z/OS TCP/IP stack has access to multiple OSAs that are on the same
physical LAN, and a VLAN ID is configured on any of the OSAs, it is
recommended that this stack configure a VLAN ID for all OSAs on the same
physical LAN. That is, do not mix VLAN and no-VLAN on the same physical
network when a stack has access to the same LAN through multiple OSAs.

72 z/OS V1R12.0 Comm Svr: IP Configuration Guide

v VLAN ID 1 considerations
Some switch vendors use VLAN ID 1 as the default value when a VLAN ID
value is not explicitly configured. It is recommended that you avoid the value of
1 when configuring a VLAN ID value.

Figure 9, Figure 10 on page 74, and Figure 11 on page 74 illustrate the preceding
recommendations.

Figure 9 shows the recommended VLAN switch port configuration when a VLAN
ID is configured in the TCP/IP stack. A single physical LAN is divided into three
separate virtual LANs (2, 3, and 4), the OSA port is configured as a trunk line, and
the other ports on the switch are configured in access mode for their specific
VLAN.

In Figure 9 there are three virtual LANs deployed through the same shared OSA,
where each TCP/IP stack appears to have a unique and isolated physical network
as follows:
v VLAN 2 - TCP/IP A and stations 1 and 2
v VLAN 3 - TCP/IP B and stations 3 and 4
v VLAN 4 - TCP/IP C and stations 5 and 6

z/OS 1
TCP/IP A
VLAN 2

z/OS 2
TCP/IP B
VLAN 3

z/OS 3
TCP/IP C
VLAN 4

OSAIBM zSeries server

MAC 1

trunk line for VLANs 2, 3, 4VLAN aware switch

access mode

access mode

access mode

VLAN 2 VLAN 3 VLAN 4

stations 1 and 2 stations 3 and 4 stations 5 and 6

Trunk mode

Figure 9. Single OSA and VLAN switch configuration

Chapter 2. IP configuration overview 73

Figure 10 illustrates using multiple OSAs and TCP/IP stacks. Three unique VLANs
are created. However, TCP/IP stack B will not deploy a VLAN ID, and the
corresponding switch port is configured in access mode. No VLAN ID tags will
flow to this OSA port.

In Figure 10 there are also three virtual LANs deployed. Access to each VLAN is
provided through separate OSAs, yet the functionality of having three physical
networks is still provided. TCP/IP B is not configured with a VLAN ID, and
therefore stack B is unaware of the existence of VLAN 3 (although stations 3 and 4
on VLAN 3 have access to stack B through OSA B). Note that the switch port for
OSA B is configured in access mode, while the other two switch ports are
configured in trunk mode.

z/OS 1
TCP/IP A
VLAN 2

z/OS 2
TCP/IP B
no VLAN

z/OS 3
TCP/IP C
VLAN 4

OSA A OSA B OSA CIBM zSeries server

MAC A MAC B MAC C

VLAN 2 No VLAN ID tags VLAN 4VLAN aware switch

access
mode

VLAN 2

access
mode { VLAN 3

VLAN 3 VLAN 4

access
mode

stations 1 and 2 stations 3 and 4 stations 5 and 6

Trunk modeTrunk mode

Figure 10. Matching VLAN switch configuration to multiple OSAs (VLAN configuration)

VLAN 2 VLAN 3 VLAN 3

OSA A OSA B OSA CIBM zSeries server

MAC A MAC B MAC C

VLAN 2 VLAN 3 VLAN 3VLAN aware switch

access modeVLAN 2 VLAN 3 access mode

stations 1 and 2 stations 3, 4, 5 and 6

z/OS
TCP/IP

Trunk mode Trunk modeTrunk modeTrunk mode

Figure 11. Single stack using multiple OSAs on the same physical network

74 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Figure 11 on page 74 illustrates a single TCP/IP stack using multiple OSAs that are
on the same physical network. There are two VLANs deployed, where OSA A is
on VLAN 2, and OSA B and OSA C are on VLAN 3.

Configuring OSA B and OSA C with the same VLAN ID has significance for
failure or takeover scenarios. The interface takeover (ARP takeover) function, with
redundant connectivity onto a LAN, applies within the VLAN. Therefore, if OSA B
becomes unavailable, OSA C can take over. Similarly, OSA B can take over if OSA
C becomes unavailable. However, OSA A cannot take over for either OSA B or
OSA C, because OSA A is on a different VLAN.

In Figure 11 on page 74, a single TCP/IP stack has access to two VLANs through
three OSAs, which provides the following network isolation:
v VLAN 2 - through OSA A to stations 1 and 2
v VLAN 3 - through OSA B and OSA C to stations 3, 4, 5 and 6

OSA-Express port sharing
An OSA-Express port can be shared by multiple TCP/IP stacks. In such a
configuration, when a unicast packet is sent over the OSA-Express port and the
next-hop IP address is registered by another TCP/IP stack on the same LAN or
VLAN that shares the OSA-Express port, then the OSA adapter routes the packet
directly to the stack that shares the port, bypassing the external LAN. For multicast
and broadcast, the OSA adapter also routes the packet directly to the stack that
shares the port, in addition to sending the packet onto the LAN.

OSA-Express connection isolation
OSA-Express connection isolation provides a way to prevent the adapter from
internally routing packets directly to a stack that shares the same port. When
connection isolation is in effect, the OSA-Express feature discards any unicast
packets when the next-hop address is registered by a stack sharing the same port,
and prevents any multicast or broadcast packets from being internally routed
between the stacks sharing the port.

For direct routing to occur, the OSA-Express feature requires that neither of the
stacks that are sharing a port can be isolated. Therefore, for traffic between two
stacks that are sharing a port, as long as at least one of the stacks is isolated, then
connection isolation is in effect for traffic in both directions between these stacks.

OSA-Express connection isolation can be useful when you want to prevent
communication between two stacks that share the same OSA-Express port, and it
provides extra assurance against a misconfiguration that might otherwise allow
such traffic to flow. OSA-Express connection isolation can also be useful if you
want to ensure that traffic flowing through the OSA adapter does not bypass any
security features implemented on the external LAN.

Dynamic routing is not aware of OSA-Express connection isolation, which is an
issue only if static routes are not used and traffic needs to flow between the two
hosts that share the OSA adapter using connection isolation. In this case, a
dynamic routing protocol might choose a route between the hosts that includes
connection isolation, which would make each host unreachable from the other
host. If you want dynamic routing to work between hosts that are using
OSA-Express connection isolation, you must ensure in your dynamic routing
configuration that the path that includes connection isolation is not chosen to route
between the hosts.

Chapter 2. IP configuration overview 75

|
|

|
|
|
|
|
|
|
|
|

Guideline: You can ensure that a path that includes OSA-Express connection
isolation is not chosen as the route between two hosts by assigning higher routing
costs to isolated interfaces than to other network paths between those hosts (for
example dynamic XCF or MPC), so that the other network paths between the hosts
are chosen. You can also accomplish this by excluding the interfaces with
connection isolation from the dynamic routing domain, if it is not necessary for
them to be reachable from the wider network (for example, by defining them with
INTERFACE statements in OMPROUTE).

Tip: If you want traffic to flow between two stacks that share an OSA-Express port
but you also want to ensure that the traffic flows over an external LAN, do one of
the following:
v Configure each stack on a separate virtual LAN (VLAN).
v Use a static route with the next-hop address of a router on the LAN.

Result: Using a static route with the next-hop address of a router on the LAN to
route to another host on the same LAN can result in excessive ICMP redirect
packets from the router to the originating host.
Guideline: If you use this technique, turn off receipt of ICMP redirects on the
sharing hosts and, if possible, configure the router to not send ICMP redirects.

ARP offload and VIPA ARP processing
In QDIO mode, the OSA performs all Address Resolution Protocol (ARP)
processing for IPv4. The z/OS stack informs the OSA of the IP addresses for which
it should perform ARP processing. Because the z/OS stack also supports
configurations in which ARPs flow for VIPAs (which you might see on some flat
network configurations that use static routing), the stack also informs the OSA of
the VIPAs for which it should perform ARP processing. OSA sends gratuitous
ARPs for these IP addresses during interface takeover scenarios to provide fault
tolerance.

If you define the OSA using DEVICE and LINK statements, then the stack informs
OSA to perform ARP processing for all VIPAs that are in the home list, which can
result in numerous unnecessary gratuitous ARPs for VIPAs in an interface takeover
scenario. However, if you use the IPv4 INTERFACE statement for IPAQENET, you
can control this VIPA ARP processing by configuring a subnet mask for the OSA. If
you specify a nonzero num_mask_bits value on the IPADDR parameter of the
INTERFACE statement, then the stack informs OSA to perform ARP processing for
a VIPA only if the VIPA is configured in the same subnet as the OSA (as defined
by the resulting subnet mask).

Checksum offload
When sending or receiving packets over the OSA-Express feature in QDIO mode
with checksum offload support, TCP/IP offloads most IPv4 (outbound and
inbound) checksum processing (IP header, TCP, and UDP checksums) to the OSA.
The TCP/IP stack performs checksum processing in the following cases where
checksum cannot be offloaded:
v Packets that go directly to another stack that shares the same OSA-Express

feature
v IPSec-encapsulated packets
v Fragmented and reassembled packets
v Outbound multicast and broadcast packets
v Outbound TCP packets that contain only a TCP header

76 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|
|
|
|

|
|

|

|
|
|

|
|

v When multipath is in effect (unless all interfaces in the multipath group support
checksum offload)

TCP segmentation offload
The TCP/IP stack can offload most IPv4 outbound TCP segmentation processing to
an OSA-Express feature in QDIO mode using TCP segmentation offload support.
You can configure this function by specifying the SEGMENTATIONOFFLOAD
parameter on the GLOBALCONFIG profile statement. The TCP/IP stack performs
TCP segmentation processing in the following cases in which segmentation cannot
be offloaded:
v Packets that go directly to another stack that shares the same OSA-Express

feature
v IPSec-encapsulated packets
v When multipath is in effect (unless all interfaces in the multipath group support

segmentation offload)
v When the SEGMENTATIONOFFLOAD parameter is not specified on the

GLOBALCONFIG statement

Tip: Applications that use large TCP send buffers will obtain the most benefit from
TCP segmentation offload. The size of the TCP receive buffer on the other side of
the TCP connection also affects the negotiated buffer size. You can control the size
of these buffers using the following mechanisms:
v The TCPSENDBFRSIZE parameter on the TCPCONFIG statement sets the

default TCP send buffer size for all applications.
v An application can use the SO_SNDBUF socket option to override the default

TCP send buffer size.
v The TCPRCVBUFRSIZE parameter on the TCPCONFIG statement sets the

default TCP receive buffer size for all applications.
v An application can use the SO_RCVBUF socket option to override the default

TCP receive buffer size.

Dynamic LAN idle timer
z/OS Communications Server provides the ability to dynamically adjust how
frequently an OSA-Express2 or OSA-Express3 feature should interrupt the host for
inbound traffic. By monitoring traffic patterns, the stack can adjust the
interrupt-timing values to maximize throughput.

To configure an OSA-Express2 or OSA-Express3 for dynamic LAN idle timer, use
the INTERFACE or LINK statement with the dynamic inbound performance setting
(INBPERF DYNAMIC). For information about dynamic LAN idle timer and the
INBPERF parameter, see DEVICE and LINK – MPCIPA OSA-Express QDIO
devices, INTERFACE - IPAQENET OSA-Express QDIO interfaces, and INTERFACE
- IPAQENET6 OSA-Express QDIO interfaces in z/OS Communications Server: IP
Configuration Reference.

Restriction: The OSA-Express2 or OSA-Express3 feature must be configured in
QDIO mode.

Optimized latency mode
One way to improve the performance of an OSA-Express3 feature in QDIO mode
for processing workloads with demanding latency requirements is to configure the
OSA-Express3 feature to operate in optimized latency mode. Optimized latency

Chapter 2. IP configuration overview 77

|

|
|
|
|

|
|
|
|
|
|
|

|
|

mode optimizes interrupt processing for both inbound and outbound data, which
decreases latency and can provide significant increases in throughput, particularly
for high volume, interactive, non-streaming workloads.

To configure an OSA-Express3 feature to operate in optimized latency mode, use
the INTERFACE statement with the OLM parameter. Because optimized latency
mode affects both inbound and outbound interrupts, it supersedes other inbound
performance settings set by the INBPERF parameter. For more information about
optimized latency mode and the OLM and INBPERF parameters on the
INTERFACE statement for IPAQENET and IPAQENET6, see z/OS Communications
Server: IP Configuration Reference.

Because of the operating characteristics of optimized latency mode, two other
configuration changes might be required.
v For outbound traffic to gain the benefit of optimized latency mode, direct traffic

to priority queues 1, 2, or 3 using the WLMPRIORITYQ parameter on the
GLOBALCONFIG statement or using Policy Agent and configuring a policy
with the SetSubnetPrioTosMask statement.
Although an OSA-Express feature supports multiple outbound write priority
queues, outbound optimized latency mode is performed only for traffic on
priority queue 1 (priority level 1). The TCP/IP stack combines all the traffic
directed to priority queues 1, 2, and 3 into priority queue 1 for any
OSA-Express3 feature operating in optimized latency mode.
For more information about directing traffic to outbound OSA-Express priority
queues using the WLMPRIORITYQ parameter on the GLOBALCONFIG
statement or using the SetSubnetPrioTosMask statement, see z/OS
Communications Server: IP Configuration Reference.
Guideline: Configure the WLMPRIORITYQ parameter with no subparameters,
which assigns a default mapping of service class importance levels to
OSA-Express outbound priority queues. This default mapping directs traffic
assigned to the higher priority service class importance levels 1–4 to queues that
operate in optimized latency mode, and enables the appropriate types of traffic
to benefit from optimized latency mode.
Result: If neither the WLMPRIORITYQ nor SetSubnetPrioTosMask statements
are specified, any packet that has a type of service (ToS) byte with the first three
bits being 000 or 001 is directed to queue 4 and does not benefit from optimized
latency mode.

v To achieve optimal latency for one or more network interfaces operating in
optimized latency mode, limit the number of network interfaces that can
concurrently share an OSA-Express3 feature.
When at least one network interface is operating in optimized latency mode,
ensure that there are no more than four concurrent network interfaces sharing an
OSA-Express3 port, and no more than eight concurrent network interfaces
sharing an OSA-Express3 channel path identifier (CHPID). The following
configurations can result in multiple users sharing an OSA-Express3 feature.
– Multiple LPARs sharing the OSA-Express3 feature
– Multiple stacks on the same LPAR sharing the OSA-Express3 feature
– Multiple VLAN interfaces to the OSA-Express3 feature
– Both an IPv4 and an IPv6 active interface to the OSA-Express3 feature
– A TCP/IP stack enabling the OSA-Express network traffic analyzer

(OSAENTA) for the OSA-Express3 feature

78 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|

|
|
|
|

Optimized latency mode is intended for high volume, interactive workloads.
Although optimized latency mode can compensate for some mixing of workloads,
an excessive amount of high volume, streaming workloads, such as bulk data or
file transfer, can result in higher CPU consumption.

Guideline: When enabling multipath routing using the PERPACKET option, do
not configure a multipath group that contains an OSA-Express3 feature configured
with optimized latency mode and any other type of device.

Restrictions:

v Optimized latency mode is limited to OSA-Express3 Ethernet features in QDIO
mode running with an IBM System z10®. For more information, see the
2097DEVICE Preventive Service Planning (PSP) bucket.

v Traffic that is either inbound over or being forwarded to an OSA-Express3
feature configured to operate in optimized latency mode is not eligible for the
accelerated routing provided by HiperSockets Accelerator and QDIO Accelerator.

v For an OSA-Express3 interface configured to operate in optimized latency mode,
the stack ignores the configured INBPERF setting and uses the value DYNAMIC.

QDIO inbound workload queueing
OSA-Express3 features can perform a degree of traffic sorting by placing inbound
packets for differing workload types on separate processing queues. This function
is called QDIO inbound workload queueing (IWQ). With the inbound traffic
stream already sorted by the OSA-Express3 feature, z/OS Communications Server
provides the following performance optimizations:
v Finer tuning of read-side interrupt frequency to match the latency demands of

the various workloads that are serviced
v Improved multiprocessor scalability, because the multiple OSA-Express3 input

queues are now efficiently serviced in parallel

When QDIO IWQ is enabled, z/OS Communications Server and the OSA-Express3
feature establish a primary input queue and one or more ancillary input queues for
inbound traffic. z/OS Communications Server and the OSA-Express3 feature
cooperatively use the multiple queues in the following way:
v The OSA-Express3 feature directs an inbound packet (received on this interface)

that is to be forwarded by the sysplex distributor to the sysplex distributor
ancillary input queue. z/OS Communications Server then tailors its processing
for the sysplex distributor queue, notably by using the multiprocessor to service
sysplex distributor traffic in parallel with traffic on the other queues.

v The TCP layer automatically detects connections operating in a bulk-data fashion
(such as the FTP data connection), and these connections are registered to the
receiving OSA-Express3 feature as bulk-mode connections. The OSA-Express3
feature then directs an inbound packet (received on this interface) for any
registered bulk-mode connection to the TCP bulk-data ancillary input queue.
z/OS Communications Server tailors its processing for the bulk queue, notably
by improving in-order packet delivery on multiprocessors, which likely results
in improvements to CPU consumption and throughput. Like other ancillary
input queues, processing for data on the bulk queue can be in parallel with
traffic on the other queues.

v If a packet is not directed to an ancillary input queue, the OSA-Express3 feature
directs the packet to the primary input queue.

Chapter 2. IP configuration overview 79

|
|

|

|
|
|
|
|

|
|

|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|

Requirement: QDIO IWQ is limited to OSA-Express3 Ethernet features in QDIO
mode running on an IBM System z10 GA3. For more information, see the
2097DEVICE and 2098DEVICE Preventive Service Planning (PSP) buckets.

Restrictions:

v QDIO IWQ is not supported for IPAQENET interfaces defined with the DEVICE,
LINK, and HOME statements. You must convert your IPAQENET definitions to
use the INTERFACE statement to enable this support. For more information, see
“Steps for converting from IPv4 IPAQENET DEVICE, LINK, and HOME
definitions to the IPv4 IPAQENET INTERFACE statement” on page 64.

v QDIO IWQ is not supported for a z/OS guest on z/VM® using simulated
(virtual) devices, such as virtual switch (VSWITCH) or guest LAN.

v Bulk-mode TCP connection registration is supported only in configurations in
which a single inbound interface is servicing the bulk-mode TCP connection. If a
bulk-mode TCP connection detects that it is receiving data over multiple
interfaces, QDIO IWQ is disabled for the TCP connection and inbound data from
that point forward is delivered to the primary input queue.

v QDIO IWQ does not apply for traffic that is sent over an OSA port that is shared
by the receiving TCP/IP stack when an indirect route (where the next hop and
destination IP address are different) is being used; this traffic is placed on the
primary input queue. QDIO IWQ does apply when traffic on the shared OSA
path uses a direct route (where the next hop and destination IP address are the
same).

Steps for enabling QDIO inbound workload queueing
Perform the following steps to enable QDIO inbound workload queueing (IWQ):

1. Convert IPAQENET definitions from DEVICE, LINK, and HOME statements to
the INTERFACE statement. For more information, see “Steps for converting
from IPv4 IPAQENET DEVICE, LINK, and HOME definitions to the IPv4
IPAQENET INTERFACE statement” on page 64.

2. Specify the INBPERF parameter with the DYNAMIC setting on the
INTERFACE statement for the IPAQENET or IPAQENET6 interface. In
addition, you must specify the WORKLOADQ subparameter and the VMAC
parameter.
Tip: In addition to enabling QDIO IWQ, the INBPERF DYNAMIC setting also
dynamically tunes the read-side interrupt frequency for the OSA-Express
feature.

You know you are done when the WorkloadQueueing field of the Netstat
DEvlinks/-d report is set to Yes, indicating that QDIO IWQ is enabled. You can
also obtain this information with a GetIfs request for the TCP/IP callable NMI
(EZBNMIFR).

You can use the Netstat ALL/-A report to determine whether any TCP connections
are registered to the TCP bulk data ancillary input queue; the Ancillary Input
Queue field is set to Yes and the BulkDataIntfName field is set to the interface name.
You can also obtain this information with a GetConnectionDetail request for the
TCP/IP callable NMI (EZBNMIFR).

You can use the Netstat STATS/-S report to display the total number of TCP
segments that are processed on the TCP bulk data ancillary input queue; this
number is displayed in the Segments Received on OSA Bulk Queues field. You can
also obtain this information with a GetGlobalStats request for the TCP/IP callable
NMI (EZBNMIFR).

80 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|

|

|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

For more information about the Netstat command, see z/OS Communications Server:
IP System Administrator's Commands. For more information about EZBNMIFR, see
z/OS Communications Server: IP Programmer's Guide and Reference.

Displaying OSA-Express QDIO interface information
You can use the following commands to display information about OSA-Express
QDIO interfaces:
v Netstat DEvlinks/-d

This command displays configured and runtime information from the TCP/IP
stack for an OSA-Express QDIO interface.

v DISPLAY TCPIP,,OSAINFO
This command displays configured and runtime information from the
OSA-Express QDIO feature for the data subchannel device of the interface.

For information about the syntax and output of these commands, see z/OS
Communications Server: IP System Administrator's Commands.

HiperSockets concepts and connectivity
HiperSockets is a zSeries hardware feature that provides high performance internal
communications between LPARs within the same central processor complex (CPC),
without the use of any additional or external hardware equipment (for example,
channel adapters, LANs, and so on). When the processor supports HiperSockets
and the CHPIDs have been configured in HCD (IOCP), TCP/IP connectivity can
occur for two reasons:
v DYNAMICXCF is configured on the IPCONFIG (IPv4) or the IPCONFIG6 (IPv6)

statements.
v A user-defined HiperSockets (MPCIPA) DEVICE and LINK (IPv4) or

INTERFACE (IPv6) is configured and started.

Therefore, there are two types of HiperSockets devices:
v DYNAMICXCF HiperSockets device or interface (TRLE "IUTIQDIO" and an

MPC group of subchannel devices). The PORTNAME will be IUTIQDxx, where
xx = the IQD CHPID that VTAM uses (for example, IUTIQDFD when using IQD
CHPID x'FD').

v A user-defined HiperSockets device or interface (TRLE "IUTIQDxx" and an MPC
group of subchannel devices). The PORTNAME is not applicable for this TRLE.

In both cases, the TRLE is dynamically built by VTAM. For additional details
regarding how to configure a user-defined HiperSockets device or interface, see
“HiperSockets” on page 446 and z/OS Communications Server: IP Configuration
Reference.

Concepts and considerations for the IQD CHPID
The HiperSockets hardware device is represented by the IQD CHPID and its
associated subchannel devices. All LPARs that are configured (HCD) to use the
same IQD CHPID have internal connectivity and therefore have the capability to
communicate using HiperSockets. If the system supports multiple channel
subsystems, and if HiperSockets connectivity is required across multiple channel
subsystems, the IQD CHPID must also be configured (HCD) to span the applicable
channel subsystems. The IQD CHPID can be viewed as a logical LAN within the
CPC. The HiperSockets hardware allows up to four (16 with systems that support
multiple channel subsystems) separate IQD CHPIDs to be defined per CPC,
creating the capability of having four (16 with systems that support multiple
channel subsystems) separate logical LANs within the same CPC. Figure 12 on
page 82

Chapter 2. IP configuration overview 81

|
|
|

|

|
|

|

|
|

|

|
|

|
|

page 82 and Figure 13 illustrate this concept:

With this capability, the system administrator can logically separate (or control) the
internal connectivity. This is accomplished by controlling which specific LPARs are
allowed to internally connect using HiperSockets. Further examples of this are as
follows:
v SYSPLEX 'A' LPARs running on LPs 1 through 4 could use IQD CHPID x'FC'.
v SYSPLEX 'B' LPARs running on LPs 5 through 8 could use IQD CHPID x'FD'.
v A VM LPAR runs in LP 9 running various second level systems (Linux and

z/OS) which use IQD CHPID x'FE'.
v Combinations of these examples could be:

zSeries CPC

LPAR1

z/OS z/OS

LPAR2

TCP TCP1 2

LPAR5LPAR4LPAR3

Linux LinuxVM

Internal LAN (IQD CHPID xFE)

GVM
GVM

GVM

1

2

3

Figure 12. HiperSockets internal LAN

Linux LPAR

TCP

L - DD

TCP

TCP

TCP

TCPTCPTCP

TCP

L - DDL - DD DD

DD DD

DD

DD

z/OS LPAR z/OS LPAR

z/OS LPARz/OS LPAR

z/OS LPAR

z/OS LPAR

CHPID FF CHPID FE

“Production” “Test”

Linux LPAR

Linux LPAR

Figure 13. HiperSockets multiple internal LANs

82 z/OS V1R12.0 Comm Svr: IP Configuration Guide

– Another set of LPARs on LPs 10 through 12 which are not using
DYNAMICXCF (non SYSPLEX) are connected to IQD CHPIDs x'FE' and x'FF'.

– Subsets of LPARs 1 through 8 are using both the DYNAMICXCF IQD
CHPIDs and a non-DYNAMICXCF IQD CHPIDs.

– Some LPARs are connected to all four IQD CHPIDs.

In a HiperSockets CHPID, IP addresses of the HiperSockets interfaces can be in the
same subnet or in different subnets. Some applications can detect when
HiperSockets IP addresses are in different logical subnets and might issue warning
or error messages. For further subdivision of connectivity in the HiperSockets
CHPID using virtual LANs, see “HiperSockets and VLAN.”

HiperSockets and VLAN
HiperSockets supports VLANs, which means you can logically subdivide the
internal LAN for a HiperSockets CHPID into multiple virtual LANs. Therefore,
two stacks that configure the same VLAN ID for the same CHPID can
communicate over HiperSockets, while two stacks that configure different VLAN
IDs cannot. For HiperSockets, the VLAN ID provided applies to both IPv4 and
IPv6 connections.

Guideline: If you configure a VLAN ID on a stack using a HiperSockets CHPID,
configure a VLAN ID for all other stacks using the same CHPID.

Planning for IQD CHPID spanning
Figure 14 illustrates how an IQD CHPID can span both logical channel subsystem
0 and logical channel subsystem 1.

In Figure 14, note the following:
v CHPID spanning is applicable to servers that support multiple channel

subsystems, such as the IBM z990 server.
v IQD CHPIDs and their spanning attributes are configured using HCD.
v Logical channel subsystem 0 and logical channel subsystem 1 are both using

IQD CHPID F2, which was configured (in HCD) to span.
v All images can exploit IQD CHPID spanning.
v Using HiperSockets support along with IQD spanning support, logical partitions

in both logical channel subsystem 0 and 1 have internal connectivity.
v Specific logical partitions can be configured to have access to the spanned IQD

CHPID. In this example:
– IQD CHPID F2 is configured to span both logical channel subsystem 0 and

logical channel subsystem 1.

zOS1 zOS2 zOS3 zOS4zVM1 zVM2

z/Linux
systems

z/Linux
systems

z990 server
Logical channel subsystem 0 Logical channel subsystem 1

IQD CHPID F2 IQD CHPID F2

Figure 14. Spanned IQD (HiperSockets) CHPID

Chapter 2. IP configuration overview 83

– In logical channel subsystem 0, zOS1 and zVM1 have connectivity (through
IQD CHPID F2) to zOS3 and zOS4 in logical channel subsystem 1.

– zOS2 and zVM2 do not have access to IQD CHPID F2.
v Up to 16 IQD CHPIDs can be configured in HCD.
v There are no TCP/IP or VTAM configuration changes required (spanning

support is transparent to z/OS Communications Server).
Tip: TCP/IP Dynamic XCF support uses HiperSockets connectivity when the
remote system is reachable through HiperSockets. This is dynamically
determined, and this internal logic also handles a spanned IQD CHPID.

To configure a spanned IQD CHPID, see z/OS HCD User's Guide.

The HiperSockets MPC group
For a specific IQD CHPID, VTAM builds a single HiperSockets MPC group, using
the subchannel devices associated with that IQD CHPID. VTAM requests up to 10
devices from the I/O subsystem if they are defined to the CHPID being initialized,
regardless of how many will be required for the number of TCP/IP stacks to be
used in the LPAR. VTAM requires two subchannel devices for the read and write
control devices, and 1 to 8 devices for data devices, one device for each of up to 8
TCP/IP stacks.

Therefore, to build the MPC group, there must be a minimum of 3 subchannel
devices defined (within HCD) and associated with the same IQD CHPID. The
maximum number of subchannel devices that VTAM will use is 10 (supporting 8
data devices or 8 TCP/IP stacks) per LPAR or MVS image. The subchannel devices
must be configured for the LPAR and online prior to when the TCP/IP stack is
initialized. Generally, the number of HiperSockets subchannel devices you should
configure to HCD per LPAR is:

2 (read / write control devices)
+ N (where N = number of TCP/IP stacks)

N+2 (total subchannel devices per LPAR)

Example (LPAR 1 starts two TCP/IP stacks and both stacks use HiperSockets):

- define 4 subchannel devices on the same IQD CHPID
- where 2 are used for read / write control and 2 data devices are available

Tip: The HCD configuration is the only way to control the number of devices that
VTAM uses for HiperSockets.

The first TCP/IP stack within the LPAR to initialize dynamic XCF support
(DYNAMICXCF) causes the IUTIQDIO HiperSockets MPC group to be
dynamically created. The first TCP/IP stack within the LPAR to initialize a
user-defined HiperSockets device (TRLE IUTIQDxx) causes the IUTIQDnn
HiperSockets MPC group to be dynamically created.

Each TCP/IP stack can then start the HiperSockets device, and each stack is
assigned a unique (dedicated) subchannel data device from the IUTIQDIO or
IUTIQDnn MPC group.

Recommendation: Configure the IQD CHPIDs using CHPIDs x'F0' through x'FF'
(but any valid CHPID value x'00' through x'FF' can be configured as TYPE = IQD).
See z/OS HCD Planning and Appendix D, “Using HCD,” on page 1493 for
additional details.

84 z/OS V1R12.0 Comm Svr: IP Configuration Guide

HiperSockets maximum frame size
The HiperSockets hardware supports four different frame sizes referred to as the
HiperSockets MFS (maximum frame size). Using HCD (or IOCP), the HiperSockets
MFS is configured on the IQD CHPID using the 'OS=' parameter. All LPARs
communicating over the same IQD CHPID will then use the same IQD MFS. The
MFS affects the largest packet that TCP/IP can transmit. TCP/IP will adjust the
MTU (Maximum Transmission Unit) based on the MFS, which is discovered during
activation.

The following table depicts the four possible TCP/IP MTU sizes resulting from the
HiperSockets frame sizes:

OS=value HiperSockets frame size TCP/IP MTU size

00 (default) 16 KB 8 KB

40 24 KB 16 KB

80 40 KB 32 KB

C0 64 KB 56 KB

The default HiperSockets MFS is 16 KB. However, in cases in which increased
bandwidth is required (such as large file transfers, file backup, and so on), a larger
MFS could be used. In most workload environments the default size will result in
better storage and CPU utilization.

* OS values are ’00’=16K, ’40’=24K, ’80’=40K and ’C0’=64K. *
* *
* Need at least 3 addresses per z/OS, maximum of 10: *
* - 2 addresses for control *
* - 1 address for data for each TCP stack (between 1 and 8) *

ID SYSTEM=(2064,1)
*
CHPID PATH=FC,TYPE=IQD,SHARED,OS=00
CHPID PATH=FD,TYPE=IQD,SHARED,OS=40
CHPID PATH=FE,TYPE=IQD,SHARED,OS=80
CHPID PATH=FF,TYPE=IQD,SHARED,OS=C0
*
CNTLUNIT CUNUMBR=FC00,PATH=FC,UNIT=IQD
IODEVICE ADDRESS=(2C00,16),CUNUMBR=FC00,UNIT=IQD
*
CNTLUNIT CUNUMBR=FD00,PATH=FD,UNIT=IQD
IODEVICE ADDRESS=(2C10,16),CUNUMBR=FD00,UNIT=IQD
*
CNTLUNIT CUNUMBR=FE00,PATH=FE,UNIT=IQD
IODEVICE ADDRESS=(2C20,16),CUNUMBR=FE00,UNIT=IQD
*
CNTLUNIT CUNUMBR=FF00,PATH=FF,UNIT=IQD
IODEVICE ADDRESS=(2C30,16),CUNUMBR=FF00,UNIT=IQD

See z/OS HCD Planning and Appendix D, “Using HCD,” on page 1493 for
additional details.

Modifying HiperSockets connectivity [TCP/IP device and link and
the VTAM HiperSockets MPC group (IUTIQDIO)]
Certain modifications can be made to the HiperSockets device (MPC group)
without disrupting an active TCP/IP stack.

Chapter 2. IP configuration overview 85

z/OS supports dynamic I/O for the HiperSockets CHPID and subchannel devices,
allowing subchannel devices to be added or removed to or from an LPAR which
has already been IPLed.

TCP/IP supports the STOP and START command for the DYNAMICXCF
HiperSockets device (IUTIQDIO). However, the commands are only supported
when the (internal) start (activation) was successful during stack initialization.
TCP/IP also supports the STOP and START command for the user-defined
HiperSockets devices (IUTIQDxx). Since a user-defined HiperSockets device is
supported as an MPCIPA device, STOP and START function just as they would for
other MPCIPA devices.

VTAM supports a MODIFY VTAMOPTS command that you can use to change the
initial setting of the IQDCHPID start option.

Therefore, it is possible to make certain changes to the DYNAMICXCF
HiperSockets MPC group (IUTIQDIO) without restarting VTAM or an active
TCP/IP stack. Examples of changes that can be made are (STOP/START device
required):
v Alter which specific IQD CHPID is used for DYNAMICXCF (for example, move

from the x'FC' CHPID to the x'FD' CHPID).
v Add or remove subchannel devices (for example, from the current IQD CHPID).
v Alter the IQD MFS which alters the TCP/IP MTU (for example, increase the

current IQD CHPID from 16k to 64k).

Although VTAM supports modifications to the start option IQDCHPID (and the
modification will be immediately displayed), the effects will vary depending on
what the current usage was and the change (from or to) that was made. For
example:
v When MODIFIED from ANY (or CHPID) to NONE, there is no effect on current

usage but blocks subsequent activations of the DYNAMICXCF HiperSockets
device.

v When MODIFIED from NONE to ANY (or CHPID), there is no effect on current
usage but allows subsequent activations.

v When MODIFIED from CHPID_X to CHPID_Y, there is no effect on current
usage.

Note: VTAM only uses the CHPID value when building the IUTIQDIO MPC
group.

To change CHPIDs for an active MPC group the following must be done:
1. TCP/IP IUTIQDIO devices and IQDIOINTF6 interfaces that are changing

must be stopped.
2. Make any necessary HCD/IOCDS changes.
3. Verify new subchannel devices are varied online.
4. Verify the MPC group has deactivated (with no usage it times out after

approximately 2 minutes).
5. Modify IQDCHPID = CHPID (to new CHPID).
6. Restart the TCP/IP IUTIQDIO devices and IQDIOINTF6 interfaces.

To use HiperSockets communications, the processor must have the necessary
hardware support. If the processor does not support HiperSockets communications,
modifications to this start option will not be accepted, and the IQDCHPID option
will not be displayed (displayed as ***NA***) .

86 z/OS V1R12.0 Comm Svr: IP Configuration Guide

HiperSockets connectivity and routing
For each pair of stacks within a sysplex that are not on the same MVS image, if all
of the following conditions are true, the stacks will use HiperSockets
DYNAMICXCF connectivity (versus standard XCF connectivity):
v The two stacks must be on the same CPC.
v For the DYNAMICXCF HiperSockets device (IUTIQDIO):

– The two stacks must be using the same IQD CHPID.
– If running on a system that supports multiple channel subsystems and the

two stacks are also in different channel subsystems, the IQD CHPID must be
configured (HCD) to span.

v Both stacks must be configured (HCD) to use HiperSockets.
v For IPv4 HiperSockets connectivity, both stacks must be at the z/OS V1R2 level,

or a later release. For IPv6 HiperSockets connectivity, both stacks must be at the
z/OS V1R7 level.

v The initial HiperSockets activation must complete successfully.

When an IPv4 DYNAMICXCF HiperSockets device and link are created and
successfully activated, a subnet route is created across the HiperSockets link. The
subnet is created by using the DYNAMICXCF IP address and mask. This allows
any LPAR within the same CPC to be reached, even ones that are not within the
sysplex. For example, an LPAR that is running z/Linux or z/VM that does not
support joining the sysplex can still be reached. The z/Linux or z/VM LPAR must
define at least one IP address for the HiperSockets endpoint that is within the
subnet defined by the DYNAMICXCF IP address and mask.

Similarly, when an IPv6 DYNAMICXCF HiperSockets interface is created and
successfully activated, a prefix route is created across the HiperSockets interface (if
prefix_route_len is specified on DYNAMICXCF). This allows any LPAR within the
same CPC to be reached, even ones that are not within the sysplex. For example,
an LPAR that is running z/Linux or z/VM that does not support joining the
sysplex can still be reached. The z/Linux or z/VM LPAR must define at least one
IP address for the HiperSockets endpoint that uses the same prefix as the
DYNAMICXCF IP address.

Therefore, TCP/IP can communicate with other LPARs within the CPC over the
HiperSockets connectivity created by DYNAMICXCF even when the TCP/IP in the
other LPAR is not part (joins or supports) of the sysplex. You can also elect to
manually configure a HiperSockets device for non-sysplex communications.

When multiple stacks reside within the same LPAR that supports HiperSockets,
both IUTSAMEH and HiperSockets links or interfaces will coexist. In this case, it is
possible to transfer data across either link or interface. Because IUTSAMEH links
or interfaces have better performance, it is better to always use them for intra-stack
communication. A host route will be created by DYNAMICXCF processing across
the IUTSAMEH link or interface but not across the HiperSockets link or interface.
To avoid using the HiperSockets link or interface for communication within the
same host, the following rules should be observed:
v Specify DYNAMICXCF IP addresses in a separate subnet than that of VIPA

addresses (IPv4) or using a separate prefix than that of VIPA addresses (IPv6).
v Do not specify static IUTSAMEH links or interfaces.

It is also possible with multiple stacks in the same LPAR to end up with both XCF
and HiperSockets links or interfaces. This occurs when the availability of the
(preferable) HiperSockets link or interface changes as each TCP stack (within the

Chapter 2. IP configuration overview 87

same LPAR) is started. For example, stack A is started with HiperSockets available
and later stack B is started with HiperSockets unavailable. This type of
configuration should be avoided.

Efficient routing using HiperSockets Accelerator
Communications Server leverages the technological advances and high performing
nature of the I/O processing offered by HiperSockets with the IBM zSeries servers
and the IBM OSA-Express feature using QDIO architecture by optimizing IP packet
forwarding processing that occurs across these two types of links. This function is
referred to as HiperSockets Accelerator. It is a configurable option, and activated
by configuring the IQDIORouting option on the IPCONFIG statement.

Restrictions:

v HiperSockets Accelerator is IPv4 only.
v You cannot enable HiperSockets Accelerator if you enable IP security on the

stack.
v You cannot enable HiperSockets Accelerator if IP forwarding is disabled on the

stack.

When configured, it allows unicast IPv4 packets that are received over a
HiperSockets link and are to be forwarded over a QDIO link (or received over
QDIO and are to be forwarded over HiperSockets) to be forwarded by the z/OS
Communications Server HiperSockets device driver. That is, the IP forwarding
function is pushed down as close to the hardware [or to the lowest software DLC
(Data Link Control)] layer as possible so that these packets do not have to be
processed by the TCP/IP stack or address space. Therefore, valuable TCP/IP
resources (storage and machine cycles) are not expended for purposes of routing
and forwarding packets. Figure 15 illustrates a configuration before the utilization
of HiperSockets Accelerator.

OSA4

ENet4

OSA1

ENet1

OSA2

ENet2

OSA3

ENet3

LP7 ...
LP10

LP11
LP12

...
LP3

LP2
LP1

CPC

Figure 15. Candidate configuration for HiperSockets Accelerator

88 z/OS V1R12.0 Comm Svr: IP Configuration Guide

HiperSockets Accelerator presents a different configuration and approach to obtain
full connectivity, as shown in Figure 16.

This function allows a user to position a specific or single TCP/IP stack which has
direct physical connectivity to the OSAs LANs as the HiperSockets router. This
stack can then connect to all remaining TCP/IP stacks in other images (LPARs)
within the same CPC that require connectivity to the same OSA LANs using
HiperSockets connectivity.

This approach becomes more beneficial as the number of LPARs within a given
CPC increase. Instead of attempting to directly attach each LPAR to each physical
network attachment using an OSA LAN, a smaller number of OSAs could be
concentrated through a single z/OS LPAR. From a performance perspective,
HiperSockets Accelerator attempts to make the intermediate (or router) TCP/IP
stack appear as if it did not exist in the path. Instead, each LPAR will appear as if
each were directly attached to the physical network (for example, packets are
forwarded without traversing the router TCP/IP stack). There are no additional
routing configuration tasks required by the user. The prerouting occurs
automatically. The TCP/IP stack automatically detects IP packet forwarding is
occurring across a HiperSockets eligible route (QDIO/HiperSockets or
HiperSockets/QDIO), and dynamically creates a HiperSockets Accelerator route
entry. All subsequent packets will then take the optimized device driver path, and
will not traverse the TCP/IP stack.

The dynamically created HiperSockets Accelerator routing entries can be displayed
by the Netstat ROUTE/-r report option with the IQDIO modifier. VTAM tuning
statistics are provided to allow the user to monitor or measure prerouting activity.

QDIOPriority (IQDIORouting option) is an optional choice that allows the user to
specify which of the four priority queues should be used when prerouting packets
from a HiperSockets link outbound to a QDIO link. The default is 1 (highest
priority), and in most cases should be sufficient.

LP1 LP4

LP7 LP10

LP2 LP5

LP8 LP11

LP3 LP6

LP9 LP12

z900
CPC

HiperSockets
internal
LANs

OSA1 OSA2 OSA3 OSA4

ENet1 ENet2 ENet3 ENet4

xFC xFD

xFE xFF
HiperSockets
Accelerator

LPAR

Figure 16. HiperSockets Accelerator configuration

Chapter 2. IP configuration overview 89

For additional details regarding the IQDIORouting configuration option, see the
IPCONFIG statement in z/OS Communications Server: IP Configuration Reference.

Tips:

v If packet trace is enabled, then packets that are accelerated by HiperSockets
Accelerator do not appear in the packet trace (either inbound or outbound). If
you want function similar to that of the packet trace in conjunction with
HiperSockets Accelerator, you can use the OSA-Express network traffic analyzer
(OSAENTA) to trace these packets that are accelerated to or from OSA-Express
QDIO. For more details on OSAENTA, see “OSA-Express network traffic
analyzer trace” on page 92.

v QDIO Accelerator provides all of the function supported by HiperSockets
Accelerator, and provides accelerated forwarding for other combinations of
traffic involving QDIO devices, including sysplex distributor. For more
information, see “QDIO Accelerator” on page 91.

HiperSockets multiple write
The HiperSockets multiple write facility moves multiple output data buffers in a
single write operation. This facility might reduce CPU usage, and might provide a
performance improvement for large outbound messages that are typically
generated by traditional streaming workloads such as file transfer, and interactive
web-based services workloads such as XML or SOAP.

To enable the HiperSockets multiple write facility on all HiperSockets interfaces,
including interfaces created for dynamic XCF, add the IQDMULTIWRITE
parameter to the GLOBALCONFIG statement. For more information about the
GLOBALCONFIG statement and the HiperSockets multiple write facility, see z/OS
Communications Server: IP Configuration Reference.

Restriction: HiperSockets multiple write is effective only on an IBM System z10
and when z/OS is not running as a guest in a z/VM environment.

HiperSockets multiple write assist with IBM zIIP
When your system is an IBM System z10 and the HiperSockets multiple write
facility is enabled, an additional assist for large outbound TCP messages is
available through the IBM System z10 Integrated Information Processor and IBM
System z9 Integrated Information Processor (zIIP). To enable HiperSockets write
processing for large outbound TCP messages on available zIIPs, specify the ZIIP
IQDIOMULTIWRITE parameter on the GLOBALCONFIG statement.

When your system is an IBM System z10 that does not have zIIPs configured, you
can use the zIIP HiperSockets multiple write facility to project the percentage of
existing HiperSockets workload currently running on central processors that would
be eligible to run on zIIPs, if zIIPs were available on the z/OS image. To perform
such projection analysis, specify the following on the GLOBALCONFIG statement:
v IQDMULTIWRITE parameter
v ZIIP parameter with the value IQDIOMULTIWRITE

In addition, you must also specify PROJECTCPU= YES in the IEAOPTxx member
of SYS1.PARMLIB. Then run your HiperSockets workload, and SMF provides
accounting information regarding zIIP-eligible workload.

Guideline: Remove GLOBALCONFIG ZIIP IQDIOMULTIWRITE from your
TCP/IP profile after you have completed your zIIP performance projection runs.

90 z/OS V1R12.0 Comm Svr: IP Configuration Guide

TCP/IP consumes slightly more central processing resources when no zIIPs are
online and you have coded GLOBALCONFIG ZIIP IQDIOMULTIWRITE.

For information about configuring the PROJECTCPU parameter in the IEAOPTxx
member of SYS1.PARMLIB, see z/OS MVS Initialization and Tuning Reference. For
information about accounting for zIIP eligibility in SMF record types 30 and 7x, see
z/OS MVS System Management Facilities (SMF). For information about zIIP-related
reporting updates, see z/OS RMF Report Analysis.

QDIO Accelerator
The QDIO Accelerator function extends the HiperSockets Accelerator function.
HiperSockets Accelerator provides accelerated forwarding at the DLC layer for the
following types of packets:
v Inbound packets over HiperSockets that are forwarded outbound over

OSA-Express QDIO
v Inbound packets over OSA-Express QDIO that are forwarded outbound over

HiperSockets

For more information about HiperSockets Accelerator, see “Efficient routing using
HiperSockets Accelerator” on page 88.

QDIO Accelerator provides all of the function supported by HiperSockets
Accelerator, and also provides accelerated forwarding at the DLC layer for the
following types of packets:
v Inbound packets over OSA-Express QDIO that are forwarded outbound over

OSA-Express QDIO
v Inbound packets over HiperSockets that are forwarded outbound over

HiperSockets
v Sysplex distributor packets that are forwarded to a target stack or that are

forwarded to or from a DataPower appliance, when the route involves any of
the following inbound and outbound DLC combinations:
– Inbound over HiperSockets, forwarded outbound over OSA-Express QDIO
– Inbound over OSA-Express QDIO, forwarded outbound over HiperSockets
– Inbound over OSA-Express QDIO, forwarded outbound over OSA-Express

QDIO
– Inbound over HiperSockets, forwarded outbound over HiperSockets

For more information about sysplex distribution with a DataPower appliance,
see “Sysplex distribution with DataPower” on page 491.

QDIO Acceleration is supported with or without the VIPAROUTE statement. When
QDIO Accelerator is active, the stack dynamically creates QDIO Accelerator routes
as it forwards packets in any of the inbound and outbound DLC combinations
previously described. The DLC layer can perform accelerated routing for packets
across these routes, bypassing the IP forwarding function in the stack. Similarly,
the stack dynamically creates QDIO Accelerator routes for packets that would be
forwarded by the sysplex distributor in any of the inbound and outbound DLC
combinations. The DLC layer can perform accelerated sysplex distributor routing
for such packets.

To configure QDIO Accelerator, specify the QDIOACCELERATOR parameter on
the IPCONFIG statement. For more information about the IPCONFIG statement,
see z/OS Communications Server: IP Configuration Reference.

Chapter 2. IP configuration overview 91

You can display the QDIO Accelerator routing entries that are dynamically created
for non-sysplex distributor packets using the Netstat ROUTE/-r report option with
the QDIOACCEL modifier. For more information about the Netstat ROUTE/-r
report, see z/OS Communications Server: IP System Administrator's Commands.

You can use the Netstat VCRT/-V report with the DETAIL modifier to display
whether a sysplex distributor connection is eligible for acceleration. For more
information about the Netstat VCRT/-V report, see z/OS Communications Server: IP
System Administrator's Commands.

You can also use VTAM tuning statistics to monitor and measure the accelerated
packets. For more information about gathering tuning statistics, see z/OS
Communications Server: SNA Network Implementation Guide.

Restrictions:

v QDIO Accelerator is supported for IPv4 only.
v You cannot enable QDIO Accelerator support if you enable IP security on the

stack.
v If IP forwarding is disabled on the stack, then QDIO Accelerator applies only to

packets that are forwarded by the sysplex distributor.
v Packets from the sysplex distributor to the target are not accelerated with the

VIPAROUTE destination when the outbound interface is HiperSockets.

Tip: If packet trace is enabled, then packets that are accelerated by QDIO
Accelerator do not appear in the packet trace (either inbound or outbound). If you
want function similar to that of the packet trace in conjunction with QDIO
Accelerator, you can use the OSA-Express network traffic analyzer (OSAENTA) to
trace these packets that are accelerated to or from OSA-Express QDIO. For more
details on OSAENTA, see “OSA-Express network traffic analyzer trace.”

OSA-Express network traffic analyzer trace
When data problems occur in a network with OSA adapters, multiple traces are
usually required. A sniffer trace might be required to see the data as it was
received from or sent to the network, an OSA hardware trace might be required if
the problem is suspected in the OSA, and z/OS Communications Server traces are
required to diagnose VTAM or TCP/IP problems.

To assist in problem diagnosis, the OSA-Express network traffic analyzer
(OSAENTA) function provides a way to trace inbound and outbound frames for an
OSA-Express2 feature in QDIO mode. The OSAENTA trace function is controlled
and formatted by z/OS Communications Server, but is collected in the OSA at the
network port. You can control the OSAENTA trace function using either the
OSAENTA statement in the TCP/IP profile or the VARY TCPIP,,OSAENTA
command. The controls provided include the ability to filter what data is collected
by parameters such as IP address, TCP/UDP port, or frame type, and to specify
how much data is to be collected. They also provide the capability to trace frames
discarded by the OSA-Express2 feature. You can display current settings for the
OSAENTA trace function using the Netstat DEvlinks/-d command.

Because the data is collected at the Ethernet frame level, this function enables you
to trace the MAC headers for packets, a capability not provided by existing packet
traces. It also enables the tracing of other types of packets that existing packet
traces do not contain, including the following:
v ARP packets

92 z/OS V1R12.0 Comm Svr: IP Configuration Guide

v Packets to and from other users sharing the OSA, including other TCP/IP stacks,
z/Linux users, and z/VM users

v SNA packets

There are obvious security considerations for this type of trace. Security control is
enabled at the Hardware Management Console (HMC) of the OSA-Express2
feature. To trace packets for stacks or images other than the operating system
image where you activate the OSAENTA trace interface, you must use the HMC to
configure the OSA to enable this.

The OSAENTA trace function communicates with the OSA-Express feature being
traced by using a dynamically defined QDIO interface to the OSA-Express feature.
The interface is created when the first VARY TCPIP,,OSAENTA command for that
OSA is entered, or the first OSAENTA TCP/IP profile statement is processed. The
interface is named EZANTAxxxxxxxx, where xxxxxxxx is the port name of the OSA
specified on the VARY TCPIP,,OSAENTA command, and must match the
PORTNAME parameter on the VTAM TRLE representing the traced OSA-Express
feature. This also means that a TRLE must be defined in VTAM for this
OSA-Express trace interface, though the same TRLE used for MPCIPA devices and
interfaces is used for this dynamically defined trace interface. The
EZANTAxxxxxxxx interface is used exclusively for receiving trace records from that
OSA-Express feature. It is started, stopped, and deleted with the ON, OFF, and
DEL parameters of the VARY TCPIP,,OSAENTA command.

When the OSAENTA trace is enabled, the received trace records are collected by
Component Trace (CTRACE) using the SYSTCPOT component. The traced records
can then be formatted using the IPCS CTRACE command, specifying the
component name SYSTCPOT. For information about retrieving the OSA-Express
network traffic analyzer data in real time, see z/OS Communications Server: IP
Programmer's Guide and Reference.

The OSAENTA trace can have a negative impact on performance if sufficient trace
filters are not specified before you enable the trace. OSAENTA can reduce the
amount of traffic that the OSA-Express feature can process and the amount of
traffic that can be accelerated through that OSA-Express feature. Also, host
processing to collect the OSAENTA trace records can increase host CPU
consumption. Specify sufficient filters to limit the amount of traffic that is traced to
only what is necessary for problem diagnosis.

For more information about the OSAENTA statement, see z/OS Communications
Server: IP Configuration Reference. For more information about the VARY
TCPIP,,OSAENTA command, see z/OS Communications Server: IP System
Administrator's Commands. For more information about formatting an OSAENTA
trace, see z/OS Communications Server: IP Diagnosis Guide. For the level of
OSA-Express2 feature that supports OSAENTA, see the 2094DEVICE Preventive
Service Planning (PSP) bucket and the 2096DEVICE Preventive Service Planning
(PSP) bucket.

Synchronization of OSA-Express2 diagnostic data
VTAM provides the externals that control the QDIOSYNC trace facility, used to
synchronize OSA-Express2 diagnostic data with host diagnostic data. For
information on the use of the QDIOSYNC trace facility, see z/OS Communications
Server: SNA Diagnosis Vol 1, Techniques and Procedures.

Chapter 2. IP configuration overview 93

Prioritizing outbound OSA-Express data using the Workload
Manager service class

The z/OS Workload Manager (WLM) provides a priority associated with each unit
of work that runs a TCP/IP socket API to send data. The priority provided by
WLM is related to the WLM service class associated with the unit of work. The
unit of work can derive its priority from the service class associated with the
address space in which it is running or from the service class associated with the
enclave to which it belongs. The priorities provided by WLM, from highest priority
to lowest priority, are as follows:
v System-defined service class (SYSTEM), used for system address spaces
v System-defined service class (SYSSTC), used for high-priority started tasks
v User-defined service classes with importance level 1
v User-defined service classes with importance level 2
v User-defined service classes with importance level 3
v User-defined service classes with importance level 4
v User-defined service classes with importance level 5
v User-defined service classes associated with a discretionary goal

For more information about WLM and the WLM service classes, see z/OS MVS
Planning: Workload Management and z/OS MVS Programming: Workload Management
Services.

z/OS Communications Server supports four priority values for outbound QDIO
traffic, 1 through 4, with 1 being the highest priority. Priorities with lower numbers
are given preferential treatment by the QDIO device driver and the OSA-Express
feature.

You can specify the QDIO priority value to be used on the SetSubnetPrioTosMask
statement in a Quality of Service (QoS) policy, which provides one way to
influence the QDIO traffic priority that is used for outbound packets. The
SetSubnetPrioTosMask statement maps the IPv4 type of service (ToS) byte or IPv6
traffic class to these four QDIO traffic priorities. For more information about the
SetSubnetPrioTosMask statement, see z/OS Communications Server: IP Configuration
Reference.

Another way to influence the QDIO traffic priority is to use the WLMPRIORITYQ
parameter on the GLOBALCONFIG profile statement. The WLMPRIORITYQ
parameter automatically extends the preferential treatment of the most important
workloads for a business through the QDIO device driver all the way to the LAN.
When the WLMPRIORITYQ parameter is specified and a packet with a ToS or
traffic class value 0 is sent over an OSA-Express feature in QDIO mode,
Communications Server sets the OSA-Express write priority of the packet based on
the priority value provided by the WLM service class. In addition, the
WLMPRIORITYQ parameter can be used to influence the QDIO traffic priority of
forwarded packets with a ToS or traffic class value 0.

For more information about the GLOBALCONFIG statement, see z/OS
Communications Server: IP Configuration Reference.

Restrictions:

v Prioritization using the WLM service class is effective only when enabled and
when the ToS or traffic class value is 0.

94 z/OS V1R12.0 Comm Svr: IP Configuration Guide

v Prioritization using the WLM service class is ineffective for interfaces other than
OSA-Express features in QDIO mode.

v Prioritization of forwarded packets is ineffective unless DATAGRAMFWD is
specified on the IPCONFIG statement, the IPCONFIG6 statement, or both
statements.

v The WLMPRIORITYQ setting for forwarded packets has no effect on accelerated
packets. To set the write priority for accelerated packets, use QDIOPRIORITY on
the IQDIOROUTING parameter or the QDIOACCELERATOR parameter on the
IPCONFIG profile statement. For more information about the IPCONFIG
statement, see z/OS Communications Server: IP Configuration Reference.

Fixed storage requirements for OSA-Express QDIO and
HiperSockets interfaces

Each OSA-Express QDIO and HiperSockets interface requires fixed storage for read
processing (which is allocated by VTAM). If you define a large number of these
interfaces (for example, by configuring multiple VLANs to one or more
OSA-Express features), then you need to consider how much fixed storage your
configuration requires.

For information about how much fixed storage VTAM allocates by default for each
OSA-Express QDIO and HiperSockets interface, how to control the amount of this
storage allocation using the VTAM QDIOSTG start option (for OSA-Express QDIO)
and the VTAM IQDIOSTG start option (for HiperSockets), and considerations for
the IVTPRM00 parmlib member, see z/OS Communications Server: SNA Resource
Definition Reference.

You can also override the global QDIOSTG or IQDIOSTG value and control the
amount of fixed storage for a specific OSA-Express QDIO or HiperSockets interface
by using the READSTORAGE parameter on the LINK and INTERFACE statements.

Maximum transmission unit considerations
TCP/IP uses the maximum transmission unit (MTU) value to determine the largest
sized frame to send. The MTU value that is in effect for a given outbound send is
one of the following two values:
v Path MTU value

TCP/IP automatically enables path MTU discovery for IPv6. If a packet is an
IPv6 packet, or if a packet is an IPv4 packet and path MTU discovery is enabled,
the path MTU value is used to determine the maximum size of the packet. Path
MTU discovery initially sets the path MTU value to the actual route MTU value
for the route. If packets require fragmentation to get to the final destination,
path MTU discovery determines the path MTU value by repeatedly decreasing
the value until it can send packets to the final destination without
fragmentation.
Guideline: You can enable path MTU discovery for IPv4 by configuring
IPCONFIG PATHMTUDISCOVERY in the TCP/IP profile.

v Actual route MTU value
The actual route MTU value is the lesser of the interface MTU value and the
configured route MTU value. If path MTU discovery is not enabled, the actual
route MTU value is used.
– Interface MTU value

The interface MTU value is a characteristic of an interface, and is either
learned from the device during activation or is hardcoded based on the type

Chapter 2. IP configuration overview 95

|
|
|

|

|
|
|
|
|
|
|
|

|
|

|

|
|
|

|

|
|

of the physical device. For information about the interface MTU values that
TCP/IP uses for the various network interface types supported by TCP/IP,
see the summary of DEVICE and LINK statements and the summary of
INTERFACE statements in z/OS Communications Server: IP Configuration
Reference. For an IPAQENET6 interface, or an IPAQENET interface defined
with the INTERFACE statement, you can configure a lower interface MTU
value using the MTU keyword on the INTERFACE statement.
Restriction: You cannot modify the interface MTU value for IPAQENET
interfaces defined using the DEVICE, LINK, and HOME statements.
Results:

- The TCP/IP stack sets the interface MTU value to the lesser of the learned
MTU value and the MTU value configured on the INTERFACE statement.

- For an active link or interface, TCP/IP reports the interface MTU value in
the ActMtu field of the Netstat DEVLINKS/-d report.

– Configured route MTU value
The configured route MTU value is the MTU size that is configured for a
route.
- Static route

For a static route, you can specify the configured route MTU value in the
TCP/IP profile on a ROUTE entry in a BEGINROUTES block or on a
GATEWAY statement.

- IPv4 dynamic route
For IPv4 dynamic routes over an interface that are added by OMPROUTE,
the configured route MTU value is the value of the MTU keyword specified
on the RIP_INTERFACE, OSPF_INTERFACE or INTERFACE statement in
the OMPROUTE configuration file for the outgoing interface of the route.
Result: If you do not specify an MTU value for an interface in the
OMPROUTE configuration file, OMPROUTE uses the value 576.

- IPv6 dynamic route
For IPv6 dynamic routes added by OMPROUTE, OMPROUTE learns the
interface MTU value from TCP/IP; you cannot configure a route MTU
value in the OMPROUTE configuration file.
Result: For IPv6 dynamic routes that are learned by OMPROUTE, the
configured route MTU size is the same as the interface MTU size.

These factors comprise a general set of rules for how TCP/IP determines the MTU,
but there are some exceptions. For example, if an application uses the
IPV6_USE_MIN_MTU socket option, TCP/IP sends outbound packets using the
IPv6 minimum MTU value 1280.

Guidelines:

v Enable path MTU discovery in configurations where traffic originating in the
z/OS TCP/IP stack will traverse multiple hops with different MTU sizes.

v When you are using OSA-Express Gigabit Ethernet (which supports the interface
MTU value 8992), be aware that not all routers and switches support a value this
large. If all routers and switches in your configuration do not support the value
8992, specify a lower configured route MTU value or specify a lower MTU value
on the INTERFACE statement in the TCP/IP profile.

v When you are using OMPROUTE, specify the MTU keyword for each IPv4
interface.

96 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|
|
|

|
|

|

|
|

|
|

|

|
|

|

|
|
|

|

|
|
|
|

|
|

|

|
|
|

|
|

|

|
|
|
|
|

|

v When you are using OMPROUTE, configure all nodes on a LAN to use the same
MTU value. Otherwise, you might encounter problems, such as OSPF adjacency
errors.

Considerations for multiple servers sharing a TCP port
For a TCP server application to support a large number of client connections on a
single system while providing good performance for those connections, it might be
necessary to run more than one instance of the server application to service the
connection requests. For all instances of the server application to receive client
connection requests without changing the client applications, the servers must all
bind to the same server IP address and port. To enable this in the TCP/IP stack,
you must add the SHAREPORT or SHAREPORTWLM keyword to the PORT
profile statement that reserves the TCP port for the server instances. For more
detailed information on the PORT statement and its keywords, see z/OS
Communications Server: IP Configuration Reference.

The set of server instances sharing the same TCP port on the same TCP/IP stack is
called a shareport group. As incoming client connections arrive for this port and IP
address, TCP/IP distributes them across the servers in the shareport group.

If the SHAREPORT keyword was specified, the connections are distributed across
the available servers using a weighted round-robin distribution based on the
Servers' accept Efficiency Fractions (SEFs).

If the SHAREPORTWLM keyword was specified, the connections are distributed
across the available servers using a weighted round-robin distribution based on the
WLM server-specific recommendations, modified by the SEFs.

The SEF is a measure, calculated at intervals of approximately 1 minute, of the
efficiency of the server application in accepting new connection requests and
managing its backlog queue. You can use the Netstat ALL/-A command to obtain
the current SEF value for a server. For more detailed information about the Netstat
command, see z/OS Communications Server: IP System Administrator's Commands.

Configuring a shareport group can also be used to improve the availability of key
applications. For example, should an application server instance become inactive
(encounters a failure or is stopped for planned maintenance), the other applications
in the shareport group can continue to process client requests.

Applications that might be good candidates for being placed in a shareport group
must also satisfy the following requirements:
v Multiple instances of the application can be started within a single system.
v Each application instance must provide the same functional capabilities. That is,

each must be capable of processing any TCP connection requests to the shared
port.

In addition, each TCP connection directed to a shareport group must be eligible for
load balancing (it cannot have an affinity to a specific server). If specific client
affinities exist to a specific server, you should consider using sysplex distributor,
which provides for load balancing of connections while maintaining client affinities
to a specific server instance over a period of time (Timed Affinity). While the
primary focus of the sysplex distributor is on load balancing across servers on
multiple target systems, it also supports multiple servers in a shareport group on

Chapter 2. IP configuration overview 97

|

the target systems. For more information on sysplex distributor configuration, see
Chapter 8, “TCP/IP in a sysplex,” on page 429.

Considerations for Common Information Model providers
The Common Information Model (CIM) provides a model for describing and
accessing data across an enterprise. CIM is a standard developed by a consortium
of independent hardware and software vendors, including IBM, called the
Distributed Management Task Force (DMTF). CIM data is defined by standardized
CIM classes. Class definitions define properties for each class. For example, some
properties of the CIM_EthernetPort (Ethernet interface) class are interface type,
enabled state, and speed. Platforms can extend the standardized CIM classes by
defining their own platform-specific classes and their properties.

CIM data instrumentation is supplied by CIM components called providers. The
providers gather data on a system in support of the CIM classes. Clients can
retrieve the data through the Common Information Model Object Manager. On
z/OS, this function is provided by the z/OS CIM server.

Communications Server supplies CIM providers for the CIM classes shown in
Table 7. Only IPv4 data is currently supported. To support data from eight TCP/IP
stacks on an MVS image, the TCP/IP stack name has been added to the
IBMzOS_EthernetPort and IBMzOS_IPProtocolEndpoint classes as a
platform-specific property.

For more information about CIM, the z/OS CIM server, the properties support for
the Communications Server CIM classes, and other z/OS CIM provider support,
see z/OS Common Information Model User's Guide.

Table 7. Communications Server CIM providers

CIM base class name z/OS class name Description

CIM_EthernetPort IBMzOS_EthernetPort IPv4 Ethernet interfaces defined to
the TCP/IP stack

CIM_IPProtocolEndpoint IBMzOS_IPProtocolEndpoint IPv4 IP addresses defined to the
TCP/IP stack

CIM_PortImplementsEndpoint IBMzOS_NetworkPortImplementsIPEndpoint IPv4 Ethernet interfaces and their
associated IP addresses

CIM_SystemDevice IBMzOS_CSNetworkPort MVS system and its associated IPv4
Ethernet interfaces

This CIM provider function resides in the /usr/lpp/tcpip/lib directory. There is no
configuration necessary to activate this CIM provider support. The z/OS CIM
server must be configured and activated for the data supported by the
Communications Server CIM providers to be available to clients. The z/OS
Communications Server CIM classes are shipped with the z/OS CIM server. The
files that define these classes and any platform specific properties are also installed
in the /usr/lpp/tcpip/mof directory.

There are security configuration considerations that govern the ability of providers
to gather CIM data. For more information about security configuration, see “CIM
provider access control” on page 128.

98 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Required steps before starting TCP/IP
This information describes the steps you must complete before starting TCP/IP.

Planning your installation and migration
It will be to your advantage to have thoroughly studied the following
documentation prior to the installation and customization of z/OS
Communications Server:
v Program Directory for z/OS for CBPDO Installation and ServerPac Reference,

Program Number 5694-A01
v Preventive Service Planning (PSP) bucket
v z/OS Communications Server: New Function Summary

v z/OS UNIX System Services Planning

v OS390CKL, IBM MKTTOOLS information for the z/OS UNIX System Services
implementer

It is also recommended that you attend a z/OS UNIX System Services concepts
class and a class in using z/OS UNIX System Services prior to migrating to z/OS
Communications Server. If this is not possible, then you will want to ensure that
the z/OS UNIX System Services implementer and the RACF administrator work
together with you during the installation and customization process.

Planning for and installing z/OS Communications Server requires MVS, UNIX,
and networking skill. If your background is in traditional MVS programming or
system programming, the z/OS UNIX System Services terminology might at first
seem to be somewhat confusing. If your background is in the UNIX environment,
the terms should be familiar to you.

In the past, MVS TCP/IP system programmers have needed a working knowledge
of the MVS or z/OS system. These programmers have been accustomed to
working closely with the RACF administrator and z/OS system programmer for
authorizations; the VTAM and NCP system programmers for SNALINK and NCP
connections; the IP address administrator for basic name and address assignments;
and the administrators of the router network and channel-attached peripherals for
connection definition and problem determination.

With the introduction of z/OS Communications Server, the TCP/IP system
programmer needs to develop an additional alliance with the z/OS UNIX System
Services system programmer. The TSO interfaces that have been traditionally
available in the host-based TCP/IP still stand at the system programmer's disposal
and additional MVS console commands simplify some TCP/IP operations.
However, another user interface provided by the UNIX shell environment, either
with the z/OS shell or the ISPF SHELL, is a useful and sometimes necessary tool
that the TCP/IP system programmer will need to work with. Additionally, the
tight coupling of z/OS Communications Server with z/OS UNIX System Services
means that the TCP/IP system programmer needs more than a passing knowledge
of UNIX conventions, commands, and hierarchical file system concepts. Even if the
system programmer is familiar with other UNIX environments, work with the
UNIX shell requires more than basic familiarity.

In the first version of a full TCP/IP stack based on native MVS and on z/OS UNIX
System Services, few have all the requisite skills to successfully implement z/OS
Communications Server on their own. As more and more system programmers
acquire skills in UNIX System Services and in TCP/IP, this will become less and

Chapter 2. IP configuration overview 99

less the case. Working with the z/OS UNIX System Services implementer when
implementing z/OS Communications Server provides the most effective solution to
establishing a working z/OS Communications Server environment.

If you are migrating to z/OS Communications Server, establish a migration process
to move all your existing applications, and after this, consider the use of new and
enhanced functions based on z/OS Communications Server: New Function Summary.
z/OS Communications Server allows multiple copies of the TCP/IP protocol stack
to execute on the same MVS image. However, with all the performance
enhancements introduced in z/OS Communications Server, it is probably not
necessary to implement a multi-stack system for production purposes unless one is
considering building a system programming test stack.

You are now ready to move on to the following steps.

Step 1: Install z/OS Communications Server
Before you begin the installation:
v To help you plan the installation and migration of z/OS Communications Server,

see the following:
– z/OS Planning for Installation

– z/OS Communications Server: New Function Summary

– z/OS Migration

v Be sure you understand the data set naming conventions used in TCP/IP. You
can find this information in “Configuration data set naming conventions” on
page 19.

v Consult the z/OS Program Directory (Customization considerations for Wave 1D)
for current information about the material, procedures, and storage estimates of
the MVS image.

Install z/OS Communications Server with other elements of z/OS. If you use the
ServerPac method of installation, see z/OS Installing Your Order; if you use the
CBPDO method of installation, see z/OS Program Directory. When appropriate, that
information will direct you back to this information to customize the TCP/IP data
sets and procedures and verify their configuration.

Verifying the initial installation
Both the z/OS Program Directory and z/OS Installing Your Order contain step-by-step
instructions that can be used to set up and verify a basic TCP/IP configuration
with only the loopback address and a few key servers. For more information
regarding these instructions, see the information about Wave 1D customizations in
the z/OS Program Directory or the information about verifying your installation in
z/OS Installing Your Order.

Step 2: Customize z/OS Communications Server
To customize TCP/IP you need to update the cataloged procedures and
configuration data sets for the TCP/IP address space, its clients, and servers.

z/OS Communications Server runs as a started task in its own address space. Each
of the servers runs in its own address space and is started with its own procedure.
The TCP/IP address space requires:
v A procedure in a system or recognized PROCLIB.

100 z/OS V1R12.0 Comm Svr: IP Configuration Guide

v A data set that provides configuration definitions for the TCP/IP address space
and includes statements affecting many of the servers. This data set is referred to
as PROFILE.TCPIP.

v A data set to provide the parameters that are common across all clients. This
data set is referred to as TCPIP.DATA.

Many of the servers also require other data sets for their specific functions.

Making SYS1.PARMLIB changes
You need to make certain changes to SYS1.PARMLIB. These changes depend on
which of the following installation methods you use:

ServerPac method
After the file system is restored (through the RESTFS job), you will see that
ServerPac has changed some of the parmlib members. Follow the
instructions to change the BPXPRMxx member of parmlib.

CBPDO method
Change the parmlib members according to the instructions listed in the
installation instructions for Wave 1. Tables describing changes to parmlib
and changes to the BPXPRMxx member are included.

Note: z/OS Communications Server exploits z/OS UNIX services even for
traditional MVS environments and applications. Before using TCP/IP
services, the z/OS UNIX environment must be set up in full function mode.
For a list of tasks involved in setting up for full function mode, see z/OS
UNIX System Services Planning. System Managed Storage (SMS, which is part
of the DFSMSdfp element of z/OS) must be configured, and you will need
to customize SMS, RACF, and the z/OS UNIX file system.

Additional information about required TCP/IP definitions for the UNIX
environment can be found in “Defining TCP/IP as a UNIX System Services
physical file system” on page 45 and “UNIX System Services security
considerations” on page 41.

Common z/OS UNIX configuration problems: Following are some explanations
and possible solutions for common problems that you may encounter when
configuring the z/OS UNIX environment.
v TCP/IP initialization fails with the following messages:

EZZ4203I Z/OS UNIX-TCP/IP CONNECTION ERROR FOR TCPIP-BPX1SOC,
00000003,FFFFFFFF,00000070,112B00B6

These messages usually indicate that both INET and CINET FILESYSTYPE have
been specified. Only one should be specified; see the FILESYSTYPE information
in z/OS UNIX System Services Planning for additional information.

v TCP/IP initialization fails with the following messages:
EZZ4203I Z/OS UNIX-TCP/IP CONNECTION ERROR FOR TCPIP-BPX1SOC,

00000003,FFFFFFFF,0000006F,112B00B0

These messages indicate that the requester of the service is not privileged. The
service requested requires a privileged user. Check the documentation for the
service to understand what privilege is required.

v TCP/IP initialization fails with the following messages:

Chapter 2. IP configuration overview 101

EZZ4203I Z/OS UNIX-TCP/IP CONNECTION ERROR
FOR TCPIPA-BPX1IOC,8008C981,FFFFFFFF,0000009E,12B2005A

EZZ4204I TCPIP INITIALIZATION FOR TCPIPA FAILED

These messages usually indicate that an incorrect jobname was specified in the
SUBFILESYSTYPE NAME() definition in the BPXPRMxx member for a common
INET environment. In this scenario, the NAME() must match TCPIPA.

v TCP/IP initialization fails with the following messages:
IEA8481 DUMP SUPPRESSED - ABDUMP MAY NOT DUMP STORAG FOR KEY 0-7 JOB TCPV34A
IEF4501 TCPIPA TCPIPA - ABEND=SEC6 U0000 REASON=0F01C008

These messages are usually an indicator that an OMVS RACF segment has not
been defined for the user ID associated with the TCP/IP started procedure.
Define an OMVS segment with a UID of 0 for the user ID associated with the
TCP/IP started procedure.

v TCP/IP initialization fails with the following messages:
IEF4031 TCPIPA - STARTED - TIME=16.01.25
EZZ4203I Z/OS UNIX-TCP/IP CONNECTION ERROR FOR TCPIPA-BPX11OC,

8008139A,FFFFFFFF,00000079,12D2025E
EZZ4204I TCPIP INITIALIZATION FOR TCPIPA FAILED.

==> The 0079 value is EINVAL - The parameter is incorrect
==> The 025E value is JRSocketCallParmError - A socket syscall

contains incorrect parameters

These messages usually indicate that an incorrect entry point name has been
specified in the SUBFILESYSTYPE ENTRYPOINT() definition. The correct value
is ENTRYPOINT(EZBPFINI).

v TCP/IP initialization fails with the following messages:
EZZ4203I Z/OS UNIX-TCP/IP CONNECTION ERROR FOR TCPIPA-BPX1SOC,

00000003,FFFFFFFF,0000045A,112B0000
EZZ4204I TCPIP INITIALIZATION FOR TCPIPA FAILED.

==> The 045A value is EAFNOSUPPORT - The address family is not supported

These messages indicate that AF_INET was not defined or did not initialize
properly. Check for any earlier z/OS UNIX messages and verify that the z/OS
UNIX NETWORK DOMAINNAME(AF_INET) statement is in your BPXPRMxx
member.

v After issuing a NETSTAT command from TSO, the following message is
displayed:
netstat
CEE5101C During initialization, the z/OS UNIX callable service

BPX1MSS failed. The system return code was 0000000156,
the reason code was 0507014D. The application will be
terminated.

NETSTAT ENDED DUE TO ERROR+
READY
?
USER ABEND CODE 4093 REASON CODE 00000090
READY

==> The 0156 value is EMVSINITIAL - Process initialization error
==> The 014D value is JRFsFailChdir - The dub failed, due to

an error with the initial home directory

These messages indicate that the user ID issuing the NETSTAT command does
not have an OMVS RACF segment defined for it. Define an OMVS segment for

102 z/OS V1R12.0 Comm Svr: IP Configuration Guide

this user ID or activate the default OMVS segment support. For details, see
“UNIX System Services security considerations” on page 41.

v Socket applications using the z/OS Communications Server TCP/IP Services
APIs fail with an ERRNO of 156.
ERRNO 156 indicates a z/OS UNIX process initialization failure. This is usually
an indication that a proper OMVS RACF segment is not defined for the user ID
associated with the application. The RACF OMVS segment may not be defined
or may contain errors such as an improper HOME() directory specification. If the
OMVS segment is not defined, you may also receive the following message:
ICH4081 USER(USER8) GROUP(SYS1) NAME(TSO USERID USER8)

CL(PROCESS)
OMVS SEGMENT NOT DEFINED

In this example, USER8 is the user ID associated with the failing application. To
correct this problem, define a proper OMVS segment for the user ID associated
with the failing application. For details, see “UNIX System Services security
considerations” on page 41.

Completion of these steps ensures that the applications and resources on the target
system will function correctly at the new level.

Other topics show you how to:
v Configure the TCP/IP address space by updating the samples provided in

SEZAINST(SAMPPROF) and SEZAINST(TCPIPROC).
v Configure the universal client parameters provided in SEZAINST(TCPDATA).
v Configure the site table, defined in hlq.HOSTS.LOCAL or hlq.ETC.IPNODES, to

identify the Internet names and addresses of your TCP/IP host.
v Customize the TCP/IP Component Trace parameters by updating the CTRACE

parameter in the PARM= field of the EXEC JCL statement in the TCP/IP started
procedure.
You can find a description of the MVS Component Trace support in the z/OS
Communications Server: IP Diagnosis Guide.

v Specify the ENVAR parameter on the PARM=keyword to override the resolver
file. For more information on setting the environment variable
RESOLVER_CONFIG using the ENVAR parameter, see “Considerations for
multiple instances of TCP/IP” on page 50.

v Configure each of the servers you want to run. This might require:
– Modifying sample procedures and adding them in your PROCLIB
– Modifying the configuration data set, PROFILE.TCPIP
– Adding port numbers to hlq.ETC.SERVICES
– Modifying other data sets containing server-specific parameters

You can find the sample procedures and data sets in SEZAINST. Table 1 on page
21 provides additional reference information you can use as you configure and
customize each server.

You can find general information about starting, stopping, and dynamically
controlling the servers in z/OS Communications Server: IP System Administrator's
Commands.

Step 3: Configure VMCF and TNF
The Pascal socket interface uses the IUCV/VMCF services for a limited set of
inter-address space communication flows. As a result, if you are using any

Chapter 2. IP configuration overview 103

|

applications (provided by IBM or others) that use the Pascal socket API, you must
ensure that the Virtual Machine Communication Facility (VMCF) and Termination
Notification Facility (TNF) subsystems are active before the applications are
started. TCP/IP provides the following applications and commands that use the
Pascal socket interface:
v SMTP and LPD servers
v TSO HOMETEST, LPQ, LPR, LPRM, LPRSET, TELNET, and TESTSITE

commands

If you are using any of these applications or commands, you need to set up VMCF
and TNF.

You can configure VMCF and TNF in two different ways: as restartable subsystems
or as non-restartable subsystems.

If you configure VMCF and TNF as restartable subsystems and you want the
VMCF node name to be used as a default host name during TCP/IP initialization
(in cases where no other host name can be located), VMCF must be started before
TCP/IP.

Tip: Host name is the value normally specified on the TCPIP.DATA HOSTNAME
statement.

Guideline: The VMCF node name is used as a system-name qualifier when
processing the TCPIP.DATA file and it is used by the SMTP server as the NJE node
name. For this reason, you should use the MVS system name for the VMCF node
name specification and specify the NJE node name explicitly by using the
NJENODENAME statement in the SMTP configuration data set.

Restartable subsystems
Configuring VMCF and TNF as restartable subsystems has the following
advantages:
v Error detection is provided when the subsystems do not seem to be initializing

properly.
v You can change the system name on the restart.
v Commands are available to remove users from internal tables, display current

users and to terminate the subsystem.

In summary, a restartable VMCF and TNF configuration provides better
availability and is therefore recommended.

If you choose to use restartable VMCF and TNF, follow these steps:
1. Update your IEFSSNxx member in SYS1.PARMLIB with the TNF and VMCF

subsystem statements required by TCP/IP. The specification can be in either the
IBM recommended keyword parameter form or the positional parameter form
of IEFSSNxx. For example:
* The keyword parameter form is:

SUBSYS SUBNAME(TNF)
SUBSYS SUBNAME(VMCF)

* The positional parameter form is:
TNF
VMCF

2. Add procedure EZAZSSI to your system PROCLIB. A sample of this procedure
is located in the SEZAINST library.

104 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|

|

|
|

|
|

|

|
|
|
|

|

|
|
|
|

//EZAZSSI PROC P=&SYSNAME.
//STARTVT EXEC PGM=EZAZSSI,PARM=&P,TIME=1440

3. Start VMCF and TNF using the procedure EZAZSSI before starting TCP/IP. If
your node name is the same as the MVS system symbolic &SYSNAME, then
you can start VMCF and TNF with the following command:
S EZAZSSI

If your node name is different than the MVS system symbolic &SYSNAME,
start VMCF and TNF with the following command:
S EZAZSSI,P=nodename

Replace nodename with the system name of your MVS system. If you use SMTP,
verify that the SMTP NJE node name is specified by using the
NJENODENAME statement in the SMTP configuration data set.

Non-restartable subsystems
If you will not be using restartable VMCF and TNF, you should update your
IEFSSNxx member in SYS1.PARMLIB with the following subsystem statements
required by TCP/IP. The specification can be in either the IBM suggested keyword
parameter form or the positional parameter form of IEFSSNxx.

Restriction: If you are using the keyword parameter form and your IEFSSNxx
member contains the BEGINPARALLEL statement, the TNF and VMCF statements
must precede the BEGINPARALLEL statement, so that TNF and VMCF are
initialized serially instead of in parallel. VMCF requires that TNF is initialized first.

The keyword parameter form is:
SUBSYS SUBNAME(TNF) INITRTN(MVPTSSI)
SUBSYS SUBNAME(VMCF) INITRTN(MVPXSSI) INITPARM(nodename)

The positional parameter form is:
TNF,MVPTSSI
VMCF,MVPXSSI,nodename

Replace nodename on the VMCF line with the system name of your MVS system. If
you use SMTP, verify that the SMTP NJE node name is specified by using the
NJENODENAME statement in the SMTP configuration data set.

VMCF commands
If you will be using restartable VMCF, the following VMCF commands let you
display the names of the current users of VMCF and TNF, and if necessary, remove
names from the name lists.

Note: Removing names from the name lists and stopping either subsystem can
have undesired results, if done hastily. Use the REMOVE and stop (P)
commands carefully and only as a last resort.

If you remove a user, the application is not canceled, nor is the connection
severed. In other words, the removed application may remain active in the
system, and may subsequently abend 0D6/0D4/0C4, or cause TCP/IP to
hang. A user that is removed from VMCF may still be a user of TNF and
even TCP/IP, and vice versa.

To terminate users and stop VMCF or TNF properly, follow these steps:
1. Display the current users of the subsystems, using one of the following:

F VMCF,DISPLAY,NAME=*

F TNF,DISPLAY,NAME=*

Chapter 2. IP configuration overview 105

|

|

|

|

|

|
|
|
|

|

|

|

|

2. Terminate those users. If termination fails, use the REMOVE command as a last
resort to force them from the name list.

3. Stop the subsystem, using one of the following commands:
P VMCF

P TNF

If the P command fails, use one of the following commands:
FORCE ARM VMCF

FORCE ARM TNF

Following are descriptions of the commands:

F TNF,DISPLAY,NAME=[name│*]
Displays the named user [or all (*) users] of TNF, sorted by ASID.

F TNF,REMOVE,NAME=[name│*]
Removes either the named user [or all (*) users] from the TNF internal
tables.

P TNF Requests TNF to terminate.

F VMCF,DISPLAY,NAME=[name│*]
Displays the named user [or all (*) users] of VMCF, sorted by name.

F VMCF,REMOVE,NAME=[name│*]
Removes either the named user [or all (*) users] from the VMCF internal
tables.

P VMCF
Requests VMCF to terminate

Following are sample commands:
F TNF,DISPLAY,NAME=TCPV3
F VMCF,DISPLAY,NAME=*
F TNF,REMOVE,NAME=FTPSERV
F VMCF,REMOVE,NAME=*
P TNF

Common VMCF problems
Following are some common VMCF problems:
v VMCF or TNF fail to initialize with an 0C4 abend.

This is probably an installation problem; check the program properties table
(PPT) entries for errors. Some levels of MVS do not flag PPT syntax errors
properly.

v Abends 0D5 and 0D6 after REMOVEing a user.
This is probably because the application is still running and using VMCF. It is
not recommended that users be removed from VMCF or TNF without first
terminating the affected user.

v VMCF or TNF do not respond to commands.
This is probably because one or both of the non-restartable versions of VMCF or
TNF are still active. To get them to respond to commands, stop all VMCF/TNF
users, FORCE ARM VMCF and TNF, then use EZAZSSI to restart.

v VMCF or TNF cannot be stopped.
This is probably because users still exist in the VMCF and TNF lists. Use the F
VMCF,DISPLAY,NAME=* and F TNF,DISPLAY,NAME=* commands to identify
those users who are still active. Then either cancel those users or remove them
from the lists using the F VMCF,REMOVE and F TNF,REMOVE commands.

106 z/OS V1R12.0 Comm Svr: IP Configuration Guide

v Address Space Identifiers (ASIDs) become nonreusable when VMCF and TNF
address spaces are stopped or restarted.
Because VMCF and TNF address spaces provide PC-entered services that must
be accessible to all address spaces, they each obtain a system LX. This causes the
ASIDs associated with these address spaces to be nonreusable when these
address spaces are terminated. If VMCF and TNF are terminated enough times
all available ASIDs could be exhausted, preventing the creation of new address
spaces on the system. In this case, an IPL will be required. For more information
on tuning parameters for the maximum number of ASIDs in a system, see the
MAXUSER parameter in z/OS MVS Initialization and Tuning Reference.

IUCV/VMCF considerations
The IUCV/VMCF inter-address space communication API enables applications
running in the same MVS image to communicate with each other without
requiring the services of the TCP/IP protocol stack. The VMCF/TNF subsystems
provide these services, which are still available in z/OS Communications Server.
Several components of TCP/IP in z/OS Communications Server continue to make
some use of these services for the purpose of inter-address space communications.
These include:
v The AF_IUCV domain sockets for the TCP/IP C socket interface. The AF_IUCV

domain enables applications executing in the same z/OS image and using the
TCP/IP C socket interface to communicate with each other using a socket API,
but without requiring the services of the TCP/IP protocol stack, as no network
flows result in these communications. This is quite different from the more
common AF_INET domain that enables socket communication over a TCP/IP
network. AF_IUCV sockets continue to be supported in z/OS Communications
Server.
An example of a TCP/IP-provided application that exploits AF_IUCV sockets is
the SNMP Query Engine component (SQESERVE). The z/OS UNIX socket
library provides a similar functionality to the AF_IUCV domain sockets with its
AF_UNIX domain. Users creating new applications should consider using
AF_UNIX domain sockets.

v The Pascal socket interface also makes use of the IUCV/VMCF services for a
limited set of inter-address space communication flows. As a result, any
applications (provided by IBM or others) that use the Pascal socket API also still
have a requirement for the VMCF/TNF subsystems. TCP/IP provides several
applications and commands that use these interfaces, such as the SMTP and LPD
servers, and the TSO TELNET, HOMETEST, TESTSITE, and LPR commands.
IUCV/VMCF services require the usage of an address space name of SYSTEM.
This means a TSO user cannot have the user ID name of SYSTEM.

Therefore, in z/OS Communications Server you must continue to configure and
start the VMCF and TNF subsystems as you did in TCP/IP V3R2. However,
because the VMCF/TNF subsystems are no longer used to communicate directly
with the TCP/IP protocol stack in z/OS Communications Server, the amount of
CPU they will consume will be significantly lower than in the TCP/IP V3R2
environment.

Step 4: Update the VTAM application definitions
You must update the VTAM definitions for the TN3270E Telnet server and any of
the following applications that you configure on your system. You can find
example VTAM definitions for each of these applications under their respective
topics.
v SNALINK
v SNALINK LU6.2

Chapter 2. IP configuration overview 107

v TN3270E Telnet
v X.25 NPSI Server

SEZAINST(VTAMLST) contains a sample of the VTAM definitions for TN3270E
Telnet server applications. You should copy this member, update it, and add it to
the ATCCONxx member of VTAMLST. This ensures that the TN3270E Telnet server
applications are activated when VTAM is started.

Because the TCP/IP LU code cannot handle multiple concurrent sessions, you
must code SESSLIM=YES for each TN3270E Telnet server LU defined to VTAM.
Otherwise, if SESSLIM=NO, menu or session manager applications that use return
session processing might cause session termination.

Step 5: Verify that the required address spaces are active
TCP/IP uses services from other address spaces in its processing. While TCP/IP
waits for availability of those services, it is recommended that you verify that the
OMVS, resolver, and VTAM address spaces have completed initialization before
starting TCP/IP. If using automation to start TCP/IP, have it look for the BPXI004I,
EZZ9291I, and IST020I messages, respectively, before issuing the START command.

For information on how the resolver can be started, see “Starting the resolver” on
page 732. You can use the resolver's MODIFY DISPLAY command to check that the
resolver is active and what resolver setup statements are being used. For the
syntax and usage of the command, see z/OS Communications Server: IP System
Administrator's Commands.

Step 6: Start the TCP/IP address space
Enter the MVS START command from the operator’s console to start TCP/IP,
specifying the member name of your cataloged procedure. This will start the
TCP/IP address space and any of the servers you have defined in the AUTOLOG
statement in PROFILE.TCPIP. For example, if the procedure to start the TCP/IP
address space was called TCP1 in your PROCLIB, you would enter:
START TCP1

For information on updating the TCPIP cataloged procedure or configuration
statements used to configure the TCPIP address space, see z/OS Communications
Server: IP Configuration Reference.

Step 7: Set up cataloged procedures and configuration data
sets

At this point in the configuration process, you can choose to either set up
procedures or you can do each one individually when you set up the appropriate
application, function, or server.

See the appropriate topics for more information about setting up a particular
application, function, or server.

108 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Chapter 3. Security

The z/OS Communications Server, along with other elements of z/OS, provide
numerous enterprise-strength security services to protect your mission-critical data.
This topic provides an overview of these technologies and how they can be used
for a safe and secure z/OS TCP/IP deployment.

Tip: Many of the tasks, examples, and references in this information assume that
you are using the z/OS Security Server (RACF). References to RACF apply to any
other SAF-compliant security products that contain the required support. If you are
using another security product, read the documentation for that product for
instructions on task performance.

The Communications Server protects data and other resources on the system.
Communications Server applications use RACF services to ensure that users
requesting application access are identified and authenticated, and to protect data
and other system resources from unauthorized access. The Communications Server
safeguards the availability of the system by protecting against denial of service
attacks from the network.

The Communications Server protects data in the network by supporting a variety
of cryptographic-based network security protocols such as IPSec, SSL, and SNA
Session Level Encryption. These security protocols ensure that data received is
originated by the claimed sender (data origin authentication), that contents were
unchanged in transit (message integrity), and that sensitive data is concealed using
encryption (data privacy).

The Communications Server provides security event reporting to record potential
security violations. These services may help you identify potential sources of
subsequent attacks, respond more quickly to network attacks, and manage system
resources during periods of high network traffic for key applications.

Internet

Intranet
Host

Enterprise Network
or Intranet

Enterprise Network
or Intranet

F
I
R
E
W
A
L
L

F
I
R
E
W
A
L
L

z/OS

z/OS CS
IDS

Network
IDS

Remote
Access

Business
partner

Secure protocols
(IPSec, SSL, SNA SLE)

with Strong 3DES Encryption

Secure Key Distribution
Mission-critical data

RACF for
– User I&A
– Access Ctl

Figure 17. Elements of a secure TCP/IP deployment

© Copyright IBM Corp. 2000, 2011 109

Note: Some of the security features described in this information have not yet been
implemented for IPv6. To determine which functions are supported for IPv6,
see the IPv6 support tables in z/OS Communications Server: IPv6 Network and
Application Design Guide.

Application security
The Communications Server protects data and other system resources accessed by
applications included in the Communications Server element. This protection
requires verification of the identity of the end user requesting access. This process
is called identification and authentication. In addition, access to resources must be
limited to those users with permission. This process is called access control.
Communications Server applications use RACF for identification and
authentication, and access control decisions. Authenticated users are granted access
to RACF resources only for which they have permission

Some applications allow anonymous access. Applications that allow anonymous
access include anonymous FTP, Remote Execution, and Trivial File Transfer
Program (TFTP). The Communications Server ensures that all anonymous access
can be controlled by the installation. If anonymous access is allowed, the resources
accessed can be limited in several ways:
v The application can be configured to limit resources for which access will be

attempted.
v The application can be configured to use a RACF user ID to represent the

anonymous user. In this case, access is allowed for those resources specifically
permitted for the anonymous RACF user ID and for those resources that are
universally accessible.

Most Communications Server applications must be configured specifically to allow
anonymous access. One exception is TFTP. TFTP can be configured to control those
directories that contain files that can be transferred.

Table 8 depicts a representative set of Communications Server applications,
whether end user identification is required, and the security credentials under
which resource access is made. For more information on specific application
considerations, see the topic about each application.

Table 8. User identification, authentication, and access control for z/OS Communications
Server applications

Server End-user identification Resource access

FTP Optional 1 End-user ID or configured
anonymous user ID 2

LPD Optional 1 Server ID or end-user ID

MVS REXECD Required End-user ID

MVS RSHD Required (password
optional) 1

Surrogate user ID or
end-user ID

NSSD [network security
services (NSS) server]

Required NSS client user ID

Policy Agent server Required Policy client user ID

TFTP No Server user ID 2

UNIX REXECD Required End-user ID

110 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Table 8. User identification, authentication, and access control for z/OS Communications
Server applications (continued)

Server End-user identification Resource access

UNIX RSHD Required (password
optional) 1

End-user ID or Server user
ID (exit routine to verify
request)

UNIX shell (Telnet/rlogin) Required End-user ID

1. All items listed as optional are installation controlled and can all be configured to
require full end-user identification.

2. Accessible files can be configured on a server basis to limit access.

TCP/IP resource protection
The Communications Server uses the System Authorization Facility (SAF) to
protect TCP/IP resources from unauthorized access. These resources are
represented by resource profiles defined in the SERVAUTH class. When describing
resource profile names, the following conventions are used:
v sysname is the MVS system name. Substitute your system name.
v tcpname is the TCP/IP job name. Substitute your job name.
v ftpdaemonname is the job name of the FTP daemon. Substitute your FTPD job

name. If your FTPD job name contains fewer than 8 characters, substitute the job
name of the process that is started by FTPD, which is usually the original job
name with the number 1 appended.

v rpcbindname is the job name of rpcbind. Substitute your rpcbind job name. If
your rpcbind job name contains fewer than 8 characters, substitute the job name
of the process that is started by rpcbind, which is usually the original job name
with the number 1 appended.

The use of SERVAUTH is optional. The installation can choose to use any
combination of the protections provided by SERVAUTH.

In addition to the use of SERVAUTH protection, further resource protection is
provided through such functions as Intrusion Detection Services (IDS), syslogd
isolation, and IP filtering, or through controlling access to the VARY TCPIP
command.

Local user access control to TCP/IP resources using SAF
You can use System Authorization Facility (SAF) to control which z/OS users can
access specific TCP/IP resources, which protects against unauthorized user access
to these resources.

You define SAF resource profiles in the SERVAUTH class to control access to the
TCP/IP resources. After you define a SAF resource profile, a local user can access
the associated TCP/IP resource if their user ID is permitted to the resource profile
and given READ access to the resource.

Table 9 on page 112 summarizes the SERVAUTH resource names that are used by
TCP/IP.

Chapter 3. Security 111

|
|
|

|
|
|
|

|
|

Table 9. SERVAUTH resource names used by TCP/IP

Function Description SERVAUTH resource name

TN3270E Telnet
server access
control

Controls ability to access TN3270E
Telnet server based on SAF user ID
associated with TLS-authenticated
X.509 client certificate

EZB.TN3270.sysname.tcpname.PORTxxxxx

FTP server
access control

Controls ability to access FTP server
based on SAF user ID used to log
in

EZB.FTP.sysname.ftpdaemonname.PORTxxxxx

DCAS server
access control

Controls ability to access DCAS
server based on SAF user ID
associated with TLS-authenticated
X.509 client certificate

EZA.DCAS.cvtsysname

OSM access
control

Controls ability to access the
intranode management network
using OSM interfaces

EZB.OSM.sysname.tcpname

TCP stack
access control

Controls user ability to open a
socket and get host name or host ID

EZB.STACKACCESS.sysname.tcpname

TCP local port
access control

Controls user ability to bind to a
non-ephemeral TCP or UDP port

EZB.PORTACCESS.sysname.tcpname.port_safname

TCP netaccess
access control

Controls local user inbound and
outbound access to network
resources, and local user access to
local IP address when explicitly
binding to local interface (or using
job-specific or destination-specific
source IP addresses)

EZB.NETACCESS.sysname.tcpname.security_zonename

Netstat
command
access control

Provides ability to restrict Netstat
usage

EZB.NETSTAT.sysname.tcpname.netstat_option

Policy Agent
command
control

Provides ability to restrict pasearch
command, IKE daemon, policy
clients, and nslapm2 usage by
policy type

EZB.PAGENT.sysname.image.ptype

FTP SITE
command
control

Provides ability to restrict usage of
SITE DUMP and DEBUG
commands (commands generate
large amount of output)

EZB.FTP.sysname.ftpdname.SITE.DUMP

EZB.FTP.sysname.ftpdname.SITE.DEBUG

SNMP agent
control

Provides ability to control usage of
SNMP subagents that connect to the
TCP/IP SNMP agent

EZB.SNMPAGENT.sysname.tcpname

MODDVIPA
utility program
control

Provides ability to restrict usage of
MODDVIPA utility program
(creates new DVIPA on system)

EZB.MODDVIPA.sysname.tcpname

VIPARANGE
access control

Controls user ability to bind to a
DVIPA within a VIPARANGE

EZB.BINDDVIPARANGE.sysname.tcpname

Fast Response
Cache
Accelerator
(FRCA) Access
Control

Provides ability of user to create
FRCA cache (FRCA used by Web
servers for caching static Web pages
in the stack)

EZB.FRCAACCESS.sysname.tcpname

112 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|
|
|
|
|

|

Table 9. SERVAUTH resource names used by TCP/IP (continued)

Function Description SERVAUTH resource name

TCP connection
information
service access
control

Provides ability to restrict access to
the TCP connection information
using TCP connection information
service; intended for network
management applications

EZB.NETMGMT.sysname.tcpname.SYSTCPCN

Real-time SMF
information
service access
control

Provides ability to restrict access to
select real-time SMF records
accessible using the SMF
information service; intended for
network management applications

EZB.NETMGMT.sysname.tcpname.SYSTCPSM

TCP/IP packet
trace service
access control

Provides ability to restrict access to
select real-time packet trace records
accessible using the TCP/IP packet
trace service; intended for network
management applications

EZB.NETMGMT.sysname.tcpname.SYSTCPDA

FTP z/OS
UNIX file
system access
control

Provides ability to generally restrict
FTP user access to the z/OS UNIX
file system

EZB.FTP.sysname.ftpdaemonname.ACCESS.HFS

Broadcast
access control

Provides ability to control whether
an application is permitted to set
the SO_BROADCAST socket option
needed to send broadcast
datagrams

EZB.SOCKOPT.sysname.tcpname.SO_BROADCAST

IPv6 Advanced
Socket API
access control

Provides ability to control whether
an application is permitted to set
IPv6 advanced socket API options:

IPv6_NEXTHOP

IPv6_TCLASS

IPv6_RTHDR

IPV6_HOPOPTS

IPV6_DSPOPTS

IPV6_RTHDRDSTOPT

IPV6_PKTINFO

IPV6_HOPLIMIT

EZB.SOCKOPT.sysname.tcpname.IPV6_NEXTHOP

EZB.SOCKOPT.sysname.tcpname.IPV6_TCLASS

EZB.SOCKOPT.sysname.tcpname.IPV6_RTHDR

EZB.SOCKOPT.sysname.tcpname.IPV6_HOPOPTS

EZB.SOCKOPT.sysname.tcpname.IPV6_DSTOPTS

EZB.SOCKOPT.sysname.tcpname.IPV6_RTHDRDSTOPTS

EZB.SOCKOPT.sysname.tcpname.IPV6_PKTINFO

EZB.SOCKOPT.sysname.tcpname.IPV6_HOPLIMIT

TCP/IP stack
initialization
access control

Controls ability of applications to
open a socket before AT-TLS policy
is loaded into the TCP/IP stack

EZB.INITSTACK.sysname.tcpname

CIM provider
access control

Provides ability to restrict access to
CIM data

EZB.CIMPROV.sysname.tcpname

ipsec command
access control

Provides ability to control ipsec
command usage

EZB.IPSECCMD.sysname.tcpname.command_type

EZB.IPSECCMD.sysname.DMD_GLOBAL.command_type

Chapter 3. Security 113

|

Table 9. SERVAUTH resource names used by TCP/IP (continued)

Function Description SERVAUTH resource name

Network
security
services (NSS)
server access
control

Controls whether an NSS IPSec
client can register with the NSS
server for the NSS IPSec certificate
service

EZB.NSS.sysname.clientname.IPSEC.CERT

NSS server
access control

Controls whether an NSS IPSec
client can register with the NSS
server for the NSS IPSec remote
management service

EZB.NSS.sysname.clientname.IPSEC.NETMGMT

NSS server
access control

Controls whether an NSS
XMLAppliance client can register
with the NSS server for the
XMLAppliance SAFAccess service.

EZB.NSS.sysname.clientname.XMLAPPLIANCE.SAFACCESS

NSS server
access control

Controls whether an NSS
XMLAppliance client can register
with the NSS server for the
XMLAppliance certificate service.

EZB.NSS.sysname.clientname.XMLAPPLIANCE.CERT

NSS server
access control

Controls whether an NSS
XMLAppliance client can register
with the NSS server for the
XMLAppliance private key service.

EZB.NSS.sysname.clientname.XMLAPPLIANCE.PRIVKEY

NSS server
certificate
access control

Controls whether an NSS client can
access a CERTAUTH certificate on
the key ring of the NSS server

EZB.NSSCERT.sysname.mappedlabelname.CERTAUTH

NSS server
certificate
access control

Controls whether an NSS client can
access a PERSONAL or SITE
certificate on the key ring of the
NSS server

EZB.NSSCERT.sysname.mappedlabelname.HOST

NSS server
private key
access control

Controls whether an NSS
XMLAppliance client can access the
private key for a certificate on the
key ring of the NSS server

EZB.NSSCERT.sysname.mappedlabelname.PRIVKEY

Local IPSec
network
management
interface (NMI)
access control
for display
requests

Controls whether a user can issue
NMI monitoring requests to the
local IKE daemon to retrieve IP
filtering and IPSec monitoring data
pertaining to a local TCP/IP stack

EZB.NETMGMT.sysname.tcpname.IPSEC.DISPLAY

Local IPSec
NMI access
control for
control requests

Controls whether a user can issue
NMI control requests to the local
IKE daemon to manage IP filtering
and IPSec function (for example,
activate and deactivate requests)
pertaining to a local TCP/IP stack

EZB.NETMGMT.sysname.tcpname.IPSEC.CONTROL

114 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

Table 9. SERVAUTH resource names used by TCP/IP (continued)

Function Description SERVAUTH resource name

Remote IPSec
NMI and ipsec
command
access control
for display
requests

Controls whether a user can do the
following:

v Issue NMI monitoring requests to
the NSS server pertaining to an
NSS client (that is, get requests)

v Issue the ipsec command with
the -z option to display options
for an NSS IPSec client

EZB.NETMGMT.sysname.clientname.IPSEC.DISPLAY

Remote IPSec
NMI and ipsec
command
access control
for control
requests

Controls whether a user can do the
following:

v Issue NMI management requests
to the NSS server pertaining to
an NSS client (for example,
activate and deactivate requests)

v Issue the ipsec command with
the -z option to perform a
management action to an NSS
IPSec client (for example, to
activate and deactivate options)

EZB.NETMGMT.sysname.clientname.IPSEC.CONTROL

NSS NMI and
command
access control

Controls whether a user can do the
following:

v Issue NMI requests to display
connections to the NSS server

v Issue the ipsec command with
the -x option to display NSS
IPSec client connections to the
NSS server

v Issue the nssctl command to
display NSS client connections to
the NSS server.

EZB.NETMGMT.sysname.sysname.NSS.DISPLAY

IPSec NMI and
ipsec command
access control

Controls whether a user can do the
following:

v Issue NMI requests to display
IKE daemon NSS client
information

v Issue the ipsec command with
the -w option to display IKE
daemon NSS IPSec client
information

EZB.NETMGMT.sysname.sysname.IKED.DISPLAY

Get partner
information
ioctl access
control

Controls whether an application can
use the SIOCGPARTNERINFO ioctl
to obtain partner security
credentials within a sysplex or
subplex over a trusted TCP
connection

EZB.IOCTL.sysname.tcpprocname.PARTNERINFO

Stack access control
You can create a SAF resource profile to control access to a TCP/IP stack. There are
no new TCP definitions required. The resource profile controls whether users or
groups of users have access to the TCP/IP stack by controlling their ability to open
an AF_INET or AF_INET6 socket and to obtain the host ID or host name. Create
the EZB.STACKACCESS.sysname.tcpname resource profile in the SERVAUTH class

Chapter 3. Security 115

|

|
|
|
|

|
|
|
|
|
|

|

|
|
|
|
|

for the TCP/IP stack to be protected. After you define this resource profile, permit
users to the profile and grant them READ access to the resource. If a user does not
have READ access to the resource for a stack, the user cannot access the stack. If
you do not define a resource profile for a stack, all uses have access to that stack.

Guideline: Some security products do not distinguish between a resource profile
that is not defined and a user that is not permitted to that resource profile. If your
product does not make this distinction, you must define the stack access resource
profile and permit users to it whenever the SERVAUTH class is active.

Figure 18 provides an overview of stack access control. sysname refers to the MVS
system variable sysname. tcpname refers to the TCP/IP job name. User Tom has
permission to access both Stack1 and Stack2, Joe does not have permission to
access any stack, and Bob has permission to access Stack2 but not Stack1.

Port access control
You can use port access control to protect against unauthorized use of ports. You
can control an application's ability to explicitly bind to, or listen on, specific TCP
and UDP ports or port ranges by either reserving particular ports or by controlling
access to unreserved ports.

Controlling access to particular ports
You can control access to particular ports by port number, by reserving the port
using the PORT or PORTRANGE profile statements. Use the PORT and
PORTRANGE statements to reserve well-known or configured ports for the
applications that need to bind to them. You can use the optional SAF parameter to
provide additional access control.

You can reserve an individual port or range of ports with a job name, a wildcard
job name (*), a partial wildcard job name (0-7 characters, followed by *), or the
special job name of RESERVED. If you specify a job name, the port is reserved for
an application that has the specified job name. If you specify a partial wildcard job
name, the port is reserved for any application that matches the partial wildcard job
name. If you specify a wildcard job name, the port is reserved for any application
with any job name. The RESERVED job name shuts down the use of a port or
range of ports for any application.

IP
Network

IP
Network

Tom

z/OS CS
TCP/IP Stack1

z/OS CS
TCP/IP Stack2

Joe Bob
RACF

SERVAUTH SAF profiles protect a TCP/IP stack:

EZB.STACKACCESS.sysname.stackname

Define the stack resources with UACC(NONE) and permit
groups or individual users to allow them to use the
TCP/IP stack (open a socket).

Figure 18. Stack access control overview

116 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|

|

If you specify the SAF keyword on the PORT or PORTRANGE statement, it can
provide additional access control by verifying that the user ID associated with an
application at the time of a bind to the port is authorized to access the port. The
SAF keyword value specifies a portion of the resource name that represents the
port. Define the EZB.PORTACCESS.sysname.tcpname.port_safname resource profile in
the SERVAUTH class to control access to the port, where port_safname is the same
value that you specify on the SAF keyword of the PORT or PORTRANGE
statement. The user ID that is associated with the application at the time of the
bind request must have READ access to this resource for the application to be able
to bind to the port.

Figure 19 provides an overview of port access control. In this example, z/OS user
WEBSERV (Web server) is permitted to bind to port 80. User Bob is not permitted
to bind to port 80.

Controlling access to unreserved ports
You can control which applications are allowed to access ports that have not been
reserved by a PORT or PORTRANGE statement. You can use the PORT statement
with the UNRSV keyword, or the RESTRICTLOWPORTS parameter on the
UDPCONFIG or TCPCONFIG statements.

Using the PORT statement to control access to all unreserved ports: In addition
to reserving particular ports, you can also use the PORT statement to control
application access to user-specified ports that have not been reserved. Access
control is applied when an application issues an explicit bind or a TCP listen.

You can use job names or SAF resources, or a combination of both, to control
access to user-specified unreserved ports, or you can unconditionally deny access

IP
Network

FTP
server

Web
server

z/OS CS
TCP/IP Stack

Bob RACF

On the port reservation statement, the SAF keyword ties
a SAF resource to the reserved port number:

PORT 80 TCP * SAF WEBSERV

A SERVAUTH resource is created:

Universal access is set to NONE, and the started task user
ID of the WEB server task is permitted READ access to the
resource. Only this user ID can bind to the specified port
number

EZB.PORTACCESS.sysname.stackname.WEBSERV

.

IP Router

Router

Port 21 Port 80

Figure 19. Port access control overview

Chapter 3. Security 117

|
|
|
|
|
|
|
|
|
|

to user-specified unreserved ports. You do this by configuring one or more PORT
statements in which the port number is replaced by the keyword UNRSV.

Result: PORT UNRSV statements control access to nonzero, unreserved ports
specified on explicit binds. Access to unreserved ports that are assigned by the
stack is not affected.

If you want to use PORT UNRSV access control, consider the following:
v Using the parameters on the PORT UNRSV statement

To use only job names to control unreserved port access, configure one or more
PORT UNRSV statements using the JOBNAME keyword with specific job names
or partial wildcard job names (1 - 7 characters, followed by *). If you specify the
wildcard job name (*), the PORT UNRSV statement applies to all job names. If
an application's job name matches more than one PORT UNRSV statement, the
statement with the closest matching specified job name is used to control access
to unreserved ports.
To use a SAF resource instead of job names to control unreserved port access,
configure a PORT UNRSV statement specifying the wildcard job name (*) and
the SAF keyword and resource name. Because you can have only one PORT
UNRSV statement with the wildcard job name per protocol, this method allows
the use of only one SAF resource per protocol.
To use a combination of job names and a SAF resource to control access, specify
the SAF keyword and resource name on one or more PORT UNRSV statements
with different job names. You can specify a different SAF resource on each of
these PORT UNRSV statements.
If you do not configure any PORT UNRSV statements for a protocol, all
applications are allowed to use unreserved ports. This is the default behavior. To
change this behavior and unconditionally deny access to user-specified
unreserved ports, configure a PORT UNRSV statement, specifying the wildcard
job name (*) and the keyword DENY.
For the UDP protocol, access is always controlled when an explicit bind is issued
(WHENBIND). For UDP applications, there is no distinction between client or
server roles because there is no explicit socket API that indicates that the
application is a UDP server. All UDP applications that bind their socket to a
specific local unreserved port do need to pass any configured UDP port access
control checks.
For the TCP protocol, you can control access to user-specified unreserved ports
when the explicit bind is issued (WHENBIND) or when a listen is issued on that
port (WHENLISTEN). WHENLISTEN access control is targeted to TCP
applications acting as servers (that is, applications able to accept incoming client
TCP connections) and is the default for TCP. If the default is used or
WHENLISTEN is specified, and no listen is issued for the unreserved port, no
access control check is made. WHENBIND access control can affect TCP client
applications that bind to a specific local port for outbound TCP connections.
Every PORT UNRSV statement for the TCP protocol must specify the same
access control. You cannot specify WHENLISTEN on some statements and
WHENBIND on other statements. If you do, the conflicting configuration
statement will fail.

v Implementing PORT UNRSV access control in stages
Using PORT UNRSV access control can have unexpected consequences. Consider
implementing this function in the following stages:
1. Determine the necessary port reservations statements for your applications.

118 z/OS V1R12.0 Comm Svr: IP Configuration Guide

For example, you might begin with 'PORT UNRSV TCP * SAF xyz
WHENBIND', where the SERVAUTH profile has UACC(READ) and auditing
of successes is enabled. This would give you an indication of how many
applications currently bind to unreserved ports. Verify the applications
reported, and if deemed valid, reserve their ports using the PORT or
PORTRANGE statements.

2. Enable access control enforcement by specifying DENY or a SAF resource
with UACC(NONE) and monitor failures.
As failures are identified, configure appropriate PORT reservation statements
to allow authorized application access to those ports.

v Enforcing PORT UNRSV access control
If you configure one or more PORT UNRSV statements for a protocol, access is
unconditionally denied to any application that explicitly binds to an unreserved
port and does not match the protocol and job name on any of the configured
PORT UNRSV statements. Applications that explicitly bind to an unreserved
port and that do match the protocol and job name on a PORT UNRSV statement
are allowed to access the unreserved port, unless the access is restricted by the
SAF or DENY keywords. If the SAF keyword is specified, the user ID associated
with the application that attempts to access the port must be permitted to the
specified SAF resource. If the DENY keyword is specified, access is
unconditionally denied.
Rules: If you configure PORT UNRSV statements for UDP or for TCP with the
WHENBIND option, the following rules apply:
– Every application using that protocol that explicitly binds to a user-specified

local unreserved port is subject to an authorization check. If the application
does not have authority to access an unreserved port, the bind will fail.

– For TCP, every client connection that first performs an explicit bind and
explicitly specifies a local unreserved port is subject to an authorization check
for access to unreserved ports.

– Because client programs might run under many different user IDs, all address
spaces in which the client program can run must be authorized (by job name,
SAF resource, or both) to access an unreserved port.
Alternatively, you can use the WHEN(PROGRAM) type of RDEFINE
statements to authorize specific programs to a particular port, regardless of
the address space in which they run. However, in this case these programs
must be program-controlled resources.

If you do not configure a PORT UNRSV statement for a protocol, then access to
unreserved ports using that protocol is not controlled. If you do configure PORT
UNRSV statements for a protocol, access is determined by the PORT UNRSV
statement with the job name that most closely matches the application's job
name; if the applications's job name does not match any of the PORT UNRSV
statements, then access to unreserved ports is denied for that protocol.

Using the RESTRICTLOWPORTS parameter to control access to unreserved
ports below port 1024: When the RESTRICTLOWPORTS parameter is specified
on the UDPCONFIG or TCPCONFIG profile statements, an application cannot
obtain a port in the range 1 - 1023 that has not been reserved by a PORT or
PORTRANGE statement, unless the application is APF-authorized or has OMVS
superuser [UID(0)] authority. z/OS Communications Server client applications that
need to bind to a low port are provided as APF-authorized.

Tip: When you configure the RESTRICTLOWPORTS parameter on the
TCPCONFIG or UDPCONFIG profile statements, PORT UNRSV statements for the
corresponding protocol control access only to unreserved ports above port 1023.

Chapter 3. Security 119

Network access control
Network access control gives system administrators the ability to assign permission
for z/OS users to access certain networks and hosts. With this function, the ability
of users to send or receive data between z/OS and certain networks can be
controlled through z/OS. Network access control provides an additional layer of
security to any authentication and authorization security that is used in the
network or at the peer system by disallowing the unauthorized user to
communicate with the peer network resource.

Essential elements of this function are as follows:
v The IP network is considered the resource to be protected.
v Use of the IBM zEnterpriseTM System (zEnterprise) intranode management

network is protected by OSM access control and is exempt from network access
control. For more information, see “OSM access control” on page 122.

v IP addresses are classified into security zones, in which each zone has a certain
level of security sensitivity. A default security zone exists for interfaces that are
not explicitly associated with a specific security zone. Security zones consist of
one or more, perhaps discontiguous, IP address ranges that have the same
security sensitivity and are identified by a specific zone name.

v SAF is used to check whether users or groups of users have READ access to a
security zone.

v You define a SAF resource profile for each security zone and provide READ
access to these resources to the users or groups of users that you want to have
access to particular security zones. A security zone is represented by the
EZB.NETACCESS.sysname.tcpname.zonename resource name in the SERVAUTH
class.

v TCP/IP keeps a mapping of network resources by IP address to security zones.
This mapping is consulted on certain inbound and outbound operations to
determine the corresponding resource zone name for the most specific network
defined. Then the current user's access to that resource is queried using SAF, and
the operation is allowed or denied completion accordingly. This mapping is also
consulted when the security ioctl is issued to extract the port of entry zone name
of a socket's current peer.

v Network access control is used to control z/OS user access to a peer address in
an IP network through a sockets application. Resource access checks occur at
connection setup or acceptance time for TCP, peer identification time for UDP
and RAW, and on the first and potentially subsequent sends or receives (TCP,
UDP, or RAW) to a particular destination in a socket's lifetime.

v Network access control is used to control z/OS user access to local addresses
when a socket is bound to a local address. Resource access checks occur when
an application explicitly binds a socket to a local address, including the IPv4
address INADDR_ANY (0.0.0.0/32) or the IPv6 unspecified address,
in6addr_any (::/128). Job-specific or destination-specific source IP addresses
(designated by the SRCIP profile statement) are handled as if the application did
an explicit bind to the configured address.

v Network access control security checks are made at the transport layer (TCP,
UDP, and RAW). Other IP-specific packets generated by the stack are not
covered under this function (such as ICMP echo replies, for example).
Additionally, there is no user concept when dealing with packets that are being
forwarded through the stack, and hence no checks are made.

v Network access control for outbound and inbound can be individually enabled
or disabled.

120 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|

|

|
|
|
|
|

v TCP/IP caches security information following network access control checks.
Access is automatically rechecked on the next use of the cache whenever the
RACF commands SETROPTS RACLIST, SETROPTS RACLIST REFRESH, or
SETROPTS NORACLIST are issued for the SERVAUTH class. If you are using a
security product other than RACF, the NetAccess zone table in the TCPIP
PROFILE must be rebuilt to cause TCP/IP to recognize changes to the
SERVAUTH class profiles for existing sockets.

v The socket calls bind, connect, and those that send data will fail with errno
EACCES if the specified IP address is not permitted to be used by the
application user. Inbound UDP and RAW datagrams that are not permitted
under the current network access control policy are normally filtered out before
they get to socket calls that receive data. It is possible for a datagram to arrive
under a network access control policy that would allow it to be read, but then
be received after a policy change that does not allow it. If the application (or
common INET) has issued a select or poll on the socket, the receive call returns
an EACCES errno to avoid blocking the application. Inbound TCP connections
that are not permitted under the current network access control policy are also
normally reset and discarded before they get to the socket backlog. In those
cases where the only available new connections are not allowed and a select has
been issued, accept processing returns a new socket and the next attempt to
send or receive data returns an ECONNRESET error.

v NetAccess inbound filtering needs to predict whether a future receive or accept
will succeed. When there are multiple processes or threads operating on the
same socket, to achieve consistent results you must ensure that certain calls are
done under the same identity, or identities with equivalent network access
control policies. For UDP and RAW sockets, the select, receive, and send calls
must be done under equivalent policies. For TCP listening sockets, the select and
accept calls must be done under equivalent policies.

Figure 20 on page 122 provides an overview of network access control. z/OS user
Bob is permitted access to Security Zone A but not Security Zone B. An outbound
connect from Bob is permitted to Security Zone A, but not Security Zone B. Bob is
permitted to accept connections from Security Zone A but not Security Zone B.

Chapter 3. Security 121

OSM access control
The intranode management network is intended for only authorized applications,
such as those performing platform performance management functions. For more
information about these applications, see zEnterprise System Ensemble Planning and
Configuring Guide.

The intranode management network can be accessed only through OSM interfaces.
To send or receive data over OSM interfaces on this network, an application must
have READ authorization to the EZB.OSM.sysname.tcpname resource. If you start
one of these authorized applications on a z/OS image, authorize the application
user ID to this SAF resource. In addition, authorize to this resource any user IDs
that might issue diagnostic commands, such as Ping and Traceroute, over OSM
interfaces to verify connectivity. Traffic over OSM interfaces is exempt from
network access control.

For more information about the intranode management network, see Chapter 9,
“TCP/IP in an ensemble,” on page 505.

Socket option access control
Socket option access control gives system administrators the ability to assign
permission for z/OS users to set selected socket options using a SAF-compliant
security server. Access control is provided for the SOL_SOCKET level,
SO_BROADCAST option, and the IPv6 advanced socket API options.

FTP
server

Telnet
server

z/OS CS
TCP/IP Stack

BobJoe

RACF

TCP/IP Profile definitions:

NETACCESS INBOUND OUTBOUND
9.67.40.0 255.255.248.0 ZONEB
9.67.0.0 255.255.0.0 ZONEA
Default WORLD

ENDNETACCESS

SERVAUTH resources:

EZB.NETACCESS.sysname.tcpname.ZONEA
EZB.NETACCESS.sysname.tcpname.ZONEB
EZB.NETACCESS.sysname.tcpname.WORLD

IP Router

Firewall

Port 21 Port 23 Port 1021 Port 4000

Connect
from Bob

Connect
to Bob

Connect
to Bob

Connect
from Bob

Security
Zone B

Security
Zone A

IP addresses
9.67.0.0 -

9.67.255.255

IP addresses
9.67.40.0 -
9.67.47.255

Figure 20. Network access control example

122 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|
|
|
|

|
|
|
|
|
|
|
|

|
|

SO_BROADCAST socket option
IPv4 IP addresses are divided into a network portion, an optional subnetwork
portion, and a host portion. Normally, UDP and RAW datagrams are delivered to
the single peer system identified by the destination IP address. However, when the
destination address is a subnetwork or network base address (host portion is all
zeros), or a subnetwork or network broadcast address (host portion is all ones), the
datagram is delivered to every peer system in that subnetwork or network. Socket
semantics require that an application set the SO_BROADCAST option on before
attempting to send a datagram to a base or broadcast address. This protects the
application from accidentally sending a datagram to many systems. Network
access control does not check to see if there are other security zones defined within
the scope of a destination subnetwork or network address or whether the user is
permitted to send a datagram to all of these security zones.

Control over setting this socket option allows the system administrator to restrict
use of subnetwork or network addresses to those users or programs that require
them. This support is enforced at the PFS layer and applies to all z/OS
Communications Server socket APIs.

TCP/IP programs known to set the SO_BROADCAST socket option include:
v OMPROUTE
v sntpd, when invoked with the -b option

Additionally, any programs that use the clnt_broadcast() service in the SUN RPC
libraries, or the send_pkt(sock, pkt, addr, broadcast) service in the NCS RPC
library with the broadcast parameter set, require permission to the
SO_BROADCAST socket option. The following TCP/IP programs use RPC services
that require permission to broadcast:
v rpcinfo, when invoked with the -b option
v orpcinfo, when invoked with the -b option

The socket option to be protected is represented by the resource name
EZB.SOCKOPT.sysname.tcpname.SO_BROADCAST. When this profile is defined,
users of any program setting this option require READ permission. Access to the
option is also allowed if the security server indicates there is no profile covering
this resource. Conditional access lists, such as PERMIT WHEN(PROGRAM(...)), are
supported for profiles covering socket option access control resources. There are no
new TCP definitions required.

Guideline: Some security products do not distinguish between a resource profile
that is not defined and a user that is not permitted to that resource profile. If your
product does not make this distinction, you must define the socket option resource
profile and permit users to it whenever the SERVAUTH class is active.

Following is an example of the definitions:
RDEFINE SERVAUTH EZB.SOCKOPT.*.*.SO_BROADCAST UACC(NONE)
PERMIT EZB.SOCKOPT.*.*.SO_BROADCAST CLASS(SERVAUTH) ACCESS(READ) ID(OMPROUT)
PERMIT EZB.SOCKOPT.*.*.SO_BROADCAST CLASS(SERVAUTH) ACCESS(READ) ID(*)
WHEN(PROGRAM(ORPCINFO))

The program name listed in the conditional access list must be the name the
program is invoked by. Most TCP/IP applications are invoked by an alias name
rather than the module name. Table 10 on page 124 lists TCP/IP applications that
send broadcast datagrams:

Chapter 3. Security 123

|

Table 10. TCP/IP application load module and alias names

Load module Alias

EZAORRTE OMPROUTE

EZASNTPD SNTPD

EZARPCIN RPCINFO

EZARORNP ORPCINFO

Tip: In the UNIX System Services environment, both /bin/rpcinfo and
/bin/orpcinfo are externally linked to ORPCINFO. Either command executes the
EZARORNP program.

To use program names in conditional access lists, the program must be loaded into
a controlled environment from a program controlled data set. TCP/IP applications
are distributed in the SEZALOAD load library. To program control this data set,
you must add it to the ** profile in the PROGRAM class as follows:
RALTER PROGRAM ** ADDMEMBER(’TCPIP.SEZALOAD’//NOPADCHK)

For more information on program control, see z/OS Security Server RACF Security
Administrator's Guide.

IPv6 advanced socket API options
You can control access for the IPv6 advanced socket API options that influence
outbound packets.

For the IPV6_NEXTHOP, IPV6_TCLASS, IPV6_RTHDR, IPV6_HOPOPTS,
IPV6_DSTOPTS, IPV6_RTHDRDSTOPTS, and IPV6_PKTINFO socket options, to set
the socket option on setsockopt() or to use the corresponding ancillary data item
on sendmsg(), an application must meet one of the following criteria:
v Be APF authorized.
v Have superuser authority.
v The corresponding SERVAUTH resource name in Table 11 is defined, and the

application has at least READ access to the resource.

Table 11. Socket option resource names

Socket option/Ancillary
data item Resource name

IPV6_NEXTHOP EZB.SOCKOPT.sysname.tcpname.IPV6_NEXTHOP

IPV6_TCLASS EZB.SOCKOPT.sysname.tcpname.IPV6_TCLASS

IPV6_RTHDR EZB.SOCKOPT.sysname.tcpname.IPV6_RTHDR

IPV6_HOPOPTS EZB.SOCKOPT.sysname.tcpname.IPV6_HOPOPTS

IPV6_DSTOPTS EZB.SOCKOPT.sysname.tcpname.IPV6_DSTOPTS

IPV6_RTHDRDSTOPTS EZB.SOCKOPT.sysname.tcpname.IPV6_RTHDRDSTOPTS

IPV6_PKTINFO EZB.SOCKOPT.sysname.tcpname.IPV6_PKTINFO

IPV6_HOPLIMIT EZB.SOCKOPT.sysname.tcpname.IPV6_HOPLIMIT

For the IPV6_HOPLIMIT socket option, to set a hop limit greater than the default
using either the IPV6_UNICAST_HOPS or IPV6_MULTICAST_HOPS socket option
on setsockopt() or the IPV6_HOPLIMIT ancillary data item on sendmsg(), an
application must meet one of the following criteria:

124 z/OS V1R12.0 Comm Svr: IP Configuration Guide

v Be APF authorized.
v Have superuser authority.
v EZB.SOCKOPT.sysname.tcpname.IPV6_HOPLIMIT is defined, and the application

has at least READ access to this resource.

TCP/IP applications that set IPv6 advanced socket API options: Table 12 lists the
TCP/IP applications that set IPv6 advanced socket API options. In a multilevel
secure environment, APF and superuser authority are not sufficient; the security
product resource name for the socket options appearing in Table 12 must be
defined for every stack. Usage must be explicitly permitted by user ID, or
conditional access lists, such as PERMIT WHEN(PROGRAM(...)) must be defined
for the load module and alias names listed in the table. For more information
about applications in a multilevel secure environment, see “Required configuration
in a multilevel secure environment” on page 158.

Table 12. TCP/IP applications that set IPv6 advanced socket API options

Load module Alias Socket options set

EZACDOPN z/OS UNIX ping IPV6_PKTINFO, IPV6_DONTFRAG

EZACDTPN TSO PING IPV6_PKTINFO, IPV6_DONTFRAG

EZACDTRT z/OS UNIX traceroute IPV6_HOPLIMIT, IPV6_PKTINFO

EZACDTTR TSO TRACERTE IPV6_HOPLIMIT, IPV6_PKTINFO

EZADNSVR NAMED IPV6_PKTINFO

EZAORRTE OMPROUTE IPV6_HOPLIMIT, IPV6_PKTINFO

EZASNTPD SNTPD IPV6_PKTINFO

For more details on these IPv6 advanced socket API options, see z/OS
Communications Server: IPv6 Network and Application Design Guide.

For examples of the security product definitions, see the EZARACF sample in data
set SEZAINST.

Netstat access control
You can control access to Netstat command output from the TSO or UNIX System
Services shell environments using the System Authorization Facility (SAF). There
are no new TCP definitions required. The Netstat command output is considered
the resource to be protected, and you protect it by defining
EZB.NETSTAT.sysname.tcpname.netstat_option resource profiles in the SERVAUTH
class. A user ID has access to the Netstat output for a particular option if a security
profile is defined in the SERVAUTH class for that option, and that user ID has
READ access to the associated resource. Access is also given if there is no resource
profile defined for a resource.

Guideline: Some security products do not distinguish between a resource profile
that is not defined and a user that is not permitted to that resource profile. If your
product does not make this distinction, you must define the Netstat resource
profiles and permit users to them whenever the SERVAUTH class is active.

An installation can implement a security policy that indicates which users have
authorization to selected Netstat options. The level of granularity for this security
policy can be either by individual or all Netstat options.

Chapter 3. Security 125

|
|
|
|
|
|
|
|
|

|

Even though the Netstat RESCache/-q command returns system-wide resolver
cache data, at least one TCP/IP stack must be active to ensure that the correct
Netstat access controls are enforced for the command. The same
EZB.NETSTAT.sysname.tcpname.netstat_option naming convention applies to this
Netstat command as it does for any other Netstat command.

Fast Response Cache Accelerator access control
Fast Response Cache Accelerator access control allows control of application access
to Fast Response Cache Accelerator (FRCA) services. For more information on
FRCA, see “Considerations for Fast Response Cache Accelerator” on page 62.

You can control application access to FRCA services by defining the
EZB.FRCAACCESS.sysname.tcpname resource profile in the SERVAUTH class.
Access to FRCA services is allowed if the web server user has READ access to this
resource, or if the resource profile is not defined. There are no new TCP definitions
required. This function is enabled if the SERVAUTH class is active and the FRCA
resource profile is defined. If this resource profile is not defined, the check is not
made.

Guideline: Some security products do not distinguish between a resource profile
that is not defined and a user that is not permitted to that resource profile. If your
product does not make this distinction, you must define the FRCA resource profile
and permit users to it whenever the SERVAUTH class is active.

TCP/IP stack initialization access control
You can control whether an application can access a TCP/IP stack before the
required policies have been installed, during the period of time after the stack is
active but before Application Transparent Transport Layer Security (AT-TLS) has
been initiated from policy. Access checking is performed only if you have
configured AT-TLS in the initial PROFILE.TCPIP configuration data set. If AT-TLS
is configured, you can control whether an application can access the TCP/IP stack
before the required policies have been installed by defining the
EZB.INITSTACK.sysname.tcpname resource profile in the SERVAUTH class. During
the period of time after the stack is active and before AT-TLS has been initiated
from policy, all socket requests are blocked if this resource profile is not defined. If
this resource profile is defined, access to the stack is permitted only to user IDs
that have READ access to the resource. Checking ceases the first time that the
Policy Agent processing of the AT-TLS policy is completed, or when a profile
change deactivates AT-TLS.

Guideline: Some security products do not distinguish between a resource profile
that is not defined and a user that is not permitted to that resource profile.
However, if AT-TLS is enabled, a profile that is not defined has the same result as
a user that is not permitted, regardless of the security product you are using. If
AT-TLS is enabled, you must activate the SERVAUTH class, and define the
INITSTACK resource profile and permit users to it.

TCP/IP packet trace service access control
The TCP/IP packet trace service provides an interface for network management
applications to obtain packet trace data. The information provided through the
service is considered the resource to be protected. Access to this information can be
controlled through an external security manager product, such as RACF, by
defining the SERVAUTH profile name
EZB.NETMGMT.sysname.tcpname.SYSTCPDA.

126 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

Access to the information is allowed if the user ID associated with the network
management application is permitted (read access) to this resource profile. In
addition, to use this service, it should be enabled on the stack using the
NETMONITOR PKTTRCService statement in PROFILE.TCPIP. For details, see z/OS
Communications Server: IP Configuration Reference.

If the resource profile is not defined, the service allows access to the packet trace
information only to superusers, or those permitted to become superusers (that is,
those with read access to BPX.SUPERUSER).

TCP connection information service access control
The TCP connection information service allows network management applications
to obtain information about TCP connection activity. Access to this information can
be controlled by an external security manager product, such as RACF, by defining
the SERVAUTH profile name EZB.NETMGMT.sysname.tcpname.SYSTCPCN.

Access to the TCP connection information is allowed if the user ID associated with
the network management application is permitted (read access) to this resource
profile. In addition, to use this service, it should be enabled on the stack using the
NETMONITOR TCPCONNService statement in PROFILE.TCPIP. For details, see
z/OS Communications Server: IP Configuration Reference.

If the resource profile is not defined, the service allows access to the TCP
connection information only to superusers, or those permitted to become
superusers (that is, those with read access to BPX.SUPERUSER).

Real-time SMF information service access control
The SMF information service allows network management applications to obtain
selected TCP/IP SMF records, such as SMF records supported by FTP and Telnet,
in a real-time fashion. Access to this information can be controlled through an
external security manager product, such as RACF, by defining the SERVAUTH
profile name EZB.NETMGMT.sysname.tcpname.SYSTCPSM.

Access to these SMF records is allowed if the user ID associated with the network
management application is permitted (read access) to this resource profile. In
addition, to use this service, it should be enabled on the stack using the
NETMONITOR SMFService statement in PROFILE.TCPIP. For details, see z/OS
Communications Server: IP Configuration Reference.

If the resource profile is not defined, the service allows access to the SMF data only
to superusers, or those permitted to become superusers (that is, those with read
access to BPX.SUPERUSER).

TCP/IP OSAENTA trace service access control
The TCP/IP OSAENTA trace service is an interface that enables network
management applications to obtain packet trace data. You should protect the
information that is provided by this service. You can control access to this
information through an external security manager product, such as RACF, by
defining the SERVAUTH profile name EZB.NETMGMT.sysname.tcpname.SYSTCPOT.

Access to this information is allowed if the user ID associated with the network
management application is permitted to (has read access to) to this resource
profile. To use this service, ensure that it has been enabled on the stack using the

Chapter 3. Security 127

NTATRCService parameter on the NETMONITOR statement in PROFILE.TCPIP.
For details about the NETMONITOR statement, see z/OS Communications Server: IP
Configuration Reference.

If you do not define this resource profile, the service allows access to the packet
trace information only to a superuser, or to those permitted to become a superuser
(those with read access to BPX.SUPERUSER).

IPSec network management interface access control
The IPSec network management interface (NMI) enables network management
applications to obtain detailed information for and exercise control over IP filtering
and IPSec security associations. Access to this interface can be controlled through
an external security manager product, such as RACF, by defining the SERVAUTH
profile names EZB.NETMGMT.sysname.tcpname.IPSEC.DISPLAY and
EZB.NETMGMT.sysname.tcpname.IPSEC.CONTROL for display requests and control
requests respectively.

Applications can access this interface if the user ID associated with the network
management application is permitted (has read access) to the appropriate resource
profile.

If the resource profile is not defined, the service allows access to the IPSec NMI
only to superusers, or to those permitted to become superusers (that is, those with
read access to BPX.SUPERUSER).

For more information about the IPSec NMI, see z/OS Communications Server: IP
Programmer's Guide and Reference.

CIM provider access control
CIM provider access control permits the Communications Server CIM providers to
gather CIM data, when the user ID associated with the client of the z/OS CIM
server is not defined as a superuser. For more information on the CIM providers,
see “Considerations for Common Information Model providers” on page 98.

Access can be controlled by an external security manager product, such as RACF,
by defining the resource profile name EZB.CIMPROV.sysname.tcpname in the
SERVAUTH class. For examples of the security product commands needed to
create this resource profile name and grant users access to it, see member
EZARACF in sample data set SEZAINST.

Access is granted if the user ID associated with the client of the z/OS CIM server
is permitted (has read access) to this resource profile.

Tip: Some security products do not distinguish between a resource profile that is
not defined and a user that is not permitted to that resource profile. If your
product does not make this distinction, you must define the CIM provider resource
profile and permit the client user ID to it whenever the SERVAUTH class is active,
if you want the Communications Server CIM providers to be able to gather CIM
data.

Syslogd isolation
Syslogd isolation provides a capability for the installation to control which user
IDs and job names can write syslogd records to specified syslogd facilities. This
function enables the installation to segregate system and application syslogd

128 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|

records, and to segregate syslogd records from different applications. This function
prevents an application level process from flooding a syslogd facility intended for
system use, possibly causing system syslogd records to be lost. This function is
enabled when user ID and/or job name are specified as additional criteria along
with existing facility and priority criteria to select a syslogd repository.

In addition, the user ID and job name associated with the syslogd record writer
can optionally be stored in a syslogd record based on a syslogd command-line
parameter. This capability is useful when syslogd records for multiple jobs or users
are recording in the same syslogd facility. This function enables positive
identification of the creator of the syslogd records and ensures that the syslogd
record, if spoofed, can be identified.

Syslogd isolation also provides a capability to disable reception of syslogd
messages from other hosts in the network. This capability is provided by a syslogd
command-line parameter. This parameter disables reception of syslogd messages
from all hosts. If an installation wants to allow certain hosts in the network access
to syslogd, IP Filtering can be used instead to specify which hosts are permitted to
access the syslogd UDP port.

IP filtering
The IP security function can configure the Communications Server to perform
packet filtering at the IP layer for IPv4 and IPv6.

IP filters are rules defined to either discard or permit packets. IP filtering matches
a filter rule to data traffic based on any combination of IP source or destination
address (or masked address), protocol, source or destination port, direction of flow,
or time. IP filtering can control traffic being routed, or control access at the host
that has the communication endpoint. Even when an external firewall is providing
filtering protection for the host, Communications Server IP filtering can provide a
secondary line of defense.

For more information about IP filtering, see Chapter 19, “IP security,” on page 923.

z/OS

Applications

Sockets

z/OS CS

Permit

TCP

Data Link

IP Filter Deny

Figure 21. IP filtering at the z/OS communication endpoint

Chapter 3. Security 129

Security considerations for the VARY command
You can restrict access to the VARY TCPIP command by defining RACF profiles
under the OPERCMDS class and specifying the list of users that are authorized to
issue the VARY TCPIP command. You can decide on the level of control that is
appropriate for your installation. For example, you might want to allow a user to
be able to start or stop a TCP/IP device using the VARY TCPIP command, but you
do not want the user to be able to modify the TCP/IP configuration. For further
information on restricting access to the VARY TCPIP command, see z/OS
Communications Server: IP System Administrator's Commands.

Multilevel security
Multilevel security is an enhanced security environment that can be configured on
a z/OS system. In this environment, the security server and trusted resource
managers enforce mandatory access control policies in addition to the usual
discretionary access control policies. To participate in a multilevel-secure
environment, the user IDs associated with tasks trying to access z/OS CS resources
and those resource profiles in the SERVAUTH class need to have security labels
defined. For more information on the multilevel-secure environment and
configuring z/OS CS in that environment, see Chapter 4, “Preparing for TCP/IP
networking in a multilevel secure environment,” on page 153.

Network security principles
This topic describes network security principles that you can use to protect data in
your network.

Cryptography: The foundation of good security
The foundation of good security methods begins with cryptography. Cryptography
keeps your data and communications secure using techniques such as encryption,
authentication, and data integrity. Encryption services protect sensitive data from
being read by other than the intended receiver. Cryptographic authentication and
data integrity services allow communicating hosts to detect if data is altered in
transit. Public key cryptography can identify and authenticate hosts or users.
Public key cryptography can also be used in the secure creation of symmetric
session keys for both security endpoints. Once a secure session is created,
successful data authentication and decryption occur only if both hosts have the
correct session keys.

Cryptographic standards and FIPS 140
The National Institute of Standards and Technologies (NIST) publishes Federal
Information Processing Standards publication 140 (FIPS 140). This publication
specifies security requirements for cryptographic modules for both hardware and
software components of computer systems. FIPS 140 places some restrictions on
the use of cryptographic algorithms and modules. Some examples of the
restrictions are:
v Cryptographic algorithms and keys must be contained within a cryptographic

module and accessed through a well defined cryptographic boundary.
v Use of weaker cryptographic algorithms (for example, DES and MD5) is not

allowed.
v Use of weaker asymmetric key lengths (for example, RSA digital signature

operations using key lengths less than 1024 bits) is not allowed.
v Use of Diffie-Hellman groups with weaker key lengths (key lengths less than

2048 bits) is not allowed. This restriction applies to groups 1, 2, and 5.

130 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|
|
|

|
|

|
|

|
|

|
|

See the National Institute of Standards and Technology (NIST) Web site at
http://csrc.nist.gov/publications/PubsFIPS.html for the most recent FIPS 140
publication, and other related publications.

On z/OS systems, Integrated Cryptographic Services Facility (ICSF) and System
SSL provide cryptographic services. z/OS Communications Server uses ICSF and
System SSL in addition to its own cryptographic algorithms in some of its
networking security functions, such as AT-TLS and IP security. You can configure
ICSF, System SSL, and the z/OS Communications Server networking security
functions in FIPS 140 mode, in which they will enforce FIPS 140 restrictions.

See the following references for information about configuring z/OS functions in
FIPS 140 mode:
v “FIPS 140 and IP security” on page 930
v Chapter 22, “Application Transparent Transport Layer Security data protection,”

on page 1193
v z/OS Cryptographic Services System SSL Programming

v z/OS Cryptographic Services ICSF Overview

End to end security
Cryptographic security solutions can be applied to a portion of the data path or
end to end, whichever is appropriate for your security policy. Generally, the
greatest degree of security is provided when cryptographic methods are used end
to end. However, if only portions of the data path are considered untrusted by an
enterprise (such as the Internet) it may be adequate to protect only the untrusted
portion with cryptography. z/OS offers security protocols that can be configured to
protect portions of the data path or the entire data path.

Workload-based security deployment
In making a security protocol selection, an important consideration is the
application workload to be protected. In order to illustrate this concept, it is
helpful to understand where various protocols are implemented from a protocol
layering perspective.

Applications

TCP/UDP

IP/ICMP

Data Link

TCP/UDP

IP/ICMP

Data Link

SSL
Kerberos
APIs

SSL
Kerberos
APIs

Secure
Network
Services

IPSec

Applications

Network

Sockets API

SSL,KRB,GSSAPI

Sockets API

SSL,KRB,GSSAPI

Figure 22. Security protocols from a protocol layering perspective

Chapter 3. Security 131

|
|
|

|
|
|
|
|
|

|
|

|

|
|

|

|

http://csrc.nist.gov/publications/PubsFIPS.html

Existing workload
The network layer is the lowest layer in the protocol stack where end to end
security over multiple hops can be applied. Network layer security protocols
provide blanket protection for upper-layer application data without requiring
modification to the application. IPSec is implemented at the network layer and
provides authentication, integrity, and data privacy between any two IP entities.
IPSec can protect a segment of the data path (e.g., between two routers), or it can
secure the data path end to end. Because IPSec is applied at the IP layer, it is a
connectionless security protocol and is applied on a per packet basis.

Secure Sockets Layer (SSL) is another popular security protocol implemented
above the transport layer at the application interface layer. TCP applications can be
modified to use SSL. Many existing socket applications might be able to use
Application Transparent Transport Layer Security (AT-TLS) services provided
within the TCP/IP TCP layer. For details, see Chapter 22, “Application Transparent
Transport Layer Security data protection,” on page 1193.

SSL requires a reliable transport layer and is therefore not used for UDP
applications. SSL provides authentication, integrity, and data privacy. SSL,
originally used to secure traffic between a Web browser and Web server, can also
secure other applications. SSL is a connection-oriented security protocol and
protects all data on a connection or session.

The Communications Server has an SSL-enabled TN3270E Telnet server, which
provides secure access to existing SNA applications being accessed over an IP
network. Serving as a protocol gateway between the IP network and the SNA
network, the SSL-enabled TN3270E Telnet server protects the data path in the IP
network from the Telnet client all the way to the z/OS TN3270E Telnet server. If
the TN3270E Telnet server resides on a different host from the target SNA
application, SNA Session Level Encryption can be used to secure the SNA portion
of the data path. SNA application data can be protected without modification to
the SNA applications.

New workload
For new applications, security can be built-in. One method of building security
into the application on z/OS is to use z/OS System SSL and Kerberos. Another
method is to use the Communication Server's policy-driven Application
Transparent Transport Layer Security (AT-TLS), which requires no change to the
application unless the application must control certain portions of the AT-TLS
support.

Newer versions of network services such as SNMPv3, Secure DNS, and z/OS
UNIX sendmail, which are supported by the Communications Server, have security
built into the application protocol using standards-based specifications for secure
interoperability.

Network security protocols
This topic describes network security protocols that you can use to protect data in
your network.

IPSec and VPNs
IPSec is defined by the IPSec Working Group of the IETF. It provides
authentication, integrity, and data privacy between any two IP entities.

132 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Management of cryptographic keys and security associations can be done manually
or dynamically using an IETF-defined key management protocol called Internet
Key Exchange (IKE).

There are two versions of the IKE protocol:
v IKE version 1.0 (IKEv1) is defined by RFC 2409, The Internet Key Exchange (IKE),

and related RFCs. This is the version that has been supported by z/OS
Communications Server for a number of years.

v IKE version 2.0 (IKEv2) is defined by RFC 4306, Internet Key Exchange Protocol:
IKEv2, and related RFCs. Support for IKEv2 is introduced with z/OS V1R12.

With IPSec, you can create virtual private networks (VPN). A VPN enables an
enterprise to extend its private network across a public network, such as the
Internet, through a secure tunnel called a security association. IPSec VPNs enable
the secure transfer of data over the public Internet for same-business and
business-to-business communications, and protect sensitive data within the
enterprise's internal network.

z/OS provides support for IKE and IPSec VPNs, including the following:
v AH and ESP protocols
v Triple DES for strong encryption
v AES with several choices of mode or key length
v IPSec transport and tunnel mode encapsulation
v IKEv1 and IKEv2 negotiations with support for both aggressive and main mode

in IKEv1
v Pre-shared key and digital signature methods of authentication
v NAT traversal (IPv4 only)

Hardware features for encryption, decryption and hashing
IBM CP Assist for Cryptographic Functions (CPACF), where available, or a
cryptographic coprocessor provide support for IPSec encryption, decryption, and
hashing functions. Where such hardware features are not available, IPSec's
encryption, decryption, and hashing functions are performed in software.

Additional IPSec assist using System z Integrated Information
Processor (zIIP IP security)
On a System z9 or later server, an additional assist for IPSec protocol traffic is
available with the System z® Integrated Information Processor (zIIP). To enable zIIP
IP security in Communications Server, specify ZIIP IPSECURITY on the

zSeries

Internet

Enterprise Network
or Intranet

Enterprise Network
or Intranet

F
I
R
E
W
A
L
L

F
I
R
E
W
A
L
L

Remote
Access

Intranet
Host

Business
Partner

IPSec
Security

Associations

Figure 23. e-business scenarios with virtual private networks

Chapter 3. Security 133

|

|
|
|

|
|

|

|
|

GLOBALCONFIG statement. With zIIP IP security enabled, traffic using the AH
and ESP protocols can be processed on available zIIPs. When enabled on a z9 or
later z/OS image that includes zIIPs, the zIIP IP security function can reduce the
IPSec processing load on general purpose central processors, beyond what is
achievable using just CPACF or the Cryptographic Coprocessor.

When zIIP IP security is enabled, you might need to modify some Workload
Manager (WLM) definitions. The IPSec traffic that can be processed on available
zIIP processors is assigned to an independent WLM enclave. The WLM
independent enclave encapsulates the IPSec workload as execution units that are
separately classified and managed in a WLM service class. Consider the following:
v All WLM independent enclaves that are not classified are assigned WLM service

class SYSOTHER (with a goal of discretionary). In many cases, enclave workload
using this service class can result in performance degradation if the workload is
left unclassified in the service definition. Also, service that is accumulating in the
SYSOTHER service class is an indication that you have unclassified workload in
your system.

v Examine the IIPHONORPRIORITY parameter located in the IEAOPTxx member
of SYS1.PARMLIB. When this parameter is specified as NO, general purpose
central processors do not process zIIP-eligible workload when zIIPs are online.
Omitting the IIPHONORPRIORITY parameter or specifying
IIPHONORPRIORTY=YES allows zIIPs to request help from general-purpose
central processors when the zIIPs can not complete all zIIP-eligible workload
within a reasonable period of time (see ZIIPAWT in z/OS MVS Initialization and
Tuning Reference).

v If there are any other workloads that are eligible to run on your zIIPs, analyze
your current WLM workload goals and make any necessary adjustments. For
example, if you are operating a workload that is more latency-sensitive than the
typically longer running IPSec workloads, such as DB2® Distributed Relational
Database Architecture™ (DRDA®) workload, consider classifying the IPSec
workload to make it less preferable than the workload that is more
latency-sensitive.
Guideline: Make these two performance goal settings for the IPSec independent
enclave:
– Set the WLM service class associated with the IPSec independent enclave to a

lower execution velocity goal than that which is being assigned to the more
latency-sensitive workload (such as DB2 DRDA). The lower execution velocity
goal is chosen because the IPSec independent enclave has no associated
transactions.

– Set the WLM service class associated with the IPSec independent enclave to a
greater importance level value (importance is defined in five levels, 1 to 5,
with 1 indicating highest importance) than that which is being assigned to the
more latency-sensitive workload (such as DB2 DRDA). Each WLM service
class is associated with an importance level that specifies how important it is
to your business that this workload is meeting its goal. The importance level
defines how work is treated by the system. Achieving the velocity goal for
IPSec traffic that can be processed on available zIIP processors is less
important than the more latency-sensitive workload.

Because an independent enclave enables WLM to manage the priority of all
workload in the enclave, you should classify the workload for IPSec traffic. To
classify the independent enclave used for IPSec workload, make the following
WLM service definitions using the WLM ISPF panels:

134 z/OS V1R12.0 Comm Svr: IP Configuration Guide

1. Create a workload for the IPSec traffic that will be operating on the
independent enclave.
From the primary WLM ISPF panel, select option 2 Workloads.

2. Create a service class that contains an appropriate performance goal for the
IPSec independent enclave.
On the primary WLM ISPF panel, select option 4 Service Classes. From this
panel, define your new service class and associate it with the workload you
previously defined. When you define the BASE GOAL information for your
single defined period, choose the goal type Execution velocity. After this is
selected, define a velocity and importance for the service class that you are
defining. Set a value that takes into account other traffic that might be
competing for zIIP or general central processor resources. (General central
processors become a factor when you have set the IIPHONORPRIORITY
parameter to the value YES in the IEAOPTxx member of SYS1.PARMLIB.)

3. Create a WLM subsystem type for TCP/IP.
You must specify the subsystem type name as TCP; define it by using the WLM
ISPF application. On the primary WLM ISPF panel, select option 6
Classification Rules; the Subsystem Type Selection List for Rules panel is
displayed. Move your cursor to the field Subsystem-Type and press the Enter
key. When you are prompted for the type of operation that you want to
perform, select option 1 Create, because you want to create a new subsystem
type. On the Create Rules for the Subsystem Type panel, specify the
subsystem type TCP and a description for this new subsystem type.

4. Create a classification rule for the subsystem type TCP on the Create Rules for
the Subsystem Type panel of the WLM ISPF application.
Define a classification rule for the subsystem type. This rule determines what
workload is associated with a service class for this subsystem type. You can use
the following workload qualifiers for the new independent enclave for IPSec
workload:
v Subsystem Instance (SI) will be set to the job name of the TCP/IP stack
v Transaction Name will be set to a value of TCPENC01

To verify that the new independent enclave is being used with an appropriate
WLM service class, use the System Display and Search Facility (SDSF) ENC
command or view the RMF™ Monitor III ENCLAVE report (or use any other
method to interactively view RMF data).

For a more detailed description of defining Workload Manager (WLM) service
definitions (workloads, service classifications, classification rules, subsystem type,
and so on) and WLM in general, see System Programmer’s Guide to: Workload
Manager (IBM Redbooks) and z/OS MVS Planning: Workload Management. For
information about configuring the IIPHONORPRIORITY parameter in the
IEAOPTxx member of SYS1.PARMLIB, see z/OS MVS Initialization and Tuning
Reference. For more information about viewing enclaves using SDSF, see z/OS SDSF
Operation and Customization. For additional information about the RMF workload
activity report, see z/OS RMF Report Analysis.

On system models with no zIIPs (z990, or a z9 or later with no zIIPs configured),
you can enable zIIP IP security so that you can project the percentage of existing
IPSec workload (running on central processors) that would be eligible to run on
zIIPs, if zIIPs were available on the z/OS image. To perform projection analysis,
specify ZIIP IPSECURITY on the GLOBALCONFIG statement, and specify
PROJECTCPU=YES in the IEAOPTxx member of SYS1.PARMLIB. Run your IPSec
workload, and SMF provides accounting information regarding workload that is

Chapter 3. Security 135

eligible to run on zIIPs. For information about configuring the PROJECTCPU
parameter in the IEAOPTxx member of SYS1.PARMLIB, see z/OS MVS Initialization
and Tuning Reference. For information about accounting for zIIP eligibility in SMF
record types 30 and 7x, see z/OS MVS System Management Facilities (SMF). For
information about zIIP-related reporting updates, see z/OS RMF Report Analysis.

Guidelines:

v Because cryptographic hardware performance differs significantly between z9 or
later processors and processors that preceded the z990, you should not use zIIP
IP security for projection purposes on processors preceding the z990.

v TCP/IP consumes slightly more central processing resources when no zIIPs are
online and you have coded GLOBALCONFIG ZIIP IPSECURITY. Remove
GLOBALCONFIG ZIIP IPSECURITY from your TCP/IP profile after you have
completed your zIIP performance projection runs.

For more information about configuring IPSec and VPNs, see Chapter 19, “IP
security,” on page 923.

For more information on using IPSec with Dynamic VIPAs, see “Sysplex-wide
security associations” on page 388.

SSL and TLS
The SSL protocol provides data encryption, data origin authentication, and
message integrity. It also provides server and client authentication using X.509
certificates. SSL begins with a handshake during which the server is authenticated
to the client using X.509 certificates. Also, the client can optionally be authenticated
to the server. During the handshake, security session parameters, such as
cryptographic algorithms, are negotiated and session keys are created. After the
handshake, the data is protected during transmission with data origin
authentication and optional encryption using the session keys.

The cryptographic algorithms that are used for the SSL session are based on the
algorithms the server and client are willing to use. During the SSL handshake, the
client and server exchange a list of algorithms. The algorithm selected is based on
the best match between the client's list and the server's list. The selectable
algorithms can be limited by configuring a subset of allowable algorithms at the
server. Servers can support encryption using Triple DES as well as other
encryption algorithms (RC2, RC4, and DES). A hardware crypto coprocessor, if
available, is used for DES and Triple DES encryption.

SSL requires a server X.509 certificate, which is stored in its certificate key ring.
The certificate is used as part of the SSL handshake server authentication process.
The client validates the server certificate. SSL optionally uses a client X.509
certificate that is used as part of the SSL handshake client authentication process.
In order to use client authentication, the client must have a client X.509 certificate.
Successful client authentication requires that the Certificate Authority (CA) that
signed the client certificate be considered trusted by the server. To be considered
trusted, the certificate of the CA must be in the key ring of the server.

See “Transport Layer Security” on page 582 for detailed information on obtaining
certificates.

SSL is not defined by the IETF. TLS is based on SSL and is defined by the IETF as
RFC 2246.

136 z/OS V1R12.0 Comm Svr: IP Configuration Guide

TN3270E Telnet server security
The Communications Server provides z/OS TN3270E Telnet server (Telnet), that is
enabled for both SSL and AT-TLS; the data path in the IP network to Telnet is
protected using the SSL protocol. IBM Host On Demand and Personal
Communications provide a Telnet client that is enabled for SSL.

The Communications Server Telnet SSL support provides several extensions for
RACF-based access control to Telnet. These extensions prevent a client from seeing
the USSMSG (log on screen) unless the client is authorized. To use this support,
define the client certificate to RACF using RACF digital certificate services. The
first level of authorization checking verifies that the RACF user ID represented by
the client certificate is defined to RACF. The next level of authorization requires
that this RACF user ID be permitted to access the Telnet port. The Telnet port is
represented as a RACF resource using the SERVAUTH class.

Multiple port support: You can use Telnet multiple port support to enable a
combination of secure and non-secure traffic. To use multiple port support, you
define separate ports; one port is dedicated to non-secure traffic and another port
is dedicated to secure traffic. Ports with the designation SECUREPORT or
TTLSPORT can be secure. Intranet clients are not required to be secure. Intranet
clients connect to the BASIC port (port 23 in Figure 25 on page 138). All clients
connecting from the Internet are required to be secure; these clients use the
SECUREPORT (port 1023 in Figure 25 on page 138). Packet filtering is used at the
firewall that separates the intranet and the Internet to control access to the Telnet

Other Intranet
Servers

Telnet

TCP/IP SNA

Internet

zSeries
Enterprise
Servers

RACF

SSL
Protection
from client to
server

Server
Certificate

Client
Certificate

Telnet
Client

Telnet Client
(for example, HOD)

Telnet
Client

Firewall

Figure 24. TN3270E Telnet server security overview

Chapter 3. Security 137

ports. To prevent Internet access to the BASIC port, port 23 is blocked at the
firewall. The SECUREPORT, port 1023, is permitted at the firewall. In this scenario,
the best security is achieved when SSL client authentication with the Telnet RACF
extensions is used. This support ensures that the client has the authority to attempt
to log on to SNA applications through Telnet. Regardless of the method of
authentication used, the SNA application should identify and authenticate the end
user using RACF before any application access is granted. If you are using SSL
encryption services, the user ID and password are encrypted.

Figure 26 shows how you can combine IPSec and Telnet security to provide more
secure remote access from the Internet to SNA applications than is depicted in
Figure 25. In this scenario, IPSec AH protocol is used for authentication between
the user's PC and the firewall. The firewall is open for port 1023 for traffic that is
authenticated with only IPSec. The firewall discards traffic for port 1023 that
cannot be authenticated by IPSec. The additional security provided by IPSec
protects the zSeries server from unauthorized access attempts and denial-of-service
attacks by hosts outside the VPN.

Secure and non-secure connections using a single Telnet port: A single port can
be used to support a mix of secure and non-secure traffic. The port has the
designation SECUREPORT or TTLSPORT. To support the configuration of various
security policies for a single port, the SECUREPORT or TTLSPORT designation
indicates that the port can use TLS/SSL, but the port does not have to use
TLS/SSL.

Telnet supports both negotiated and non-negotiated TLS/SSL. Negotiated TLS/SSL
is an IETF-defined extension to the TN3270 protocol. With negotiated TLS/SSL, the
decision to use TLS/SSL for a connection is based on the outcome of a negotiation

Internet
Enterprise Network
or Intranet

Separate Ports

RACF Telnet
Protection

2nd Secure Port
Port 1023

Port 23Port 23
permitted

Port 23
not allowed

Firewall

SSL

Figure 25. Using multiple Telnet ports to separate secure and non-secure traffic

Internet

Enterprise Network
or Intranet

Separate Ports with IPSec

2nd Secure Port
Port 1023

Port 23Port 1023
permitted

if
IPSec

Port 23
not

allowed

Firewall

RACF Telnet
Protection

IPSec
Authentication

SSL

Figure 26. Combining Telnet security with IPSec client-to-firewall authentication

138 z/OS V1R12.0 Comm Svr: IP Configuration Guide

between the Telnet client and server using TN3270 protocols. This negotiation is
performed after the Telnet connection is established, and if TLS/SSL is negotiated,
the TLS/SSL handshake is performed. With non-negotiated TLS/SSL, a TLS/SSL
handshake is required immediately after the connection is established. A single
port can concurrently use both negotiated and non-negotiated TLS/SSL
connections.

Figure 27 shows a single Telnet port that allows a mix of secure and non-secure
traffic. Intranet clients are not required to be secure. All clients connecting from the
Internet are required to use SSL. Both intranet and Internet clients connect to the
port designated as SECUREPORT (port 23 in this example). In this scenario, IPSec
AH protocol is used for authentication between the user's PC and the firewall. The
firewall is open for port 23 for traffic that is authenticated with only IPSec. The
firewall discards traffic for port 23 that IPSec cannot authenticate. In this scenario,
packet filtering without IPSec cannot be used at the firewall that separates the
intranet and the Internet to control access on the basis of port, because only one
port is used. Without IPSec AH, all access control checks are deferred to Telnet.
The additional security provided by IPSec at the firewall protects the zSeries server
from unauthorized access attempts and denial-of-service attacks by hosts outside
the VPN.

Express Logon Feature
With emulator products, the traditional method of authenticating the user is
through user ID and password which is kept in sync with the host access control
facility (RACF, ACF/2, AS/400® user management, etc.). The Express Logon
Feature (ELF) simplifies user ID and password administration for users signing on
to SNA applications using Telnet. ELF allows an end user to use an
SSL-authenticated X.509 certificate for authentication to the SNA application
instead of using a user ID and password. ELF requires IBM Host Integration
software. The Host Integration requirements depend on the configuration.

There are two network designs available; a two-tier or a three-tier approach. Both
are discussed in Appendix C, “Express Logon Feature,” on page 1489.

TLS-enabled FTP
The Communications Server FTP server and client support Transport Layer
Security (TLS). This support enables secure file transfer by providing data privacy,
message authentication, and message integrity services for data sent and received
using the FTP control and data connections.

Internet

Enterprise Network
or Intranet

RACF Telnet
Protection

Port 23Port 23
permitted

Firewall

SSL

IPSec
Authentication

Enterprise
Security
Policy

Figure 27. Secure and non-secure traffic using a single Telnet port

Chapter 3. Security 139

The TLS-enabled FTP server can be configured to run in two modes. Conditional
mode allows an installation to use a single port for both TLS and non-TLS FTP
control connections. In conditional mode, the FTP client and server negotiate the
use of TLS based on a subset of the FTP security negotiation functions documented
in RFC 2228. Once the use of TLS is negotiated, the TLS handshake is performed
which establishes the TLS session and negotiates security parameters and session
keys. Unconditional mode allows an installation to use a separate port for all TLS
traffic. The port specified by the TLSPORT statement in FTP.DATA (port 990 by
default) is the port designated for control connections for unconditional TLS mode.
With unconditional mode, it is assumed that TLS is required, and after the FTP
control connection is made, the TLS handshake is performed.

TLS secures the control connection and optionally the data connection. TLS for the
data connection requires a TLS session for the control connection. FTP server
configuration controls whether the FTP server requires TLS for the control and
data connections. This TLS protection by connection type is negotiated during the
FTP RFC 2228 negotiation that precedes the TLS handshake. During the lifetime of
the control connection, the use of TLS or no TLS for the data connection can be
requested by the FTP client using the FTP RFC 2228 commands.

FTP TLS optionally authenticates the client during the TLS handshake using a
client X.509 certificate. FTP server configuration specifies whether TLS client
authentication is required and what type of validation of the certificate is required.
For example, the FTP server can be configured to map the client certificate to a
RACF userid and then verify that the userid associated with the certificate matches
the userid entered by the end user.

Configuration to control TLS capabilities and options for both FTP client and
server TLS are stored in the FTP.DATA data set.

Application Transparent Transport Layer Security
Communications Server provides for invocation of System SSL in the TCP
transport layer of the stack. Application Transparent Transport Layer Security
(AT-TLS) support is controlled by the TTLS or NOTTLS parameter on the
TCPCONFIG statement in the TCP/IP profile. When AT-TLS is enabled, AT-TLS
statements in Policy Agent define the security attributes for connections that match
AT-TLS rules. This policy-driven support can be deployed transparently

z/OS TSO
Unix Shell-based
Clients

or

Control connection

Data connection

FTP ServerFTP Client

Client and
trusted CA’s
Certificate

FTP.DATA FTP.DATA

RACF RACF

Client configuration
for TLS

Server configuration
for TLS

Server and
trusted CA’s
Certificate

Client certificate
to RACF use mapping

Figure 28. FTP client and server TLS overview

140 z/OS V1R12.0 Comm Svr: IP Configuration Guide

underneath many existing sockets, leaving the application unaware of the
encryption and decryption being done on its behalf. Support is also provided for
applications that need to negotiate TLS or need to participate in client
authentication. These applications must be aware of AT-TLS support and use ioctl
support provided by AT-TLS. AT-TLS supports the TLS, SSLv3, and SSLv2
protocols. For more details, see Chapter 22, “Application Transparent Transport
Layer Security data protection,” on page 1193.

Kerberos
Kerberos is a network authentication protocol that is designed to provide strong
authentication for client/server applications using secret-key cryptography. The
Kerberos network authentication protocol assumes that services and workstations
communicate over an insecure network. It allows clients and servers to do either
one way, or two way (mutual) authentication. It allows for data encryption and
prevents passwords from having to be retyped to access networked services and
also prevents their transmission in plain text over the network. This feature can
help reduce the need to manage multiple passwords.

z/OS Communications Server no longer ships Kerberos Version 4. z/OS Integrated
Security Services ships Kerberos Version 5. Because Integrated Security Services
Kerberos does not require DCE login and eliminates the need for multiple
registries, it is recommended that new applications be written to Kerberos Version
5 and use z/OS Integrated Security Services.

The following Communications Server IP applications now include support for
Kerberos Version 5 security protocol:
v The UNIX System Services Telnet Server now allows clients supporting Kerberos

Version 5 (as described in RFC 1416) to log in to the shell environment using
Kerberos as the authentication protocol.

v The FTP client and Server now support connections to or from other clients and
servers supporting Kerberos Version 5 authentication for the FTP protocol (as
described in RFC 2228).

v The UNIX System Services RSH server can now also be configured to support
client authentication using Kerberos from RSH clients supporting Kerberos
Version 5.

OSPF authentication
Communications Server OSPF (Open Shortest Path First) dynamic routing protocol
supports message authentication and message integrity of OSPF routing messages
through the use of the OSPF MD5 Authentication security protocol as defined by
RFC 2328. OSPF MD5 Authentication ensures that an unauthorized IP resource
cannot inject OSPF routing messages into the network without detection, thus
ensuring the integrity of the routing tables in the OSPF routing network.

OMPROUTE computes a secure MAC for the routing message using the MD5
algorithm. This MAC is sent with the routing message so that the message can be
authenticated by the receiver.

Secure DNS
The Communications Server supports DNS at the Version 9.1 of BIND. This level
of DNS has built-in security features, DNSSEC and TSIG.

Chapter 3. Security 141

DNSSEC
DNSSEC ensures that DNS query results are not spoofed and in fact originate from
a trusted DNS. DNSSEC defines extensions to DNS that provide data integrity and
authentication to security aware resolvers and applications through the use of
cryptographic digital signatures. DNSSEC is defined by the IETF in RFC 2535.

TSIG
TSIG is a protocol for Secret Key Transaction Signatures for DNS. This protocol
allows for transaction level authentication using shared secrets and one way
hashing. It authenticates dynamic updates as coming from an approved client, or
responses as coming from an approved recursive name server.

SNMPv3
z/OS Communications Server SNMP supports SNMPv3. The legacy
community-based protocols SNMPv1 and SNMPv2 are also supported. SNMPv3,
defined in RFCs 3410 through 3415 is the standards-based solution for SNMP
security. It is categorized as a User-based Security Model (USM) which provides
different levels of security based on the user accessing the managed information.
To support this security level, the SNMPv3 framework defines several security
functions, such as USM for authentication and privacy, and view-based access
control model (VACM) which provides the ability to limit access to different MIB
objects on a per-user basis, and the use of authentication and data encryption for
privacy. However, SNMP is not just enhanced security. It defines an architecture for
SNMP management frameworks, with the intent that pieces of the architecture can
advance over time without requiring the entire structure to be rewritten. For that
reason, three major subsystems are defined:
v Message processing subsystem
v Security subsystem
v Access control subsystem

The framework is structured so that multiple models can be supported
concurrently and replaced over time. For example, although there is a new
message format for SNMPv3, messages created with the SNMPv1 and SNMPv2
formats can still be supported. Similarly, the user-based security model can be
supported concurrently with the community-based security models previously
used. For more information on SNMPv3 and configuring SNMPv3 support, see
Chapter 25, “Simple Network Management Protocol,” on page 1325. For
information about accessing RFCs, see Appendix G, “Related protocol
specifications,” on page 1555.

Security event reporting: Integrated Intrusion Detection Services
Intrusion is a broad term encompassing many undesirable activities. The objective
of an intrusion may be to acquire information that a person is not authorized to
have (information theft). It may be to cause business harm by rendering a network,
system or application unusable (denial of service). Or it may be to gain unauthorized
use of a system as a stepping stone for further intrusions elsewhere. Most
intrusions follow a pattern of information gathering, attempted access and then
destructive attacks. Some attacks can be detected and neutralized by the target
system. Other attacks cannot be effectively neutralized by the target system. Many
of the attacks also make use of spoofed packets which are not easily traceable to
their true origin. Many attacks now make use of unwitting accomplices - machines
or networks that are used without authorization to hide the identity of the attacker.
For these reasons, detecting information gathering, access attempts and attack
accomplice behaviors is a vital part of intrusion detection.

142 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Attacks can be initiated from outside the internal network or from inside the
internal network. Particularly vulnerable is an open system such as a public Web
server or any machine that is placed in service to serve those outside the internal
network. A firewall can provide some level of protection against attacks from
outside. However, it cannot prevent attacks once the firewall has authorized an
external host to communicate with hosts in the internal network, nor can it provide
protection in the case where the attack is initiated from inside the network. In
addition, end to end encryption limits the types of attacks that can be detected by
an intermediate device such as a firewall.

An Intrusion Detection System can provide detection of some types of attacks.
Common intrusion detection system types currently deployed are network sniffers
or sensors and vulnerability scanners. Sniffers, placed at strategic points in the
network (in front or behind a firewall, in the network, or in front of a host),
operate in promiscuous mode, examining traffic real-time that passes through on
the local network. Sniffers use pattern matching to try to match a packet against a
known attack which is expressed as an attack signature. Sniffers work best against
single packet attacks. Limitations are that they cannot deflect the attacking packet,
and they cannot evaluate against encrypted data. Scanners do not detect intrusions
in real-time. They examine a system periodically looking for vulnerabilities or
evidence of intrusion. Some scanners evaluate historical data and can identify
behavioral anomalies and patterns associated with intrusions.

The z/OS Communications Server provides Intrusion Detection Services (IDS)
which enable the detection of attacks and the application of defensive mechanisms
on the z/OS server. The focus of IDS is self-protection. IDS can be used alone or in
combination with an external network-based Intrusion Detection System. The IDS
is integrated into the z/OS Communications Server stack and can provide the
following functions unavailable from an external Intrusion Detection System.
v z/OS CS IDS evaluates data that has been encrypted by IPSec end to end after

decryption on the target server system.
v z/OS CS IDS avoids the overhead of per packet examination against a table of

signatures for many known attacks. This is accomplished by integrating the
attack detection probes into existing error detection logic. This detection is done
in real-time. IDS policy is examined when an attack is detected to determine the
action to be taken.

v z/OS CS IDS detects statistical anomalies real-time. Real-time detection is
achieved since it is easier for the target system to keep stateful data/internal
thresholds and counters.

v z/OS CS IDS implements prevention type of policies that are executed on the
system that is the target of the attack. Prevention policies include packet discard
and connection limiting.

The IDS is policy driven and the policies are kept in IDS configuration files or
LDAP. These policies determine what actions to take for various IDS events. IDS
events detected include scans, single packet attacks against the TCP/IP stack, and
flooding. Actions include packet discard, connection limiting, and reporting. IDS
events can be recorded in syslog files and/or the console. IDS statistics can be
recorded in syslog. Packet traces can be taken to document suspicious activities.
The TRMDSTAT command provides summary and detailed reporting of IDS events
and statistics.

Figure 29 on page 144 shows the z/OS Communications Server IDS architecture.

Chapter 3. Security 143

For more information on IDS, see Chapter 18, “Intrusion Detection Services,” on
page 897.

Defensive filtering
An external security information and event manager, through analysis and
correlation of messages from multiple sources and systems in the network, can
take action to block attacks by installing defensive filters in the TCP/IP stack. A
defensive filter is a rule to discard packets, separate from IP security filters. Filter
processing matches a defensive filter rule to data traffic, based on any combination
of IP source or destination address, protocol, source or destination port, or
direction of flow. Filter processing checks defensive filters before IP security filters.

The z/OS UNIX ipsec command provides the ability to add and manage defensive
filters. Defensive filters are typically added automatically as a result of an external
security information and event manager's analysis. However, you can also add a
defensive filter by manually issuing the ipsec command. The Defense Manager
daemon (DMD) is an integral part of managing the defensive filters.

Figure 30 on page 145 shows an overview of defensive filtering and the DMD.

Download policy

Install
IDS Policy
in stack

Event messages
to local console

Trace suspicious
activity

IDS Policy Repository

LDAPLDAP

Syslog

Traces

Policy TRMD

TCP/UDP

IP/ICMP
Data Link

Intrusion
Event

z/OS

Download policy

Agent

Log Events
and Statistics

Attack

Administration

LDAP Server

Sockets API

Local
Policies

Download policy

Figure 29. Intrusion Detection Services overview

144 z/OS V1R12.0 Comm Svr: IP Configuration Guide

For more information about defensive filters and the DMD, see Chapter 21,
“Defensive filtering,” on page 1177.

Network security services for the IPSec discipline
The network security services (NSS) server provides a set of network security
services for the IPSec discipline. These services include a certificate service and a
remote management service. The certificate service and remote management
service are used by NSS IPSec clients. When an NSS IPSec client uses the certificate
service, the NSS server creates and verifies digital signatures on the behalf of the
NSS IPSec client. The need to store certificates and keying information at the client,
which might reside in a less secure zone of the network, is eliminated. When an
NSS IPSec client uses the remote management service, the NSS server routes IPSec
network management interface (NMI) requests to that NSS IPSec client, which
enables the NSS IPSec client to be managed remotely. The NSS IPSec client
provides the NSS server with responses to these requests.

You can configure the IKE daemon to act as an NSS IPSec client on behalf of
multiple TCP/IP stacks. Each stack appears as a separate NSS IPSec client to the
NSS server. Use the -z option on the ipsec command or use the IPSec NMI to
manage NSS IPSec clients that use the remote management service provided by the
NSS server. For details about using the ipsec command to manage NSS IPSec
clients, see z/OS Communications Server: IP System Administrator's Commands. For
details about using the IPSec NMI to manage NSS IPSec clients, see z/OS
Communications Server: IP Programmer's Guide and Reference.

An NSS IPSec client requires a SAF user ID on the NSS server system. To use the
services provided by the NSS server, this user ID must have read access to specific
SERVAUTH resource profiles. The following SERVAUTH resource profiles apply to
an NSS IPSec client:
v EZB.NSS.sysname.clientname.IPSEC.CERT

This profile authorizes an NSS IPSec client to access the IPSec certificate service
of the NSS server.

v EZB.NSS.sysname.clientname.IPSEC.NETMGMT

Figure 30. Defensive filtering overview

Chapter 3. Security 145

This profile authorizes an NSS IPSec client to use the IPSec remote management
service of the NSS server. The IPSec remote management service of the NSS
server enables an NSS IPSec client to be managed by the NSS server.

v EZB.NSSCERT.sysname.mappedlabelname.HOST
This profile authorizes an NSS IPSec client to access a personal certificate or a
site certificate on the key ring of the NSS server. A profile entry is required for
each personal certificate or site certificate associated with an NSS IPSec client.
The certificates are used during a phase 1 security association negotiation that
uses the digital signature mode of authentication.

v EZB.NSSCERT.sysname.mappedlabelname.CERTAUTH
This profile authorizes an NSS IPSec client to access a CERTAUTH certificate on
the key ring of the NSS server. A profile entry is required for a CERTAUTH
certificate connected to the key ring of the NSS server if the following are true:
– That certificate's label is configured on the CaLabel parameter of a

RemoteSecurityEndpoint statement within the IPSec policy definitions for an
NSS IPSec client. For details about the RemoteSecurityEndpoint statement, see
z/OS Communications Server: IP Configuration Reference.

– An NSS IPSec client wants to include information about the corresponding
certificate authority (CA) to a remote security endpoint. The information is
part of the default set of CAs sent when the CaLabel parameter is not
specified on the matching RemoteSecurityEndpoint statement.

For additional details about the definition of these profiles, see Chapter 20,
“Network security services,” on page 1149.

The following SERVAUTH resource profiles apply when you use the -z option of
the ipsec command or the IPSec NMI to manage NSS IPSec clients:
v EZB.NETMGMT.sysname.clientname.IPSEC.DISPLAY

This profile authorizes a user ID to issue the ipsec command with the -z option
to obtain information about an NSS IPSec client, or to make IPSec NMI requests
to obtain information about an NSS IPSec client.

v EZB.NETMGMT.sysname.tcpname.IPSEC.CONTROL
This profile authorizes a user ID to make IPSec NMI requests to modify the
IPSec state of a local stack.

v EZB.NETMGMT.sysname.clientname.IPSEC.CONTROL
This profile authorizes a user ID to issue the ipsec command with the -z option
to modify the IPSec state of an NSS IPSec client, or to make IPSec NMI requests
to modify the IPSec state of an NSS IPSec client.

v EZB.NETMGMT.sysname.sysname.NSS.DISPLAY
This profile authorizes a user ID to issue the ipsec command with the -x option
or to make IPSec NMI requests to obtain information about an NSS server. This
profile also authorizes a user ID to issue the nssctl command to make NMI
requests to obtain information about an NSS server.

For additional details about the definition of the profiles to use the ipsec command
to manage NSS IPSec clients, see z/OS Communications Server: IP System
Administrator's Commands. For additional details about the definition of the profiles
to use the IPSec NMI to manage NSS IPSec clients, see z/OS Communications Server:
IP Programmer's Guide and Reference.

146 z/OS V1R12.0 Comm Svr: IP Configuration Guide

The following SERVAUTH resource profile applies when the -w option of the ipsec
command or the IPSec NMI is used to display information about an IKE daemon's
NSS IPSec clients:
v EZB.NETMGMT.sysname.sysname.IKED.DISPLAY

This profile authorizes a user ID to issue the ipsec command with the -w option
or make IPSec NMI requests to obtain information about an IKE daemon's NSS
configuration.

For additional details about the definition of this profile to use the ipsec command
to manage NSS IPSec clients, see z/OS Communications Server: IP System
Administrator's Commands. For additional details about the definition of this profile
to use the IPSec NMI to manage NSS IPSec clients, see z/OS Communications Server:
IP Programmer's Guide and Reference.

Before accessing an IPSec network security service, an NSS IPSec client must
present a valid credential. A valid credential consists of the user ID representing
the NSS IPSec client and a valid password or PassTicket. For additional
information about using a PassTicket, see z/OS Security Server RACF Security
Administrator's Guide.

Certificates and private keys that represent an NSS IPSec client are stored on a
single SAF key ring. The NSS server must have access to the certificates on this
key ring. The private key associated with a certificate is never sent to the NSS
IPSec client. When an NSS IPSec client uses the authentication mode of a digital
signature, the NSS server creates a digital signature on the client's behalf. Before
the NSS server accesses a personal certificate to create a digital signature on behalf
of an NSS IPSec client, the NSS server verifies that the NSS IPSec client is
authorized to use that certificate (and its associated private key) by checking the
EZB.NSSCERT.sysname.mappedlabelname.HOST profile.

Certificates of certificate authorities that are supported by NSS IPSec clients must
also be stored on this single key ring. The NSS server provides NSS IPSec clients
with information about certificate authorities to which the client has access. The
NSS IPSec client advertises certificate authority information to its peer when digital
signature mode is used for authentication. The
EZB.NSSCERT.sysname.mappedlabelname.CERTAUTH profile identifies which
certificate authorities an NSS IPSec client can advertise to its IKE peers. For
information about this profile name, see “NSS server certificate label naming
considerations” on page 1158.

Figure 31 on page 148 shows an example of the IKE daemon acting as an NSS
IPSec client for a single TCP/IP stack. The IKE daemon's configuration file
identifies which network security services are to be used by a stack, as well as the
information about the NSS server from which these services are to be obtained. If
the NSS certificate service is enabled for a stack, the IKE daemon uses this service
during a phase 1 negotiation when a digital signature mode of authentication is
used. If the NSS IPSec remote management service is enabled for a stack, the IKE
daemon responds to management requests initiated from the NSS server.

Chapter 3. Security 147

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

The example in Figure 31 is a trivial example involving one TCP/IP stack acting as
an NSS client. As shown in Figure 32 on page 149, the NSS server can provide
services to many NSS clients. The IKE daemon on a z/OS system can act as an
NSS client for up to eight TCP/IP stacks (that is, one for each stack running on
that system). Multiple IKE daemons can simultaneously access network security
services. These IKE daemons do not have to reside within the same sysplex as the
NSS server.

IBM Configuration
Assistant for z/OS
Communications Server

IKED configuration
file

NSS server
configuration

file

SYSTEMA

STACK1

IKED NSS
server

NSS server requests monitoring
information from STACK1 on SYSTEMA

IKED requests NSS certificate service on
behalf of STACK1 on SYSTEMA

ipsec command
with -z option

Network administrator
using Telnet

NSS server
key ring

Contains certificates for STACK1 on SYSTEMA

ipsec command
with -z option

Figure 31. IKE daemon acting as an NSS client for a single TCP/IP stack

148 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Network security services for the XMLAppliance discipline
The network security services (NSS) server provides a set of network security
services for the XMLAppliance discipline. Services include the SAF access service,
the certificate service, and the private key service. NSS XMLAppliance clients can
use the network security services in the XMLAppliance discipline. When an NSS
XMLAppliance client uses the XMLAppliance SAF access service, the NSS server
performs SAF user authentication and access control checks on behalf of the NSS
XMLAppliance client. The XMLAppliance certificate service allows an authorized
NSS XMLAppliance client to list and retrieve certificates on the configured key
ring of the NSS server. The XMLAppliance private key service allows an
authorized NSS XMLAppliance client to retrieve private keys that are stored in
RACF, generate digital signatures using private keys protected by Integrated
Cryptographic Service Facility (ICSF), and perform decryption using
ICSF-protected private keys. The NSS server does not support retrieval of
ICSF-protected private keys. The NSS server uses its z/OS SAF database to protect
unauthorized access to individual certificates and private keys.

Restrictions:

IKED

IKED

IKED configuration
file

NSS server
configuration

file

NSS
server

IKED

NSS server
key ring

Network administrator
using Telnet

IBM Configuration
Assistant for z/OS
Communications Server

SYSTEMC
Stack 1 - Stack 8

SYSTEMB
Stack 1 - Stack 8

SYSTEMA
Stack 1 - Stack 8

Contains certificates for stacks on SYSTEMA,
SYSTEMB, SYSTEMC

ipsec command
with -z option

Sysplex Alpha

Sysplex Gamma

IKED configuration
file

IKED configuration
file

Network security services

Network s
ecurity

 se
rvic

es

Network security services

Figure 32. IKE daemon acting as an NSS client for multiple TCP/IP stacks

Chapter 3. Security 149

v Because support for digital signature generation and decryption requires the use
of ICSF-protected private keys, the applicable Crypto Express2 feature must be
defined as a coprocessor, not as an accelerator.

v The XMLAppliance private key service requires that public and private keys be
associated with X.509 certificates.

An NSS XMLAppliance client requires a SAF user ID on the NSS server system. To
use the XMLAppliance services provided by the NSS server, this user ID must
have read access to SERVAUTH resource profiles for each XMLAppliance service.
The following SERVAUTH resource profiles apply to an NSS client using
XMLAppliance services:
v EZB.NSS.sysname.clientname.XMLAPPLIANCE.SAFACCESS

This profile authorizes an NSS XMLAppliance client to access the
XMLAppliance SAF access service of the NSS server.

v EZB.NSS.sysname.clientname.XMLAPPLIANCE.CERT
This profile authorizes an NSS XMLAppliance client to access the
XMLAppliance certificate service of the NSS server.

v EZB.NSS.sysname.clientname.XMLAPPLIANCE.PRIVKEY
This profile authorizes an NSS XMLAppliance client to access the
XMLAppliance private key service of the NSS server.

v EZB.NSSCERT.sysname.mappedlabelname.HOST
This profile authorizes an NSS XMLAppliance client to access a certificate on the
key ring of the NSS server. Use the .HOST or .CERTAUTH profile to authorize
an NSS XMLAppliance client to list or retrieve a particular certificate.

v EZB.NSSCERT.sysname.mappedlabelname.CERTAUTH
This profile authorizes an NSS XMLAppliance client to access a certificate on the
key ring of the NSS server. Use the .CERTAUTH or .HOST profile to authorize
an NSS XMLAppliance client to list or retrieve a particular certificate.

v EZB.NSSCERT.sysname.mappedlabelname.PRIVKEY
This profile authorizes an NSS XMLAppliance client to access the private key
associated with a certificate on the key ring of the NSS server. Access to the
private key is allowed only if all of the following conditions are true:
– The private key of the certificate is stored in RACF
– The private key of the certificate is not stored in the ICSF public key data set

(PKDS)
– The ring usage of the certificate is personal
– The user ID of the NSS XMLAppliance client has read access to the

appropriate certificate label profile
(EZB.NSSCERT.sysname.mappedlabelname.PRIVKEY).

v EZB.NETMGMT.sysname.sysname.NSS.DISPLAY
This profile authorizes a user ID to issue the nssctl command to make NMI
requests to obtain information about an NSS server.

Tip: You can specify a wildcard in the profiles to reduce the number of profile
entries that you must define.

Before accessing the XMLAppliance services, an NSS XMLAppliance client must
present a valid credential. A valid credential consists of the user ID that represents
the NSS XMLAppliance client and a valid password or PassTicket. For additional
information about using a PassTicket, see z/OS Security Server RACF Security
Administrator's Guide.

150 z/OS V1R12.0 Comm Svr: IP Configuration Guide

You control access to certificates and private keys using SAF profiles. The profile
name contains a mapped label name that represents the label of the certificate. For
information about this profile name, see “NSS server certificate label naming
considerations” on page 1158.

Chapter 3. Security 151

152 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Chapter 4. Preparing for TCP/IP networking in a multilevel
secure environment

Use this information to configure a z/OS Communications Server stack and
applications in a multilevel secure environment.

Tip: Many of the tasks, examples, and references in this information assume that
you are using the z/OS Security Server (RACF). References to RACF apply to any
other SAF-compliant security products that contain the required support. If you are
using another security product, read the documentation for that product for
instructions on task performance.

The documentation for many of the applications described in this information
references the EZARACF member of sample data set SEZAINST. For examples of
the RACF commands used for multilevel security, see the EZARACFM member of
sample data set SEZAINST.

Understanding multilevel security concepts
IBM's multilevel security for z/OS has access control implications for your entire
system. z/OS Communications Server TCP/IP is only one element of a multilevel
secure z/OS system environment. Before planning your multilevel secure TCP/IP
network, you should be familiar with the concepts and terminology presented in
z/OS Planning for Multilevel Security and the Common Criteria.

Multilevel secure networking
The security administrator is responsible for defining the security levels and
categories required in a multilevel secure environment. These become part of the
set of security labels used to enforce mandatory access control policies when
applications access resources on behalf of users. All of the systems enforcing
mandatory access control policies in a multilevel secure network must have
equivalent definitions of these security labels and the systems in the network to
which they apply.

In the networking environment, the information that is being protected is the data
being read and written through sockets. Sockets are opened and used by
applications running under user IDs. In a z/OS multilevel secure environment:
v Each user ID is permitted to use one or more security labels.
v Every job or login session is associated with a user ID.
v A user ID can use only one security label for each job or login session.
v The security label used is limited by the port of entry (source type and location)

of the job or login session.

Applications can have read access to information from many sources that can have
various security labels. This information might be commingled in the buffers used
to write information to the network. TCP/IP treats all socket data buffers as
having the security label of the writing task. All sockets are inherently read/write,
so TCP/IP requires communicating partners to have equivalent security labels in a
multilevel secure environment.

© Copyright IBM Corp. 2000, 2011 153

Nonsecure systems
Most systems do not support mandatory access control processing. If these systems
are not physically managed, they normally should not participate in a multilevel
secure network. Some installations might need to permit them to participate. In
these cases, it is recommended that they be assigned a security label with the
lowest security level and a single security category that is not common with any
other security label.

Managed systems
Systems that do not support mandatory access control processing can participate in
a multilevel secure network, if they are physically managed to guarantee that all
information on the system has the same single security label and all users of the
system are permitted to that security label. These systems are referred to as
single-level security or managed systems in this information. This management
requires both physical control of the systems and careful management of the
network. Managed systems must be prevented from communicating with other
managed systems that do not have equivalent security labels.

Systems that support mandatory access control and are configured to implicitly
associate the correct security label with each managed system can also
communicate with managed systems. The systems that perform mandatory access
control are responsible for ensuring that only information from applications with
an equivalent security label is sent to a managed system, and that information
received from a managed system is given only to applications with an equivalent
security label.

Multilevel secure systems
Some systems in the network provide multilevel secure environments. These
systems have mechanisms to associate security labels with information accessed
through the system and with users logged into the system. The system enforces
mandatory access control policies to ensure proper separation of information.

Other systems cannot normally associate a single security label with IP addresses
owned by a multilevel secure system. The packets being sent from a single IP
address on the multilevel secure system might have originated from applications
running under different security labels.

Applications on a multilevel secure system can securely communicate with
applications on a managed system. Mandatory access control enforcement occurs
only on the multilevel secure system. The multilevel secure system is responsible
for ensuring that it sends only information from an application with an equivalent
security label to any managed system. It also is responsible for ensuring that
information received from a managed system is delivered only to an application
with an equivalent security label.

When two applications on multilevel secure systems communicate, the security
label of the sending application must be communicated to the receiving system so
that the receiving system can enforce mandatory access control prior to delivering
the information to an application. One mechanism to accomplish this is for the
sending system to pass the security label with each packet. The two multilevel
secure systems must share a common definition and representation of the security
labels that are passed.

154 z/OS V1R12.0 Comm Svr: IP Configuration Guide

z/OS Communications Server TCP/IP stacks on z/OS multilevel
secure systems

A z/OS CS TCP/IP stack running in a z/OS multilevel secure environment can
optionally be configured as either a restricted stack or an unrestricted stack. A
restricted stack is configured with a user ID that is defined with a security label
other than SYSMULTI. An unrestricted stack is configured with a user ID that is
defined with a security label of SYSMULTI. A single z/OS system can concurrently
run up to eight z/OS CS TCP/IP stacks, which can be any mix of restricted and
unrestricted stacks.

In either mode of operation, appropriate mandatory access control processing is
performed at the transport layer. z/OS Communications Server stacks can be host
systems on trusted subnetworks. z/OS Communications Server stacks do not
perform mandatory access control processing at the link or network layers, so
security labels are not considered in packet forwarding with the exception of
sysplex distributor, as described in “Configuring stack sysplex features in a
multilevel secure environment” on page 162. Packets that contain security labels
are not forwarded by a restricted stack. These packets are discarded by the
restricted stack.

Restricted stacks
In this mode of operation, the stack ensures that all sockets are opened by
applications running with a security label that is equivalent to the security label of
that stack. This guarantees that all information sent by the stack can be implicitly
associated with that stack's security label. The stack also ensures that all
information received from the network and delivered to an application is
equivalent to the stack's security label. A restricted stack can be viewed by other
multilevel secure systems as if it were a managed system.

It is important to note that even though a restricted stack is running under a
specific security label, it still receives packets from the network with information
covered by different security labels. A restricted stack discards this information
rather than deliver it to any local applications. However, this information can
appear in storage dumps, logic traces, and packet traces. Diagnostic information
should always be protected under the highest security label (SYSHIGH).

Unrestricted stacks
In this mode of operation, the stack allows sockets to be opened by applications
with any security label. The stack supports mandatory access control processing
that allows its applications to communicate securely with any other managed
system or restricted stack.

For applications on unrestricted stacks to communicate securely with each other,
Communications Server must be able to determine the security label of the sending
application. Unrestricted stacks are permitted to define VIPAs in network security
zones with security labels other than SYSMULTI. When one of these is used as
either the source or destination IP address of a packet, it implicitly identifies the
security label of the information. When both IP addresses in a packet are in
security zones with the SYSMULTI security label, the application security label
must be explicitly transmitted in the packet. This is known as packet tagging.

Communications Server implements a proprietary form of packet tagging to pass
the security label of the sending application to the receiving stack for mandatory
access control enforcement against the receiving application. Because of this
proprietary format, communications between applications on unrestricted stacks

Chapter 4. Preparing for TCP/IP networking in a multilevel secure environment 155

that require packet tagging are supported only when both of those stacks are on
the same z/OS system and are communicating over an IUTSAMEHOST link, or
are members of the same z/OS sysplex and are communicating over an XCF link.

Stack recognition of a multilevel secure environment
You can activate the SAF SECLABEL class and define security labels on
SERVAUTH profiles. This causes the security server to enforce mandatory access
control policies for those resources without fully activating a multilevel secure
environment. The z/OS Communications Server stack does not perform its extra
mandatory access control policy enforcement until you issue the RACF command
SETROPTS MLACTIVE. When running with SETROPTS NOMLACTIVE, you
should not use unrestricted stacks or define network security zones with a
SYSMULTI security label.

When a NetAccess statement is encountered in TCPIP profile processing and
MLACTIVE has been set, the stack activates extra mandatory access control policy
enforcement in both restricted and unrestricted stacks as follows:
v New sockets are allowed only if a STACKACCESS profile covers this stack.
v Network access is allowed only to IP addresses that are mapped into network

security zones covered by NETACCESS profiles.
v Restricted stacks do not normally allow SYSMULTI tasks to have network access

to security zones with security labels that are not equivalent to the stack's
security label. For more information, see “Exempting certain users of certain
programs from full Network Access Control” on page 161.

v Unrestricted stacks transmit packet labels both internally and externally to
enable an extra mandatory access control check, between the sending task's
security label and the receiving task's security label, when both IP addresses are
in security zones with a SYSMULTI security label.

v Distributing stacks consider security labels in choosing target applications.
v TN3270E Telnet servers consider security labels in mapping connections to LU

names.
v Internal configuration consistency checks are performed whenever

PROFILE.TCPIP or certain SERVAUTH class profile changes are made.

Common INET in a multilevel secure environment
When you start several TCP/IP stacks under OMVS, you are using the Common
INET (CINET) PFS. Users and jobs can optionally establish affinity to a single
stack, or they can allow CINET to choose a stack. If stack affinity is not set, CINET
replicates the socket() command to all stacks attached to it. If a job or user does
not have READ access to any of the attached stacks, RACF might generate audit
failure messages for those stacks. As long as at least one stack accepts the socket()
command, CINET will return success to the application. CINET then routes
subsequent commands on that socket to one or more of the stacks that accepted
the socket() call. For further information on CINET, see z/OS UNIX System Services
Planning.

Network security zones
A network security zone is an administrative name for a collection of systems that
require the same access control policy. IP addresses are used to map systems into
security zones. This requires that the IP addresses used in your multilevel secure
network be predictably associated with a single system or group of systems with
the same access control policy. A network security zone can contain a single IP
address or any combination of IP addresses and subnetworks. All of the IP

156 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|

addresses in a security zone must have the same security label, though all IP
addresses with the same security label do not have to be in the same security zone.

IBM zEnterprise System ensemble
An IBM zEnterprise System (zEnterprise) node participating in an ensemble has
access to the following networks:
v Intraensemble data network.

The intraensemble data network is accessed through OSX interfaces.
v Intranode management network

The intranode management network is accessed through OSM interfaces.

The intraensemble data network should be treated the same way as any other data
network in a multilevel secure environment. The intranode management network
is handled differently.

The intranode management network is for only IPv6 and provides a path for some
authorized zEnterprise applications, such as those providing platform performance
management functions, to communicate with another authorized system
performing platform management. For more information about these applications,
see zEnterprise System Ensemble Planning and Configuring Guide.

All traffic flowing over an OSM interface is protected by OSM access control rather
than network access control. The intranode management network uses
automatically generated IPv6 link-local addresses, so individual systems do not
have statically assigned addresses. OSM interfaces provide isolation so that traffic
can flow only between a stack connected to an OSM interface and the authorized
system performing platform management.

Where your z/OS systems fit in your network
z/OS systems that are not configured with RACF SETROPTS MLACTIVE must be
physically managed, as any other managed system.

z/OS systems at V1R5 or later that are configured with RACF SETROPTS
MLACTIVE, have appropriate TCP/IP configuration, and have appropriate RACF
SERVAUTH class profiles defined, can be placed in trusted subnetworks. Firewalls
can allow any managed subnetworks to communicate with these trusted
subnetworks. The trusted subnetworks will often be defined as a SYSHIGH
security zone and will likely contain several individual IP addresses in other
security zones, depending on the mix of restricted and unrestricted stacks within
the trusted subnetwork.

Planning stacks on your z/OS systems
Before you begin, determine what z/OS systems need to participate in your
multilevel secure network. For each z/OS system, determine what release level it
will be running, what sysplex it is a member of, which other multilevel secure
systems it needs to communicate with, and what security labels will be used.

The following subtopics include some references to additional information; more
information is in z/OS Communications Server: IP Configuration Reference and z/OS
Security Server RACF Security Administrator's Guide.

Chapter 4. Preparing for TCP/IP networking in a multilevel secure environment 157

|

|
|

|

|

|

|

|
|
|

|
|
|
|
|

|
|
|
|
|
|

Required configuration in a multilevel secure environment
Some configuration statements that are optional in a discretionary security
environment are required in a multilevel secure environment. The default behavior
of the stack in a discretionary security environment is to permit most applications
when these statements are not defined. The default behavior of the stack in a
multilevel secure environment is to fail every application when these statements
are not defined. Every stack must have an EZB.STACKACCESS profile in the SAF
SERVAUTH class. All referenced IP addresses, except intranode management
network link-local addresses, must be mapped into security zones by NetAccess
statements in the TCPIP profile. A profile that covers the resource
EZB.FTP.sysname.ftpdaemonname.ACCESS.HFS must be defined in the SAF
SERVAUTH class for file system access by FTP users. The EZB.SOCKOPT profile
must be defined for the following options in the SAF SERVAUTH class:
v IPV6_DSTOPTS
v IPV6_HOPOPTS
v IPV6_NEXTHOP
v IPV6_PKTINFO
v IPV6_RTHDR
v IPV6_RTHDRDSTOPTS
v IPV6_TCLASS
v SO_BROADCAST

In addition, if setting a hop limit greater than the default hop limit, the
EZB.SOCKOPT profile must also be defined for the following options in the SAF
SERVAUTH class:
v IPV6_HOPLIMIT
v IPV6_MULTICAST_HOPS
v IPV6_UNICAST_HOPS

For more information, see “TCP/IP resource protection” on page 111.

Considerations for IPv6-enabled stacks
IPv6 architecture provides for a plug-and-play environment by automatically
generating IP addresses when they are not manually configured. To guarantee
predictable IP address association with specific systems, you must disable this
capability on z/OS Communications Server stacks through manual configuration.

The stack automatically generates link-local IP addresses using the link-local prefix
and the interface ID. To make these addresses predictable, you must manually
configure the INTFID parameter on all IPv6 INTERFACE statements. If you are
enabling dynamic XCF, you must also manually configure the DYNAMICXCF
INTFID parameter on the IPCONFIG6 statement.

Some IPv6 interface types support router autogeneration. When this is enabled, the
responsible router informs the stack about prefixes that are supported and the
stack generates IP addresses from those prefixes and the interface ID. You must
disable this capability on all interfaces that support it, by manually configuring at
least one prefix or address using the IPADDR parameter on the INTERFACE
statement.

158 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|

These considerations for IPv6-enabled stacks do not apply to the IBM zEnterprise
System (zEnterprise) intranode management network that is accessed through
OSM interfaces. Traffic over that network is protected by OSM access control rather
than network access control.

Deciding whether to use restricted or unrestricted stacks
Many installations will find it easier to run a single unrestricted stack on each
z/OS system. The following situations might require you to run one or more
restricted stacks on a given system:
v Your installation has administrative requirements that prohibit the use of stacks

that allow sockets with different security labels.
v You must allow applications to communicate with applications on a multilevel

secure system that is not a z/OS system.
v You must allow applications to communicate with applications on a z/OS

multilevel secure system that is not z/OS V1R5 or later.
v Your stacks are not on the same system and are not members of the same

sysplex.

Configuring a restricted stack
To configure a restricted stack, do the following:
1. Determine the appropriate security label for this restricted stack. Associate a

user ID with the stack job, and permit the user ID to the intended stack
security label. Make that security label the default security label in the user ID
profile.

2. Define a STACKACCESS profile for this stack in the SERVAUTH class with the
same security label. This profile might often be UACC(READ).

3. Determine the interface and VIPA addresses needed for this stack.
4. Define one or more security zone names for this stack.

If you have discretionary access control policies that require different treatment
for some of the IP addresses on this stack, they will need to be in different
security zones.

5. Define NETACCESS profiles for this stack in the SERVAUTH class with the
same security label.
If your access control policy requires only mandatory access control
enforcement, this profile can be generic with respect to the z/OS system name
and the TCP stack job name. It might often be UACC(READ).

6. Define a NETACCESS statement that maps this system's external IP addresses
into security zone names. This can be placed in a shared data set and included
in the PROFILE.TCPIP of other z/OS CS systems in the network.

7. If you define a SOURCEVIPA address for this stack, it must be an IP address in
a security zone covered by a NETACCESS profile with the stack's security label.

Configuring an unrestricted stack
To configure an unrestricted stack, do the following:
1. Unrestricted stacks must run with the SYSMULTI security label. Associate a

user ID with the stack job, and permit the user ID to the SYSMULTI security
label. Make SYSMULTI the default security label in the user ID profile.

2. Define a STACKACCESS profile for this stack in the SERVAUTH class with the
SYSMULTI security label. This profile might often be UACC(READ).

3. Determine the interface and VIPA addresses needed for this stack.

Chapter 4. Preparing for TCP/IP networking in a multilevel secure environment 159

|
|
|
|

If you are running server applications that require multiple instances running
under different security labels, you will need at least one VIPA for each security
label.

4. Define security zone names for this stack.
If you have discretionary access control policies that require different treatment
for some of the IP addresses on this stack, they will need to be in different
security zones.
VIPAs defined for use with specific security labels will need to be in separate
security zones.

5. Define NETACCESS profiles for this stack in the SERVAUTH class.
Profiles created for VIPAs used with specific security labels are defined with
the appropriate security label. If your access control policy requires only
mandatory access control enforcement, these profiles can be generic with
respect to the z/OS system name and TCP stack job name. They might often be
UACC(READ).
Profiles for other zones on this stack are defined with the SYSMULTI security
label. If there are z/OS systems sharing the RACF database that are not
members of the same sysplex, or that are not z/OS V1R5 or later, any generic
profile should have UACC(NONE). A fully qualified profile might often be
UACC(READ).

6. Define a NETACCESS statement that maps this system's IP addresses into
security zone names. This can be placed in a shared data set and included in
the PROFILE.TCPIP of other z/OS CS systems in the network.
Tip: If you have multiple unrestricted stacks and you use the OMPROUTE
routing daemon, for more information on local address security zones, see
“OMPROUTE” on page 167.

7. If you enable SOURCEVIPA on IPCONFIG and IPCONFIG6 statements, in
many circumstances you might be able to avoid explicit packet tagging. The
source IP address selection algorithm is enhanced to consider security labels.
For IPv4 interfaces defined with the LINK statement, the backward search of
the HOME list stops at the first VIPA with a security label that is the same as
the security label of the application, or with a security label of SYSMULTI.
Place IPv4 source VIPAs in the HOME list preceding the physical interface IP
addresses that can use them. VIPAs in SYSMULTI security zones should
precede those in other zones. For IPv4 interfaces defined with the INTERFACE
statement, use the SOURCEVIPAINTERFACE parameter to select the source
VIPA. For IPv6 addresses, only addresses that have security labels the same as
that of the application or SYSMULTI are considered. Addresses with equal
security labels are preferred over those with a security label of SYSMULTI.
Place IPv6 VIPAs on VIRTUAL6 INTERFACE statements. Use the
SOURCEVIPAINTERFACE parameter on other INTERFACE statements to
associate the set of source VIPAs that can be used with each IPv6 interface.

8. If you define TCPSTACKSOURCEVIPA for this stack, to avoid application
failures, it must be in a security zone with a SYSMULTI security label.

Configuring global definitions for all stacks
To configure global definitions for all stacks, do the following:
v Define a security zone name for the INADDRANY and LOOPBACK addresses.

Define a NETACCESS profile for this zone in the SERVAUTH class for each
stack. This profile should be specific with respect to the z/OS system name and
TCP stack job name, and should have the same security label as the stack job. It
might often be UACC(READ).

160 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Define a NETACCESS statement that maps any system's INADDRANY and
LOOPBACK IP addresses into this security zone name. This can be placed in a
shared data set and included in the PROFILE.TCPIP of other z/OS CS systems
in the network.

v Define one security label that has the lowest security level and one category that
is not used in any other security labels. This security label can then be used for
all unknown systems. Mandatory access control access under this security label
will be more restrictive than under SYSLOW.
A task using this security label will have R/O access to resources with SYSLOW,
W/O access to resources with SYSHIGH, and R/W access to resources with this
security label and SYSMULTI. It will have no access to resources with any other
security labels because they will be disjoint.
Any resources created under this security label will only be readable by tasks
running under this security label, SYSHIGH, and SYSMULTI. This significantly
reduces the risk from unintended, publicly readable or executable, SYSLOW
resources.

v Define a security zone name for all unknown systems in the multilevel secure
network.
Define a NETACCESS profile for this zone in the SERVAUTH class. This profile
can be generic with respect to the z/OS system name and TCP stack job name. If
your installation supports communications with unknown systems on all z/OS
systems, make this profile UACC(READ). Otherwise, make it UACC(NONE).
Define a NETACCESS DEFAULT statement that maps all unspecified IP
addresses into this security zone name. This can be placed in a shared data set
and included in the PROFILE.TCPIP of other z/OS CS systems in the network.

Exempting certain users of certain programs from full
Network Access Control

There are certain network administration programs that, to be fully functional,
need to be exempted from some aspects of Network Access Control. For instance,
the Ping and Traceroute functions test the network path to a destination system.
They often need to traverse routers or firewalls that are at IP addresses mapped
into security zones that are not normally mandatory access control accessible from
a particular restricted stack. ICMP error messages from these systems will not be
delivered to the function, if they are not exempted from the Network Access
Control check that limits all traffic to security labels equivalent to the stack security
label. Also, routing protocol daemons, such as OMPROUTE, frequently need to
exchange routing table information with adjacent nodes that are in security zones
that might not be mandatory access control accessible from a particular restricted
stack. To operate correctly, these programs must also be exempted from some
aspects of Network Access Control.

A SYSMULTI user with UPDATE authority to the EZB.STACKACCESS profile will
be exempt from the Network Access Control restriction that all traffic must be with
partners that are in security zones with security labels that are equivalent to the
stack's security label or the security label associated with the local IP address. It is
recommended that this authority be limited to their usage of the programs that
must be exempted. This can be accomplished by first specifying UACC(READ)
when defining the STACKACCESS profiles, and then granting conditional update
access to each by specifying the following:
PERMIT stackaccess_profile_name CLASS(SERVAUTH) ID(*) ACCESS(UPDATE) -
WHEN(PROGRAM(ping,oping,tracerte,otracert,omproute))

Chapter 4. Preparing for TCP/IP networking in a multilevel secure environment 161

Note: The WHEN(PROGRAM()) conditional access parameter is not supported on
profiles in the SERVAUTH class, except where explicitly stated. PERMITs
with WHEN(PROGRAM()) on other profiles might be ignored.

Configuring stack sysplex features in a multilevel secure
environment

The following considerations apply to stack sysplex features in a multilevel secure
environment:
v If TCPSTACKSOURCEVIPA is configured on a stack, the specified VIPA must be

in a NetAccess security zone with a security label that is identical to the stack
security label.

v If you use job-specific source IP addressing (see SRCIP in z/OS Communications
Server: IP Configuration Reference), the specified IP address must be in a
NetAccess security zone with a security label that is permitted on the stack and
is equivalent to the specified job. If an interface name is used, at least one of the
IP addresses configured on that interface must be in a network security zone
with a security label that is either SYSMULTI or equal to the specified job.

v If you use destination-specific source IP addressing (see SRCIP in z/OS
Communications Server: IP Configuration Reference), the specified IP address must
be in a NetAccess security zone with a security label that is permitted on the
stack and is equivalent to the specified destination. If an interface name is used,
at least one of the IP addresses configured on that interface must be in a
network security zone with a security label that is either SYSMULTI or that is
the same as the specified destination.

v For sysplex distributor, the distributing stack must either be an unrestricted
stack or a restricted stack with a security label that is the same as all target
stacks. The distributing stack will use the security label of the source security
zone and the security labels of the active target applications when selecting a
target. The distributing stack will also honor SECLBYSYSTEM when the target
application is running under SYSMULTI on an unrestricted stack. In an
environment using SECLBYSYSTEM, a distributing stack must be on a system
where all security labels are active.

v VIPA takeover must be configured only between stacks with the same security
label.

v Distribution of connections that require packet tagging are restricted to flowing
over XCF or IUTSAMEHOST links. This restriction applies to the route from the
client to the distributor, from the distributor to the target server, and from the
target server back to the client.

Defining security labels on other profiles in the SERVAUTH
class

A z/OS system with RACF SETROPTS MLACTIVE requires all resource profiles
defined in the SERVAUTH class to have a security label. All z/OS
Communications Server profiles in the SERVAUTH class have EZA, EZB, or IST as
the first qualifier. Resource profiles that require meaningful security labels, such as
EZB.STACKACCESS and EZB.NETACCESS, are explicitly identified in this
information. The following resource profiles can be defined with the SYSNONE
security label:
v EZB.SOCKOPT.sysname.tcpname.IPV6_DSTOPTS
v EZB.SOCKOPT.sysname.tcpname.IPV6_HOPLIMIT
v EZB.SOCKOPT.sysname.tcpname.IPV6_HOPOPTS
v EZB.SOCKOPT.sysname.tcpname.IPV6_NEXTHOP

162 z/OS V1R12.0 Comm Svr: IP Configuration Guide

v EZB.SOCKOPT.sysname.tcpname.IPV6_PKTINFO
v EZB.SOCKOPT.sysname.tcpname.IPV6_RTHDR
v EZB.SOCKOPT.sysname.tcpname.IPV6_RTHDRDSTOPTS
v EZB.SOCKOPT.sysname.tcpname.IPV6_TCLASS
v EZB.SOCKOPT.sysname.tcpname.SO_BROADCAST
v EZB.FTP.sysname.ftpdaemonname.ACCESS.HFS
v EZB.RPCBIND.sysname.rpcbindname.REGISTRY

Some installations might want to define SO_BROADCAST with the SYSLOW
security label to further reduce the exposure of data write_down by restricting
datagram broadcast to users running with SYSLOW or SYSMULTI. All other z/OS
Communications Server resource profiles can be defined with the SYSNONE
security label.

Planning your multilevel secure network
Separate your network into security zones. Each subnetwork of physically
managed systems should be defined as a single security zone. Several subnetworks
with identical security labels and discretionary access control policy requirements
can be assigned the same security zone name. Each trusted subnetwork of
self-managed multilevel secure systems likely requires several security zones. The
trusted subnetwork can also contain physically managed resources, such as routers
and network administrator workstations. The trusted subnetwork security zone is
likely to require a SYSHIGH security label. Multilevel secure stacks within the
trusted subnetwork must have their interface addresses in security zones with the
security label of the stack. VIPAs are usually placed in separate subnetworks
dedicated to VIPAs and containing no real interface addresses. Multicast addresses,
loopback addresses, and unspecified addresses (IPv4 INADDR_ANY and IPv6
in6addr_any) require security zones as well.

The security administrator does the following:
v Defines security labels in the z/OS security server.
v Creates user IDs in the security server with appropriate security labels.
v Defines common discretionary access control policies.
v Defines the security zone name for each required combination of security label

and discretionary access control policy.
v Identifies groups of managed machines that belong in each security zone.
v Provides physical security for each group of machines to ensure only users with

appropriate security clearance can use them.
v Configures managed machines so that only the network administrator can set IP

addresses.

The network administrator does the following:
v Isolates each group of machines into a subnetwork.
v Configures IP addresses on the machines.
v Configures a firewall to limit each group to only communicate with other

subnetworks that have the same security label.
v Assigns network security zone names to subnetworks.
v Defines a NETACCESS statement that maps subnetworks and systems into

network security zones. This can be placed in a shared data set that can be
included in the PROFILE.TCPIP of all z/OS CS stacks in the network.

Chapter 4. Preparing for TCP/IP networking in a multilevel secure environment 163

Planning for interactive UNIX System Services users in a multilevel
secure environment

Interactive users of z/OS UNIX System Services that are permitted to log on with
more than one security label must have a separate home directory for each security
label. The approach recommended in z/OS Planning for Multilevel Security and the
Common Criteria is similar to the following.

Steps for creating a separate home directory for each security
label

Perform the following steps to create a separate home directory for each security
label:

1. For each supported security label:

a. Log on to an administrative user ID with that security label.
b. Create a directory with the name of that security label under the /u

directory.
c. For each user permitted to that security label, create a home directory

under that security label directory.

2. Create a symbolic link in the /u directory using the special value
“$SYSSECR/”, perhaps named symsecr as follows:
ln -s “$SYSSECR/” /u/symsecr

Tip: When issuing this command from the shell, use double quotation marks
around the $SYSSECR/ string so that the shell does not attempt variable
substitution before passing it to the ln command.

3. Define all users' home directories to be '/u/symsecr/user' as follows:

ALTUSER user OMVS(HOME('/u/symsecr/user'))

This approach is useful in many other situations where a different configuration is
required for different security labels.

Steps for setting stack affinity by security label
Installations that start several TCP/IP stacks under UNIX System Services common
INET (CINET) often find it useful to set stack affinity for most interactive users.
This can most easily be done by setting the environment variable
_BPXK_SETIBMOPT_TRANSPORT to the name of the stack that users should use
during login profile processing, as follows:

1. Create a directory for each security label under the /etc directory.

2. Create a profile script file in each directory containing the following:

export _BPXK_SETIBMOPT_TRANSPORT=stackname

3. Create a “$SYSSECR/” symbolic link in the /etc directory, perhaps named
seclbl as follows:
ln -s “$SYSSECR/” /etc/seclbl

164 z/OS V1R12.0 Comm Svr: IP Configuration Guide

4. Edit the /etc/profile script file and add the following:

if test –f /etc/seclbl/profile
then
. /etc/seclbl/profile
fi

Host and domain name by security label
Installations that start several TCP/IP stacks under UNIX System Services CINET
often find it necessary to define a different host name or domain name for
interactive users based on their security label. The first decision that needs to be
made is what host name and domain name each TCP/IP stack will have. Two
common approaches are to:
v Assign each of the stacks a different host name in the same domain name.
v Assign each of the stacks on the same z/OS image the same host name, but

define a different domain name for each security label.

These names are then implemented by creating a separate resolver configuration
file for each security label.

Steps for creating a separate resolver configuration file for each
security label
This can be accomplished using the same directory structure under the /etc
directory as follows:

1. Log in as a file system administrator with each security label.

2. Create a copy of your current resolver configuration file in each security label
directory using the following command:
cp /etc/resolv.conf /etc/seclbl/rsv.cfg

3. Edit these new files as follows:

a. Change the TCPIPJOBNAME statement to the appropriate stack job name.
b. Change the HOSTNAME statement to the appropriate host name.
c. Change the DOMAINORIGIN or first SEARCH statement to the

appropriate domain for this security label.
Tip: For information about interactions between the DOMAINORIGIN and
SEARCH statements, see the TCPIP.DATA configuration statements topic in
z/OS Communications Server: IP Configuration Reference.

4. Replace your current resolver configuration file with a symbolic link as
follows:
ln -s “$SYSSECR/rsv.cfg” /etc/resolv.conf

Planning for applications in a multilevel secure environment
In planning for applications in a multilevel secure environment, you must first
understand the multilevel security programming rules that apply to socket
applications.

Chapter 4. Preparing for TCP/IP networking in a multilevel secure environment 165

Trusted network administration server applications
Applications that are part of the infrastructure, such as DNS and routing.
The delivered information is not sensitive and needs to be accessible across
many security labels.

Trusted multilevel secure server applications
Applications with a login process using port of entry, that do all resource
access under the client's login identity, and that maintain separation of
information accessed by different client tasks, such as FTP and otelnet.

Process applications that change identity must do the following:
v Issue _poe() prior to identity change (can be done by parent, for

example, INETD).
v Change identity in parent process prior to fork, spawn, or exec to ensure

interprocess communication (IPC) resources are properly labeled.
v Access any user resources after the identity change.
v Close unnecessary parent resources prior to exec.

Threaded applications that set identity on a thread must do the following:
v Issue _poe() on handling thread prior to _pthread_security_np().
v Ensure all related processing occurs on threads that have the same

identity.
v Change identity on thread prior to spawn, fork, or exec.
v Access any user resources after identity change on the thread.
v Not access any other thread's resources.
v Close all user resources before removing identity from thread.
v Remove user identity from thread before acquiring new work.

All SYSMULTI applications must ensure that they do not put user data on
server resources or other user resources. Pay special attention to
debugging, logging, or tracing output. Many servers include user level
data in output.

Trusted single-level secure server applications
Applications that deliver sensitive information accessed under the server's
identity, such as TFTP and HTTP, and applications with a login process
that do not use port of entry nor access client information under the
server's identity, such as SMTP and MVSHRD.

Network administration commands and client applications
Local commands, requiring special controls and privileges, that are used to
query, configure, or diagnose the network infrastructure.

IBM zEnterprise System (zEnterprise) platform management applications
Authorized zEnterprise applications that perform platform management
functions. For more information about these applications, see zEnterprise
System Ensemble Planning and Configuring Guide.

General user commands and client applications
Local commands that access resources (including network resources) under
the invoking user's security environment.

Unsupported applications
Applications that have not been inspected, or have been inspected and are
not trusted in a multilevel secure environment.

166 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|

|
|
|

|
|
|

Configuring z/OS CS applications in a multilevel secure
environment

This topic describes configuration for each of the z/OS CS application categories.

Trusted network administration server applications
The following are trusted network administration server applications:
v DNS name server (BIND 9)
v OMPROUTE
v Resolver
v SNTPD
v TIMED
v TRMD
v z/OS syslog daemon (syslogd)
v z/OS UNIX Policy Agent

They can run under a user ID with the SYSMULTI security label in a multilevel
secure environment, provided that they adhere to the following configuration
instructions.

DNS name server (BIND 9): You can run as many instances of DNS as
appropriate for your installation. Name resolution is not considered sensitive
information. You can run one instance of the DNS server per z/OS image under a
user identity with a SYSMULTI security label.

OMPROUTE: You should run one instance of OMPROUTE for each stack that is
using dynamic route configuration. Each instance of OMPROUTE must run under
a user ID with SYSMULTI. OMPROUTE communicates with multicast IP
addresses. These addresses must be configured into NetAccess security zones. If
OMPROUTE must communicate with adjacent nodes that are not in network
security zones with security labels equivalent to the security label of the restricted
stack or the security label associated with the local IP address, OMPROUTE must
run under a user ID that is SYSMULTI and has update authority to the
EZB.STACKACCESS resource profile. A SYSMULTI user with UPDATE authority to
the EZB.STACKACCESS resource profile is exempt from the restriction that all
traffic must be with partners that are in security zones with security labels that are
equivalent to the stack's security label or the security label associated with the local
IP address. You should carefully protect your routing configuration files to
maintain network security. You should consider using any application level
security supported by the routing protocol you use. OMPROUTE must be run with
stack affinity for the stack that it is servicing.

OMPROUTE uses multicast UDP datagrams to discover adjacent OSPF routing
daemons on common subnetworks. Adjacent OMPROUTE instances then establish
TCP connections with each other. When two unrestricted stacks running
OMPROUTE are attached to a common subnetwork that is neither XCF nor
IUTSAMEHOST, adjacency errors will occur. The multicast UDP datagram is
successfully transmitted, but the subsequent TCP connection between the two
SYSMULTI interface addresses fails because it requires packet tagging. These
adjacency failures can be avoided by preventing OMPROUTE from receiving
multicast datagrams from partners with which it cannot communicate.

Steps for avoiding adjacency failures: Perform the following steps to prevent
OMPROUTE from receiving multicast datagrams from partners with which it
cannot communicate.

Chapter 4. Preparing for TCP/IP networking in a multilevel secure environment 167

|

|

|

|
|

|

|

|

|

|

|

|

|

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

1. Create a network security zone named URXCF for all interface addresses in
XCF or IUTSAMEHOST networks on unrestricted stacks:
a. Define a generic SERVAUTH NETACCESS profile for this zone with the

following RACF command:
RDEFINE SERVAUTH EZB.NETACCESS.*.*.URXCF UACC(READ) SECLABEL(SYSMULTI)

b. Modify the common NETACCESS profile to define the addresses in this
zone:
NETACCESS
192.168.10.0/24 URXCF ; xcf subnet perhaps
10.254.254.0/24 URXCF ; IUTSAMEHOST subnet perhaps
ENDNETACCESS

2. Create a network security zone named UROTHER for all interface addresses in
other network types on other unrestricted stacks:
a. Define a generic SERVAUTH NETACCESS profile for this zone with the

following RACF command:
RDEFINE SERVAUTH EZB.NETACCESS.*.*.UROTHER UACC(READ) SECLABEL(SYSMULTI)

b. Prevent the OMPROUTE running for each unrestricted stack from receiving
datagrams from this zone with the following RACF command:
PERMIT EZB.NETACCESS.*.*.UROTHER CLASS(SERVAUTH) ID(ompurid) ACCESS(NONE)

c. Modify the common NETACCESS profile to define the addresses in this
zone:
NETACCESS
10.254.1.0/24 UROTHER ; ethernet subnet perhaps
ENDNETACCESS

3. Create a network security zone named URLOCAL for all interface addresses in
other network types on each specific unrestricted stack. OMPROUTE is
permitted to use this local interface to connect to adjacent OMPROUTE
daemons on adjacent restricted stacks.
a. Define a generic SERVAUTH NETACCESS profile for this zone with the

following RACF command:
RDEFINE SERVAUTH EZB.NETACCESS.*.*.URLOCAL UACC(READ) SECLABEL(SYSMULTI)

b. Modify the local NETACCESS profile for each stack to define the local
addresses in this zone:
NETACCESS
10.254.1.17/32 URLOCAL ; local address in ethernet subnet perhaps
ENDNETACCESS

Resolver: The resolver task is started by z/OS UNIX and runs under the same
identity as the OMVS address space. This identity normally has a security label of
SYSMULTI. The resolver processes its configuration, system console commands,
and its CTRACE under this identity.

The resolver is configured to use a set of files, data sets, and name servers in a
given sequence when asked to resolve a name or IP address. For information on
configuring the resolver search sequence, see z/OS Communications Server: IP
Configuration Reference.

The name resolution process is performed on the requesting thread of execution
under the user identity associated with that thread. Each user must have READ

168 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|

|
|

|

|
|

|
|
|
|

|

|
|

|
|

|

|
|

|

|
|

|
|
|

|

|
|
|
|

|
|

|

|
|

|
|
|

|

|
|
|
|

|
|
|
|

|
|

access to the files and data sets configured. This is best accomplished by making
these UACC(READ) with SECLABEL(SYSLOW). For the resolver to contact a name
server on their behalf, each user must also have appropriate STACKACCESS
permission and NETACCESS permission to the security zone of the name server.

z/OS UNIX might be configured in a CINET environment with multiple AF_INET
Physical File Systems (TCP/IP stacks). In this environment, users and jobs can
optionally have affinity for a single stack or allow CINET to choose a stack for
them. When stack affinity is not set, CINET replicates some AF_INET calls to all
attached stacks. Other calls are routed by CINET to a single stack based on routing
information that CINET has extracted from those stacks. The socket() call is one of
the calls that is routed to all connected stacks. This might produce RACF Failure
Audit messages to any stacks that the resolver user is not permitted to. These
messages can be eliminated by setting stack affinity prior to using resolver
functions.

SNTPD: You can run as many instances of SNTPD as appropriate for your
installation. Time is not considered sensitive information. You can run any SNTPD
server under a user identity with a SYSMULTI security label.

TIMED: You can run as many instances of TIMED as appropriate for your
installation. Time is not considered sensitive information. You can run any TIMED
server under a user identity with a SYSMULTI security label.

TRMD: You should run one instance of TRMD for each stack that has IDS or IP
security functions configured. Each instance of TRMD can run under a user ID
with the same security label as the stack it is servicing, or with SYSMULTI. TRMD
must be run with stack affinity for the stack that it is servicing.

z/OS syslog daemon (syslogd): You should run one instance of syslogd per z/OS
image under a user ID with the SYSMULTI security label. The AF_UNIX socket
(default name /dev/log) created by syslogd must have a security label of
SYSMULTI, so that applications running under various security labels can log to it.

Syslogd routes application log messages according to filters configured in
/etc/syslog.conf. Log messages from applications running under different security
labels can be mixed into an output log file by a filter rule. Each output log file
created by syslogd should be configured in a directory with a SYSHIGH security
label.

z/OS UNIX Policy Agent: You should run one instance of Policy Agent per z/OS
image under a user ID with the SYSMULTI security label. The AF_UNIX socket
/tmp/unix.str created by Policy Agent must have a security label of SYSMULTI so
that applications running under various security labels can connect to it. The user
ID that Policy Agent is running under should have READ access to the
EZB.STACKACCESS resource profiles of all stacks on the system.

Trusted multilevel secure server applications
The following are trusted multilevel secure server applications:
v TN3270E Telnet server
v z/OS UNIX FTP server
v z/OS UNIX REXEC server
v z/OS UNIX rpcbind server
v z/OS UNIX RSH server
v z/OS UNIX Telnet server

Chapter 4. Preparing for TCP/IP networking in a multilevel secure environment 169

|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|

|

|

|

|

|

|

These applications can run under a user ID with the SYSMULTI security label in a
multilevel secure environment, provided that they adhere to the following
configuration instructions.

TN3270E Telnet server: You can run up to eight instances of the TN3270E Telnet
server (Telnet), as appropriate for your installation. You can optionally configure
the NACUSERID statement to enable Network Access Control for your Telnet, or
use the procedure's user ID.

Telnet maps TCP connections to LU names configured in LU groups or supplied
by an LU mapping exit. All of the LU names in a single LU group or that are
provided by a single exit must have the same security label. Telnet ensures that the
mapped LU name has an equivalent security label to the NetAccess profile for the
network security zone containing the client. If the security label for the NetAccess
profile is SYSMULTI, Telnet ensures that the mapped LU name also has a security
label of SYSMULTI. When performing user login authentication, the SNA
application should use this LU name as the port of entry TERMID. The LU name
profile in the TERMINAL class must have equivalent security label definitions on
both the Telnet system and the SNA application system.

z/OS UNIX FTP server: You can run as many instances of the FTP daemon as
appropriate for your installation. You can run any FTPD under a user identity with
a SYSMULTI security label. A single FTPD can span a mix of restricted and
unrestricted stacks in a CINET environment.

To use NetAccess profiles for IPv4 clients, configure PortOfEntry4 SERVAUTH in
the FTP.DATA file of the server. If you do not, you must configure profiles in the
TERMINAL class covering all IPv4 addresses in your multilevel secure network,
with the same security label defined on your corresponding NetAccess profiles.

z/OS UNIX rpcbind server: You should run one instance of rpcbind per z/OS
image under a user ID with UID(0) and the SYSMULTI security label. You must
define the resource profile EZB.RPCBIND.sysname.rpcbindname.REGISTRY in the
SERVAUTH class. Enable applications to register and unregister with rpcbind by
granting at least READ access to the resource profile for the user IDs under which
the applications run.

Tip: The registration and deregistration procedures PMAPPROC_SET,
PMAPPROC_UNSET, RPCBPROC_SET, and RPCBPROC_UNSET are defined in
RFC 1833 Binding Protocols for ONC RPC Version 2.

Requirements:

v The rpcinfo utility can list and delete rpcbind registrations. You cannot delete
rpcbind registrations using rpcinfo unless the user ID has at least READ access
to the resource profile.

v Some RPC library calls register and deregister applications with rpcbind or
portmapper. These calls include registerrpc(), svc_register(), pmap_set(), and
pmap_unset(). An application that uses these library calls must run under a user
ID that has been granted at least READ access to the resource profile.

Client programs can request that rpcbind forward RPCs to registered server
programs. For each of these target assistance requests, the rpcbind server forks a
new process that runs under the security label of the client's network security
zone. The user ID under which rpcbind runs must have at least READ access to
each of these security labels that you want to support.

170 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|

|

|
|
|

|
|
|
|

|
|
|
|
|

Tip: The RPC library routine pmap_rmtcall() issues target assistance requests on
behalf of the caller.

z/OS UNIX INET daemon: The z/OS UNIX INET daemon (inetd) can be
configured to listen for requests for many different services. You can run inetd
under a user identity with a SYSMULTI security label. Each connection to one of
its ports causes it to issue the _poe() service and fork a new instance of the server
configured to handle that service. The new connection is passed to the server. If a
user ID for the forked server is configured in the inetd configuration file, that user
ID must be authorized to the SERVAUTH NETACCESS profile for the network
security zone containing the client IP address. If the forked server performs
additional user login authentication, that user ID must also be permitted to the
NetAccess profile.

The following z/OS CS servers are designed to be forked by inetd. They each
perform additional user authentication.
v z/OS UNIX REXEC server
v z/OS UNIX RSH server
v z/OS UNIX Telnet server

Trusted single-level secure server applications
The following are trusted single-level secure server applications:
v SMTP server (SMTPPROC)
v TFTP
v TSO REXEC and RSH servers
v z/OS UNIX sendmail

They are not supported in a multilevel secure environment when they are run
under a user ID with a security label of SYSMULTI. The following configuration
instructions show how to run separate instances of these servers for each required
security label.

SMTP server (SMTPPROC): The SMTP server receives mail files from TCP
clients or the JES spool, and forwards mail files to other SMTP servers or to the
JES spool. User identities and mail security labels are not processed.

You must run a separate instance of SMTP for each security label you need to
support. Run each one under a different job name assigned to a user ID with the
appropriate security label. You can run multiple SMTP servers on the same
unrestricted stack. Define a VIPA in a network security zone with the appropriate
security label for each server on that stack. Use the PORT reservation statement in
the TCPIP profile or the LISTENONADDRESS keyword in the SMTP configuration
file to override the bind address of each job to the appropriate VIPA. You can also
run multiple SMTP servers with one server per restricted stack using stack affinity.
In this case, it is not necessary to override the INADDR_ANY bind address.

Spool files routed to an instance of SMTP must have an equivalent security label.

Spool files created by SMTP carry the SMTP security label. SMTP servers are only
permitted to connect to other SMTP servers with an equivalent security label.

TFTP: The TFTP server delivers files to any requester without user authentication.
It should be configured to limit the files it attempts to access. All file access is done
under its own user identity. Clients can get files that are publicly readable and

Chapter 4. Preparing for TCP/IP networking in a multilevel secure environment 171

|
|

|
|
|
|
|
|
|
|
|
|

|
|

|

|

|

|
|

|

|

|

|

|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

|

|
|

|
|
|

have security labels that the TFTP server dominates. Clients can put existing files
that are publicly writable and have a security label that dominates the TFTP
server's security label.

Requirement: You must run a separate instance of TFTP for each security label you
need to support.

Steps for running a separate instance of TFTP for each security label: Before you begin,
plan to run each instance of TFTP under a different job name assigned to a user ID
with the appropriate security label. Understand that you can run multiple TFTP
servers on the same unrestricted stack.

Perform the following steps to run a separate instance of TFTP for each security
label:

1. Define a VIPA in a network security zone with the appropriate security label
for each server on that stack.

2. Perform one of the following:

v With a unique port number for each entry, use the PORT reservation
statement in the TCPIP profile to override the bind address of each job
name to the appropriate VIPA and port number.

v Instead of using the PORT reservation statement and specifying the port
using -p in the TFTP start procedure, use the -b TFTP start option to specify
the IP address to which this instance of TFTP should bind. If the -b start
option is used, each instance of TFTP can use the same well-known port
(69).

3. Ensure the procedure for each instance of TFTP specifies on which port or IP
address it will run.

You know you are done when you have established an environment where
separate instances of TFTP can use the same well-known port (if the -b start option
was used.)

In a CINET environment, you should establish stack affinity to the intended server
stack prior to starting each instance of TFTP.

Guideline: Ensure that files and directories have appropriate security labels prior
to using the TFTP server. Be especially careful not to have publicly writable files
with a SYSMULTI security label, to eliminate the possibility of two users with
different security labels (including two TFTP servers) passing data through the file.

TSO REXEC and RSH servers: The MVRSHD server listens for both rexec and
rsh client connections. Requests are submitted as TSO batch jobs and spool output
is returned to the client. MVRSHD does perform client authentication and does
isolate user data for each connection. However, it does not request port of entry
processing during client authentication, and job submission and spool access are
performed under the identity of the MVRSHD job rather than the client identity.

RSH client requests are run under the identity and security label of the MVRSHD
job. REXEC client requests are run under the user ID specified on the request.

172 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|

|
|

|
|
|
|

|
|

|
|

|

|

|
|
|

|
|
|
|
|

|

|
|

|

|
|
|

|
|

|
|
|
|

|
|
|
|
|
|

|
|

MVRSHD supports an optional startup parameter to control whether or not it
inserts the SECLABEL parameter on the generated job card. When SECLABEL=Y is
specified at startup, MVRSHD passes its own security label in the SECLABEL job
parameter. The user ID specified on the request must be permitted to the
MVRSHD server's security label. When the parameter is not specified, or is
specified as SECLABEL=N, the default security label of the user ID specified on
the request must be identical to the MVRSHD server's security label.

You must run a separate instance of MVRSHD for each security label you need to
support. Run each one under a different job name assigned to a user ID with the
appropriate security label. You can run multiple MVRSHD servers on the same
unrestricted stack. Define a VIPA in a network security zone with the appropriate
security label for each server on that stack. Use the PORT reservation statement in
the TCPIP profile to override the bind address of each job to the appropriate VIPA.

z/OS UNIX sendmail: The objective of this topic is to guide you through the
steps required to set up sendmail in a multilevel secure environment. The contents
of this topic are based on the assumption that you understand sendmail concepts
and terminology. If you are not familiar with sendmail, you should first read
“Configuring z/OS UNIX sendmail and popper” on page 1413.

Considerations for sendmail daemons: Mail must be configured so that it can only be
exchanged among equivalent security labels. Essentially, multiple independent mail
networks must be set up. Mail support does not need to be configured for every
security label supported on a multilevel secure system. On z/OS systems, users
must not be configured for sendmail when they log on with the SYSMULTI
security label.

The most straightforward way to accomplish multiple independent mail networks
is to define a different domain for each security label supported. Single-level
security systems have their host name and IP address defined in the domain
intended for their security label. Multilevel secure systems can have the same host
name defined in each domain name intended for one of the security labels they
support. An appropriate IP address on a restricted stack, or a VIPA on an
unrestricted stack, is used in each domain for the multilevel secure system. When
users log on to a multilevel secure system, their mail address becomes their user
ID at that host name within the security label-specific domain. They use only the
sendmail daemon on their system that supports that domain. When a user directs
mail to a user ID at another multilevel secure host name, by default it is sent to the
sendmail daemon on that host that is supporting the same security label-specific
domain.

On a multilevel secure system in a single domain environment, each security label
with mail support has a different host name. When users log on, their mail address
becomes their user ID at the security label-specific host name in the common
domain. They use only the sendmail daemon on their system that supports that
host name. Users must know which host names are located in network security
zones with equivalent security labels.

Of course, a user can address mail to another user at any host and domain name.
However, their sendmail daemon will only be able to connect to other mail servers
at IP addresses in network security zones with an equivalent security label. Mail
sent to hosts that reside in security zones with security labels that are not
equivalent will time out. Mail received by the z/OS sendmail daemon, addressed
to a local user ID that is defined but is not permitted to the security label of the
sendmail daemon, is returned with the unknown user error message.

Chapter 4. Preparing for TCP/IP networking in a multilevel secure environment 173

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

The sendmail daemon receives mail files from TCP clients or other mail servers. It
forwards these mail files to other mail servers, queues mail for later transmission
to other mail servers, or passes mail to tsmail (or another local delivery agent) to
complete local delivery. In a multilevel secure environment, you must run a
separate instance of the sendmail daemon for each security label. The sendmail
daemon must not be run under the SYSMULTI security label. In some cases, the
sendmail daemon queues mail for delivery. There are several different
configuration options that allow the sendmail daemon to process the queue. Each
mail queue must have a security label that matches the security label of the
sendmail daemon.

Run each sendmail daemon under a different job name assigned to a user ID with
the appropriate security label. In a multilevel secure environment, there are special
configuration considerations and changes needed to support multiple sendmail
daemons running under different security labels. These considerations and changes
are as follows:
v You can run multiple sendmail daemons on the same unrestricted stack (using

multiple network security zones), or you can run one sendmail daemon on each
restricted stack.

v If CINET is active and multiple restricted stacks are used, each sendmail
daemon can establish stack affinity through the
_BPX_SETIBMOPT_TRANSPORT environment variable and bind to the IPv4
INADDR_ANY address, or to the IPv6 unspecified address (in6addr_any).
Otherwise, you must define a VIPA in a network security zone with the
appropriate security label for each sendmail daemon.

CINET or INET Restricted stack Unrestricted stack

CINET with single stack VIPA is optional. VIPA with same SECLABEL
is required.

CINET with multiple stacks Use VIPA or stack affinity. VIPA with same SECLABEL
is required.

INET VIPA is optional. VIPA with same SECLABEL
is required.

v Sendmail clients are permitted to connect only to sendmail daemons with an
equivalent security label. NETACCESS configuration permits sendmail daemons
(mail transmission agents, or MTAs) to connect outbound only to other MTAs
with an equivalent security label and accept inbound connections only from
clients and other MTAs with an equivalent security label. Sendmail configuration
should direct sendmail clients to attempt connections that will succeed.

v If the mail submission agent (MSA) or MTA is bound to a specific IP address, a
shared sendmail.cf can be used if you are using the same host name in security
label-specific domains. If you are using different host names, you must provide a
separate sendmail.cf for each security label.

v Whenever a sendmail daemon (MTA) is bound to a specific IP address, the use
of job-specific source IP addressing specifying the same IP address is suggested.
This ensures that name resolution by peer MTAs results in the intended host
name and domain name.

Considerations for sendmail clients and sendmail MSP: If the mail submission
program (MSP) feature is used, the feature(`msp') statement in submit.mc directs
the sendmail client to connect to localhost by default, which is typically
LOOPBACK or LOOPBACK6. In a CINET environment, these addresses can be
ambiguous if you are not using stack affinity. This default approach works when

174 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|

||||

|||
|

|||
|

|||
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

you are running only one restricted stack, or the client is running with stack
affinity to a restricted stack. The sendmail daemon must be running on the same
restricted stack and must not bind the MSA socket to a specific IP address. In all
other cases, the feature(`msp') statement in submit.mc must include the host name
of the sendmail daemon. If you are using the same host name for your sendmail
daemons with security label-specific domain names, you can use a shared
submit.cf that specifies the host name without the domain (that is, not fully
qualified). If you are using different host names for your sendmail daemons, you
must provide a separate submit.cf for each security label.

The sendmail client and MSP are permitted to connect only to a sendmail MSA or
MTA with an equivalent security label.

Other considerations: If DNS is to be used for mail server searches, each VIPA with
a unique name should be added to the name server as an MX record. If DNS is not
being used for mail server searches, DNS searching can be turned off by adding
the /etc/mail/service.switch file containing the following line:
hosts files

Sendmail.cf has /etc/mail/service.switch as the default location for this file.

If you use a shared aliases file, the user specified as postmaster in
/etc/mail/aliases must be permitted to all security labels supported for sendmail.
If you need to have different aliases, you must provide a separate aliases file for
each security label. The user specified as postmaster in each security label-specific
aliases file must be permitted to that security label.

Steps for setting up and running sendmail in a multiple security label environment:
Before you begin: Read and understand “Steps for configuring z/OS UNIX
sendmail” on page 1418. The objective of this topic is to guide you through the
steps required to set up sendmail in a multilevel secure environment. The contents
of this topic are based on the assumption that you understand your sendmail
configuration and your network configuration.

Perform the following steps to set up and run sendmail in a multiple security label
environment:

1. Create host and domain names as follows:

a. Decide whether you are using security label-specific domain names or
separate host names.

b. Define a VIPA in a network security zone with the appropriate security
label for each sendmail server to which you will bind.
Tip: This step is optional if stack affinity is used with restricted stacks.

c. Define the domains and host names in your DNS, or /etc/hosts and
/etc/ipnodes files. For example, if your system supported the security
labels SYSHIGH, SYSLOW, ORANGES and APPLES, the following are
some sample /etc/hosts definitions:
; DIFFERENT HOST NAMES IN THE SAME DOMAIN
10.10.10.1 Z10HIGH.MYCORP.COM
10.10.10.2 Z10LOW.MYCORP.COM
10.10.10.3 Z10ORNGE.MYCORP.COM
10.10.10.4 Z10APPLE.MYCORP.COM
; SAME HOST NAMES IN DIFFERENT DOMAINS
192.168.10.41 ZOS10.SYSHIGH.MYCORP.COM
192.168.10.42 ZOS10.SYSLOW.MYCORP.COM
192.169.10.43 Z0S10.ORANGE.MYCORP.COM
192.168.10.44 ZOS10.APPLES.MYCORP.COM

Chapter 4. Preparing for TCP/IP networking in a multilevel secure environment 175

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|

|

|

|
|
|
|
|

|
|
|
|
|
|

|
|

|

|
|

|
|

|

|
|
|
|

|
|
|
|
|
|
|
|
|
|

d. Set up stack affinity and resolver configuration, as described in “Planning
for interactive UNIX System Services users in a multilevel secure
environment” on page 164.

e. If starting the sendmail servers using started procedures, do one of the
following:
v Add a STDENV DD line to the JCL, specifying a file that sets the

environment variable RESOLVER_CONFIG to the appropriate file based
on the security label for this sendmail server. For example:
//STDENV DD PATH=’/etc/seclbl/sendmail.env’,
// PATHOPTS=(ORDONLY)

v Set the RESOLVER_CONFIG environment variable to the appropriate file
(based on the security label of the sendmail server) using ENVAR on the
PARM keyword of the EXEC statement. For example:
//SENDMAIL EXEC PGM=BPXBATCH,REGION=4096K,TIME=NOLIMIT,
// PARM=(’PGM /usr/sbin/sendmail -bd -q1h -L sndmail1’,
// ’ENVAR("RESOLVER_CONFIG=/etc/resolv.conf")’

2. Create security label-specific mail queue directories as follows:

a. If necessary, create the parent SYSMULTI directories. To create these
directories, you must log on as a superuser with the SYSMULTI security
label and issue the following UNIX System Services commands:
mkdir /var
mkdir /var/spool

b. Create new mail queue directories for each security label to be supported
for sendmail. For each security label to be supported for servers, repeat the
following steps:
1) Log on to a TSO user ID with that security label.
2) Issue the following UNIX System Services commands, replacing seclbl

with the security label name and sndmuser with the appropriate
sendmail user ID:
mkdir /var/spool/seclbl
mkdir /var/spool/seclbl/mqueue
chown sndmuser:sndmgrp /var/spool/seclbl/mqueue
mkdir /var/spool/seclbl/clientmqueue
chown smmsp:smmspgrp /var/spool/seclbl/clientmqueue

Tip: Do not create /var/spool/seclbl or its subdirectories for SYSMULTI
or any other security label that is not to be supported for sendmail.
There will not be a server to use them.

3) Create a symbolic link for these mail directories. The following UNIX
System Services command issued by a superuser creates the symbolic
link and directs the mail to the appropriate queue:
ln -s ’$SYSSECR/’ /var/spool/secsymr

3. Change statements in the sendmail.mc configuration file as follows:

a. Change the location of the daemon pid file so that there is a separate one
for each security label:
define(`confPID_FILE’, `/var/spool/secsymr/sendmail.pid’)dnl

b. Change the location of the local host names file so that there is a separate
one for each security label:
define(`confCW_FILE’, `/etc/secsymr/local-host-names’)dnl

c. Change the location of the queue directories:

176 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|
|

|

|

|
|
|

|
|

|
|
|

|

|
|
|

|
|
|
|
|

|
|
|

|
|
|

|

|

|

|
|

|

|
|

|

|

define(`MSP_QUEUE_DIR’, `/var/spool/secsymr/clientmqueue’)dnl
define(`QUEUE_DIR’, `/var/spool/secsymr/mqueue’)dnl

d. Define configuration file variables for the local host name and domain
name:
define(`MLS_hostname’, esyscmd(`hostname -s’))dnl
define(`MLS_domain’, esyscmd(`domainname’))dnl

e. Change the DAEMON_OPTIONS statements. Code the ADDR parameter,
specifying the unqualified local host name. For each sendmail daemon you
start, this name will be resolved within the domain specific to the security
label that daemon is running under. For example:
FEATURE(`no_default_msa’)dnl
DAEMON_OPTIONS(`Name=MTA, Addr=’MLS_hostname`, Family=inet ’)dnl
DAEMON_OPTIONS(`Name=MSA, Port=587, Addr=’MLS_hostname`, Family=inet ’)dnl

4. Change statements in the submit.mc configuration file as follows:

a. Change the location of the client queue directory:
define(`MSP_QUEUE_DIR’, `/var/spool/secsymr/clientmqueue’)dnl

b. Define configuration file variables for the local host name and domain
name:
define(`MLS_hostname’, esyscmd(`hostname -s’))dnl
define(`MLS_domain’, esyscmd(`domainname’))dnl

c. Change the FEATURE(`msp') statement. Code the unqualified local host
name for this system. For each user that invokes /bin/sendmail, this name
will be resolved within the domain specific to the security label that user is
running under. For example:
FEATURE(`msp’, MLS_hostname)

Tip: If MX records in DNS should not be searched, brackets [] must be
placed around the name or address.

5. Use the m4 compiler to create sendmail.cf and submit.cf files as follows:

a. Create symbolic links for the submit.cf and sendmail.cf files:
ln -s /etc/seclbl/mail/submit.cf /etc/mail/submit.cf
ln -s /etc/seclbl/mail/sendmail.cf /etc/mail/sendmail.cf

b. Log on with each security label to be supported for mail and create the .cf
files:
/etc/m4 /etc/mail/sendmail.mc > /etc/mail/sendmail.cf
/etc/m4 /etc/mail/submit.mc > /etc/mail/submit.cf

6. Create new system mailbox directories for each supported security label. When
sendmail is configured to use /usr/lib/tsmail, you must configure /usr/mail
to be a symbolic link to a security label-specific directory. The following
approach creates a set of security label-specific mount points for mail file
systems:
a. Log on as a superuser with the SYSMULTI security label and issue the

following UNIX System Services commands:
mkdir /mailmnt
ln -s ’$SYSSECR/mail’ /usr/mail

Tip: If another program other than /usr/lib/tsmail is used, these
commands might need to be adjusted accordingly.

b. Perform the following steps for each security label supported for mail on
the system:

Chapter 4. Preparing for TCP/IP networking in a multilevel secure environment 177

|
|

|
|

|
|

|
|
|
|

|
|
|

|

|

|

|

|
|

|
|

|
|
|
|

|

|
|

|

|

|

|
|

|
|

|
|

|

|
|
|
|
|

|
|

|
|

|
|

|
|

1) Log on to a superuser ID using the security label.
2) Set an environment variable to your current security label as follows:

export SL=$(id -M)

3) Issue the following UNIX System Services command:
mkdir /mailmnt/$SL

7. Start a separate instance of the sendmail daemon for each security label you
need to support. For instructions on setting up the appropriate user IDs and
groups for sendmail, see “Steps for configuring z/OS UNIX sendmail” on
page 1418. You can start sendmail daemons either from UNIX System Services
or as started procedures. See the EZARACFM sample for examples of defining
user IDs and STARTED class profiles for sendmail.
Repeat either of the following steps to start a sendmail daemon for each
supported security label:
v From UNIX System Services:

a. Log on to UNIX System Services with the security label that you want to
support.

b. Start the sendmail daemon from the command line.
v From the MVS console:

a. Add a user ID and permit the user ID to the appropriate security label.
b. Use the STARTED class to assign the user ID with the appropriate

security label to the procedure.
c. Start the procedure from the MVS console or using the AUTOLOG

statement in PROFILE.TCPIP.

Network administration client applications
The following are network administration client applications:
v DNS utilities:

– nsupdate
– rndc

v DNS utilities used for DNS security (DNSSEC):
– dnsmigrate
– dnssec-keygen
– dnssec-makekeyset
– dnssec-signkey
– dnssec-signzone
– rndc-confgen

v Netstat
v pasearch
v Ping
v Traceroute
v trmdstat

For security implications on the use of these commands, see the following
information on configuring these applications for use in your multilevel secure
environment.

178 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|

|

|

|

|

|
|
|
|
|
|

|
|

|

|
|

|

|

|

|
|

|
|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|

nsupdate: The nsupdate command is used to update the name server database.
Because the name server is often running with a SYSMULTI security label and
listening on IP addresses in SYSMULTI network security zones, mandatory access
control policy does not limit a general user's ability to use the nsupdate command
to contact the server. File system access control lists and security labels should be
used to limit execution of this command to intended network administrators.
Application level security options should also be considered.

rndc: The remote name daemon control (rndc) command allows the system
administrator to control the operation of a name server. Because the name server is
often running with a SYSMULTI security label and listening on IP addresses in
SYSMULTI network security zones, mandatory access control policy does not limit
a general user's ability to use the rndc command to contact the server. File system
access control lists and keys should be used to limit execution of this command to
intended network administrators.

DNS utilities used for DNS security (DNSSEC): The dnssec-keygen program is
used to generate keys. The dnssec-makekeyset program is used to create a key set
from one or more keys. The dnssec-signkey program is used to sign one child's key
set. The dnssec-signzone program is used to sign a zone. The rndc-confgen
program is used to create a rndc.conf file.

Netstat: Use the Netstat command to display stack settings, and information
about open ports and established connections. You might want to restrict the
availability of some Netstat options to network administrators. For information on
restricting Netstat options, see “Netstat access control” on page 125.

pasearch: The pasearch command is provided to interrogate the stack policies
currently in place on a system. It requires that the user have superuser privileges.
Only network and security administrators that need to know policy settings should
be permitted to issue this command. To limit access, set the file mode access
permission bits using the CHMOD command.

Ping: The Ping command is used to verify the network path to a given
destination. It sends ICMP Echo Request datagrams to the destination and listens
for ICMP Echo Reply responses. Normal Network Access Control limits a user's
ability to send and receive these datagrams. On a restricted stack, all users are
limited to sending and receiving datagrams to destinations in network security
zones with security labels equivalent to the stack. On an unrestricted stack, users
are limited to destinations equivalent to their own security label. Users with a
SYSMULTI security label on an unrestricted stack are limited to those security
zones with which they are authorized to communicate.

You can permit SYSMULTI users to use the Ping command for IP addresses in
security zones with security labels that are not equivalent to that stack by using
the RACF PERMIT command to give them UPDATE access to the STACKACCESS
profile for that stack. You can configure this permission so that it is in effect only
for specific programs invoked by the users. For example, to permit users to invoke
the Ping command, specify the WHEN(PROGRAM(OPING,PING)) parameter on
the PERMIT command.

Traceroute: The Traceroute function is used to verify the network path to a given
destination and identify each intermediate system. It sends UDP datagrams to the
destination with increasing hop count values, and listens for ICMP TIME
EXCEEDED INTRANSIT and PORT UNREACHABLE responses. Normal Network
Access Control limits a user's ability to send and receive these datagrams. On a

Chapter 4. Preparing for TCP/IP networking in a multilevel secure environment 179

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

restricted stack, all users are limited to sending datagrams to destinations in
network security zones with security labels equivalent to the stack, and receiving
datagrams from intermediate systems in equivalent security zones. On an
unrestricted stack, users are limited to destinations equivalent to their own security
label. Users with a SYSMULTI security label on an unrestricted stack are limited to
those security zones with which they are authorized to communicate.

You can permit SYSMULTI users to trace the route to addresses in security zones
that are not equivalent to that stack by PERMITing them with UPDATE access to
the STACKACCESS profile for that stack. This PERMIT can be limited to only
apply when using certain programs, such as Traceroute, by using the
WHEN(PROGRAM(tracerte,otracert)) clause on the PERMIT.

trmdstat: The trmdstat command is provided to process syslogd output files and
generate IDS reports. The network or security administrator using this command
needs to be authorized to read the syslogd output files. This often requires a user
security label of SYSHIGH or SYSMULTI.

IBM zEnterprise System platform management applications
Some IBM zEnterprise System (zEnterprise) authorized applications communicate
over the intranode management network, such as those providing platform
performance management functions. For more information about these
applications, see zEnterprise System Ensemble Planning and Configuring Guide.

These applications are not supported in a multilevel secure environment when run
under a user ID with a security label of SYSMULTI. They are supported when run
under a user ID with a specific security label. Some of these applications listen
using specific multicast IP addresses and ports to determine the remote IPv6
link-local IP address and port number to use for communication with another
authorized system performing platform management.

For the zEnterprise authorized platform management application to connect to the
intranode management network, at least one TCP/IP stack on each z/OS image
must be connected to an OSM interface. That stack can be an unrestricted stack, or
it can be a restricted stack running with a security label that is equivalent to the
security label used for the zEnterprise system management agent application.

You must configure TCP/IP and the security server as follows:
v Permit the application to the STACKACCESS resource profile of the stack with

one or more OSM interfaces.
v Define an OSMACCESS resource profile on the stack with the OSM interface,

using the same security label as that of the application.
v Permit the application to the OSMACCESS resource profile.
v Define a NETACCESS resource profile for the multicast IPv6 address that is used

by the application.
v Permit the application to the NETACCESS profile for that multicast address.

General user client applications
The following are general user client applications:
v dig
v dnsdomainname, domainname
v host
v hostname
v MISCSERV (echo, discard, character generator)

180 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|

|
|

|
|

|

|
|

|

v NSLookup
v TSO REXEC client
v TSO RSH client
v TSO Telnet client
v z/OS UNIX FTP client
v z/OS UNIX REXEC client
v z/OS UNIX RSH client

These commands are supported for use by general users in a multilevel secure
environment. Mandatory access control policy enforcement limits the stacks that
can be used, the servers that can be contacted, and the local resources that can be
used. No extra, application specific, multilevel secure environment configuration is
required. For discretionary security environment considerations, see the
information for a particular application and see z/OS Communications Server: IP
Configuration Reference.

Unsupported applications
The following applications are not supported in a multilevel secure environment:
v HOMETEST command
v LPD
v LPQ command
v LPR command
v LPRM command
v LPRSET command
v NCPROUTE
v NPF
v Portmapper
v SMTP
v SNMP NetView® client
v TELNET client command
v TESTSITE command
v TNF
v VMCF
v z/OS UNIX Network SLAPM2 subagent
v z/OS UNIX OMPROUTE SNMP subagent
v z/OS UNIX popper
v z/OS UNIX RSVP agent
v z/OS UNIX SNMP client command
v z/OS UNIX SNMP server and agent
v z/OS UNIX Trap Forwarder Daemon

Any other commands or applications not explicitly mentioned in this information
have not been inspected and are not supported in a multilevel secure environment.

Chapter 4. Preparing for TCP/IP networking in a multilevel secure environment 181

Changing your multilevel secure networking environment
Changes to certain parts of your multilevel secure configuration should be well
planned. Changes to the NETACCESS statement in PROFILE.TCPIP, the security
label associated with the TCPIP started task, the security label associated with the
EZB.STACKACCESS or EZB.NETACCESS profiles in the SERVAUTH class, or the
definition of profiles in the SECLABEL class can result in an IP address being
associated with a different security label. These changes imply that corresponding
changes have been implemented that affect the security management of the
affected systems. For systems that support mandatory access control policy
enforcement, those policies must be updated at the same time. For systems that do
not support mandatory access control policy enforcement, the physical user access
procedures, system data content, firewall configurations, and router configurations
must be updated at the same time.

The safest method of controlling mandatory access control policy changes is to use
the RACF options MLSTABLE and MLQUIET. When the RACF options are set to
MLACTIVE, MLSTABLE, and NOMLQUIET, TCP/IP does not permit an existing
NETACCESS configuration to be changed with a VARY TCPIP,,OBEYFILE
command. When the RACF option MLQUIET is set, RACF requires the TCP/IP job
user ID to be RACF SPECIAL to open data sets referenced by VARY
TCPIP,,OBEYFILE commands. For more information on setting and using these
options, see z/OS Security Server RACF Security Administrator's Guide.

In an MLSTABLE environment, all user and application access to data should be
halted before entering the MLQUIET environment. All network access can be
halted by stopping all TCP/IP stacks. If security administrators must access the
system through the TN3270E Telnet server (Telnet), consider running a restricted
stack with only Telnet for the security administrators. Permit the Telnet
NACUSERID or the procedure's user ID to the EZB.STACKACCESS profile for this
stack. Stop all other TCP/IP stacks. After the local policy changes and all
coordinated changes on other systems are complete, set NOMLQUIET and restart
your production TCP/IP stacks and network servers.

Every stack running on a system with the RACF option MLACTIVE does an
internal consistency check on several PROFILE.TCPIP statements and their
associated SERVAUTH profiles. This consistency checking occurs at the end of
initial profile processing, after the VARY TCPIP,,OBEYFILE command modifies the
profile, and whenever RACLIST is issued for the SERVAUTH or SECLABEL
classes. Some applications, such as OMPROUTE, also cause the consistency
checking to occur because they internally issue an equivalent of the VARY
TCPIP,,OBEYFILE command. TCP/IP writes a message to the job log for each
inconsistency it finds that could compromise the security of information flowing
through the stack. If inconsistencies are found, a final message (EZD1217I)
summarizing the number of problems found is written to the system console.

By default, the stack will continue running when inconsistencies are found. It is
recommended that you override this default by specifying GLOBALCONFIG
MLSCHKTERMINATE in PROFILE.TCPIP, or in the data set referenced by a VARY
TCPIP,,OBEYFILE command, before starting production workloads. Before making
security related configuration changes, it is recommended that you first stop all
production workloads. You can then specify GLOBALCONFIG
NOMLSCHKTERMINATE in PROFILE.TCPIP or in the data set referenced by a
VARY TCPIP,,OBEYFILE command. This parameter can only be changed from
MLSCHKTERMINATE to NOMLSCHKTERMINATE when the RACF option
NOMLSTABLE is set or when both MLSTABLE and MLQUIET are set.

182 z/OS V1R12.0 Comm Svr: IP Configuration Guide

The stack performs the following consistency checks:
v The stack does not currently have a NETACCESS statement configured.
v The TCP/IP job security label must be currently active on this system.
v A STACKACCESS profile for this stack must exist.
v The STACKACCESS profile must have the same security label as the TCP/IP

job.
v The NETACCESS statement must have both INBOUND and OUTBOUND

turned on.
v A NETACCESS profile must exist for each defined NETACCESS security zone.
v If NETACCESS DEFAULTHOME is configured, it must have a zone with the

same security label as the TCP/IP job.
v If NETACCESS TcpStackSourceVIPA is configured, it must be in a zone with the

same security label as the TCP/IP job.
v The special address INADDR_ANY (0.0.0.0) must be in a NETACCESS security

zone.
v The special address INADDR_ANY (0.0.0.0) must be in a zone with the same

security label as the TCP/IP job.
v On an IPv6-enabled stack, the special IPv6 unspecified address [in6addr_any (::)]

must be in a NETACCESS security zone.
v On an IPv6-enabled stack, the special IPv6 unspecified address [in6addr_any (::)]

must be in a zone with the same security label as the TCP/IP job.
v On an IPv6-enabled stack, every INTERFACE statement must have a manually

configured INTFID. (OSM interfaces are exempt from this check.)
v On an IPv6-enabled stack, every INTERFACE that supports autoconfiguration

must have at least one manually configured IPADDR. (OSM interfaces are
exempt from this check.)

v On an IPv6-enabled stack with dynamic XCF, DYNAMICXCF INTFID must be
configured on the IPCONFIG6 statement.

v Every home address on the stack must be in a NETACCESS security zone. (OSM
interfaces are exempt from this check.)

v Every home address that is not a VIPA must be in a zone with the same security
label as the TCP/IP job. (OSM interfaces are exempt from this check.)

v Every home address that is a VIPA must be in a zone with an equivalent
security label as the TCP/IP job.

v On a restricted stack, VIPAs must not be in a security zone with the SYSMULTI
security label.

There are several consistency checks that are not performed by the stack. These
remain the responsibility of the system security administrator:
v The NetAccess zone definitions must agree across stacks. It is recommended that

common definitions from a shared data set be included in all stack profiles.
v Subnetworks or networks are entirely contained in a single NetAccess security

zone. NetAccess checks for authorization to a specific destination address, but
broadcast packets are delivered to all addresses within a subnetwork or network.
Addresses owned by multilevel secure stacks are the only addresses that can be
safely configured into a network security zone different than their subnetwork
or network.

v RACF definitions must be consistent across RACF data sets. It is recommended
that installations use RACF facilities to manage this consistency. SECDATA and
SECLABEL class profile consistency is critical to preserve the meaning of

Chapter 4. Preparing for TCP/IP networking in a multilevel secure environment 183

|

|
|

|
|

|

SECLABEL profile names. It is suggested that installations define SERVAUTH
profiles for all zones that are generic across all systems and stacks, except those
containing the loopback address and the unspecified address (IPv4
INADDR_ANY and IPv6 in6addr_any).

Continue making changes to either PROFILE.TCPIP statements or RACF profiles
until no consistency errors are reported. Then, specify GLOBALCONFIG
MLSCHKTERMINATE in PROFILE.TCPIP, or in the data set referenced by a VARY
TCPIP,,OBEYFILE command. At that point, it is safe to set NOMLQUIET and
restart production workloads.

184 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Chapter 5. TCP/IP Customization

Before you begin customizing, it is assumed that you know what configuration
data sets are used by the TCP/IP address space, their search order, and
considerations for what type of TCP/IP stack you will be running in your
environment (for example, Enterprise Extender (EE) and multiple stacks). See
Chapter 2, “IP configuration overview,” on page 11 for this information.

After reading this information, you will know how to configure and start syslogd
and the TCP/IP stack. You should understand the relationships of TCP/IP
configuration files as they apply to the TCP/IP address space. The four main
configuration files that you will be working with are:
v TCPIP.DATA
v PROFILE.TCPIP
v HOSTS.LOCAL
v ETC.IPNODES

You should be able to use the following commands to verify customization:

TSO PING and z/OS UNIX ping
Sends IP datagrams to a specified destination host, requesting a reply, and
measures the round trip time. This helps you to verify the interfaces
defined to the TCP/IP address space.

TSO NETSTAT, z/OS UNIX netstat, and DISPLAY TCPIP,,NETSTAT
Queries TCP/IP about the network status of the local host or the contents
of the resolver cache. With Netstat, you can verify most TCP/IP
customization values that can be set from PROFILE.TCPIP. You can also
display detailed information about the contents of the system-wide
resolver cache, or statistical information such as the number of cache
queries.

TSO HOMETEST
Verifies your host name and address configuration.

TSO TRACERTE and z/OS UNIX traceroute
Displays the route that a packet takes to reach a requested destination.

Configuring the syslog daemon
The syslog daemon (syslogd) processing is controlled by a configuration file called
/etc/syslog.conf, in which you define logging rules and output destinations for
error messages, authorization violation messages, and trace data. Logging rules are
defined using a facility name and a priority code. For locally generated messages,
the user ID and job name of the program that generated the message can also be
specified in the rule. For messages arriving over the network, the rule can include
the IP address or host name of the sender. The facility name and priority code are
passed on the logging request from an application when it wants to log a message.
The user ID and job name are provided by the system. See z/OS Communications
Server: IP Configuration Reference for more information about logging rules.

You can specify statements and rules in the configuration file using a variety of
EBCDIC code pages. Use the SYSLOGD_CODEPAGE environment variable to
specify the code page that you want to use. The default code page is IBM-1047.

© Copyright IBM Corp. 2000, 2011 185

As shown in the following sample /etc/syslog.conf file, comments can be added to
the configuration file by placing the number (#) character in column one of the
comment line. Everything following the number (#) character is treated as a
comment. This sample is available in /usr/lpp/tcpip/samples/syslog.conf.
Licensed Materials - Property of IBM
5694-A01
Copyright IBM Corp. 2010
Status = CSV1R12
#
/etc/syslog.conf - control output of syslogd
#
The # sign begins a comment which extends to the end of the line.
#
Blank lines are ignored.
#
See IP Configuration Reference for detailed information about
the syntax. These comments are meant to provide only a general
overview.
#
There are two types of configuration information:
#
1) Global configuration values that control the behavior of syslogd.
2) Rules that specify types of messages which syslogd will
store, and where syslogd will store them.
#
Global configuration statements:

#
The following global statements control the syslogd automatic archive
function. All statements except BeginArchiveParms should only be
specified once. If you specify them multiple times the last
instance is used. The BeginArchiveParms statement can be repeated
multiple times, and each instance pertains to the rules that follow
it, until another instance is specified. Each instance completely
replaces the previous instance.
#
The automatic archive function archives UNIX file destinations to
MVS sequential or generation data group (GDG) data sets. The
particular UNIX files that are to be archived must include the -N
parameter. Alternatively, you can specify the -X parameter to
reinitialize a file when an archive occurs. This means the contents
of the file are deleted. Use the -X parameter only if you do not
want to save the contents of the log file. If you don’t specify
the -N or -X parameter, then the file does not participate in
automatic archival.
#
Archival occurs for the following events:
#
- At the time of day configured on the ArchiveTimeOfDay statement.
- When one or more UNIX file systems reach the percentage full
configured on the ArchiveThreshold statement.
- When the MODIFY procname,ARCHIVE command is issued.
#
ArchiveTimeOfDay
Specifies the local time of day in hours and minutes using a 24
hour clock. Syslogd archives all eligible files at the specified
time of day. There is no default - if you don’t specify this
statement, then syslogd does not perform time of day archival.
#
ArchiveThreshold
Specifies the percentage of file system full that triggers an

186 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|

archive. This value applies to all UNIX file systems represented
by the set of UNIX files in all rules. When any file system
reaches the specified percentage full, files in that file system
are archived until the percentage full reaches half of the
configured value. Files are archived starting with the largest
and working toward the smallest. For example, if you configure
80% full, files are archived until the file system is only 40%
full. The default is 70%.
#
ArchiveCheckInterval
Specifies the value in minutes for checking the percentage full
for UNIX file systems. The default is 10 minutes.
#
BeginArchiveParms
Specifies archive data set details. The following parameters
can be specified. DSNPrefix is required but all other parameters
are optional (although they might need to be specified for your
installation in order for archival to succeed).
#
DSNPrefix
Specifies the data set name prefix for the archive data set.
The complete data set name is formed by concatenating this
prefix value with the unique qualifier specified on the -N
parameter on a particular rule, and with a unique suffix value.
See IP Configuration Reference for complete details on the data
set name.
#
Unit
Specifies the unit for the archive data set.
#
Volume
Specifies the volume for the archive data set.
#
MgmtClas
Specifies the management class for the archive data set.
#
StorClas
Specifies the storage class for the archive data set.
#
RetPd
Specifies the retention period in days for a sequential archive
data set. Valid values are 0 - 9999.
#
The following are example statements that illustrate how to
configure automatic archival. See the section on syslogd rules for
details about specifying rules.
#
ArchiveTimeOfDay 00:01
ArchiveThreshold 70
ArchiveCheckInterval 10
#
BeginArchiveParms
DSNPrefix USER1.ARCHIVE
Volume VOL001
RetPd 30
EndArchiveParms
#
*.SYSLOGD.daemon.notice /var/logs/syslogd/daemon.notice -N daemon.notice
#
NOTE: The archive data set name for the above example will be:
#
USER1.ARCHIVE.DAEMON.NOTICE.Dyymmdd.Thhmmss

Chapter 5. TCP/IP Customization 187

#
Syslogd rules:

#
Four criteria can be used to select locally generated
messages for processing:
#
1) user ID associated with application generating the message
#
* can be specified for the user ID if the user ID is not
important.
#
2) job name of application generating the message
#
* can be specified for the job name if the job name is not
important.
#
3) facility of the message, as specified by the application
#
This is user, mail, news, uucp, daemon, auth, cron, lpr, or
local0-local7. Consult the documentation for the application
to determine which facility the application specifies.
#
A special facility, mark, specifies that syslogd should log
mark messages on a regular basis. These can be used to verify
that syslogd was operational during a specific time interval.
#
4) priority of the message, as specified by the application
#
This is emerg, panic, alert, crit, err, error, warn, warning,
notice, info, or debug. A filter rule condition using a specified
priority will match messages with that priority or higher; higher
meaning more severe.
#
A special priority, none, specifies that messages with the
specified user ID, job name, or facility should not be
selected.
#
These criteria are specified together as
#
userid.jobname.facility.priority
#
or, if user ID and job name are both *, as
#
facility.priority
#
This can be combined in a series as
#
userid.jobname.facility.priority;userid.jobname.facility.priority
#
When using syslogd rules with a series of conditions separated by
semicolons, all of the individual conditions are evaluated
left-to-right for each message. Each matching condition results in
either a TRUE (meaning log the message) or a FALSE (meaning don’t
log the message). Conditions that don’t match are ignored.
The final result of evaluating each matching condition left-to-right
is the result of the last matching condition. Rules that have no
matching conditions for a message result in a FALSE.
Matching exclude conditions (those with priority of none) result
in a FALSE. As an example, consider the difference between the
following two rules for a message with facility of daemon and
a priority of emerg.

188 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

#
daemon.none;*.emerg /tmp/mylogfile
*.emerg;daemon.none /tmp/mylogfile
#
The first rule, first condition, results in FALSE. The first rule,
second condition, results in TRUE. Therefore, the message will be
logged to the destination for this rule.
The second rule, first condition, results in TRUE. The second rule,
second condition, results in FALSE. The message will not be logged
for this rule.
#
The order of conditions within the filter is significant.
#
Three criteria can be used to select messages received over the
network for processing:
#
1) IP address or hostname of the sender. The IP address may be in
IPv4 or IPv6 format or may be a hostname that resolves to an
IPv4 or IPv6 address. If an IP address is used, an optional prefix
length may be specified with the /x notation.
#
2) facility of the message. See the description of facility above.
3) priority of the message. See the description of priority above.
#
These criteria can be specified together as
#
(ip_address).facility.priority
#
or
#
(hostname).facility.priority
#
If the the IP address or hostname is not to be considered in selecting the
rule, then omit it and specify just facility.priority
#
The following rule will match locally generated messages or
messages received over the network from any source IP address
that have the specified facility and priority (or higher).
#
facility.priority
#
The criteria for selecting messages for processing are combined
with a destination, which tells syslogd what to do with selected
messages.
#
criteria destination
#
The destination can be a file, one or more user IDs, SMF, syslogd
at a remote host, or all logged-in users, or the operlog log stream.
#
If the destination is a file, it may be optionally followed by two
options, -F and -D. -F should be followed by an octal number that
indicates the permissions value to be used if syslogd must create
the file. -D should be followed by an octal number that indicates
the permissions value to be used if syslogd must create the
directory to contain the file. These options are only effective
if syslogd is started with the -c start option. See the
Communications Server IP Configuration Reference for details.
#
The following example stores messages with facility daemon or
local1 in the file /directory/logfile.
#

Chapter 5. TCP/IP Customization 189

|
|
|
|
|
|
|
|
|
|
|
|

|

daemon.*;local1.* /directory/logfile
#
The directory structure used in this sample configuration is
expected to be created automatically by syslogd, with a new
directory of log files for each day. This requires two types
of configurations outside of the scope of this configuration
file:
#
1) syslogd command-line option
#
The syslogd -c command-line option should be enabled, causing
syslogd to create log files and directories if they do not
already exist.
#
2) cron job
#
A cron job should be utilized to wake up syslogd at the
beginning of each day to switch to new log files in a new
directory. Here is the cron job definition:
#
1 0 * * * kill -HUP `cat /etc/syslog.pid`
#
This job should be defined for a user ID with UID zero so that
it has permissions to send the signal to syslogd.
#
See UNIX System Services Planning and UNIX System Services
Command Reference for more information about cron.
#
A sample shell script is provided for removing log files which are
a specifed number of days old. It assumes the same directory
structure which is used in this sample configuration.
#
All example rules except for the last one are commented-out. Some
or all of the example rules will need to be changed for your
environment. Each example rule contains an explanation of changes
which may be required.
#
###
#
Write all messages with priority crit or higher to the MVS operator
console. See the UNIX System Services Planning manual for more
information about the /dev/console special file.
#
*.crit /dev/console
#
###
#
Write all messages with facility of daemon and a priority of error
or higher to the operlog log stream. The operlog facility must be
active in order to be able to log messages to the operlog log
stream.
#
daemon.err /dev/operlog
###
#
Write all messages from syslogd itself to the file
/var/log/YYYY/MM/DD/syslogd.log and to the system console.
#
Notes:
#
a) If syslogd is invoked as a started task or from a shell script
(e.g., /etc/rc) with job name SYSLOGD, the name of the

190 z/OS V1R12.0 Comm Svr: IP Configuration Guide

long-running syslogd job is SYSLOGD followed by a digit.
#
If syslogd runs with a different job name on your system, the
rule will have to be changed accordingly.
#
b) During initialization, syslogd writes messages to
/dev/console. These rules cover messages during steady-
state.
#
.SYSLOGD.*.* /var/log/%Y/%m/%d/syslogd
.SYSLOGD.*.* /dev/console
#
###
#
Write all messages from inetd to the log file inetd and to the
console.
#
Notes:
#
a) If inetd is invoked as a started task or from a shell script
(e.g., /etc/rc) with job name INETD, the name of the
long-running inetd job is INETD followed by a digit.
#
If inetd runs with a different job name on your system, the rule
will have to be changed accordingly.
#
.INETD.*.* /var/log/%Y/%m/%d/inetd
.INETD.*.* /dev/console
#
###
#
Write all messages with priority err or higher from applications
which specify facility "daemon" to the log file daemon.
Because we chose to log messages from syslogd and inetd separately,
we’ll filter out those messages from this rule using special
priority none.
#
Notes:
#
a) In this example, SYSLOGD followed by some other character is the
job name of syslogd. If it is different on your system, change
the rule.
b) In this example, INETD followed by some other character is the
job name of inetd. If it is different on your system, change the
rule.
#
daemon.err;*.SYSLOGD*.*.none;*.INETD*.*.none /var/log/%Y/%m/%d/daemon
#
###
#
Write all messages from applications which specify facility "auth"
to the log file auth.
#
auth.* /var/log/%Y/%m/%d/auth
#
###
#
Write all messages from applications which specify facility "mail"
to the log file mail. Use file permissions of 640 octal if the file
has to be created. Use permission of 770 octal if the directory has
to be created. syslogd must be started with -c for these options
to have any effect.

Chapter 5. TCP/IP Customization 191

#
mail.* /var/log/%Y/%m/%d/mail -F 640 -D 770
#
###
#
Write all messages with priority err and higher from otelnetd and
other applications which specify facility "local1" to the log file
local1.
#
local1.err /var/log/%Y/%m/%d/local1
#
###
#
Write all messages from otelnetd and other applications which
specify facility "local1" when running as user SMITH to the log file
local1.smith. This could be useful if, for example, otelnetd traces
need to be collected for a problem which user SMITH is experiencing
and you do not wish to collect otelnetd traces from all user IDs.
#
SmITh.*.local1.* /var/log/%Y/%m/%d/local1.smith
#
###
#
Write all messages with priority err and higher to SMF. These will
be stored in SMF record type 109. SMF must be active and
configured to accept record type 109. The user ID associated with
syslogd must have read access to BPX.SMF. See UNIX System Services
Planning for more information about BPX.SMF.
#
*.err $SMF
#
###
#
Write all messages with priority crit and higher to the syslogd on
host 192.168.1.9. The host may be specified by IPv4 address, by IPv6
address, or by a name that resolves to an IPv4 or IPv6 address.
#
*.crit @192.168.1.9
#
###
#
Write all messages with priority crit and higher that arrive from
host 192.168.0.6 to the operlog log stream.
#
(192.168.0.6).*.crit /dev/operlog
#
###
#
Write all messages with priority crit and higher that arrive from
any host with IP address in the range 192.168.0.0 to 192.168.0.255
to the operlog log stream.
#
(192.168.0.6/24).*.crit /dev/operlog
#
###
#
Write all messages with priority err and higher to log file errors.
#
THIS EXAMPLE STATEMENT IS UNCOMMENTED.
#
*.err /var/log/%Y/%m/%d/errors
#

192 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Starting and stopping syslogd
Syslogd can be started only by a task or user with superuser authority (UID 0).
You can start syslogd from a procedure or from the UNIX shell. If you start
syslogd from a procedure that does not use BPXBATCH, the resulting job name is
the same as the procedure name. If you start syslogd from the UNIX shell or from
a procedure that uses BPXBATCH, the resulting job name is the user ID or the
value of the _BPX_JOBNAME environment variable.

Rules:

v If you start syslogd from the UNIX shell or from BPXBATCH, start it as a
background shell command by specifying an ampersand (&) as the last character
on the command. If you do not specify the ampersand, control does not return
to the shell until syslogd ends. Specifying an ampersand is especially important
if syslogd is started from a shell script, such as /etc/rc.

v If you start syslogd from a cataloged procedure that uses BPXBATCH, you need
to include a sleep command in your script after the start for syslogd to provide
syslogd the time to initialize before the shell script ends. For more information
about including a sleep command, see z/OS UNIX System Services Planning.

v If you start syslogd from a cataloged procedure that uses BPXBATCH, you need
to use an HFS file for the STDOUT and STDERR DD statements; otherwise the
job will not end.

If there is no TCP/IP transport active when syslogd starts or if TCP/IP is recycled,
syslogd will establish or reestablish communication with TCP/IP when it becomes
available.

Syslogd can run in one of three modes:
v Normal

In this mode, syslogd processes logging requests from the local system and
applications using the syslog() function. Additionally, syslogd receives and logs
messages sent over the TCP/IP network by remote systems running syslogd.
These remote systems can be z/OS systems or non-z/OS systems. Only one
instance of syslogd can be run on a z/OS system if syslogd is started in this
mode.

v Local-only
In this mode, syslogd processes logging requests from only the local system and
applications. This instance of syslogd does not receive or process messages sent
over the network from remote syslog daemons. Use the -i option to start syslogd
in the local-only mode.

v Network-only
In this mode, syslogd processes only messages sent over the network by remote
systems running syslogd. This instance of syslogd does not process logging
requests from the local system or applications. Use the -n option to start syslogd
in the network-only mode.

In all three modes, syslogd can send messages to remote syslog daemons.

Requirement: You must install and activate the AF_UNIX domain prior to starting
syslogd in normal or local-only mode.

As shown in Table 13 on page 194, how you choose to run syslogd depends on
your logging requirements.

Chapter 5. TCP/IP Customization 193

|
|
|

|

|

|
|
|
|

|
|
|

|

Table 13. Mode to use for different logging requirements

Logging requirement How to run syslogd

You have a low volume of messages that
you want to process from the network.

Run a single instance of syslogd in normal
mode.

You do not want to process any log
messages from remote syslog daemons over
the network.

Run a single instance of syslogd in
local-only mode.

You have a high volume of log messages
from remote syslogd daemons that you want
to log with syslogd.

Run two instances of syslogd. Start syslogd
in local-only mode to process all local
messages. Start another instance of syslogd
in network-only mode to process the remote
syslog messages. Two instances of syslogd
provide better performance than running a
single instance of syslogd in normal mode,
especially in high-volume situations.

Restriction: A maximum of two instances of syslogd can be started. If you are
going to start more than one instance of syslogd on the same z/OS image, one
instance must be started in local-only mode and one instance must be started in
network-only mode. Never run just one instance of syslogd in network-only mode.
If an instance of syslogd is not processing local system and application messages,
these messages are written to the MVS console and might result in message
flooding on the MVS console.

For more accurate recording of timestamps, you need to set the TZ environment
variable to local time. You can set the TZ environment variable in the following
ways:
v When starting syslogd from the z/OS shell:

Export the TZ environment variable before starting syslogd; you should do this
in /etc/profile or in .profile in the HOME directory. For example, if you are in
the Eastern time zone in the United States:
export TZ=EST5EDT

v When starting syslogd as a started task, use either of the following methods:
– Specify TZ using the ENVAR parameter on the PARM statement in the started

procedure. For example:
// PARM=’ENVAR("TZ=EST5EDT")/’

– Export the TZ environment variable in a file specified with the STDENV DD
statement. For example:
// PARM=’ENVAR("_CEE_ENVFILE=DD:STDENV")/’
//STDENV DD PATH=’/etc/syslogd.env’,PATHOPTS=(ORDONLY)

Place the following statement in the /etc/syslogd.env file:
TZ=EST5EDT

The use of the STDENV DD statement works well when you want to specify
more than one environment variable; there is a JCL limit of 100 characters on
the PARM parameter. Language Environment recommends a variable record
format for the STDENV file.

You can also set the TZ environment variable for all applications in the CEEPRMxx
PARMLIB member. You should define the TZ environment variable for all three LE
option sets (CEEDOPT, CEECOPT, and CELQDOPT). For example:

194 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|

|

|
|
|

|

|

|
|

|

|
|

|
|

|

|

|
|
|
|

|
|
|

CEECOPT(ALL31(ON), ENVAR(’TZ=EST5EDT’))
CEEDOPT(ALL31(ON), ENVAR(’TZ=EST5EDT’))
CELQDOPT(ALL31(ON), ENVAR(’TZ=EST5EDT’))

For more information on specifying run-time options, see z/OS Language
Environment Programming Guide. For details on setting the TZ environment variable,
see z/OS UNIX System Services Command Reference.

Following is the syntax for the syslogd command:

syslogd [−c] [−d] [−D value] [−f conffile] [−F value] [−i] [−m markinterval] [-n] [−p
logpath] [−u] [-x] [-?] &

The syslogd command recognizes the following options:

-c Create log files and directories automatically. The -c option is required to
use the automatic archive function (see “Configuring syslogd for automatic
archiving” on page 204).

-d Run syslogd in debugging mode (see “Diagnosing syslogd configuration
problems” on page 207 for more information).

-D Default access permissions (modes) to be used by syslogd when creating
directories. This parameter is valid only when specified in conjunction with
the -c option. The parameter value is specified as an octal number 1 – 4
characters in length. Leading zeros can be omitted. The following values
can be ORed together to form the parameter value:

Value Description

2000 Set GID

1000 Sticky bit (deletion restricted to owner or superuser)

0400 User read

0200 User write

0100 User list directory

0040 Group read

0020 Group write

0010 Group list directory

0004 Other read

0002 Other write

0001 Other list directory

If the -D option is not specified, the default value 0700 is used. Value 0000
and bits other than the ones shown are not valid. For example, you cannot
set the set-UID bit for a directory. z/OS does not use the set-GID bit
during directory creation regardless of whether the bit was set in the
directory permissions.

-f Configuration file name. You can also specify the configuration file using
the SYSLOGD_CONFIG_FILE environment variable. The -f option
overrides the environment variable.

-F Default access permissions (modes) to be used by syslogd when creating
log files. This parameter is valid only when specified in conjunction with
the -c option. The parameter value is specified as an octal number 1 – 4

Chapter 5. TCP/IP Customization 195

|
|
|

|
|
|

characters in length. Leading zeros can be omitted. The following values
can be ORed together to form the parameter value:

Value Description

0400 User read

0200 User write

0040 Group read

0020 Group write

0004 Other read

0002 Other write

If the -F option is not specified, the default value 600 is used. The actual
permissions are modified by the syslogd process umask value at the time
when the file is created. This parameter is used only when syslogd must
create a log file dynamically; it has no effect on log files that already exist.
Value 0000 and bits other than the ones shown are not valid. For example,
you cannot set the execute bits, set-UID, set-GID, or the sticky bit for log
files.

-i Start in local-only mode, and do not receive messages from the IP network.
This option is mutually exclusive with the -n option. If syslogd is started
with the -i option, another instance of syslogd can be started with the -n
option. This is the only supported way to run two instances of syslogd on
the same z/OS image. Syslogd can still send messages to remote syslogd
instances when running in local-only mode.

-m Number of minutes between mark messages. The default value is 20
minutes. The following rule must be coded for each logfile that you want a
mark record recorded in: mark.info.

-n Start in network-only mode, and receive messages from only the IP
network. This option is mutually exclusive with the -i option. If syslogd is
started with the -n option, another instance of syslogd can be started with
the -i option. This is the only supported way to run two instances of
syslogd on the same z/OS image. Syslogd can still send messages to
remote syslogd instances when running in network-only mode.

-p Path name of the z/OS UNIX character device for the datagram socket.
The default value is /dev/log. You can also specify the path name using
the SYSLOGD_PATH_NAME environment variable. The -p option
overrides the environment variable.

Note: This option is not used frequently. If you selected the -p option,
syslogd will not function properly.

-u For records received over the AF_UNIX socket (most messages generated
on the local system), include the user ID and job name in the record. In
this case, a forward slash, the user ID, and the job name will follow the
local host name for messages received over the AF_UNIX socket. The
forward slash, which immediately follows the local host name, can be used
to determine whether or not the user ID and job name is being recorded. If
not recorded, a blank immediately follows the local host name. When user
ID or job name is not available, N/A will be written in the corresponding
field.

-x Disable host name resolution for messages received from the IP network.

196 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|
|

|

|
|

This option is mutually exclusive with the -i option. Using this option can
improve the performance of syslogd when processing messages received
from the IP network. It has no effect for local messages. When you use this
option, the IP address (instead of the host name) of the origin host is
logged, along with the message text. If the host name can be determined
from the rule without having to make a resolver call, the host name is used
instead of the IP address. When the -x option is not used, syslogd always
attempts to resolve the host name associated with a log message arriving
from the IP network. If the host name cannot be determined, the IP
address is logged as the message origin instead of the host name.

-? Show syslogd command-line options.

To specify the job name and pass the appropriate environment variables to the
syslogd process, start syslogd using a shell script such as the following:
#
Start the syslog daemon
#

export _BPX_JOBNAME=’syslogd’
/usr/sbin/syslogd -f /etc/syslog.conf &

You can execute this shell script directly from the /etc/rc file to start syslogd at
z/OS UNIX initialization.

If an incorrect argument or number of arguments is entered, syslogd exits and the
return code is 1. In all other situations in which syslogd exits, the return code is 0.

To terminate syslogd, you can issue the STOP command, issue the MODIFY
command, or send a SIGTERM signal.
STOP jobname

MODIFY BPXOINIT,TERM=processID

kill -s TERM processID

To force syslogd to reread its configuration file and activate any modified
parameters without stopping, issue the MODIFY procname,RESTART command or
send a SIGHUP signal. This also causes any host names specified in rule selectors
or destinations to be resolved again to IP addresses. After rereading the
configuration file, syslogd continues to append log messages to the files that you
specify in /etc/syslog.conf.
MODIFY procname,RESTART

kill -s HUP processID

The syslog daemon stores its process ID in the /etc/syslog.pid file or the
/etc/syslog_net.pid file, so that it can be used to terminate or reconfigure the
daemon. If syslogd is started in normal or local-only mode, the /etc/syslog.pid file
is used to store the process ID. If syslogd is started in the network-only mode, the
/etc/syslog_net.pid file is used to store the process ID.

Rule: If the BPX.SMF FACILITY class resource is defined and SMF records are to
be written by syslogd, the user ID with which syslogd runs must also be permitted
to SAF resource BPX.SMF. See SEZAINST(EZARACF) for more information.

Tips:

Chapter 5. TCP/IP Customization 197

|
|

|

|

|
|

|

v Messages are read from the UNIX domain datagram socket (unless the -n option
is specified), and from the IPv4 (AF_INET) or IPv6 (AF_INET6) Internet domain
datagram socket (unless the -i option is specified).

v Messages written to a local instance of syslogd with the kern facility are
converted to the user facility. If syslogd receives a log message over the network
with the kern facility, the facility is not changed.

For more information about the facilities used by z/OS Communications Server
functions, see Table 3 on page 35.

Configuring syslogd to receive remote messages
The ability to receive messages from remote syslogd instances can be very useful
in providing a consolidated log of messages from multiple hosts into a
consolidated z/OS message log. For example, in scenarios where you are running
Linux hosts on zSeries processors, and these Linux hosts are performing processing
in cooperation with or on behalf of z/OS systems, you might want to have certain
important messages generated on the Linux hosts visible from a z/OS system. This
capability would enable z/OS operators to be alerted of specific conditions on the
Linux hosts that might require actions to be taken locally or on the Linux hosts.

If you decide that this remote logging capability is useful in your environment,
there are several configuration considerations that should be examined prior to
enabling this function. It is also important to note that the syslogd remote logging
capability can work in both directions; the z/OS syslogd can forward some of its
messages to another remote syslogd instance, or the z/OS syslogd instance can be
the receiver of remote syslogd messages. The considerations described here focus
primarily on the latter scenario, where the z/OS syslogd is the recipient of remote
messages.

Improving the efficiency of syslogd remote logging functions
While the ability for the z/OS syslogd to receive remote messages can be very
useful, it is important that proper planning take place to ensure that the additional
remote message traffic that syslogd receives does not create a performance issue or
impede the ability for the local z/OS syslogd to perform its processing. The
following configuration options can help reduce such risks:
v Configure the remote syslogd instances to forward only messages that are

important enough to consolidate on the z/OS system. For example, high-volume
debug traces should be collected on the local host instead of having them
forwarded to a z/OS system. Syslog daemon implementations typically provide
the ability to define configuration statements that dictate which type of messages
are forwarded to remote hosts. For example, the z/OS syslogd enables you to
filter messages based on the facility and priority associated with a message. For
more information about the specific configuration of your remote syslogd
instances, consult the documentation available for the platform on which the
remote syslogd instance is running.

v If the remote message traffic that the local z/OS syslogd instance is expected to
receive is substantial, consider configuring a network-only instance of syslogd
and a local-only instance of syslogd. This helps ensure that the logging of locally
generated z/OS syslogd messages is not impacted by high-volume remote
message traffic.

v When the local z/OS syslogd instance receives a message from a remote syslogd,
it determines the disposition of the message based on its own configuration
statements. These configuration statements enable you to determine which

198 z/OS V1R12.0 Comm Svr: IP Configuration Guide

received messages are of interest and how these messages should be logged. The
following are some guidelines on how these statements can be configured for
remote message receipt:
– The z/OS syslogd can log messages to various destinations, including zSeries

File System files, the MVS console, the MVS operations log, SMF records, and
so on. If the destination for the remote messages is the MVS console or MVS
system log designated with the /dev/console destination, consider whether
logging these messages to the MVS operations log (that is, the OPERLOG log
stream) designated by the /dev/operlog destination is a suitable alternative.
Logging messages to the OPERLOG log stream is more efficient and
consumes less system resources than logging messages to the MVS console.
The OPERLOG log stream must be configured and active before using the
syslogd /dev/operlog destination. If the OPERLOG log stream is not active
when syslogd attempts to log a message to the /dev/operlog destination,
message FSUM1234 is logged with a facility.priority value of daemon.error. If
the OPERLOG log stream later becomes active, message FSUM1235 is logged
with a facility.priority value of daemon.info, and logging to OPERLOG
automatically begins. For more information about using OPERLOG, see z/OS
MVS Planning: Operations.

– You can identify which messages the z/OS syslogd should process by
identifying the known remote syslogd instances from which you expect to
receive messages. For example:
(host1.xyz.com).*.* /dev/operlog
(host2.xyz.com).*.* /dev/operlog

In this example, syslogd resolves the specified host names to the IP addresses
associated with those hosts during initialization by invoking the system
resolver services. After initialization is complete and syslogd begins receiving
remote messages, it first checks to determine whether the incoming messages
match any of the specified configuration statements. In this example, syslogd
processes only remote messages that have a source IP address associated with
the hosts host1.xyz.com or host2.xyz.com, and logs these messages in the
MVS operations log. Assuming that no other configuration statements are
specified, any messages received from other hosts are discarded.
Specifying configuration statements that identify each remote host using a
host name also has the additional benefit of enabling these remote messages
to include a host name identification when they are logged locally, without
incurring the overhead of a host name resolver lookup for each incoming
message. The per-message host name resolver lookup can be disabled using
the -x syslogd option. If the ability to perform a resolver lookup for every
message is necessary or useful in your environment, you should use the
system resolver cache function (see “Customizing the resolver” on page 733
and “Resolver caching” on page 744). If host name resolution is performed,
and the message was received over a link-local IP address, the resolved host
name might include scope information that identifies the interface over which
the message was received. For more details on support for scope information
on a host name, see z/OS Communications Server: IPv6 Network and Application
Design Guide.
In addition to host names, remote syslogd instances can also be identified
using IPv4 or IPv6 addresses or by specifying an IPv4 subnetwork or IPv6
network prefix. For example:
(10.42.105/24).*.* /dev/operlog
(10.43.110.15).*.* /tmp/otherlog

Chapter 5. TCP/IP Customization 199

In this example, any remote messages received from hosts using an IP
address in subnetworks 10.42.105.0 to 10.42.105.255 are logged in the MVS
operations log, while messages received from the host identified by
10.43.110.15 are logged in the /tmp/otherlog file.

– In addition to identifying the remote syslogd instances that can forward
messages, you can also use additional filters to determine which remote
messages you want to log locally. For example:
(host1.xyz.com).*.crit /dev/operlog
(host2.xyz.com).*.crit /dev/operlog

With these configuration statements, syslogd logs only messages received
from hosts host1 and host2 that have a critical priority to the MVS operations
log. Assuming that no other configuration statements are specified, any other
messages received from those hosts are discarded.

Security considerations
As with all network communication protocols, give careful consideration to the
security requirements that might be appropriate to protect this remote message
logging function in your environment. The following are some of the
considerations to be examined:
v How do you ensure that the messages sent by a given host did in fact originate

on that host, and that these messages have not been modified or replayed by a
third party in the network?
One mechanism that can be used to answer these questions is to deploy a
Virtual Private Network (VPN) using IPSec across the remote syslogd instances
and the local z/OS syslogd. IPSec configured with the Authentication Header
(AH) protocol provides data integrity, data origin authentication, and an
optional replay protection service. To deploy IPSec for syslogd traffic,
configuration is required on both the local z/OS system and the remote hosts on
which the syslogd instances that are forwarding messages reside. On the z/OS
side, this is accomplished by defining an IP security policy. In this IP security
policy, you specify filter rules that indicate all the remote hosts that are allowed
to send UDP traffic to the local syslogd on port 514, along with the IPSec actions
that define the IPSec attributes for this traffic. The IPSec policy can be defined in
such a way that if any UDP datagrams destined for local UDP port 514 are
received that do not match the IP security policy, they are discarded by the local
TCP/IP stack. This provides an additional level of protection against denial of
service attacks for syslogd, as unauthorized messages are discarded without
syslogd needing to process them.

v What if the forwarded messages contain sensitive data? How do you protect the
confidentiality of the data as it traverses the network?
You can use the IPSec Encapsulating Security Payload (ESP) protocol to provide
data confidentiality (encryption). Note that the ESP protocol can also be used to
provide some of the same functions that the AH protocol provides, such as data
integrity, data origin authentication, and replay protection.

Obviously, the security considerations for deploying remote syslogd logging
depend on your local environment and your local security policies. For more
information about the z/OS configuration for IPSec, see “Overview of using IP
security” on page 929. For more information about configuring IPSec on the remote
hosts, consult the documentation for that platform.

200 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Availability considerations
Syslogd availability is important to the logging of both local and remote messages.
The following configuration considerations can help improve the availability of the
z/OS syslogd remote logging services:
v Ensure that there is a process in place to restart a z/OS syslogd after a failure

that results in the termination of syslogd. This can be accomplished by placing
syslogd in the AUTOLOG list in the TCP/IP profile. This enables TCP/IP to
initially start the syslogd instance as a started task, and also enables TCP/IP to
monitor whether syslogd has a socket bound to the syslogd port used for remote
message receipt (UDP port 514). This approach works well for single-stack INET
configurations. If multiple TCP/IP stacks are deployed on a single system (that
is, a CINET configuration), you should not use the AUTOLOG list. Alternatively,
an installation can use any available automated operations software package to
automate the start and restart of syslogd. For more information about the
AUTOLOG statement, see z/OS Communications Server: IP Configuration Reference.

v On MVS systems that are not part of a sysplex and that have TCP/IP stacks
with multiple network interfaces, using a static VIPA address can provide for
better availability characteristics should a specific network interface or network
experience an outage. This involves configuring a static VIPA in the TCP/IP
profile or reusing an existing one. No special configuration of the local syslogd
is needed. However, you should configure the remote syslogd instances to use
the static VIPA address as the destination address when forwarding messages.
This can typically be accomplished by either specifying the static VIPA as the
destination address, or specifying a host name that maps to the static VIPA in
the remote syslogd configuration.

v When the recipient syslogd instance is running in a sysplex environment,
additional availability features are available that should be explored. For
example, you can use a multiple application-instance dynamic VIPA (DVIPA) to
represent the syslogd instance on a given system, and the remote syslogd
instances are configured to use that DVIPA address as the destination IP address
for the messages they forward. In this configuration, if a failure to the MVS
system or TCP/IP stack on which the syslogd instance is running occurs, the
DVIPA is automatically moved to a predefined backup system that is currently
active. This enables the syslogd instance on that backup system to begin
processing these remote messages in a transparent manner. In this configuration,
using the MVS operations log (OPERLOG) as the destination provides additional
benefits, because the operations log is implemented as a coupling facility log
stream that any system in the sysplex can access. For additional information
related to static and dynamic VIPAs, see Chapter 7, “Virtual IP Addressing,” on
page 351.

Additional considerations
Syslogd on z/OS receives remote messages as UDP packets on port 514. Because
UDP is a connectionless protocol that does not provide reliable communications,
the potential exists that some UDP packets containing forwarded syslogd messages
can be dropped, either in the network as a result of network congestion or on the
z/OS system if the syslogd is overloaded and cannot process incoming messages
fast enough. If this occurs, these messages are not seen by the z/OS syslogd
instance, nor is the remote syslogd instance made aware of the dropped messages.
As a result, make provisions to enable direct access of syslogd messages on the
remote hosts. In addition, you should perform a detailed evaluation on the risks
associated with the potential for message loss, prior to using any z/OS-based
automated operations software to trigger actions based on the remote messages
received by the z/OS syslogd.

Chapter 5. TCP/IP Customization 201

Offloading log files
z/OS Communications Server includes a syslogd configuration file in
/usr/lpp/tcpip/samples/syslog.conf, a REXX program for removing old log files
in /usr/lpp/tcpip/samples/rmoldlogs, and a JCL procedure for starting syslogd in
SEZAINST(syslogd). These are intended to be used together, though each may
need to be customized for your installation.

Guideline: You should use this method of offloading or archiving files only if you
do not use the automatic archive function of syslogd that is described in
“Configuring syslogd for automatic archiving” on page 204. Because both of these
methods rely on creating new log files, results are unpredictable if you try to use
both methods together.

The sample syslogd configuration file is installed in /usr/lpp/tcpip/samples/
syslog.conf. It can be copied to /etc/syslog.conf after customization. If it is copied
somewhere else, the syslogd -f command-line option must be used to tell syslogd
where to find the configuration file.

The sample REXX program for removing old log files is installed in
/usr/lpp/tcpip/samples/rmoldlogs. It can be copied to an installation-defined
directory after customization. The sample JCL procedure can be copied to an
installation-defined library after customization.

The sample configuration uses date stamps in the names of directories of log files
to organize log files by year (%Y), month (%m), and day (%d) as follows:
*.err /var/log/%Y/%m/%d/errors

Log files for February 14, 2001, for example, would be stored in directory
/var/log/2001/02/14. Variable substitution occurs using the Language
Environment C function strftime(). Variables are case sensitive. For more
information and a complete list of variables, see z/OS XL C/C++ Run-Time Library
Reference.

A cron job should be used to send the SIGHUP signal to syslogd every day at
midnight so that it switches to a new set of files. The cron job should be created
for a user ID with UID 0. The definition of the cron job is:
0 0 * * * kill -HUP `cat /etc/syslog.pid`

Tip: An accent mark (`) is used in this definition, not a single quotation mark.

The log file names vary based on the day, so sending SIGHUP to syslogd after the
day changes causes syslogd to create new files.

Because some messages sent just after midnight may be logged by syslogd before
it processes the SIGHUP signal, it is possible that a few messages sent after
midnight will be stored in the log files for the previous day.

The sample REXX program can be run daily to remove all log files older than the
number of days specified in the program. Comments in the REXX program
describe how to configure the number of days. The definition of a cron job to run
the REXX program every day at 1:00 A.M. is:
0 1 * * * localdir/rmoldlogs

localdir is the name of the installation-defined directory where the customized
version of /usr/lpp/tcpip/samples/rmoldlogs was copied.

202 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|

Setting permissions for log files and directories
When you specify the -c start option, syslogd creates log files and directories
dynamically. By default, directories are created with the permissions value 0700,
which means that only the owner can read, write, and list the contents of the
directory. Similarly, if syslogd needs to create a file, the default permissions value
is 600, which again means that only the owner can read and write to the file.
Because a user ID with UID 0 must run syslogd, the owner is always a superuser.
To change the default permissions used by syslogd, use either the -F or the -D start
option to set the global default permissions for files and directories, respectively.

Tip: The -F and -D start options have no effect on files or directories that already
exist.

You can also use the -F and -D configuration options to override global defaults for
individual syslogd rules. Specify -F or -D (or both) with octal values following the
file name. For example:
*.err /var/log/%Y/%m/%d/errors -F 640 -D 644

The file permission bits, whether provided on the rule or as global defaults, are
modified by the syslogd process file creation mask (umask), and then used to set
the file permission bits of a file that is being created.

If you are considering allowing users other than a superuser to have access to log
files, before changing the syslogd default permissions for files and directories, be
sure to consider the following options:
v Before starting syslogd, create the log file (and containing directory if necessary)

with permissions and ownership that allows the other users to have access. If a
single user needs access, you can make the file user ID (UID) match that of the
user ID that needs access. If multiple users need access, set a new or existing
group ID (GID) as the file's GID, and set the permissions to allow members of
the group to have read access, write access, or both. The file or directory UID
and GID can be set with the chown command. Be sure to give the syslogd user
ID write access to the log files. This technique is useful only if the files are not
being created dynamically by syslogd.

v If you are not using file access control lists (ACLs), files and directories created
by syslogd have the owner UID 0. By default, the owning GID is set to that of
the parent directory. However, if the FILE.GROUPOWNER.SETGID profile exists
in the UNIXPRIV class, the owning GID is determined by the set-GID bit of the
parent directory, as follows:
– If the set-GID bit of the parent directory is on, the owning GID is set to that

of the parent directory.
– If the set-GID bit of the parent directory is off, the owning GID is set to the

effective GID of the process.
When there are no file access control lists, the only way to manage log files with
different access requirements that must be accessed by different groups of users
is to create the containing directories with the appropriate GIDs before starting
syslogd, and let syslogd dynamically create the log files in the appropriate
directories. The log files then inherit the GID of the directory, if the directory has
the set-GID bit on.

v A third way to provide access to log files for different users or groups of users is
to use file access control lists. For information about setting file access control
lists, see the setfacl command in z/OS UNIX System Services Command Reference.
The ACLs for dynamically created directories and files can be inherited from

Chapter 5. TCP/IP Customization 203

defaults set on the parent directory. When using this method, be sure that the
syslogd user ID continues to have write access to the log files.

Configuring syslogd for automatic archiving
You can set up syslogd to perform automatic archival of eligible z/OS UNIX files
that are configured as destinations on syslogd rules. Eligible files are those that
you tag using the -N or -X parameter on the rule definitions. You can choose to
archive at a specific local time of day, or when the file systems that contain the
eligible files become too full, or both. You can also perform an on-demand archive
using an operator command.

Guideline: You should use this method of archiving files only if you do not
offload files using the provided sample configuration and procedure that are
described in “Offloading log files” on page 202. Because both of these methods rely
on creating new log files, results are unpredictable if you try to use both methods
together.

To configure syslogd for automatic archiving, you must perform the following:
v Configure the events that trigger automatic archival
v Configure the archive details for each z/OS UNIX file

Steps for configuring the events that trigger automatic archival
Before you begin: Automatic archiving can be performed at a specific local time
every day, or when one or more of the z/OS UNIX file systems that contain the
eligible files become too full. Determine whether you want to configure one or
both of these triggers.

Requirement: You must specify the -c start option when you are using the
automatic archive function.

Perform the following steps to configure syslogd archive triggers:

1. Specify the ArchiveTimeOfDay statement in the syslogd configuration file to
specify the local time of day using hours and minutes in a 24 hour clock
format.

2. Specify the ArchiveThreshold statement in the syslogd configuration file to
specify the percentage of the file system that must be full to trigger an
automatic archive.
Guideline: You should set up the syslogd file destinations as one or more
separate z/OS UNIX file systems. Threshold-based archiving works best when
the file systems contain only data written by syslogd.

3. Specify the ArchiveCheckInterval statement in the syslogd configuration file to
specify the interval in minutes at which syslogd should check to determine
how full the file systems are.

Result: The configuration statements that define archive triggers are global
statements. If you configure these statements multiple times, the last instance is
used.

Steps for configuring the archive details for each z/OS UNIX file
Automatic archiving operates on eligible z/OS UNIX files. You can configure
which files are eligible by specifying parameters on each individual rule. You can
also configure global parameters that affect the archive process and determine the
destination data sets for each file.

204 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|

Guideline: You need to protect the syslogd archive data sets using available data
set access controls to ensure that only authorized personnel are allowed to read
these data sets. Syslogd archive data sets might contain sensitive information.

Perform the following steps to configure the archive details for each z/OS UNIX
file:

1. Specify the BeginArchiveParms statement in the syslogd configuration file. The
BeginArchiveParms statement specifies a data set name prefix that is extended
with a unique qualifier for each file to be archived, for the set of rules that
follows this statement.

2. Specify the -N parameter on each rule that uses a z/OS UNIX file, to mark the
file as eligible for automatic archiving. You can also specify the -X parameter
on a rule, to indicate that the file should be re-initialized when an archive
event occurs. If you do not specify the -N or -X parameters on a rule, then
nothing happens to the destination file when an archive event occurs.
If you use generation data group (GDG) data sets as an archive destination,
the GDG base must already be created. The following sample JCL creates a
GDG base called USER1.SYSARCH.
//USER1X JOB MSGLEVEL=(1,1),MSGCLASS=D,NOTIFY=USER1
//GDGA EXEC PGM=IDCAMS
//*
//GDGMOD DD DSN=USER1.SYSARCH,
// VOL=SER=CPDLB1,
// UNIT=SYSALLDA,
// SPACE=(TRK,(0)),
// DCB=(LRECL=80,RECFM=FB,BLKSIZE=6800,DSORG=PS),
// DISP=(,KEEP)
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DEFINE GENERATIONDATAGROUP -
(NAME(USER77.MYGDG) -
EMPTY -
NOSCRATCH -
LIMIT(255))

For more information about GDG data sets, see z/OS DFSMS Using Data Sets.

Using syslogd for z/OS UNIX application programs
You can use the logging facilities of the syslogd server with your z/OS UNIX
application programs. Include the syslog.h header file with C programs so that
they can open a log facility, send log messages to syslogd, and close the facility:
#include <syslog.h>

�1� openlog("oec", LOG_PID, LOG_LOCAL0);
�2� syslog(LOG_INFO, "Hello from oec");
�3� closelog();

�1� Open a log facility with the name of local0. Prefix each line in the log file with
the program name (oec) and the process ID.

�2� Log an info priority message with the specified content.

�3� Close the log facility name.

The preceding statements created the following line in the log file:
May 26 11:27:51 mvs18oe oec[3014660]: Hello from oec

Chapter 5. TCP/IP Customization 205

For more information about the syslog function, see Advanced Programming in the
UNIX Environment, published by Addison-Wesley or z/OS XL C/C++ Run-Time
Library Reference.

Usage notes
v It is possible to run two instances of syslogd. One instance must be started so

that it processes messages from only the local host (-i option); the other instance
must be started so that it processes messages from only the network (-n option).

v If you run two instances of syslogd, one for local messages and another for
network messages, and you also configure the automatic archival function, do
not configure the same UNIX file destinations in the two configuration files. The
archival function renames, closes, and reopens the UNIX files. If two instances of
syslogd are performing the archival function on the same set of files, results of
the archival function are unpredictable. The same is true for the configured
archive destination data sets. Be sure to configure unique UNIX file destinations
and archive data set names for the two syslogd instances.

v syslogd can run swappable or nonswappable. When an application makes an
address space nonswappable, it might convert additional real storage in the
system to preferred storage. Because preferred storage cannot be configured
offline, allowing syslogd to run in a nonswappable state can reduce the
installation's ability to reconfigure storage in the future. Use the following
guidelines to set the desired state:
– If the FACILITY class resource BPX.STOR.SWAP is not defined to the system:

- syslogd will run nonswappable.
- syslogd cannot be prevented from running nonswappable.

– If the FACILITY class resource BPX.STOR.SWAP is defined to the system with
UACC(NONE):
- syslogd will run swappable by default (no access to BPX.STOR.SWAP).
- syslogd can run nonswappable (given at least READ access to

BPX.STOR.SWAP).
– To define the FACILITY class resource BPX.STOR.SWAP issue the following

commands:
RDEFINE FACILITY BPX.STOR.SWAP UACC(NONE)
SETROPTS RACLIST(FACILITY)REFRESH

v If you want syslogd to receive log data from remote syslogd servers, ensure that
syslogd can bind to UDP port 514 by reserving that port for the syslogd job in
your PROFILE.TCPIP data set. Ensure that the syslog service is defined in your
services file or data set (for example, /etc/services). The following example port
reservation in PROFILE.TCPIP assumes that syslogd runs as job syslogd1:
PORT
...
514 UDP syslogd1 ;syslogd daemon
...

The following example shows the services file or data set file entry:
syslog 514/udp

v Configuration file errors are written to the operator console because initialization
is not complete until the entire configuration file has been read.

v Facility mark is not affected by the *.priority usage. Mark messages are written
only to the destinations of rules that specify mark.info.

v If a mark interval of zero minutes is specified, mark messages will be written
every thirty seconds.

206 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Diagnosing syslogd configuration problems
You must install and activate the AF_UNIX domain prior to starting syslogd in
normal or local-only mode. To determine whether AF_UNIX was successfully
started, check for a message in the console log similar to the following:
BPXF203I DOMAIN AF_UNIX WAS SUCCESSFULLY ACTIVATED.

syslogd supports a debug mode, which is selected using the -d command-line
option. If you run syslogd from the UNIX shell using this debug mode, syslogd
writes debug messages to STDOUT. These messages can be used to diagnose
problems in the syslogd configuration or to collect documentation when reporting
a syslogd problem to IBM support.

You can use the SYSLOGD_DEBUG_LEVEL environment variable to limit the
amount of debug messages. You can specify the following debug levels:

Value Level

1 Base debugging information.

2 Configuration file processing.

4 Message handling information for messages being logged by syslogd.

8 Automatic archive processing.

16 Operator command processing.

32 Thread-specific processing.

64 Mutex lock processing. Locks that are specific to threads are logged only if
the debug level includes 32.

You can add these values together in any combination to select the type of debug
messages to be written. For example, SYSLOGD_DEBUG_LEVEL=91 includes all
debugging information except for message handling and thread-specific processing
(including locks). The default debug level is 127, which includes all debug
information.

Rule: Do not use the -d option for normal operations.

If you are running syslogd in batch with -d, debug output is written to SYSPRINT,
SYSTERM, or SYSERR, whichever is found first. The sample syslogd procedure
SEZAINST(syslogd) defines SYSPRINT so that debug messages are stored in the
job output. The following example shows how to change the SYSPRINT DD
statement to write debug output to a file.
SYSPRINT DD PATH=’/var/syslog/syserr’,PATHOPTS=(OWRONLY,OCREAT)

Use caution using -d when syslogd is started from /etc/rc. If -d is used in this
way, the shell background character (&) must be used to run syslogd in the
background. Otherwise, /etc/rc does not end and UNIX System Services
initialization does not complete.

If you are using the automatic archive function of syslogd, it is possible that an
archive of a particular file fails. A failure can occur for many reasons, including
dynamic allocation errors for the target data set, or read/write errors for the UNIX
file or target data set. If a failure occurs, syslogd attempts to archive the file again
when the next archive trigger event occurs, but it is possible that all archive
attempts continue to fail. If all attempts fail, the original UNIX file to be archived
still exists in the UNIX file system, renamed with a suffix of the form

Chapter 5. TCP/IP Customization 207

|
|

|

Dyymmdd.Thhmmss, and the target data set might also exist and contain partial
data. You should examine the error messages in the syslogd destination output file
for the daemon facility to determine which files have failed, and manually recover
or delete such files and the associated partial archive data sets.

Configuring TCPIP.DATA
The TCPIP.DATA configuration data set is the anchor configuration data set for the
TCP/IP stack and all TCP/IP servers and clients running in z/OS. With a z/OS
TCP/IP stack, you can define the TCPIP.DATA parameters in a z/OS UNIX file or
in an MVS data set. The TCPIP.DATA configuration data set is read during
initialization of all TCP/IP server and client functions. All functions must access
this data set in order to find basic configuration information, such as the name of
the TCP/IP address space, the TCP/IP host name, and the data set prefix to use
when searching for other configuration data sets. The TCPIP.DATA file contains the
following major groups of configuration parameters:
v Application operating characteristics
v Resolver operating characteristics
v Socket library diagnostic data statements
v Resolver diagnostic data statements

Use of TCPIP.DATA and /etc/resolv.conf
The TCPIP.DATA data set is also known as one of the resolver configuration data
sets. In fact, this name is now more commonly used to refer to this important file
in the UNIX System Services environment because the socket library contains a
component called the resolver. In a UNIX system, you use the /etc/resolv.conf file
for the same purpose as you use TCPIP.DATA in your MVS system.

TCPIP.DATA specifies the name of the TCP/IP address space. Because the data set
search order can vary, your installation will determine which data set you can use.
See Chapter 2, “IP configuration overview,” on page 11 for search order, data set,
and file retrieval information.

If you use TCPIP.DATA, it can be shared between multiple systems with a system
name. But, if TCPIP.DATA is allocated via SYSTCPD DD and an application forks,
any allocations from the parent of SYSTCPD are lost to the child process.

In z/OS UNIX System Services, each application can have its own environment
variable, RESOLVER_CONFIG='xxx'. There are no concerns for forked child
processes; however, this means that you cannot share the same data set or file
among multiple systems.

Creating TCPIP.DATA
Create a TCPIP.DATA file by copying the sample provided in
SEZAINST(TCPDATA) and modifying it to suit your local conditions.

Allocate this data set with either sequential (PS) or partitioned (PO) organization, a
fixed (F) or fixed block format (FB), a logical record length (LRECL) between 80
and 256, and any valid block size for a fixed block. This file can also be the file
/etc/resolv.conf, or a z/OS UNIX file that is pointed to by either the environment
variable RESOLVER_CONFIG or the SYSTCPD DD in a JCL procedure. If you have
a z/OS UNIX file, the maximum line length can be 256. The environment variable
RESOLVER_CONFIG can also point to an MVS data set or PDS.

208 z/OS V1R12.0 Comm Svr: IP Configuration Guide

You can use any name for the TCPIP.DATA data set if you access it using the
//SYSTCPD DD statement, or use ENVAR to set RESOLVER_CONFIG, in the JCL
for all the servers, logon procedures, and batch jobs that execute TCP/IP functions.
If you are not using the //SYSTCPD DD statement, the environment variable, or
/etc/resolv.conf, then the data set name must conform to the conventions
described in “Configuration files for the TCP/IP stack” on page 28. Another
alternative is to use the well-known data set name SYS1.TCPPARMS(TCPDATA).
You will eventually issue the HOMETEST command with TRACE RESOLVER
activated to verify the actual data set name the system finds for TCPIP.DATA.
However, because HOMETEST is an MVS sockets application, it does not use
RESOLVER_CONFIG or /etc/resolv.conf in its search order. For this reason, it is
recommended that /etc/resolv.conf and TCPIP.DATA contain exactly the same
information or consider using the resolver GLOBALTCPIPDATA setup statement.

Rule: Since TCPIP.DATA statements might need to be read and used multiple
times by the resolver, the FREE=CLOSE JCL parameter should not be used when
allocating SYSTCPD. To allow TCPIP.DATA statements to be changed while still
allocated for long running programs, consider using a member of an MVS
partitioned data set instead of an MVS sequential data set. For these long running
applications, the resolver MODIFY REFRESH command should then be used to
indicate that TCPIP.DATA statements have been changed.

TCPIP.DATA statements
Each configuration statement can be preceded by an optional system_name. This
permits configuration information for multiple systems to be specified in a single
hlq.TCPIP.DATA data set. The system_name is matched against the name of the
system on which you are running. The name of the system is specified as part of
the VMCF subsystem initialization, as the nodename value on the following
parameter and statement:
v P= start parameter of the EZAZSSI started procedure
v VMCF statement of the IEFSSNxx member of parmlib

For more information about starting VMCF, see “Step 3: Configure VMCF and
TNF” on page 103.

The statements are processed in the order they appear in the data set. The
following rules apply to this processing:
v If the system_name does not match the name of the system, the configuration

statement is ignored.
v If system_name is blank, the configuration statement is in effect on every system.
v If the system_name matches the host's name, the configuration statement that

follows it is in effect.
v The last statement that matches is effective.

For example, if you have the following three TCPIPJOBNAME statements, MVS6
would look for a TCP/IP cataloged procedure named TCPBTA2, MVSA would
look for TCPV3, and all other systems would look for TCPMCWN.

TCPIPJOBNAME TCPMCWN
MVS6: TCPIPJOBNAME TCPBTA2
MVSA: TCPIPJOBNAME TCPV3

But if you reversed the order, all systems would try to find the procedure named
TCPMCWN.

Chapter 5. TCP/IP Customization 209

|
|
|

|

|

|
|

MVS6: TCPIPJOBNAME TCPBTA2
MVSA: TCPIPJOBNAME TCPV3

TCPIPJOBNAME TCPMCWN

Take special care with those TCPIP.DATA statements that can be specified multiple
times, such as the SEARCH, SORTLIST, NSINTERADDR/NAMESERVER,
OPTIONS, and LOADDBCSTABLES statements. Because these statements are
cumulative, if you specify a system_name value, it might need to be used on all
instances of the same statement. Consider the following examples.

Example 1:
NSINTERADDR 5.5.5.5
NSINTERADDR 1.1.1.1

TN03: NSINTERADDR 1.1.1.1
TN03: NSINTERADDR 2.2.2.2
TN04: NSINTERADDR 3.3.3.3
TN04: NSINTERADDR 4.4.4.4

After these TCPIP.DATA statements are processed, the following ordered list of
DNS addresses is available:
On TN03:

5.5.5.5
1.1.1.1
1.1.1.1
2.2.2.2

On TN04:
5.5.5.5
1.1.1.1
3.3.3.3
4.4.4.4

All others:
5.5.5.5
1.1.1.1

Example 2:
TN03: NSINTERADDR 1.1.1.1
TN03: NSINTERADDR 2.2.2.2
TN04: NSINTERADDR 3.3.3.3
TN04: NSINTERADDR 4.4.4.4

NSINTERADDR 5.5.5.5
NSINTERADDR 1.1.1.1

After these TCPIP.DATA statements are processed, the following ordered list of
DNS addresses is available:
On TN03:

1.1.1.1
2.2.2.2
5.5.5.5
1.1.1.1

On TN04:
3.3.3.3
4.4.4.4
5.5.5.5
1.1.1.1

All others:
5.5.5.5
1.1.1.1

A sample TCPIP.DATA data set (TCPDATA) can be found in SEZAINST. For
detailed information on each of the statements, see z/OS Communications Server: IP
Configuration Reference.

210 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Using MVS system symbols in TCPIP.DATA
For ease of management when configuring a complex environment, use MVS
system symbols such as &SYSCLONE, &SYSNAME, and &SYSPLEX. The resolver
translates these symbols as it reads TCPIP.DATA, reducing the number of
TCPIP.DATA files that must be maintained in a multisystem environment. For
detailed information about symbols and how to define them, see z/OS MVS
Initialization and Tuning Reference.

Configuring PROFILE.TCPIP
During TCP/IP address space initialization, a configuration profile data set
(PROFILE.TCPIP) is read that contains system operation and configuration
parameters. A sample data set, SEZAINST(SAMPPROF), can be copied and
modified for use as your default configuration profile.

If you are not familiar with the search order for this data set, see “PROFILE.TCPIP
search order” on page 29 for information about understanding data set search
orders. See z/OS Communications Server: IP Configuration Reference for the complete
statement syntax and descriptions of the configuration statements.

For ease of management when configuring a complex environment, you can use
one of the following PROFILE.TCPIP data set features:
v Group related statements into separate files and use the INCLUDE statement in

PROFILE.TCPIP to include them in your configuration.
v Use MVS system symbols (such as &SYSCLONE, &SYSNAME, and &SYSPLEX).

Because TCP/IP translates these symbols as it reads this file, this feature reduces
the number of PROFILE.TCPIP data sets that must be maintained in a
multi-TCP/IP environment.

Note: For detailed information about symbols and how to define them, see z/OS
MVS Initialization and Tuning Reference.

The PROFILE data set contains the following major groups of configuration
parameters:
v TCP/IP operating characteristics
v TCP/IP physical characteristics
v TCP/IP reserved port number definitions (application configuration)
v TCP/IP network routing definitions
v TCP/IP diagnostic data statements

This information explains the first three areas of configuration. For routing
configuration information, see Chapter 6, “Routing,” on page 255. For information
about configuring diagnostic statements, see z/OS Communications Server: IP
Diagnosis Guide.

Changing configuration information
If you want to change the TCP/IP configuration without stopping and starting the
TCP/IP address space, you can dynamically change many of the TCP/IP
configuration options established by the PROFILE.TCPIP data set. To do this, put
the changed configuration statements in a separate data set and process it with the
VARY TCPIP,,OBEYFILE command.

Chapter 5. TCP/IP Customization 211

For more information about VARY TCPIP, see z/OS Communications Server: IP
System Administrator's Commands. Also, see the Modifying information in each
configuration statement in z/OS Communications Server: IP Configuration Reference for
a description of how to dynamically change the information for that configuration
statement.

Note: If you attempt to edit PROFILE.TCPIP while TCPIP is active, and
PROFILE.TCPIP is defined in the TCPIP PROC as a sequential data set (for
example, //PROFILE DD DISP=SHR,DSNAME=TCPIP.PROFILE.TCPIP), the
Dataset in use message might be displayed. To avoid this, specify
FREE=CLOSE, as follows:
//PROFILE DD DISP=SHR,DSNAME=TCPIP.PROFILE.TCPIP,FREE=CLOSE

This allows you to edit the profile while TCP/IP is active. Typically, when
TCP/IP starts, it keeps the PROFILE allocated and does not release the
allocation until the end of the step (in this case, the end of the job). If you
specify FREE=CLOSE, the release occurs once the data set is read. MVS
releases the enqueue on the PROFILE, which allows you to edit it.

If the PROFILE is a member of a PDS, [for example,
SYS1.TCPPARMS(PROFILE)], FREE=CLOSE is not needed.

Setting up TCP/IP operating characteristics in PROFILE.TCPIP
Figure 33 on page 215 shows a portion of the sample configuration file for the
TCP/IP address space, PROFILE.TCPIP. This sample can be copied from
SEZAINST(SAMPPROF). Figure 33 on page 215 includes the portion of the sample
that shows how to set up TCP/IP operating characteristics. Descriptions for the
statements follow Figure 33 on page 215.
; ==
; General TCP/IP address space configuration
; ==
;
; ARPAGE: Specifies the number of minutes between creation or
; revalidation of an LCS ARP table entry and the deletion of the
; entry.
;
ARPAGE 20
;
; --
;
; GLOBALCONFIG: Provides settings for the entire TCP/IP stack
;
; Example GLOBALCONFIG to offload TCP segmentation to OSA-Express
; features
;
; GLOBALCONFIG SEGMENTATIONOFFLOAD
;
; Example GLOBALCONFIG to exploit HiperSockets multiple write
; support
;
; GLOBALCONFIG IQDMULTIWRITE
;
; Example GLOBALCONFIG to displace TCP/IP CPU cycles onto a zIIP
; for certain workloads
;
; GLOBALCONFIG ZIIP IPSECURITY IQDIOMULTIWRITE
;
; Example GLOBALCONFIG to assign OSA-Express QDIO write priority
; values to packets associated with WorkLoad Manager service classes,
; and to forwarded packets

212 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

;
; GLOBALCONFIG WLMPRIORITYQ
; IOPRI1 0
; IOPRI2 1
; IOPRI3 2 3
; IOPRI4 4 5 6 FWD
;
; --
;
; IPCONFIG: Provides settings for the IPv4 IP layer of TCP/IP.
;
; Example IPCONFIG for single stack/single system:
;
IPCONFIG DATAGRAMFWD SYSPLEXROUTING
;
; Example IPCONFIG for automatic activation of inter-stack dynamic XCF
; and Same Host (IUTSAMEH) interfaces
;
; IPCONFIG DYNAMICXCF 201.1.10.10 255.255.255.0 2
;
; Example IPCONFIG for IPSECURITY support:
;
; IPCONFIG IPSECURITY
;
; Example IPCONFIG to provide accelerated forwarding at the DLC layer
; for OSA-Express QDIO and HiperSockets packets
;
; IPCONFIG QDIOACCELERATOR
;
; --
;
; IPCONFIG6: Provides settings for the IPv6 IP layer of TCP/IP.
;
; Example IPCONFIG6 to enable IPv6 packet forwarding and the use of
; virtual IP addresses as source addresses in outbound datagrams:
;
; IPCONFIG6 DATAGRAMFWD SOURCEVIPA
;
; Example IPCONFIG6 for automatic activation of inter-stack dynamic XCF
; and Same Host (IUTSAMEH) interfaces
;
; IPCONFIG6 DYNAMICXCF 2001::151:0000
;
; --
;
; SOMAXCONN: Specifies maximum length for the connection request queue
; created by the socket call listen().
;
SOMAXCONN 10
;
; --
;
; TCPCONFIG: Provides settings for the TCP layer of TCP/IP.
; RESTRICTLOWPORTS limits access to ports below 1024
; to authorized applications. Applications can be
; authorized to low ports in three ways:
; - via PORT or PORTRANGE with the appropriate jobname
; or wildcard jobname
; - APF authorized
; - superuser
;
TCPCONFIG TCPSENDBFRSIZE 32K TCPRCVBUFRSIZE 32K SENDGARBAGE FALSE

RESTRICTLOWPORTS
;
; Example TCPCONFIG to change the KEEPALIVE interval for applications
; that enable the SO_KEEPALIVE socket option but do not override
; the interval using the TCP_KEEPALIVE socket option.

Chapter 5. TCP/IP Customization 213

|
|
|
|
|
|
|
|

|

|
|

|
|
|
|

|
|
|

|

|
|

|

|
|
|
|
|
|

;
; TCPCONFIG INTERVAL 30
;
; Example TCPCONFIG for AT-TLS support:
;
; TCPCONFIG TTLS
;
; --
;
; UDPCONFIG: Provides settings for the UDP layer of TCP/IP
; RESTRICTLOWPORTS limits access to ports below 1024
; to authorized applications. Applications can be
; authorized to low ports in three ways:
; - via PORT or PORTRANGE with the appropriate jobname
; or wildcard jobname
; - APF authorized
; - superuser
;
UDPCONFIG RESTRICTLOWPORTS
;
; --
;
; SRCIP: Provides the following functionality:
; - Provides for the substitution of a source IP address on a
; jobname-specific or destination-specific basis, for applications
; which specify either the IPv4 INADDR_ANY address, or the IPv6
; unspecified address (in6addr_any) for the source IP address.
; This may be done when an application issues an explicit bind()
; call with either of these addresses, or when it bypasses issuing
; an explicit bind() call and issues a connect().
; - Provides the ability to designate if default source address
; selection should prefer a public or a temporary IPv6 address
; for the specified jobs.
;
;
; Example SRCIP to substitute a source IP address
;
;SRCIP
; JOBNAME USER15 9.43.242.5
; JOBNAME USER* 9.43.242.4
; JOBNAME USER15 2001::092B:F203
; JOBNAME JOB* ETHER1
; DESTINATION 9.67.114.02 9.43.240.7
; DESTINATION 2003::090C:F246 INTF1
; JOBNAME * 9.43.242.3
; JOBNAME * 9.43.242.3
; JOBNAME PAYROLL* 9.42.242.5 BOTH
; JOBNAME SERVER1 9.42.242.4 SERVER
; JOBNAME CLIENT* 2001:0DB8::9:43:242:6 CLIENT
;ENDSRCIP
;
; Example SRCIP to cause default source address selection to prefer
; public or temporary IPv6 addresses
;
;SRCIP
; JOBNAME IPV6PUB PUBLICADDRS
; JOBNAME IPV6TEMP TEMPADDRS
;ENDSRCIP
;
; --
;
; DEFADDRTABLE: Can be used to configure the policy table for IPv6
; default address selection.
;
;DEFADDRTABLE
; Prefix Precedence Label
; ::1/128 50 0

214 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|

|

|
|
|
|
|

|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

; ::/0 40 1
; 2002::/16 30 2
; ::/96 20 3
; ::ffff:0.0.0.0/96 10 4
;DEFADDRTABLE
;

Following is a description of the statements shown in Figure 33. For more
information about any of these statements, see z/OS Communications Server: IP
Configuration Reference. For information specific to IPv6 support, see z/OS
Communications Server: IPv6 Network and Application Design Guide.

ARPAGE
Use ARPAGE to set the number of minutes between a revalidation and
deletion of ARP table entries for LCS devices. An installation that wants to
describe this value in seconds versus minutes should use the IPCONFIG
ARPTO statement.

Note: The ATM ARP requests are controlled via the ATMLIS statement,
and the MPCIPA and MPCOSA ARP requests are not controlled by
the TCP/IP address space.

GLOBALCONFIG
Use GLOBALCONFIG to print out several counters in text format. These
counters include number of TCP retransmissions and total number of TCP
segments sent from the TCP/IP system. Most installations will use the SMF
facility of MVS to collect these counters in a more standard way.

Use the ECSALIMIT parameter on the GLOBALCONFIG statement to limit
TCP/IP's use of common storage. The POOLLIMIT parameter can be used
to limit TCP/IP's use of private storage pools.

IPCONFIG
Use IPCONFIG to configure various settings of the IP layer of TCP/IP. Use
ARPTO to specify the ARP time out value in seconds for LCS devices. See
the ARPAGE description for more information.

Use CLAWUSEDOUBLENOP on vendor devices that document the need
for double NOPs on each CCW.

Use DATAGRAMFWD if this TCP/IP is to be a router and needs to
forward datagrams to other routers. Use IGNOREREDIRECT when a
dynamic routing program is used and ICMP redirect packets are to be
ignored by the TCP/IP address space. MULTIPATH is used to inform
TCP/IP how to distribute traffic across equal cost routes.

Use IPSECURITY to restrict this host to be a network firewall.

SOURCEVIPA enables interface fault tolerance for z/OS clients that
establish outbound connections. When SOURCEVIPA is set, outbound
datagrams use the corresponding virtual IP address (VIPA) in the HOME
list instead of the physical interfaces IP address. SOURCEVIPA has no
effect on RIP servers such as NCPROUTE or OMPROUTE.

TCPSTACKSOURCEVIPA allows z/OS clients to specify a sysplex wide
source IP address for TCP connections. When TCPSTACKSOURCEVIPA is

Figure 33. Example of TCP/IP operating characteristics in PROFILE.TCPIP

Chapter 5. TCP/IP Customization 215

|
|
|
|
|
|

set, outbound TCP datagrams use the IP address specified in the
TCPSTACKSOURCEVIPA statement instead of static VIPA addresses or
physical interface addresses.

Use SYSPLEXRouting to communicate interface changes within a sysplex
domain to the workload manager (WLM). DYNAMICXCF allows the cross
communication facility within a sysplex to dynamically generate
connections within a sysplex domain. If DYNAMICXCF is used with a
dynamic routing program like OMPROUTE, the BSDROUTINGPARMS and
the OMPROUTE configuration files need to be updated with subnet mask
and cost information. For more information on additional configuration
parameters required, see the usage notes related to the DYNAMICXCF
parameter under the IPCONFIG statement in z/OS Communications Server:
IP Configuration Reference.

Use REASSEMBLYTIMEOUT to specify the TCP/IP reassemble timeout
value in seconds, and the TTL specifies the TCP/IP time to live or hop
count value.

Use PATHMTUDISCOVERY to indicate to TCP/IP that it is to dynamically
discover the path MTU, which is the minimum of MTUs of each hop in the
path.

Use STOPONCLAWERROR to indicate to the TCP/IP stack to stop channel
programs (HALTIO and HALTSIO) when a device error is detected.

Use QDIOACCELERATOR to request accelerated packet forwarding for
OSA-Express QDIO Ethernet and HiperSockets interfaces.

IPCONFIG6
Use IPCONFIG6 to update the IP layer of TCP/IP with information that
pertains to IPv6.

Use DATAGRAMFWD to enable the transfer of data between networks.

Use DYNAMICXCF to enable Dynamic XCF support for IPv6.

SOMAXCONN
Use SOMAXCON to specify the maximum number of sockets queued on a
listener.

SRCIP
Use the SRCIP - ENDSRCIP profile statement block to configure one of the
following functions:
v Enable an application to use a designated IP address as its source

address for outbound TCP connections, or to enable a TCP server
application to bind to a specific IP address when establishing its
listening socket.

v Indicate that the default source address selection algorithm should prefer
public or temporary IPv6 addresses for specific jobs.

For outbound TCP connections, when a source IP address has been
designated for a specified job name or destination address and the source
IP address exists at the time the outbound TCP connection is initiated, this
source IP address is used, overriding other source IP address selection
methods as described in “Source IP address selection” on page 218. This
source address selection is performed for applications that issue a connect()
call and that have not previously bound the socket to an IP address, or for
those that bind to the IPv4 INADDR_ANY address or to the IPv6
unspecified address (in6addr_any) before issuing the connect() call.

216 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|

|
|

|
|

For TCP server applications, when the application performs a bind to
INADDR_ANY or in6addr_any and a matching JOBNAME rule for
SERVER or BOTH is specified, the designated IP address is used on the
listening socket. This has the effect of making the server application bind
specific, where client applications can connect to the server using only the
designated IP address. This capability can be useful when the applications
do not provide a method for the user to specify a specific IP address for
their listening sockets, or in situations when the server application creates
listening sockets using an ephemeral port that is assigned dynamically by
TCP/IP. For scenarios when the application binds to specific, well-known
ports, the BIND keyword on the PORT reservation statement in the
TCP/IP profile can be used instead and has precedence over the SRCIP
block specifications.

If you use distributed DVIPAs as a designated source within the SRCIP
block, you might also need to specify the EXPLICITBINDPORTRANGE
parameter on the GLOBALCONFIG statement. For more information about
the GLOBALCONFIG statement and its parameters, see z/OS
Communications Server: IP Configuration Reference.

Guidelines:

v Applications that bind to INADDR_ANY or in6addr_any that match on
a SRCIP JOBNAME or DESTINATION statement do not have the
designated IP address as their source address upon completion of the
bind() call. The source address is not set to the designated address until
completion of the subsequent connect() (client applications) or listen()
(server applications) call. This is important to note for applications that
issue a getsockname() call after a bind() call to retrieve the source IP
address. This processing is different from the processing that occurs
when a TCP server application is converted to being bind specific using
the BIND keyword on the PORT statements in the TCP/IP profile. When
using the BIND keyword on the PORT statement, the designated IP
address is set upon completion of the bind() call, and some applications
such as DB2 depend on this behavior.

v When using a SRCIP JOBNAME statement for an IPv6 server
application, an IPv6 address should be coded and not an IPv6 interface.
Otherwise, the source address that is chosen for that IP interface might
not be the best choice for the server application to be bound to. For
information about the default source address selection algorithm, see
z/OS Communications Server: IPv6 Network and Application Design Guide.

TCPCONFIG
Use TCPCONFIG to configure various settings of the TCP protocol layer. If
a keep-alive value other than 120 minutes is needed by an installation, use
the INTERVAL statement to change the default keep-alive value.
FINWAIT2TIME can be used to specify a different timeout value for a TCP
Connection which is in a FINWAIT2 state. SENDGARBAGE will cause the
keep-alive packet to contain one byte of random data and an incorrect
sequence number, assuring that the data is not accepted by the remote
TCP. The TCPTIMESTAMP option can be used to choose whether or not to
participate in timestamp negotiation.

The behavior of acknowledgments and delaying their transmission can be
altered by using the DELAYACKS statement.

If RESTRICTLOWPORTS is specified, only applications that meet at least
one of the following criteria are allowed to bind to low ports (1–1023):

Chapter 5. TCP/IP Customization 217

v The port is reserved for the application via the PORT or PORTRANGE
statement.

v The application runs with APF authorization.
v The application runs with effective POSIX UID zero.

If an installation wants to control TCP buffering (to limit storage usage or
to manage large bandwidth devices), use the TCPSENDBFRSIZE,
TCPRCVBUFRSIZE, and TCPMAXRCVBUFRSIZE parameters.

Use TTLS to configure the TCP/IP stack for AT-TLS support.

UDPCONFIG
Use UDPCONFIG to configure various settings of the UDP protocol layer.
NOUDPCHKSUM can be used to eliminate check summing overhead for
IPv4 UDP packets. This option is ignored for UDP datagrams flowing over
an IPv6 network, as UDP Checksum is a required function on an IPv6
network.

If RESTRICTLOWPORTS is specified, only applications that meet at least
one of the following criteria are allowed to bind to low ports (1–1023):
v The port is reserved for the application via the PORT or PORTRANGE

statement.
v The application runs with APF authorization.
v The application runs with effective POSIX UID zero.

If an installation wants to control UDP buffering (to limit storage usage or
to manage large bandwidth devices), use the UDPSENDBFRSIZE and
UDPRCVBUFRSIZE parameters. UDPQUEUELIMIT can be used to set a
queue limit for UDP. This is useful for installations that want to limit the
size of the queue of UDP datagrams that an application can have waiting
before the TCP/IP address space starts discarding them.

Source IP address selection
TCP/IP determines the source IP address for a TCP outbound connection, or for a
UDP or RAW outbound packet, using the following sequence, listed in descending
order of priority.
1. Sendmsg() using the IPV6_PKTINFO ancillary option specifying a nonzero

source address (RAW and UDP sockets only)
2. Setsockopt() IPV6_PKTINFO option specifying a nonzero source address (RAW

and UDP sockets only)
3. Explicit bind to a specific local IP address
4. bind2addrsel socket function (AF_INET6 sockets only)
5. PORT profile statement with the BIND parameter
6. SRCIP profile statement (TCP connections only)
7. TCPSTACKSOURCEVIPA parameter on the IPCONFIG or IPCONFIG6 profile

statement (TCP connections only)
8. SOURCEVIPA: Static VIPA address from the HOME list or from the

SOURCEVIPAINTERFACE parameter
9. HOME IP address of the link over which the packet is sent

For a TCP connection, the source address is selected for the initial outbound
packet, and the same source IP address is used for the life of the connection. For
the UDP and RAW protocols, a source IP address selection is made for each
outbound packet. A more detailed description of this sequence follows.

218 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|

How TCP/IP selects a source IP address: TCP/IP uses the following sequence to
select the source IP address for an outbound packet. For detailed information
about the TCP/IP profile (PROFILE.TCPIP) and configuration statements, see z/OS
Communications Server: IP Configuration Reference.
1. Sendmsg that specifies the source address in the ancillary IPV6_PKTINFO data

If this is a UDP or RAW socket, and IPV6_PKTINFO ancillary data is specified
on sendmsg() with a nonzero source IP address, this address is used as the
source IP address.

2. Setsockopt IPV6_PKTINFO
If this is a UDP or RAW socket, and the IPV6_PKTINFO socket option is set
and it contains a nonzero source IP address, this address is used as the source
IP address.

3. Explicit bind to a specific local address
If the socket is already bound to a specific local IP address other than
INADDR_ANY or in6addr_any, TCP/IP uses this specific local IP address.

4. bind2addrsel socket function (IPv6 only)
The bind2addrsel socket function, which is available only to AF_INET6 sockets,
binds a socket to a stack-selected local address and port that is appropriate to
communicate with a given destination address.

5. PORT profile statement with the BIND parameter
If the socket is bound to a source port and to the INADDR_ANY or
in6addr_any IP address, and there is a corresponding PORT profile statement
with the BIND parameter specified, TCP/IP uses the address specified by the
BIND parameter.

6. SRCIP profile statement
If this is a TCP socket and either the socket is not yet bound or the socket is
bound to the INADDR_ANY or in6addr_any IP address, TCP/IP checks the job
name and destination IP address against the SRCIP entries in the following
order:
a. JOBNAME entries, other than JOBNAME *
b. DESTINATION entries
c. JOBNAME * entries
If a match is found, TCP/IP uses the designated source in the most specific
matching entry to provide the source IP address to be used.
Restriction: JOBNAME entries that specify a source of PUBLICADDRS or
TEMPADDRS apply to only IPv6 source IP address selection. The JOBNAME
entries do not influence the setting of the source IP address during this step of
the source IP address selection sequence. For information about how
PUBLICADDRS or TEMPADDRS entries influence the selection of the source IP
address and the default source address selection algorithm, see z/OS
Communications Server: IPv6 Network and Application Design Guide.

7. TCPSTACKSOURCEVIPA parameter on the IPCONFIG or IPCONFIG6 profile
statement
All of the following conditions must be met:
v This is a TCP socket.
v SOURCEVIPA is enabled on IPCONFIG or IPCONFIG6.
v SOURCEVIPA is not disabled for the socket.
v The application has not issued a specific bind for this socket, even to the

INADDR_ANY or in6addr_any IP address.

Chapter 5. TCP/IP Customization 219

|

|
|
|

|

|

v The address specified on the TCPSTACKSOURCEVIPA parameter is a static
VIPA or active dynamic VIPA.

If these conditions are met and this is an IPv4 packet, TCP/IP uses the address
specified on the TCPSTACKSOURCEVIPA parameter.
If these conditions are met and this is an IPv6 packet, TCP/IP uses the default
source address selection algorithm to select one of the addresses configured for
the VIPA interface referenced by the TCPSTACKSOURCEVIPA parameter. For
information about the default source address selection algorithm, see z/OS
Communications Server: IPv6 Network and Application Design Guide.
Guideline: Because the SRCIP profile statement provides all of the functionality
of the TCPSTACKSOURCEVIPA parameter and additional granularity, consider
using the SRCIP statement instead of specifying the TCPSTACKSOURCEVIPA
parameter. Specifying JOBNAME * in a SRCIP profile statement provides the
same result as specifying the TCPSTACKSOURCEVIPA parameter for implicit
bind scenarios, and also applies to applications that issue a bind to the
INADDR_ANY or in6addr_any IP address.

8. SOURCEVIPA: Static VIPA address from the HOME list (IPv4 interface defined
with the LINK statement) or from the SOURCEVIPAINTERFACE parameter
(IPv6 or IPv4 interface defined with the INTERFACE statement)
All of the following conditions must be met:
v SOURCEVIPA is enabled on IPCONFIG or IPCONFIG6.
v SOURCEVIPA is not disabled for the socket.
v Either the socket is not yet bound, or the socket is bound to the

INADDR_ANY or in6addr_any IP address.
If these conditions are met, TCP/IP determines the interface over which the
initial packet will be sent.
v For an IPv4 packet being sent over an interface defined with the LINK

statement, TCP/IP does the following:
a. Locates that interface in the HOME list.
b. Searches backward in the HOME list for a static VIPA.
c. If a static VIPA is found in the HOME list, TCP/IP uses the first static

VIPA found as the source IP address.
v For an IPv4 packet being sent over an interface defined with the INTERFACE

statement, TCP/IP does the following:
a. Determines whether a SOURCEVIPAINTERFACE parameter was

specified for the selected interface.
b. If a SOURCEVIPAINTERFACE parameter was specified, TCP/IP uses the

address of the VIPA interface that is referenced by the
SOURCEVIPAINTERFACE parameter.

v For an IPv6 packet, TCP/IP does the following:
a. Determines whether a SOURCEVIPAINTERFACE parameter was

specified for the selected interface.
b. If a SOURCEVIPAINTERFACE parameter was specified, TCP/IP uses the

default source address selection algorithm to select one of the addresses
configured for the VIPA interface that is referenced by the
SOURCEVIPAINTERFACE parameter. For information about the default
source address selection algorithm, see z/OS Communications Server: IPv6
Network and Application Design Guide.

9. HOME IP address of the link over which the packet is sent
For an IPv4 packet, TCP/IP uses the HOME IP address of the link over which
the initial packet is sent.

220 z/OS V1R12.0 Comm Svr: IP Configuration Guide

For an IPv6 packet, TCP/IP uses the default source address selection algorithm
to select one of the addresses configured for the interface over which the initial
packet is sent. For information about the default source address selection
algorithm, see z/OS Communications Server: IPv6 Network and Application Design
Guide.

Setting up physical characteristics in PROFILE.TCPIP
Figure 34 on page 227 shows a portion of the sample configuration file for the
TCP/IP address space, PROFILE.TCPIP. Figure 34 on page 227 includes the portion
of the sample that shows how to set up physical characteristics. This sample can be
copied from SEZAINST(SAMPPROF). Following Figure 34 on page 227, several of
the statements that are used to set up physical characteristics in PROFILE.TCPIP
are described.
; ==
; Network interface definitions
; ==
;
; DEVICE: Defines name (and sometimes device number) for various types
; of network interfaces for IPv4 only
; LINK: Defines a network interface to be associated with a particular
; device. For IPv4 only.
; INTERFACE: Defines an IPv6 interface, or an IPv4 OSA-Express QDIO
; ethernet interface.
; VIPADYNAMIC: Defines IPv4 and IPv6 dynamic virtual interfaces
;
; --
; DEVICE and LINK statements
; --
;
; DEVICE and LINK for CTC devices
;
;DEVICE CTC1 CTC D00 AUTORESTART
;LINK CTCD00 CTC 0 CTC1
;
; DEVICE and LINK for HYPERchannel A220 devices:
;
;DEVICE HCH1 HCH E00 AUTORESTART
;LINK HCHE00 HCH 1 HCH1
;
; DEVICE and LINK for LAN Channel Station and OSA devices:
; DEVICE: Defines name and hexadecimal device number for an IBM 8232
; LAN channel station (LCS) device, and IBM 3172 Interconnect
; Controller, an IBM 2216 Multiaccess Connector Model 400,
; an IBM FDDI, Ethernet, or Token Ring OSA, or an IBM ATM OSA-2
; in LAN emulation mode
; LINK: Defines a network interface link associated with an LCS
; device; may be for Ethernet Network, Token-Ring Network or
; PC Network, or FDDI.
;
; Example: LCS1 is a 3172 model 1 with a Token Ring and Ethernet
; adapter
;
;DEVICE LCS1 LCS BA0 AUTORESTART
;LINK TR1 IBMTR 0 LCS1
;LINK ETH1 ETHERNET 1 LCS1
;
; Example: LCS2 is a 3172 model 2 with a FDDI adapter
;
;DEVICE LCS2 LCS BE0 AUTORESTART
;LINK FDDI1 FDDI 0 LCS2
;
; DEVICE and LINK for MPCIPA QDIO Devices:
;
; Example: MPCIPA1 is an OSA-Express QDIO Ethernet feature

Chapter 5. TCP/IP Customization 221

|

|

|
|
|

|

;
;DEVICE MPCIPA1 MPCIPA NONROUTER AUTORESTART
;LINK MPCIPALINK1 IPAQENET MPCIPA1
;
; Example: MPCIPA2 is an OSA-Express QDIO Ethernet feature
; configured as the PRIMARY router
;
;DEVICE MPCIPA2 MPCIPA PRIROUTER AUTORESTART
;LINK MPCIPALINK2 IPAQENET MPCIPA2
;
; DEVICE and LINK for HiperSockets CHPID FE
;
;DEVICE IUTIQDFE MPCIPA AUTORESTART
;LINK HIPERSOCKFE4 IPAQIDIO IUTIQDFE
;
; DEVICE and LINK for MPCPTP devices:
;
;DEVICE MPCPTP1 MPCPTP AUTORESTART
;LINK MPCPTPLINK MPCPTP MPCPTP1
;
; DEVICE and LINK for CLAW devices:
;
;DEVICE RS6K CLAW 6B2 HOST PSCA NONE 26 26 AUTORESTART
;LINK IPLINK1 IP 0 RS6K
;
; DEVICE and LINK for SNA LU0 links:
;
;DEVICE SNALU0 SNAIUCV SNALINK LU000000 SNALINK AUTORESTART
;LINK SNA1 SAMEHOST 1 SNALU0
;
; DEVICE and LINK for SNA LU 6.2 links:
;
;DEVICE SNALU621 SNALU62 SNAPROC AUTORESTART
;LINK SNA2 SAMEHOST 1 SNALU621
;
; DEVICE and LINK for X.25 NPSI connections:
;
;DEVICE X25DEV X25NPSI TCPIPX25 AUTORESTART
;LINK X25LINK SAMEHOST 1 X25DEV
;
; DEVICE and LINK for 3745/46 Channel DLC Devices:
;
;DEVICE CDLC1 CDLC C00 AUTORESTART
;LINK CDLCLINK CDLC 1 CDLC1
;
; DEVICE and LINK for MPC OSA Fast Ethernet Devices:
;
;DEVICE MENET1 MPCOSA AUTORESTART
;LINK ENETLINK OSAENET 0 MENET1
;
; DEVICE and LINK for MPC OSA FDDI Devices:
;
;DEVICE MFDDI1 MPCOSA AUTORESTART
;LINK FDDILINK OSAFDDI 0 MFDDI1
;
; DEVICE and LINK for static virtual (VIPA) interfaces:
;
;DEVICE VDEV1 VIRTUAL 0
;LINK VLINK1 VIRTUAL 0 VDEV1
;
; ATM hardware definitions
; ----------------------------------
;
; ATMLIS: Describes characteristics of an ATM logical IP subnet (LIS).
;
; DEVICE and LINK for ATM devices: (See below)
;

222 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|

|

|
|

; ATMPVC: Describes a permanent virtual circuit (PVC) to be used by an
; ATM link.
;
; ATMARPSV: Designates the ATMARP server that will resolve ATMARP
; requests for a logical IP subnet (LIS).
;
; ATMLIS LIS1 9.67.100.0 255.255.255.0
; DEVICE OSA1 ATM PORTNAME PORT1
; LINK LINK1 ATM OSA1 LIS LIS1
; ATMPVC PVC1 LINK1
; ATMARPSV ARPSV1 LIS1 PVC PVC1
;
; --
; INTERFACE statements
; --
; IPv6 Virtual interface definitions
; ----------------------------------
; IPADDR keyword is required for Virtual interfaces
; Multiple IP addresses can be defined to one interface
; The prefixes of the IPv6 VIPA addresses should be
; different than the prefixes used for addresses
; configured or autoconfigured for real interfaces.
; ---
; INTERFACE VIPAV6 DEFINE
; VIRTUAL6
; IPADDR 50C9:C2D4:0:A:9:67:115:66 ; (Global Address)
; --
; OSA-Express QDIO interface definitions
; --------------------------------------
; To use autoconfiguration for IPv6 interfaces, the IPADDR
; parameter cannot be specified.
; To manually define address(es), use the IPADDR keyword.
; To assign a source VIPA address for an interface, use SOURCEVIPAINT
; For OSA-Express QDIO ethernet features, you can define both
; the IPv4 and IPv6 interfaces with INTERFACE statements, but you
; must define a datapath device for each interface.
; To configure a virtual MAC address for an OSA-Express QDIO ethernet
; feature, specify the VMAC parameter on the INTERFACE
; statement.
; --------------------------------------
; INTERFACE OSAQDIO26 ; IPv6 OSA-Express QDIO ethernet
; DEFINE IPAQENET6
; PORTNAME OSAQDIO2
; INBPERF DYNAMIC
; VMAC
; SOURCEVIPAINT VIPAV6
; IPADDR 50C9:C2D4:0:1:9:67:115:66 ; (Global Address)
;
; INTERFACE OSAQDIO24 ; IPv4 OSA-Express QDIO ethernet
; DEFINE IPAQENET
; PORTNAME OSAQDIO2
; INBPERF DYNAMIC
; VMAC
; SOURCEVIPAINT VLINK1
; IPADDR 9.67.113.84/24 ; address and subnet mask
; --
; MPC Point-to-point interface definitions
; --------------------------------------
; MPCPTP6 interfaces require manual IPv6 address configuration. If
; you don’t code an IPADDR on the MPCPTP6 interface, you’ll get only
; the link-local address. Here, the specified interface ID (INTFID)
; will be appended to the global prefix, to form the global
; address.
; --------------------------------------
; INTERFACE MPC1IPV6 ; MPCPTP6 (IPv6 over MPC point to point)
; DEFINE MPCPTP6
; TRLENAME TRLE1A

Chapter 5. TCP/IP Customization 223

|

|

|

|
|
|
|
|
|

|
|

|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|

|
|

|

; INTFID 0012:3456:789A:BCDE
; IPADDR 2001:0DB8:0:0/64 ; (Global Prefix)
; --
; HiperSockets IPv6
; -----------------
; INTERFACE HIPERSOCKFE6 ; IPAQIDIO6 (HiperSockets IPv6)
; DEFINE IPAQIDIO6
; CHPID FE
; INTFID 0000:2000:2000:2000
; IPADDR 50C9:C2D4:0:1:9:67:118:80 ; (Global Address)
; --
; To define other IPv6 Loopback addresses:
; --
; INTERFACE LOOPBACK6 ADDADDR ::0014:0
;
; --
; VIPADYNAMIC statement for dynamic virtual (DVIPA) interfaces
; --
;
; The VIPADYNAMIC statement provides the following functions:
; - Define dynamic virtual (DVIPA) interfaces on a stack.
; - Define sysplex distribution of TCP connections using DVIPAs.
; - Define a stack as a backup for DVIPAs.
; - Define the IP address range for creating DVIPAs by use of IOCTL
; or Bind requests.
; - Define routes over interfaces other than dynamic XCF, to be
; used for the forwarding of DVIPA packets by sysplex
; distributor.
;
; VIPADYNAMIC
;
; Define two IPV4 dynamic VIPAs on this stack:
; VIPADEFINE 255.255.255.192 201.2.10.11 201.2.10.12
;
; Define two IPv6 dynamic VIPAs on this stack:
; VIPADEFINE DVIPA1 1::1
; VIPADEFINE DVIPA2 2::2
;
; Define this stack as backup for these dynamic VIPAs and,
; define the DVIPAs on this stack if they are not
; already active elsewhere in the sysplex:
; VIPABACKUP 200 MOVEABLE IMMEDIATE 255.255.255.192 9.67.240.02
; VIPABACKUP V6DVIPA1 MOVEABLE IMMEDIATE 2000::9:67:240:2
;
; Define Sysplex Distributor statements for these dynamic VIPAs:
; VIPADISTRIBUTE SYSPLEXPORTS 201.2.10.11 PORT 4011 DESTIP ALL
; VIPADISTRIBUTE TIMEDAFF 200 201.2.10.12 PORT 4012 DESTIP ALL
; VIPADISTRIBUTE DISTMETHOD ROUNDROBIN DVIPA1 DESTIP ALL
; VIPADISTRIBUTE SYSPLEXPORTS DVIPA2 PORT 4013 DESTIP ALL
; VIPADISTRIBUTE
; DISTMETHOD SERVERWLM 9.67.240.02 PORT 10000 DESTIP ALL
; VIPADISTRIBUTE
; DISTMETHOD SERVERWLM PROCXCOST ZIIP 2 ZAAP 2 ILWEIGHTING 2
; OPTLOCAL 1 SYSPLEXPORTS
; V6DVIPA1 PORT 10000 DESTIP ALL
;
; Define this stack as backup for dynamic VIPAs on
; other TCP/IP stacks:
; VIPABACKUP 100 201.2.10.13 201.2.10.14
; VIPABACKUP 80 201.2.10.21 201.2.10.22
; VIPABACKUP 60 201.2.10.31 201.2.10.33
; VIPABACKUP 40 201.2.10.32 201.2.10.34
;
; Define two dynamic VIPA ranges on this stack:
; VIPARANGE DEFINE 255.255.255.192 201.2.10.192
; VIPARANGE V6RANGE1 3::1/100
;

224 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

; Define alternative routes to dynamic XCF routes, for forwarding of
; DVIPA packets by sysplex distributor
; VIPAROUTE DEFINE 201.1.10.20 9.67.213.81
; VIPAROUTE DEFINE 2001::251:00002 50C9:C2D4:0:1:9:67:215:66
; ENDVIPADYNAMIC
;
; --
; Other interface statements
; --
;
; TRANSLATE: Indicates a relationship between an internet address and
; the network address on a specified link. Only applicable for IPv4
; interfaces defined by DEVICE and LINK profile statements.
;
; TRANSLATE
; 9.67.43.110 FDDI FF0000006702 FDDI1
; 9.37.84.49 HCH FF0000005555 HCHE00
;
;
; ==
; HOME addresses
; ==
;
; HOME: Provides the list of home IP addresses and associated link
; names for IPv4 interfaces defined by DEVICE and LINK profile
; statements.
;
; - The LOOPBACK statement of 14.0.0.0 should only be used if the
; installation has applications that require this old loopback
; address. The current stack uses 127.0.0.1 as the loopback
; address.
;
; HOME
; 14.0.0.0 LOOPBACK
; 130.50.75.1 TR1
; 193.5.2.1 ETH1
; 9.67.43.110 FDDI1
; 193.7.2.1 SNA1
; 9.67.113.80 CTCD00
; 9.37.84.49 HCHE00
; 9.67.113.81 MPCIPALINK1
; 9.67.113.82 MPCPTPLINK
; 9.67.113.83 MPCIPALINK2
; 9.67.114.02 IPLINK1
; 9.67.43.03 SNA2
; 9.67.115.85 X25LINK
; 9.67.116.86 VLINK1
; 9.67.117.87 CDLCLINK
; 9.67.100.80 LINK1
; 9.37.112.13 ENETLINK
; 9.37.112.14 FDDILINK
; 9.67.118.80 HIPERSOCKFE4
;
;
; PRIMARYINTERFACE: Specifies which link is designated as the default
; local host for use by the GETHOSTID() function. Only applicable
; for IPv4 interfaces defined by a LINK or INTERFACE statement.
;
; - If PRIMARYINTERFACE is not specified, then the first link in
; the HOME statement is the primary interface, as usual.
;
; PRIMARYINTERFACE TR1
;
; ==
; Routing configuration
; ==
; --

Chapter 5. TCP/IP Customization 225

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

; Static routing
; --
;
; BEGINRoutes: Defines static routes to the main route table for IPv4
; and IPv6
;
; - Use of BEGINROUTES with OMPROUTE routing daemon is not recommended.
;
BEGINRoutes
;
; Direct Routes - Routes that are directly connected to my interfaces.
;
; Destination Subnet Mask First Hop Link Name Packet Size
;
;ROUTE 130.50.75.0 255.255.255.0 = TR1 MTU 2000
;ROUTE 193.5.2.0/24 = ETH1 MTU 1500
;ROUTE 9.67.43.0 255.255.255.0 = FDDI1 MTU 4000
;ROUTE 193.7.2.2 HOST = SNA1 MTU 2000
;
; Destination Subnet Mask First Hop Interface Packet Size
;
; ROUTE FE80::1:2:3:4/128 = OSAQDIO26 MTU 2000
; ROUTE 2001::0DB8:1/128 = OSAQDIO26 MTU 2000
;
;
; Indirect Routes - Routes that are reachable through routers on my
; network.
;
; Destination Subnet Mask First Hop Link Name Packet Size
;
;ROUTE 193.12.2.0 255.255.255.0 130.50.75.10 TR1 MTU 2000
;ROUTE 10.5.6.4 HOST 193.5.2.10 ETH1 MTU 1500
;
; Destination Subnet Mask First Hop Interface Packet Size
;
; ROUTE FEC8::/64 FE80::1:2:3:4 OSAQDIO26 MTU 2000
;
; Default Route - All packets to an unknown destination are routed
; through this route.
;
; Destination First Hop Link Name Packet Size
;
;ROUTE DEFAULT 9.67.43.99 FDDI1 MTU DEFAULTSIZE
;
; Destination Subnet Mask First Hop Interface Packet Size
;
; ROUTE DEFAULT6 FE80::1:2:3:4 OSAQDIO26 MTU DEFAULTSIZE
ENDRoutes
;
; --
; Dynamic routing
; --
;
; BSDROUTINGPARMS: Defines the characteristics of each link defined at
; the host. Only applicable for IPv4 interfaces defined by the
; DEVICE and LINK profile statements.
;
; If not supplied, characteristics will be supplied from:
; (1) Static routing definitions in BEGINROUTES
; (2) OMPROUTE configuration (if OMPROUTE is running)
; (3) Stack’s interface layer based on hardware capabilites and
; characteristics of devices and links.
;
; - OMPROUTE does not require BSDROUTINGPARMS. OMPROUTE will
; override the parameters with the coded or defaulted values
; from its configuration.
;

226 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|

|

|
|

; - NCPROUTE requires BSDROUTINGPARMS to route Transport PDUs prior
; to OMPROUTE activation. If OMPROUTE is also used, the parameters
; must match the corresponding ones in OMPROUTE configuration for
; the channel-attached links.
;
; BSDROUTINGPARMS TRUE
; Link name MTU Cost metric Subnet Mask Dest address
; TR1 2000 0 255.255.255.0 0
; ETH1 1500 0 255.255.255.0 0
; FDDI1 4000 0 255.255.255.0 0
; VLINK1 DEFAULTSIZE 0 255.255.255.0 0
; CTCD00 65527 0 255.255.255.0 9.67.113.90
; ENDBSDROUTINGPARMS

Following are descriptions of several of the statements shown in Figure 34 that are
used to set up physical characteristics in PROFILE.TCPIP. For more information
about any of these statements, or information on statements not described, see
z/OS Communications Server: IP Configuration Reference. For information specific to
IPv6 support, see z/OS Communications Server: IPv6 Network and Application Design
Guide.

DEVICE and LINK
Use DEVICE and LINK statements to define each IPv4 network interface to
the TCPIP address space. See z/OS Communications Server: IP Configuration
Reference for more details about the various network interfaces supported
by TCP/IP.

ATM Use the ATM DEVICE and LINK statements to define connectivity
to an ATM network. These statements allow for connectivity in
either ATM native mode over an ATM virtual circuit (VC) or in
ATM LAN Emulation mode.

For ATM native mode, the VC can be either a permanent virtual
circuit (PVC) or a switched virtual circuit (SVC). To define a PVC,
use the ATMPVC statement. To define SVCs, use the ATMLIS
statement to define the ATM logical IP subnet (LIS). Also, for SVCs,
use the ATMARPSV statement to define the ATMARP server that
will resolve ATMARP requests within the LIS. For ATM LAN
emulation mode, the ATM DEVICE and LINK definitions allow
you to retrieve SNMP network management data for the device. In
this mode, you need to define the device as an LCS.

CDLC The DEVICE CDLC describes the interface between the TCP/IP
address space and the 3745/46 devices used.

CLAW Use CLAW DEVICE for RISC System/6000 and SP2.

CTC Use the CTC DEVICE and LINK statements to define connectivity
to another z/OS using channel-to-channel.

HYPERchannel A220 DEVICE and LINK
Use the HCH DEVICE and LINK statements to define connectivity
via the HYPERchannel A220 adapter.

LAN Channel Station (LCS) DEVICE and LINK
Use the LCS DEVICE and LINK statements to define connectivity
to a token-ring, FDDI, or Ethernet LAN. LCS devices can have
more than one adapter. Therefore, you can have more than one
LINK statement for an LCS DEVICE statement.

Figure 34. Example of physical characteristics in PROFILE.TCPIP

Chapter 5. TCP/IP Customization 227

In configurations where multiple LCS and/or MPCIPA links onto
the same LAN are defined, if the interface targeted by the ARP
Request is inactive, one of the other active interfaces on the LAN
will automatically take over responsibility for answering ARPs on
behalf of the inactive interface. In this way, fault tolerance is
achievable on the LAN without requiring a dynamic routing
protocol.

TCP/IP supports ARP for VIPAs. In a flat network (one in which
traffic flows directly between two endpoints without an
intermediate router) using static routing with multiple interfaces
onto the same LAN, you can achieve fault tolerance by defining a
VIPA in the same subnet as the physical interfaces on the LAN. If a
static route specifies a VIPA as the next hop IP address, the host or
router will send an ARP for the VIPA. TCP/IP will reply to the
ARP with the MAC address of one of the active physical interfaces
on that LAN.

MPCIPA
Use the MPCIPA DEVICE and LINK statements to define either of
the following:
v LAN connectivity with the OSA-Express feature using the

Queued Direct I/O (QDIO) interface
Tip: You can also use the INTERFACE statement to define an
IPv4 interface for OSA-Express QDIO Ethernet, which combines
the definitions of the DEVICE, LINK, and HOME statements
into a single statement.

v HiperSockets connectivity

For the OSA-Express QDIO interface, the MPCIPA device name
must be the PORT name of the TRLE definition of the QDIO
interface as described in z/OS Communications Server: SNA Resource
Definition Reference. Device specifications for the type of IP routing
supported are also specified on the MPCIPA DEVICE statement.
These are also described in z/OS Communications Server: SNA
Resource Definition Reference.

In configurations where multiple LCS and/or MPCIPA links onto
the same LAN are defined, if the interface targeted by the ARP
Request is inactive, one of the other active interfaces on the LAN
will automatically take over responsibility for answering ARPs on
behalf of the inactive interface. In this way, fault tolerance is
achievable on the LAN without requiring a dynamic routing
protocol.

TCP/IP supports ARP for VIPAs. In a flat network (one in which
traffic flows directly between two endpoints without an
intermediate router) using static routing with multiple interfaces
onto the same LAN, you can achieve fault tolerance by defining a
VIPA in the same subnet as the physical interfaces on the LAN. If a
static route specifies a VIPA as the next hop IP address, the host or
router will send an ARP for the VIPA. TCP/IP will reply to the
ARP with the MAC address of one of the active physical interfaces
on that LAN.

228 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|

Use the IPCONFIG DYNAMICXCF statement to cause TCP/IP to
automatically define and activate HiperSockets connectivity
between each pair of TCP/IP stacks that is in the same CPC in the
same z/OS sysplex.

MPCOSA
The MPCOSA DEVICE statements define the MPC OSA Ethernet
and FDDI devices.

MPCPTP

MPCPTP can be used to define any of the following:
v A connection to another host over a series of CTCs (in this case,

the device name must be the name of a VTAM TRLE).
v An XCF connection to another TCP/IP in the same z/OS

sysplex. For an XCF connection, the device name must be the CP
name or SSCP name of the target VTAM on the other side of the
XCF connection, and the VTAM ISTLSXCF major node must be
active to start the device.

v An IUTSAMEH connection (with no need for any I/O devices)
to another TCP/IP on the same z/OS system or to VTAM for
Enterprise Extender. For an IUTSAMEH connection, the device
name must be the reserved name IUTSAMEH. VTAM
automatically activates the IUTSAMEH TRLE.

Use the IPCONFIG DYNAMICXCF statement to cause TCP/IP to
automatically define and activate XCF connectivity between each
pair of TCP/IP stacks in the same sysplex and IUTSAMEH
connectivity between multiple TCP/IP stacks on the same z/OS.

SNAIUCV and SNALU62
Use SNAIUCV DEVICE to specify the interface to use for SNA
LU0 traffic to the SNALINK started procedures. For example, use
this to define the interface between the TCP/IP address space and
the SNALINK address space that is using a 3745 running
NCPRoute. Similarly, the DEVICE SNALU62 statement defines the
interface between the TCP/IP address space and the address space
using SNA LU6.2. See z/OS Communications Server: IP Configuration
Reference for information about how to define multiple LU6.2
connections within the same TCP/IP address space.

VIRTUAL
Use VIRTUAL DEVICE to define a static virtual IP address (VIPA)
interface.

The static virtual device requires DEVICE and LINK statements to
define a device that is always started, can never be stopped, can be
known within the network, yet requires no physical adapters. It is
very useful to define VIPAs so that if a physical adapter loses its
connection to the network, application traffic using the failed
physical adapter can be rerouted over another interface to the
network. To the network, the VIPA address appears to be one hop
away from the TCP/IP address spaces. The network sends and
receives datagrams to and from the physical interfaces to get to the
VIPA address. For more information about VIPA, see Chapter 7,
“Virtual IP Addressing,” on page 351.

X.25 The DEVICE X25DEV defines the interface between the TCP/IP
address space and the address space of the X.25 NPSI server.

Chapter 5. TCP/IP Customization 229

|
|
|

INTERFACE (IPv4)
Use the INTERFACE statement to define IPv4 OSA-Express QDIO
interfaces (instead of using MPCIPA DEVICE and LINK statements).

IPAQENET
Use the IPAQENET INTERFACE statement to define IPv4 LAN
connectivity through the OSA-Express feature using QDIO.

INTERFACE (IPv6)
Use INTERFACE statements to define each IPv6 network interface to the
TCPIP address space. See z/OS Communications Server: IP Configuration
Reference for more details about the various network interfaces supported
by TCP/IP.

IPAQENET6
Use the IPAQENET6 INTERFACE statement to define IPv6 LAN
connectivity through the OSA-Express feature using QDIO.

IPAQIDIO6
Use the IPAQIDIO6 INTERFACE statement to define HiperSockets
IPv6 connectivity.

Use the IPCONFIG6 DYNAMICXCF statement to cause TCP/IP to
automatically define and activate HiperSockets IPv6 connectivity
between each pair of TCP/IP stacks that is in the same CPC in the
same z/OS sysplex.

MPCPTP6
Use the MPCPTP6 INTERFACE statement to define any of the
following IPv6 connections:
v A connection to another host using ESCON channel-to-channel

adapters.
v An XCF connection to another TCP/IP in the same z/OS

sysplex.
v An IUTSAMEH connection (with no need for any I/O devices)

to another TCP/IP on the same z/OS system or to VTAM for
Enterprise Extender.

Use the IPCONFIG6 DYNAMICXCF statement to cause TCP/IP to
automatically define and activate XCF connectivity between each
pair of TCP/IP stacks in the same sysplex and IUTSAMEH
connectivity between multiple TCP/IP stacks on the same z/OS.

VIRTUAL6
Use the VIRTUAL6 INTERFACE statement to define IPv6 static
VIPAs.

VIPADYNAMIC
Use the VIPADYNAMIC block statement to define dynamic virtual IP
address (DVIPA) interfaces. For more information about DVIPA interfaces,
see Chapter 7, “Virtual IP Addressing,” on page 351.

TRANSLATE
Use TRANSLATE to indicate which LINK has specified network addresses
for use as a static ARP table. The first TRANSLATE statement in a
configuration data set replaces the entire ARP cache. Subsequent
TRANSLATE statements add to the table. If you are using OSPF routing
(OMPROUTE), see Chapter 6, “Routing,” on page 255 for more information
about requirements for the TRANSLATE statement.

230 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|

HOME
HOME lists the IP addresses and their associated LINK adapter. The first
HOME statement within a configuration data set replaces the existing
HOME list. If subsequent HOME statements are found within a
configuration data set, add entries to the list.

Guideline: The order of the HOME list is important if IPCONFIG
SOURCEVIPA is specified. For more information, see “Source IP address
selection” on page 218. For more information about the HOME statement
and for precautions when either the VIPA address or a physical adapter
used as a source for the VIPA has an IP address that is the network
address, see z/OS Communications Server: IP Configuration Reference.

PRIMARYINTERFACE
Use PRIMARYINTERFACE to specify which interface should be designated
as the default local host for use by the GETHOSTID() function. If
PRIMARYINTERFACE is not used, the first IP address in the HOME list
becomes the default local host address.

BEGINROUTES
Use the BEGINROUTES statement to add static routes to the IP route table.

After an interface has a DEVICE, LINK, and HOME statement, or an INTERFACE
statement, it can be started with the START statement or the VARY TCPIP,,START
command.

Devices that support ARP offload
Certain devices provide an ARP offload function that offloads all ARP processing
to the adapter. The function provided by the adapter impacts the ability of TCP/IP
to display ARP cache information or ARP counter statistics for these devices.

Note: ARP processing is relevant only for IPv4 LAN interfaces.

The following devices provide an ARP offload function and provide ARP cache
data or ARP counters to TCP/IP.
v MPCIPA (OSA-Express Gigabit Ethernet) with a minimum required microcode

level of [MCL] 401
v All other OSA-Express features in QDIO mode

Note: If multiple TCP/IP instances are sharing the device, the ARP data will
represent all TCP/IP instances using the device. This information is
provided to TCP/IP every 30 seconds from the device.

The following devices provide an ARP offload function and do not provide any
ARP cache data or ARP counters to TCP/IP:
v MPCOSA (OSA-2 Fast Ethernet, FDDI)
v MPCIPA (OSA-Express Gigabit Ethernet) with a microcode level earlier than

[MCL] 401

Note: For IPv6 LAN interfaces, TCP/IP performs all the neighbor discovery
processing, maintains the neighbor cache, and provides the ability to display
neighbor cache information.

Interface-layer fault-tolerance for local area networks
(interface-takeover function)
The TCP/IP stack in the z/OS Communications Server provides transparent
fault-tolerance for failed (or stopped) IPv4 devices or IPv6 interfaces, when the

Chapter 5. TCP/IP Customization 231

stack is configured with redundant connectivity onto a LAN. This support is
provided by the z/OS Communications Server interface-takeover function, and
applies to IPv4 MPCIPA and LCS device types and to the IPv6 IPAQENET6
interface type.

At device or interface startup time, TCP/IP dynamically learns of redundant
connectivity onto the LAN, and uses this information to select suitable backups in
the case of a future failure of the device or interface. This support makes use of
ARP flows (for IPv4 devices) or neighbor discovery flows (for IPv6 interfaces), so
upon failure (or stop) of a device or interface, TCP/IP immediately notifies stations
on the LAN that the original IPv4 or IPv6 address is now reachable through the
backup's link-layer (MAC) address. Users targeting the original IP address will see
no outage due to the failure, and will be unaware that any failure occurred.

Since this support is built upon ARP or neighbor discovery flows, no dynamic
routing protocol in the IP layer is required to achieve this fault tolerance. To enable
this support, you only need to configure redundancy onto the LAN:
v You need redundant LAN adapters.
v For IPv4, you must configure and activate multiple LINKs onto the LAN.
v For IPv6, you need to configure and start multiple INTERFACEs onto the LAN.

Restriction: An IPv4 device cannot back up an IPv6 interface, and an IPv6
interface cannot back up an IPv4 device.

Rule: If static routing is used, there needs to be a static route to the LAN subnet
over each interface onto the LAN. There also needs to be a default route and
routes to destinations not directly attached to the LAN over each interface.

The interface-layer fault-tolerance feature can be used in conjunction with VIPA
addresses, where applications can target the VIPA address, and any failure of the
real LAN hardware is handled by the interface-takeover function. This differs from
traditional VIPA usage, where dynamic routing protocols are required to route
around real hardware failures.

IPv6 considerations: Stateless autoconfiguration and duplicate
address detection
IPv6 provides the capability of autoconfiguring addresses for an interface by using
information provided by IPv6 routers. Descriptions of this function can be found in
RFC 2461 and RFC 2462. The term autoconfigured IP address is used here to mean an
IP address that is created as a result of information received from a router
advertisement. z/OS TCP/IP allows autoconfiguration if no IP addresses are
defined on the profile INTERFACE statement using the IPADDR keyword. If the
INTERFACE statement contains IPADDR definitions, this indicates that the
installation is defining its own IP addresses and autoconfiguration is not desired.
The term manually configured addresses is used here to describe the addresses that
are defined using the IPADDR keyword.

TCP creates an autoconfigured IP address for an interface if all three of the
following conditions are met:
v The interface is active.
v A valid router advertisement containing prefix information with the autonomous

flag on is received over the interface.
v No manually configured home addresses are defined for the interface at the time

the router advertisement is received.

232 z/OS V1R12.0 Comm Svr: IP Configuration Guide

The IP address that is created is formed by appending the interface ID generated
by the stack to the prefix supplied by the router advertisement. Autoconfigured IP
addresses can be identified in the Netstat HOME/-h report by the Autoconfigured
flag. For more information on the interface ID generated by the stack, see z/OS
Communications Server: IPv6 Network and Application Design Guide.

An autoconfigured IP address exists until one of the following occurs:
v The valid lifetime specified by the most recent router advertisement expires.

When the valid lifetime expires, the autoconfigured address is removed. Existing
connections using this address are terminated when subsequent activity occurs
on the connection. The router advertisement that contains the valid lifetime for
the autoconfigured address can also specify a preferred lifetime. The preferred
lifetime indicates that the IP address can be freely used. When the preferred
lifetime expires, the autoconfigured address is considered deprecated. The
deprecated state indicates that another IP address should be used if available
and provides a transition period before the valid lifetime expires. A deprecated
IP address can be identified in the Netstat HOME/-h report by the deprecated
flag.

v The installation activates a profile that contains a manually configured IP
address on the same interface as the autoconfigured IP address (that is, the
INTERFACE statement contains the ADDADDR keyword). If this occurs, any
autoconfigured IP addresses on that interface are deleted and existing
connections using this address are terminated when subsequent activity occurs
on the connection. The manually configured addresses are added and duplicate
address detection for the newly added IP addresses initiated, if applicable.

Duplicate address detection is the process described in RFC 2462 which verifies that
IPv6 home addresses are unique on the local link before assigning them to an
interface. Duplicate address detection is performed on all IPv6 IPAQENET6 home
addresses, whether they are manually configured or autogenerated, unless the
INTERFACE statement specifies DUPADDRDET 0. Duplicate address detection is
not done for LOOPBACK6 or VIRTUAL6 addresses. The duplicate address
detection process sends a multicast neighbor solicitation and waits a period of time
to see if another neighbor indicates that the address is in use. By default, only one
neighbor solicitation is sent and the length of time waited is approximately one
second. If no neighbor responds in that interval, the address is considered unique
and the interface will start using it. The number of neighbor solicitations sent by
duplicate address detection can be modified by the DUPADDRDET keyword on
the INTERFACE statement. The duration of the wait interval (awaiting a response
from a neighbor already using the address) can be modified by information
obtained from routers on the attached network.

Duplicate address detection occurs when the interface is started. Unless the
INTERFACE statement indicated duplicate address detection is to be bypassed,
IPv6 manually configured addresses are unavailable until the interface is started
and duplicate address detection completes without finding another node on the
local link with the same address. Prior to activation of the interface, manually
configured addresses are shown in the Netstat HOME/-h report as unavailable
with the reason DUPLICATE ADDRESS DETECTION PENDING. While the duplicated
address detection is actively in progress for an address, the Netstat HOME/-h
report shows the address as unavailable with the reason DUPLICATE ADDRESS
DETECTION IN PROGRESS. If another neighbor indicates the address is in use during
the duplicate address detection process, message EZZ9780I is issued and the
address is not made available to the interface. If the address that was found to be

Chapter 5. TCP/IP Customization 233

in use is a manually configured address, the address appears in the Netstat
HOME/-h report as unavailable with the reason DUPLICATE ADDRESS DETECTED.

A link-local address is required to activate a QDIO IPv6 interface and will be
generated automatically by the stack. The link-local address is generated using the
link-local prefix and the interface ID. If the link-local address generated from the
interface ID is determined to be a duplicate, the interface is not activated if:
v Autoconfigured addresses are allowed.
v A manually configured home address specifying only the prefix was specified on

the INTERFACE statement. In such a case, the interface ID needs to be used to
form the complete link-local address, and since the interface ID has been found
to be in use on the network, the formed link-local address cannot be used.

If duplicate address detection fails on the link-local address and only fully
configured manual addresses were specified on the INTERFACE statement, up to
two attempts are made to create a unique link local address using a randomly
generated value instead of the interface ID. If duplicate address detection succeeds
using the randomly generated link-local address, message EZZ9784I is issued
indicating the generated address and the interface is activated.

Setting up reserved port number definitions in
PROFILE.TCPIP

Figure 35 on page 236 shows a portion of the sample configuration file for the
TCP/IP address space, PROFILE.TCPIP. This sample can be copied from
SEZAINST(SAMPPROF). Figure 35 on page 236 includes the portion of the sample
that shows how to set up reserved port number definitions. Descriptions for the
statements follow Figure 35 on page 236.
; ==
; Application configuration
; ==
;
; AUTOLOG: Supplies TCPIP with the procedure names to start and the
; time value to wait at TCP start up for any of those procedures
; to terminate if they are active.
;
; AUTOLOG 5
; FTPD JOBNAME FTPD1 ; FTP Server
; LPSERVE ; LPD Server
; NAMED ; Domain Name Server
; NCPROUT ; NCPROUTE Server
; OMPROUTE ; OMPROUTE Server
; OSNMPD ; SNMP Agent Server
; PAGENT ; Policy Agent Server
; PORTMAP ; Portmap Server (SUN 3.9)
; PORTMAP JOBNAME PORTMAP1 ; USS Portmap Server (SUN 4.0)
; RXSERVE ; Remote Execution Server
; SMTP ; SMTP Server
; TCPIPX25 ; X25 Server
; ENDAUTOLOG
;
; --
;
; PORT: Reserves a port for specified job names
;
; - A port that is not reserved in this list can be used by any user.
; If you have TCP/IP hosts in your network that reserve ports
; in the range 1-1023 for privileged applications, you should
; reserve them here to prevent users from using them.
; The RESTRICTLOWPORTS option on TCPCONFIG and UDPCONFIG will also
; prevent unauthorized applications from accessing unreserved
; ports in the 1-1023 range.
;
; - A PORT statement with the optional keyword SAF followed by a
; 1-8 character name can be used to reserve a PORT and control

234 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|

; access to the PORT with a security product such as RACF.
; For port access control, the full resource name for the security
; product authorization check is constructed as follows:
; EZB.PORTACCESS.sysname.tcpname.safname
; where:
; EZB.PORTACCESS is a constant
; sysname is the MVS system name (substitute your sysname)
; tcpname is the TCPIP jobname (substitute your jobname)
; safname is the 1-8 character name following the SAF keyword
;
; When PORT access control is used, the TCP/IP application
; requiring access to the reserved PORT must be running under a
; USERID that is authorized to the resource. The resources
; are defined in the SERVAUTH class.
;
; For an example of how the SAF keyword can be used to enhance
; security, see the definition below for the FTP data PORT 20
; with the SAF keyword. This definition reserves TCP PORT 20 for
; any jobname (the *) but requires that the FTP user be permitted
; by the security product to the resource:
; EZB.PORTACCESS.sysname.tcpname.FTPDATA in the SERVAUTH class.
;
; - The BIND keyword is used to force a generic server (one that
; binds to the IPv4 INADDR_ANY address, or the IPv6 unspecified
; address, in6addr_any) to bind to the specific IP address that
; is specified following the BIND keyword. This capability could
; be used, for example, to allow z/OS UNIX telnet and telnet
; 3270 servers to both bind to TCP port 23.
; The IP address that follows bind must be in IPv4 (dotted
; decimal) or IPv6 (colon-hexadecimal) format and may be
; any valid address for the host including VIPA and dynamic
; VIPA addresses.
;
; The special jobname of OMVS indicates that the PORT is reserved
; for any application with the exception of those that use the Pascal
; API.
;
; The special jobname of * indicates that the PORT is reserved
; for any application, including Pascal API socket applications.
; Jobname may be specified as a prefix of zero to seven characters
; ending in *.
;
; The special jobname of RESERVED indicates that the PORT is
; blocked. It will not be available to any application.
;
; GUIDELINE: When IPSECURITY is enabled, UDP ports 500 and 4500
; should either be reserved for IKED (if it is in use) or should
; be marked RESERVED.
;
; TIP: The PORT statement can also be used to control application
; access to unreserved ports by configuring PORT entries where the
; port number is replaced by the keyword UNRSV.
;
PORT

7 UDP MISCSERV ; Miscellaneous Server - echo
7 TCP MISCSERV ; Miscellaneous Server - echo
9 UDP MISCSERV ; Miscellaneous Server - discard
9 TCP MISCSERV ; Miscellaneous Server - discard
19 UDP MISCSERV ; Miscellaneous Server - chargen
19 TCP MISCSERV ; Miscellaneous Server - chargen
20 TCP * NOAUTOLOG ; FTP Server

; 20 TCP * NOAUTOLOG SAF FTPDATA ; FTP Server
21 TCP FTPD1 ; FTP Server
23 TCP TN3270 ; Telnet 3270 Server

; 23 TCP INETD1 BIND 9.67.113.3 ; z/OS UNIX Telnet server
25 TCP SMTP ; SMTP Server
53 TCP NAMED ; Domain Name Server
53 UDP NAMED ; Domain Name Server
111 TCP PORTMAP ; Portmap Server (SUN 3.9)
111 UDP PORTMAP ; Portmap Server (SUN 3.9)

; 111 TCP PORTMAP1 ; Unix Portmap Server (SUN 4.0)
; 111 UDP PORTMAP1 ; Unix Portmap Server (SUN 4.0)

123 UDP SNTPD ; Simple Network Time Protocol Server
135 UDP LLBD ; NCS Location Broker
161 UDP OSNMPD ; SNMP Agent
389 TCP LDAPSRV ; LDAP Server

Chapter 5. TCP/IP Customization 235

443 TCP HTTPS ; http protocol over TLS/SSL
443 UDP HTTPS ; http protocol over TLS/SSL

; 500 UDP IKED ; CS IKE daemon
512 TCP RXSERVE ; Remote Execution Server
514 TCP RXSERVE ; Remote Execution Server

; 512 TCP * SAF OREXECD ; z/OS UNIX Remote Execution Server
; 514 TCP * SAF ORSHELLD ; z/OS UNIX Remote Shell Server
; 515 TCP LPSERVE ; LPD Server
; 515 TCP AOPLPD ; Infoprint LPD Server

520 UDP OMPROUTE ; OMPROUTE Server (IPv4 RIP)
521 UDP OMPROUTE ; OMPROUTE Server (IPv6 RIP)
580 UDP NCPROUT ; NCPROUTE Server
750 TCP MVSKERB ; Kerberos
750 UDP MVSKERB ; Kerberos
751 TCP ADM@SRV ; Kerberos Admin Server
751 UDP ADM@SRV ; Kerberos Admin Server

; 1700 TCP PAGENT NOAUTOLOG ; Policy Agent pagentQosListener port
; 1701 TCP PAGENT NOAUTOLOG ; Policy Agent pagentQosCollector port
3000 TCP CICSTCP ; CICS Socket
3389 TCP MSYSLDAP ; LDAP Server for Msys

; 4159 TCP NSSD ; CS NSS daemon
; 4500 UDP IKED ; CS IKE daemon
;16310 TCP PAGENT NOAUTOLOG ; Policy Agent server listener port
;
; --
;
; PORTRANGE: Reserves a range of ports for specified jobnames.
;
; In a common INET (CINET) environment, the port range indicated by
; the INADDRANYPORT and INADDRANYCOUNT in your BPXPRMxx parmlib member
; should be reserved for OMVS.
;
; The special jobname of OMVS indicates that the PORTRANGE is reserved
; for ANY z/OS UNIX socket application.
;
; The special jobname of * indicates that the PORTRANGE is reserved
; for any socket application, including Pascal API socket
; applications.
;
; The special jobname of RESERVED indicates that the PORTRANGE is
; blocked. It will not be available to any application.
;
; The SAF keyword is used to restrict access to the PORTRANGE to
; authorized users. See the use of SAF on the PORT statement above.
;
;
; PORTRANGE 4000 1000 TCP OMVS
; PORTRANGE 4000 1000 UDP OMVS
; PORTRANGE 2000 3000 TCP RESERVED
; PORTRANGE 5000 6000 TCP * SAF RANGE1
;
; --
;
; SACONFIG: Configures the SNMP TCP/IP subagent
; The SACONFIG statement specified in this sample prevents the
; activation of the TCP/IP subagent. If you want the
; TCP/IP subagent started during stack initialization, either
; remove the sample statement, or respecify the statement as
; follows, supplying a COMMUNITY and AGENT parameter value:
;
; SACONFIG ENABLED COMMUNITY communityname AGENT portnum
;
; If you remove the sample statement, the TCP/IP subagent will be
; started with a COMMUNITY value of ’public’, and an
; AGENT port value of 161.
;
SACONFIG DISABLED
;

Figure 35. Example of reserved port number definitions

236 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|
|

Following are descriptions of the statements shown in Figure 35 on page 236. For
more information about any of these statements, see z/OS Communications Server: IP
Configuration Reference. For information specific to IPv6 support, see z/OS
Communications Server: IPv6 Network and Application Design Guide.

AUTOLOG
Use AUTOLOG to list the procedure names that should start when the
TCPIP address space starts. It is also used to supply a timeout value for
detecting hung procedures at TCP/IP initialization time. The timeout value
is the time TCP/IP should allow for a procedure to come down when, at
startup, it is still active and TCP/IP is attempting to AUTOLOG the
procedure again. A hung procedure is active to MVS, but is not listening
on the socket that is reserved for it via the PORT statement. When
AUTOLOG detects a hung task, TCP/IP checks every 10 seconds (until the
timeout value has expired) to see if the procedure has come down. If the
procedure comes down during one of these 10 second intervals, it is
restarted. If the procedure is still active when the time interval specified by
the timeout value expires, then TCP/IP cancels and restarts the procedure.

The AUTOLOG statement shown in Figure 35 on page 236 has a timeout
value of five minutes.

In the first AUTOLOG statement the FTP Server shows FTPD JOBNAME
FTPD1. This means when the TCPIP address space starts, the FTPD
procedure will be started via the MVS START FTPD command. Because
FTPD forks a child process that actually listens on PORT 21, the autolog
task verifies that FTPD1 is listening on port 21.

Similarly, when the TCPIP address space starts, the autolog task starts the
remaining 10 tasks.

Unless the tasks in the AUTOLOG list are in the PORT reservation list, the
autolog task does not check for hung tasks every five minutes.

Notes:

1. If you run multiple TCP/IP address spaces, ensure that the second
address space AUTOLOG list does not cancel the procedures of the
first. In those cases, an installation might require different procedure
names for the servers for each address space. For more information
about multiple stacks, see “Port management overview” on page 50.

2. You can use the AUTOLOG statement to automatically start generic
servers in a single stack environment, but you should be careful using
the AUTOLOG statement to start generic servers in a multiple stack
environment. Instead, you could use an operations automation software
package (IBM and other vendors provide these) to start generic servers
automatically. For a list of generic servers provided by TCP/IP, see
“Generic servers in a CINET environment” on page 53.

For those procedures that require parameters to be used on the MVS
START command, there is a PARMSTRING option.

You should delay the start of AUTOLOG procedures that require AT-TLS
services by specifying the optional DELAYSTART parameter with the TTLS
subparameter on the AUTOLOG entry for the procedure. If you specify
this parameter and subparameter, the procedure will start after the Policy
Agent has installed the AT-TLS policy and AT-TLS services are available.

You should delay the start of AUTOLOG procedures that bind to a
dynamic VIPA by specifying the optional DELAYSTART parameter with
the DVIPA subparameter on the AUTOLOG entry for the procedure. If you

Chapter 5. TCP/IP Customization 237

specify this parameter and subparameter, the procedure will not start until
the TCP/IP stack has joined the sysplex group and processed the dynamic
VIPA configuration.

For a procedure that will bind to a dynamic VIPA and that requires AT-TLS
services, you should specify DELAYSTART DVIPA TTLS. When more than
one DELAYSTART subparameter is specified, all of the processing steps
defined for those subparameters must complete before the procedure is
started.

For more information, see z/OS Communications Server: IP Configuration
Reference.

PORT Use the PORT statement to do the following:
v Reserve ports for different jobs and optionally limit access to these ports

by user ID
v Control application access to unreserved ports

Reserving particular ports:

Use PORT to reserve ports for different jobs and to prevent rogue
applications from taking ports intended for specific servers, such as port
21, which is needed by FTP. For each port entry, the port number, protocol,
and procedure name are specified. The first port entry shows port 7 UDP
reserved for the miscellaneous echo server for procedure MISCSERV.
Similarly, port 7 of TCP is also reserved for the same server. In this
example, six ports are reserved for the miscellaneous server.

NOAUTOLOG can be specified, as in the port 20 TCP * in Figure 35 on
page 236. In this way, the port is reserved for an OMVS forked task so that
the FTP server can fork tasks to port 20 as each FTP user logs in.

Use the DELAYACKS and NODELAYACKS options to allow an installation
to delay their acknowledgments so they can be combined with data to be
sent to foreign hosts. Unless a performance reason is needed, DELAYACKS
should be used to delay the transmission of acknowledgments.

Use the SHAREPORT parameter or the SHAREPORTWLM parameter
when reserving a port to be shared across multiple TCP listeners. This is
not valid for UDP. To understand how these PORT statement parameters
are used, see z/OS Communications Server: IP Configuration Reference. Use the
Netstat ALL/-A report to determine whether port sharing is being used for
a TCP listener. If port sharing is being used, this report indicates which
type is being used.

Typically, reserving a port for a specific job name is sufficient. If the port
must instead be reserved for a specific user ID or a set of user IDs, use the
SAF keyword to specify the name of a SAF resource to be associated with
the port. The user ID associated with the application that attempts to bind
to the port must be permitted to the SAF resource.

The BIND keyword is used to force a generic server (one that binds to
INADDR_ANY or in6addr_any) to bind to the specific IP address that is
specified following the BIND keyword. This capability could be used, for
example, to allow the z/OS UNIX Telnet and TN3270E Telnet servers to
both bind to TCP port 23 on different IP addresses. The IP address that
follows BIND can be any valid address for the host, including VIPA and
dynamic VIPA addresses. The address supplied can be either an IPv4
address (in dotted-decimal format) or an IPv6 address (in
colon-hexadecimal format). IPv4-mapped IPv6 addresses and

238 z/OS V1R12.0 Comm Svr: IP Configuration Guide

IPv4-compatible IPv6 addresses are not supported. For multiple servers to
bind to the same port with this function, the IP address for each server
must be unique.

RESERVED indicates that the port is not available for use by any user.

Controlling access to unreserved ports:

You can also use the PORT statement to control application access to
unreserved ports by configuring one or more PORT statements in which
the port number is replaced by the keyword UNRSV. The UNRSV keyword
refers to any unreserved port (any port number that has not been reserved
by a PORT or PORTRANGE statement). If you configure the
RESTRICTLOWPORTS parameter on the TCPCONFIG or UDPCONFIG
profile statement, PORT UNRSV statements for the corresponding protocol
control access only to unreserved ports above port 1023. If you do not
configure the RESTRICTLOWPORTS parameter, PORT UNRSV statements
control access to all unreserved ports in the range 1 - 65 535. The type of
access that is controlled by the PORT UNRSV statement is specified
(explicitly or by default) by the WHENBIND or WHENLISTEN keywords.

If you configure one or more PORT UNRSV statements for a protocol,
access is unconditionally denied to any application that explicitly binds to
an unreserved port and that does not match the protocol and job name on
any of the configured PORT UNRSV statements. Applications that
explicitly bind to an unreserved port and that do match the protocol and
job name on a PORT UNRSV statement are allowed to access the
unreserved port, unless the access is restricted by the SAF or DENY
keywords. If the SAF keyword is specified, the user ID associated with the
application that attempts to access the port must be permitted to the
specified SAF resource. If the DENY keyword is specified, access is
unconditionally denied.

For UDP sockets, the access permission is checked when an unreserved
port is specified on an explicit bind. The WHENBIND keyword is the only
access option that is allowed for UDP ports.

For TCP sockets, access can be controlled when an unreserved port is
specified on an explicit bind (WHENBIND) or when a listen is issued on a
user-specified port that was not reserved for the application
(WHENLISTEN).

For more information about controlling access to unreserved ports, see
“Port access control” on page 116. For more information about the PORT
statement and its parameters, see z/OS Communications Server: IP
Configuration Reference.

PORTRANGE
PORTRANGE is a statement used to reserve a range of ports for specified
job names.

SACONFIG
SACONFIG is the statement used to configure the information about the
SNMP TCP/IP subagent. The AGENT keyword on this statement is used
to specify the port number to be used when the TCP/IP subagent connects
to the SNMP agent. Omission of this statement causes TCPIP to assume the
default value of SACONFIG ENABLED COMMUNITY public AGENT 161.
For more information on the SACONFIG profile statement, see z/OS
Communications Server: IP Configuration Reference.

Chapter 5. TCP/IP Customization 239

Setting up the System Authorization Facility server access
authorization class (optional)

The TCP/IP address space uses the server access authorization (SERVAUTH) class
of the System Authorization Facility (SAF) to protect TCP/IP resources from
unauthorized access. The use of SERVAUTH may be optional and is available in
degrees so that installations can pick and choose the access needed. Installations
may be able to choose to use one, all, or none of the protections provided by
SERVAUTH. The customization described here is completely optional when using
the IBM security product RACF. Non-IBM security products might require
customization. A template of the commands and all other SAF commands appears
in SEZAINST(EZARACF). See Chapter 3, “Security,” on page 109 for more detailed
information.

Configuring the local host table (optional)
You can set up the local host table to support local host name resolution. If you
use the local host table for this purpose, your socket applications will only be able
to resolve names and IP addresses that appear in your local host table.

If you need to resolve host names outside your local area, you can configure the
resolver to use a domain name server (see the NSINTERADDR statement). If you
use a domain name server, you do not need to set up any host definitions in your
resolver configuration, but you may still do so.

If you have configured your resolver to use a name server, it will always try to do
so, unless your TCP/IP C/C++ API applications were written with a
RESOLVE_VIA_LOOKUP symbol in the source code. You can also configure the
resolver to only use a local host table by specifying LOOKUP LOCAL in the
TCPIP.DATA configuration file. For both cases, all name resolution calls will always
use a local host table. This is probably not a technique you will see for standard
socket applications, but it may be a technique you could find useful for when you
develop your own socket applications or for testing changes before they are placed
in your name server.

It might be a good idea to have a local host table available for the resolver to use if
the name server is not reachable. If the name server does not respond to name
resolution requests, the resolver tries to use the local host table. If the name server
is reachable but returns a negative reply for a name resolution request, the resolver
tries to resolve the name using the local host table, if such a file is present.

Assume you try to resolve the host name friendly and your DOMAINORIGIN is
my.house.com, the resolver sends a query to the name server for
friendly.my.house.com. If the name server returns a negative reply (the name is not
registered), the resolver looks into the local host table for an entry of
friendly.my.house.com and, if not found, for an entry of friendly.

Due to the flexibility of the Domain Name System, it is recommended you use a
domain name server. If you set up a small TCP/IP network, the simplicity of the
local host table approach might be preferable.

The following types of local host table can be used:
v HOSTS.LOCAL

HOSTS.LOCAL is only used for IPv4 requests.
v /etc/hosts

240 z/OS V1R12.0 Comm Svr: IP Configuration Guide

/etc/hosts is only used for IPv4 requests.
v ETC.IPNODES and /etc/ipnodes

ETC.IPNODES and /etc/ipnodes can be used for IPv6 requests, and for IPv4
requests when COMMONSEARCH is coded in the resolver setup statements.

Creating HOSTS.LOCAL site host table
The site host table is generated from the hlq.HOSTS.LOCAL data set. This data set
contains descriptions of local host entries in the HOSTS format. HOSTS.LOCAL
can only contain IPv4 addresses. A sample HOSTS.LOCAL data set is created
during installation. This information describes how to update the sample
hlq.HOSTS.LOCAL data set and use it to generate the two data sets,
hlq.HOSTS.SITEINFO and hlq.HOSTS.ADDRINFO, which function as your site
table.

HOST entries
One line of the hlq.HOSTS.LOCAL data set is used for each distinct host and ends
with four colons (::::). The maximum length of the line is 512 characters. Each host
can have multiple IP addresses and multiple names. The line for each host has
three essential fields, separated by colons. These fields are:
v The keyword HOST
v A list of IP addresses, separated by commas, for that host. You can specify a

maximum of six IP addresses per HOST entry.
v A list of fully qualified names, separated by commas, for that host. You can

specify a maximum of 20 host names per HOST entry. Only the first six host
names per host entry are used in the hlq.HOSTS.ADDRINFO data set. All host
names are used in the hlq.HOSTS.SITEINFO data set.

For example, if you have two local hosts, LOCAL1 (IP addresses 192.6.77.4 and
192.8.4.1) and LOCAL2 (with an alias LOCALB and IP address 192.6.77.2), append
the following lines to the hlq.HOSTS.LOCAL data set:

HOST : 192.6.77.4, 192.8.4.1 : LOCAL1 ::::
HOST : 192.6.77.2 : LOCAL2, LOCALB ::::

Notes:

1. The maximum length for a host allowed in the HOST tables is 24 characters.
2. If the HOST entry has more than the maximum of 6 IP addresses for one host

name or more than 20 host names for a single IP address, the MAKESITE
command will complete successfully with no error message issued.

NET and GATEWAY entries
The NET and GATEWAY statements are not used by TCP/IP for z/OS
applications. However, some socket calls require the NET entries. If your programs
do not need the NET and GATEWAY statements, delete them before invoking
MAKESITE.

Sample HOSTS.LOCAL data set (HOSTS): Following is the sample
HOSTS.LOCAL data set provided in SEZAINST(HOSTS):
; HOSTS.LOCAL
; -----------
; COPYRIGHT = NONE.
;
; The format of this file is documented in RFC 952, "DoD Internet
; Host Table Specification".
;
; The format for entries is:

Chapter 5. TCP/IP Customization 241

|
|
|
|
|
|

;
; NET : ADDR : NETNAME :
; GATEWAY : ADDR, ALT-ADDR : HOSTNM : CPUTYPE : OPSYS : PROTOCOLS :
; HOST : ADDR, ALT-ADDR : HOSTNM, NICKNM : CPUTYPE : OPSYS : PROTOCOLS :
;
; Where:
; ADDR, ALT-ADDR = IP address in decimal, e.g., 26.0.0.73
; HOSTNM, NICKNM = the fully qualified host name and any nicknames
; CPUTYPE = machine type (PDP-11/70, VAX-11/780, IBM-3090, C/30, etc.)
; OPSYS = operating system (UNIX, TOPS20, TENEX, VM/SP, etc.)
; PROTOCOLS = transport/service (TCP/TELNET,TCP/FTP, etc.)
; : (colon) = field delimiter
; :: (2 colons) = null field
; *** CPUTYPE, OPSYS, and PROTOCOLS are optional fields.
;
; MAKESITE does not allow continuation lines, as described in
; note 2 of the section "GRAMMATICAL HOST TABLE SPECIFICATION"
; in RFC 952. Entries should be specified on a single line of
; up to a maximum of 512 characters per line.
;
;
; Note: The NET and GATEWAY statements are not used by the TCP/IP for
; MVS applications. However, some socket calls require the NET
; entries. For better performance, if your programs do not need
; the NET and GATEWAY statements, delete them before running
; the MAKESITE program.
;
;
HOST : 9.67.43.100 : NAMESERVER ::::
HOST : 9.67.43.126 : RALEIGH ::::
HOST : 129.34.128.245, 129.34.128.246 : YORKTOWN, WATSON ::::
;
NET : 9.67.43.0 : RALEIGH.IBM.COM :
;
GATEWAY : 129.34.0.0 : YORKTOWN-GATEWAY ::::
;

Using MAKESITE
Because many servers and commands allocate hlq.HOSTS.SITEINFO and
hlq.HOSTS.ADDRINFO, it is important not to overwrite or delete these data sets
while TCP/IP is running. To avoid disrupting any active users, use an HLQ=parm
that is different than your active hlq. This allows you to swap names (by renaming
the old HOSTS data sets and then renaming the new HOSTS data sets) without
starting and stopping TCP/IP.

Use MAKESITE as a TSO command or in a batch job to generate new
hlq.HOSTS.SITEINFO and hlq.HOSTS.ADDRINFO data sets. The parameters are the
same for either a TSO command or a batch job invocation of MAKESITE. See z/OS
Communications Server: IP System Administrator's Commands for more information.

After you make changes to your hlq.HOSTS.LOCAL data set, you must generate
and install new hlq.HOSTS.SITEINFO and hlq.HOSTS.ADDRINFO data sets.

Guidelines: Use ETC.IPNODES (in the style of etc/ipnodes) as the preferred
alternative to the generated local hosts tables from MAKESITE for the following
reasons:
v No imposed 24 character restriction on host names.

242 z/OS V1R12.0 Comm Svr: IP Configuration Guide

v No imposed restriction on the first eight characters of the host names having to
be unique. However, there are certain applications that require the first eight
characters to be unique, such as Network Job Entry (NJE).

v Closely resembles that of other TCP/IP platforms, and eliminates the
MAKESITE requirement of file post-processing.

v Allows configuration of both IPv4 and IPv6 addresses.
v Only one file is managed for the system, and that all the APIs can utilize the

same single file. The COMMONSEARCH statement in the resolver setup file can
be used to reduce IPv6 and IPv4 searching to a single search order, as well as to
reduce the z/OS UNIX and native MVS environments to a single search order.

For more information on the use of IPNODES by the resolver to locate IPv4 and
IPv6 addresses and sitenames, see z/OS Communications Server: IPv6 Network and
Application Design Guide.

For the search orders used in locating the local host tables, see “Configuration files
for TCP/IP applications” on page 30. For a description of the use of IPNODES by
the resolver to locate IPv4 and IPv6 addresses and sitenames when the resolver
setup statement COMMONSEARCH is specified, see “IPv6/common search order”
on page 767 and “IPv6/common search order” on page 772.

Creating /etc/hosts
The /etc/hosts file can be defined as follows:
v The maximum line length is 256 characters. If a line is greater than 256

characters, it is truncated to 256 characters and processed. If trace resolver is
active, a warning message is issued.

v The line starts with an IP address, followed by a blank, followed by host names.
Host names are separated by one or more blanks.

v Only IPv4 addresses are supported.
v Each IP address can have up to 35 host names. A host name can have up to 35

IP addresses.
v The values for the host name must conform to the following:

– Maximum of 128 characters.
– Must contain one or more tokens separated by a period.
– Each token must be at least 1 character and less than 64 characters.
– First character in each token must be a letter (A-Z or a-z) or number (0-9).

v A comment is indicated by the # or ; character.

For the search orders used in locating /etc/hosts, see “Configuration files for
TCP/IP applications” on page 30.

Creating ETC.IPNODES and /etc/ipnodes
The ETC.IPNODES and /etc/ipnodes file can be defined as follows:
v z/OS UNIX files can reside in any directory. The maximum line length

supported is 256 characters. If a line is greater than 256 characters, it is truncated
to 256 characters and processed. If trace resolver is active, a warning message is
issued. If you need more than 256 characters for the IP address and the
associated host names, you can code additional lines with the same IP address
as follows:
Address1 Hostname1
Address1 Hostname2
Address1 Hostname3

Chapter 5. TCP/IP Customization 243

|
|
|

|
|
|

v MVS data sets must be partitioned organization (PO) or sequential (PS),
RECFM=F or RECFM=FB, a logical record length (LRECL) between 56 and 256,
and have any valid blocksize (BLKSIZE) for fixed block.

v It can contain IPv4 and IPv6 addresses, but not IPv4 mapped addresses. Each IP
address can have up to 35 host names. A host name can have up to 35 IP
addresses.

v The values for the host name must conform to the following:
– Maximum of 128 characters.
– Must contain one or more tokens separated by a period.
– Each token must be at least 1 character and less than 64 characters.
– First character in each token must be a letter (A-Z or a-z) or number (0-9).

v A comment is indicated by the # or ; character.

The sample IPNODES file provided by z/OS Communications Server follows. It
can be found as member EZBREIPN (alias IPNODES) in SEZAINST.
;
; IBM z/OS Communications Server
; SMP/E distribution name: EZBREIPN
;
; 5694-A01 (C) Copyright IBM Corp. 2002.
; Licensed Materials - Property of IBM
;
; Function: Sample ETC.IPNODES file
;
; The file contains the Internet Protocol (IP) host names
; and addresses for the local host and other hosts in the
; Internet network.
; This file is used to resolve a name into an address (that is, to
; translate a host name into its Internet address) or resolve
; an address into a name.
;
; Comments begin with a # or ; character and continue until the
; end of the line.
;
; The following statement defines the Internet Protocol (IP) name
; and address of the local host and specifies the names and
; addresses of remote hosts. The maximum line length support is
; 256 characters
;
; Entries in the hosts file have the following format:
;
; Address HostName
;
; Address HostName1 HostName2 HostName3 HostName35
;
;
; Address: is an IP address, it can be IPV4 or IPV6 address.
; Note: IPv4-mapped IPv6 address is not allowed.
;
; HostName: the length of the hostname is up to 128 characters,
; and each IP address can have up to 35 hostnames.
;
;

9.67.43.100 NAMESERVER
9.67.43.126 RALEIGH
9.67.43.222 HOSTNAME1.RALEIGH.IBM.COM

244 z/OS V1R12.0 Comm Svr: IP Configuration Guide

129.34.128.245 YORKTOWN WATSON
1::2 TESTIPV6ADDRESS1
1:2:3:4:5:6:7:8 TESTIPV6ADDRESS2

;

For the search orders used in locating ETC.IPNODES and /etc/ipnodes, see
“Configuration files for TCP/IP applications” on page 30.

Verifying your configuration
At this point, your configuration files have been updated.

To verify a configuration, start the TCP/IP address space and ensure that you see
the following message:
EZB6473I TCP/IP STACK FUNCTIONS INITIALIZATION COMPLETE

If the message is not displayed, the messages issued by the TCP/IP address space
should describe why TCP/IP did not start.

Verifying TCPIP.DATA statement values in the native MVS
environment

To display which TCPIP.DATA statement values are being used and where they are
being obtained from, use trace resolver output. You can obtain trace resolver
output at your TSO screen by issuing the following TSO commands:
alloc f(systcpt) dsn(*)
READY
netstat up
READY
free f(systcpt)
READY

Tip: When directing trace resolver output to a TSO terminal, define the screen size
to be only 80 columns wide. Otherwise, trace output is difficult to read.

For further information on the trace resolver facility and interpreting its output, see
z/OS Communications Server: IP Diagnosis Guide.

Verifying TCPIP.DATA statement values in the z/OS UNIX
environment

To display which TCPIP.DATA statement values are being used and where they are
being obtained from, use trace resolver output. You can obtain trace resolver
output by issuing the following z/OS UNIX shell commands:
export RESOLVER_TRACE=stdout
netstat -u
set -A RESOLVER_TRACE

For further information on the trace resolver facility and interpreting its output, see
z/OS Communications Server: IP Diagnosis Guide.

Verifying PROFILE.TCPIP
You can use the following commands to verify many configuration values that are
specified in the TCP/IP profile:
v Netstat commands

Chapter 5. TCP/IP Customization 245

|

|
|

|

You can use the Netstat DEvlinks/-d command to verify the physical network
and hardware definitions. You can use the Netstat CONFIG/-f command to
verify operating characteristics.

v DISPLAY TCPIP,,OSAINFO command
You can use this command to verify that the OSA-Express QDIO configuration
was successfully accepted by the OSA-Express QDIO feature. The command
output is a view from the OSA-Express QDIO feature of the data subchannel
device for the interface.

For information about the syntax and output of these commands, see z/OS
Communications Server: IP System Administrator's Commands.

Verifying interfaces with Ping and Traceroute
The Ping and Traceroute commands can be used in the TSO and z/OS UNIX
environments to verify adapters or interfaces attached to the z/OS host. For
information about the syntax and output of the commands, see z/OS
Communications Server: IP System Administrator's Commands.

Given that your PROFILE.TCPIP file contains the interfaces of your installation and
that the TCPIP.DATA file contains the correct TCPIPJOBNAME, the TCPIP address
space is configured and you can go on to configuring routes, servers, and so on.

Verifying local name resolution with TESTSITE
Use the TESTSITE command to verify that the hlq.HOSTS.ADDRINFO and
hlq.HOSTS.SITEINFO data sets can correctly resolve the name of a host, gateway,
or net. For more information on the TESTSITE command, see z/OS Communications
Server: IP System Administrator's Commands.

Verifying PROFILE.TCPIP and TCPIP.DATA using HOMETEST
Use the HOMETEST command to verify the HOSTNAME, DOMAINORIGIN,
SEARCH, and NSINTERADDR TCPIP.DATA statements. HOMETEST will use the
resolver to obtain the IP addresses assigned to the HOSTNAME and compare them
to the HOME list specified in PROFILE.TCPIP. A warning message will be issued if
any HOSTNAME IP addresses are missing from the HOME list.

Activate TRACE RESOLVER if you would like detailed information on how the
HOSTNAME is resolved to IP addresses. The information will also include what
TCPIP.DATA data set names were used. This can be done by issuing the following
TSO command before running HOMETEST. The detailed information will be
displayed on your TSO screen.
allocate dd(systcpt) da(*)

Issue the following TSO command after HOMETEST to turn off TRACE
RESOLVER output.
free dd(systcpt)

If you do not have TRACE RESOLVER turned on before running HOMETEST, the
following is displayed:
hometest

Running IBM MVS TCP/IP CS V1R6 TCP/IP Configuration Tester

FTP.DATA file not found. Using hardcoded default values.

246 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|

|

|
|
|
|

|
|

TCP Host Name is: MVS026

Using Name Server to Resolve MVS026
The following IP addresses correspond to TCP Host Name: MVS026
9.67.113.58

The following IP addresses are the HOME IP addresses defined in PROFILE.TCPIP:
9.67.113.58
127.0.0.1

All IP addresses for MVS026 are in the HOME list!

Hometest was successful - all Tests Passed!

Verifying your X Window System installation (Optional)

Note: You cannot verify your X Window System until after routing and DNS
setup.

Support is provided for two versions of the X Window System and the
corresponding Motif. The current support, provided as part of the base IP support
in z/OS Communications Server, is for X Window System Version 11 Release 6 and
Motif Version 1.2. Support for X Window System Version 11 Release 4 and Motif
Version 1.1 is available as feature HIP614X.

Verifying the X Window X11R4 System installation
X Window X11R4 System is installed with the other target libraries. The macro or
headers go into the target library data set SEZACMAC. To verify the installation of
the X Window System:
1. Specify your workstation IP address by adding a record (such as the following)

to your XWINDOWS.DISPLAY data set.
royal.csc.ibm.com:0.0

In this example, royal.csc.ibm.com:0.0 is the name of the host running the X
Window System server.

Note: No leading blanks are allowed in this record.
2. On the workstation running the X Window System server, issue an XHOST

command specifying the name of your MVS system.
3. Run the program with the XSAMP1 command.

Verifying the X Window X11R6 System installation
To verify the installation of the X Window X11R6 System:
1. Ensure that a host (the workstation) with an X Window System server that

supports X11R6 is properly configured and reachable by the MVS system. From
the workstation, use Telnet to access the MVS system, and open a z/OS UNIX
shell on the MVS system.

2. From the z/OS UNIX shell, export the DISPLAY environment variable using
either the network name or the qualified IP address of the workstation as
shown in the following example:
export DISPLAY=royal.csc.ibm.com:0.0

In this example, royal.csc.ibm.com is the name of the workstation running the X
Window System server. The display is indicated by :0.0, and is specified this
way in almost all cases.

Chapter 5. TCP/IP Customization 247

3. Authorize the MVS system to access the workstation by executing the XHOST
command, and specify either the name of the MVS system or a plus sign (+) as
shown in the following example.
xhost +

Note: The + option turns off security for this workstation and allows any X
client to display here.

4. The sample X clients are shipped in the directory /usr/lpp/tcpip/X11R6/Xamples/
demos. Change into this directory. There are four sample program directories,
xsamp1, xsamp2, xsamp3, and pexsamp. Change to the xsamp1 directory. Verify
that there are files named Makefile and xsamp1.c, and then execute the
following command:
make

5. Execute the program using the following command:
xsamp1

6. The z/OS UNIX shell should block as another window is opened. Verify the
workstation is displaying a new window. The xsamp1 client displays a blank
window for 60 seconds and then exits, taking its window with it. The z/OS
UNIX shell should no longer be blocked.

Customizing TCP/IP messages
The messages for every application provided by TCP/IP are compiled and linked
with the application and reside in an internal message repository. Some of the
applications also store their messages in message catalogs or message data sets.
You can modify these message catalogs or message data sets to translate the
messages to another language or to customize them for your installation.

Customizing message catalogs
Applications in Table 14 use message catalogs that are created by using the gencat
utility. The message catalogs are installed in the /usr/lpp/tcpip/lib/nls/msg/C/
directory in the z/OS UNIX file system.

Table 14. TCP/IP message catalogs

Application Message catalogs

Autolog

TCP/IP configuration

cfmsg.cat

Bind 9 name server ns9.cat

RESMSG.cat

Communications Server SMTP (CSSMTP)
application

ezamlcat.cat

ezamlrpy.cat

Digital Certificate Access Server (DCAS) dcasm.cat

Defense Manager daemon (DMD) dmdmsg.cat

Load Balancing Advisor (LBA)

Automated domain name registration
(ADNR)

lcadvm.cat

FTP client

FTP server

ftpdmsg.cat

ftpdrply.cat

248 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|
|
|
|
|

|

|
|
|

||

||

|

|

|

||

|

|
|
|

|

||

||

|

|
|

|

|

|

|

|

Table 14. TCP/IP message catalogs (continued)

Application Message catalogs

z/OS UNIX host command

z/OS UNIX hostname command

z/OS UNIX domainname command

z/OS UNIX dnsdomainname command

ezahomsg.cat

ezaitmsg.cat

IKE daemon(IKED) ike_log.cat

z/OS UNIX ipsec command ipsecmsg.cat

MODDVIPA utility xfdvpm.cat

TSO NETSTAT command

z/OS UNIX netstat/onetstat command

DISPLAY TCPIP,,NETSTAT operator
command

netmsg.cat

netmsg6.cat

SNMP Network SLAPM2 subagent
(nslapm2)

pagtsmsg.cat

z/OS UNIX nssctl command nssctlmsg.cat

Network security services (NSS) server nssdmsg.cat

Omproute omprdmsg.cat

z/OS UNIX Telnet server tnmsgs.cat

Policy Agent(Pagent)

z/OS UNIX pasearch command

pagentm.cat

TSO PING command

z/OS UNIX ping command

pingmsg.cat

z/OS UNIX popper popper_msg.cat

TSO REXEC command

z/OS UNIX orexec/rexec command

TSO RSH command

z/OS UNIX orsh/rsh command

rexcmsg.cat

z/OS UNIX REXECD server rexdmsg.cat

RPC

Rpcbind

z/OS UNIX PORTMAP

msrpcbin.cat

msrpcgen.cat

msrpclib.cat

z/OS UNIX RSHD server rshdmsg.cat

z/OS UNIX sendmail sndmmsg.cat

SNMP Agent (OSNMPD) snmpdmsg.cat

z/OS UNIX snmp command snmpclim.cat

TCP/IP SNMP subagent subamsg.cat

Simple Network Time Protocol daemon
(SNTPD)

sntpdmsg.cat

Syslog daemon (syslogd) syslogd.cat

Chapter 5. TCP/IP Customization 249

|

||

|

|

|

|

|

|

||

||

||

|

|

|
|

|

|

|
|
|

||

||

||

||

|

|

|

|

|

|

||

|

|

|

|

|

||

|

|

|

|

|

|

||

||

||

||

||

|
|
|

||

Table 14. TCP/IP message catalogs (continued)

Application Message catalogs

DISPLAY TCPIP,,SYSPLEX command

VARYY TCPIP,,SYSPLEX command

spxmsg.cat

SNMP TN3270E Telnet subagent ezbtsmsg.cat

Trivial File Transfer Protocol daemon
(TFTPD)

tftpdmsg.cat

TIMED daemon timedmsg.cat

TSO TRACERTE command

z/OS UNIX traceroute command

trtemsg.cat

Trap forwarder daemon (TRAPFWD) trapfwd.cat

Traffic regulation manager daemon (TRMD) trmdm.cat

z/OS UNIX trmdstat command trmdstat.cat

XWindows X11R4

Motif V1.1

Mrm12.cat

Uil12.cat

xm12.cat

X11R6.cat

XWindows X11R6

Motif V1.2

Mrm21.cat

xm21.cat

Uil21.cat

X11R66.cat

Message format
Use the z/OS UNIX dspcat command to display the message text from a message
catalog. The messages are in the following format:
index_num "message text"

The index_num value is the identifier that the application uses to access the
message text.

The message_text value might include conversion characters for the variable fields
that are converted when the message is printed or displayed and control characters
that affect the message format. The conversion characters start with a percent sign
(%) and the control characters start with a backslash (\). These are all standard
notations for the C language print function. The messages might also contain
comments, which start with /* and end with */.

In the following simulated message, the control character \n forces a new line to
print. The string variables %1$s, %2$s, and %3$s are converted in the order that
they are passed from the application.
1 "EZZ2350I MVS TCP/IP NETSTAT %1$s TCPIP Name: %2$s %3$s\n"

Rules for modifying messages
The general rule for customizing or translating messages is to only change the text
portion of the message.

250 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

||

|

|

|

||

|
|
|

||

|

|

|

||

||

||

|

|

|

|

|

|

|

|

|

|

|

|
|

|
|
|

|

|
|

|
|
|
|
|
|

|
|
|

|

|
|
|

v Do not change the index_num identifier. This part of the message has a specific
meaning. If you change it, the application might not function correctly.

v Do not change the conversion characters for the variables. These characters
indicate that the application is passing data, the type of data that the application
is passing, and the appropriate way to display or print this data. For example,
do not change or delete %1$s and %2$d in the following message:
475 "EZA1644I Recfm: %1$s lrecl: %2$d\n"

If you change or delete the conversion characters, results are unpredictable.
v You can reorder the sequence of variables within a message when the variables

are defined by conversion characters with the format %n$, where n is an integer.
For example, you can reverse the conversion characters when translating the
following message:
Before:
480 "EZY9999I Command %1$s received from user %2$s\n"

After:
480 "EZY9999I Utilisador %2$s envio instrucion %1$s\n"

The result would be EZY9999I Utilisador MANNY envio instrucion FTP instead
of EZY9999I Command FTP received from user MANNY.
You cannot reorder the sequence of variables in the following message:
EZY9999I Command $s received from user $s

Steps for creating a modified message catalog
Before you begin: Review the following information:
v “Message format” on page 250
v “Rules for modifying messages” on page 250

You also need to know the following:
v The commands indicated in these steps are z/OS UNIX commands; perform all

of these steps from the z/OS UNIX shell.
v These steps use a message catalog called sample.cat, and assume that the

application code and catalog are at the correct levels. If you customize a catalog,
IBM Service personnel might require that you use the shipped level of the
catalog to recreate and diagnose a reported problem.

Perform the following steps to create a modified message catalog:

1. Copy the current z/OS UNIX catalog to a backup file to ensure that you have
a copy of the original catalog.
cp /usr/lpp/tcpip/lib/nls/msg/C/sample.cat /usr/lpp/tcpip/lib/nls/msg/C/sample.cat.backup

2. Using the z/OS UNIX dspcat command, convert the editable backup catalog
that you just copied.
dspcat -t -g /usr/lpp/tcpip/lib/nls/msg/C/sample.cat.backup > /tmp/sample.cat.copy

The file sample.cat.copy is the file that you will update to preserve the
timestamp and customize the messages.

3. Change the first line in the catalog from a comment to a z/OS UNIX gencat
command $timestamp directive.
This enables the original timestamp to be imbedded in the new catalog when
the catalog is built. In some cases, when an application opens a message
catalog, it checks the timestamp at the top of the catalog to ensure that it
matches the application timestamp. If the timestamps are different, the

Chapter 5. TCP/IP Customization 251

|
|

|
|
|
|

|

|

|
|
|
|

|
|
|
|
|

|
|

|

|

|
|

|

|

|

|
|

|
|
|
|

|

|
|
|

|
|
|

|
|

|
|

|
|
|
|

application does not use the message catalog. You must ensure that the new
message catalog contains the timestamp from the original message catalog by
performing the following steps:
a. Edit the file to be updated.

oedit /tmp/sample.cat.copy

b. Change the first line comment to add a gencat command $timestamp
directive to preserve the timestamp when the directory is built. The first
line in the file is similar to the following line:
The time stamp of catalog /usr/lpp/tcpip/lib/nls/msg/C/sample.cat.backup is: 2010 095 20:30 UTC

Replace the leading text on the line with the $timestamp directive as
follows:
$timestamp 2010 095 20:30 UTC

If you omit this step and the original line is left unchanged in the catalog,
when you attempt to generate a catalog from this file, you will see a
message similar to the following message:
FSUM5108 gencat: Invalid message number.

c. Save the file.

4. Update the catalog (/tmp/sample.cat.copy) with any local modifications and
save the file.

5. Build a new and customized catalog by using the z/OS UNIX gencat
command.
gencat /tmp/sample.cat /tmp/sample.cat.copy

The correct response is the following message:
FSUM5105 gencat: Message catalog generated normally.

Tip: Verify that your changes are correct before invoking the gencat command.
Some errors cause the gencat command to fail, but other errors might not be
apparent until the message is displayed.

6. Browse the new catalog and verify that the timestamp from Step 3 matches
what is in the file.
obrowse /tmp/sample.cat

The first record contains the time stamp (yyyy ddd hh:mm UTC). For example:
...2010 095 20:30 UTC

7. Replace the z/OS UNIX catalog, which is shipped with the release, with the
updated catalog that you created in Step 5.
cp /tmp/sample.cat /usr/lpp/tcpip/lib/nls/msg/C/sample.cat

For more information about the dspcat and gencat utilities, see z/OS UNIX System
Services Command Reference.

Customizing message data sets
The following table shows the servers that have external messages, the DD
statement used, and the name of the message data set delivered with the system:

Server DD statement Data set

NCPROUTE //MESSAGE SEZAINST(EZBNRMSG)

SNMP Query Engine //MSSNMPMS SEZAINST(MSSNMP)

252 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|

|

|

|
|
|
|

|
|

|

|
|
|

|

|

|
|

|
|

|

|

|

|
|
|

|
|

|

|

|

|
|

|

|
|

|

Server DD statement Data set

MISC Server //MSMISCSR SEZAINST(MSMISCSR)

The procedures for these servers have a special DD statement that point to the
external message data set. If you are going to override the internal messages and
use external customized messages, you need to remove the comment from the
appropriate DD statement and ensure it points to the correct data set.

Message text
The message text might include conversion characters for the variable fields that
are converted when the message is printed or displayed, and control characters
that affect the message format. The conversion characters start with a percent sign
(%) and the control characters start with a backslash (\). These are all standard
notations for the C language print function. The messages might also contain
comments which start with /* and end with */.

In the following simulated message, the control character \n forces a new line to
print and the string variables, represented by %s, are converted in the order they
are passed from the program.
9999 I "Command %s received from user %s\n"

Message format
Figure 36 explains the syntax for TCP/IP message IDs on the host:

The product identifiers (ppp) for TCP/IP are EZA, EZB, EZD, EZY, EZZ, and
SNM. The number (nnnn) indicates a unique 4-digit numeric value assigned to the
message by product. The type code (t) indicates the severity assigned to the
message.

Rules for customizing the messages
The general rule for customizing or translating messages is to only change the text
portion of the message.

ppp nnnn t

Product Identifier

Type Code

Number

(3 characters, alphabetic)

(1 character, alphabetic)

(4 numeric digits)

Figure 36. Syntax for TCP/IP message IDs

Chapter 5. TCP/IP Customization 253

|

|

|
|
|

v Do not change the MARGIN, PRODUCT, and COMPONENT definitions at the
top of the data set. These are required definitions for the program. For example,
these entries at the top of the MISC server message data set should not be
changed:
MARGINS(1,72)
PRODUCT EZA
COMPONENT MSC

v Do not change the message numbers and the severity code. These parts of the
message have specific meaning; if you change them the program may not work
correctly.

v Do not change the conversion characters. These indicate that the program is
passing data, the type of data it is passing, and the appropriate way to display
or print this data. For example, do not change or delete %s and %d in the
following message:
4059 I "Connecting to agent %s on DPI port %d\n"

v You can reorder the variables that are passed in the message. For example, you
can reverse the order of the two string variables that are passed when
translating a message by specifying the new order of the arguments in
parentheses following the message text:
Before: 9999 I "Command %s received from user %s\n"

After: 9999 I "Utilisador %s envio instrucion %s\n"(2, 1)

The result would be EZY9999I Utilisador MANNY envio instrucion FTP instead
of EZY9999I Command FTP received from user MANNY.

v Watch for any program parameters or keywords that might be in the message
text. In most cases, you should not translate them.
For example, in the following message, ’active’ is a keyword used in the
gateway definition and should not be translated:
3974 E "First two elements must be ’active’ for active gateway\n"

254 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|

|

|

Chapter 6. Routing

This information explains the steps required to configure your TCP/IP stack for
dynamic, static, or policy-based routing, and explains how to verify the
configuration. The contents of this topic are based on the assumption that you
understand your entire network configuration.

After reading this information, you should be able to do the following:
v Configure dynamic, static, or policy-based routing
v Use the Ping command to ping a remote host by IP address
v Use the Traceroute command to determine the path that will be taken to reach a

particular destination using static or dynamic routing
v Use the Netstat command to display a TCP/IP stack's routing information
v Use DISPLAY commands to display dynamic routing information

Recommendation: The definition or modification of an installation's routing
configuration should not be performed without a complete understanding of the
entire network design.

Routing terminology
“General terms” describes some of the more common IP routing-related terms and
concepts. If you need more detailed information, see Routing in the Internet by
Christian Huitema.

General terms
Autonomous system (AS)

A group of routers exchanging routing information through a common
routing protocol. A single AS can represent a large number of IP networks.

Dynamic routes
IP layer routing table entries that are dynamically managed and can
automatically change in response to network topology changes. For IPv4,
these routes are managed by a routing daemon. For IPv6, these routes can
be managed by a routing daemon, and they can also be learned by
listening to router advertisement messages received from routers as part of
the router discovery protocol.

Exterior Gateway Protocol (EGP)
A routing protocol spoken by routers belonging to different autonomous
systems when those routers are configured to share routing information
between autonomous systems. This topic does not discuss exterior gateway
routing.

Interior Gateway Protocol (IGP)
A routing protocol spoken by routers belonging to the same autonomous
system. Each AS has a single IGP. A separate AS within a network can be
running a different IGP.

Main route table
An IPv4 or IPv6 route table that is populated using static routes and
dynamic routes. These route tables have the name EZBMAIN. A TCP/IP
stack has one main IPv4 route table and one main IPv6 route table. In the

© Copyright IBM Corp. 2000, 2011 255

absence of policy-based routing, the IPv4 main route table contains all of
the routes used by a TCP/IP stack when making IPv4 routing decisions.
When policy-based routing is in use, policies can be configured to use the
IPv4 main route table in IPv4 routing decisions when no route is found in
a policy-based route table.

Policy-based route table
An IPv4 route table that is configured for use by policy-based routing. A
TCP/IP stack can have zero or more policy-based route tables. A
policy-based route table can be defined using a flat file that is parsed by
the Policy Agent, or using the IBM Configuration Assistant for z/OS
Communications Server. A policy-based route table definition can contain
static routes, dynamic routing parameters for controlling the scope of
routes added to the table by OMPROUTE, or both. Policy rules and actions
can then be defined to indicate that, for given types of traffic, the TCP/IP
stack should use specific sets of route tables when making routing
decisions.

Policy-based routing (PBR)
A technique used to make routing decisions based on policies defined by
the network administrator. Policy-based routing selects a route for
outbound traffic from a set of policy-based route tables, and optionally the
main route table, according to the policy defined for the traffic.

Replaceable static routes
IPv4 static routes that can be replaced by OMPROUTE, or IPv6 static
routes that can be replaced by OMPROUTE or by routes learned by
listening to router advertisement messages received from routers as part of
the router discovery protocol.

Router
A device or host that interprets protocols at the IP layer and forwards
datagrams on a path towards their correct destination.

Routing
The process used in an IP network to deliver a datagram to the correct
destination.

Routing daemon
A server process that manages the IP route table.

Static routes
IP layer routing table entries that are manually configured (using the
BEGINROUTES or GATEWAY configuration statements) and do not change
automatically in response to network topology changes, except when:
v The change is due to an ICMP redirect (if not disabled).
v A dynamic routing protocol learns a route to a destination configured as

a replaceable static route.

Interior Gateway Protocols
An interior gateway protocol (IGP) is a dynamic route update protocol used
between routers that run on TCP/IP hosts within a single autonomous system. The
routers use this protocol to exchange information about IP routes.

Some of the more common interior gateway protocols are:

Routing Information Protocol (RIP)
RIP uses a distance vector algorithm to calculate the best path to a

256 z/OS V1R12.0 Comm Svr: IP Configuration Guide

destination based on the number of hops in the path. RIP has several
limitations. Some of the limitations which exist in RIP Version 1 are
resolved by RIP Version 2.

RIP Version 2
RIP Version 2 extends RIP Version 1. Among the improvements are
support for multicasting and variable subnetting. Variable
subnetting allows the division of networks into variable size
subnets. For example, one route can represent addresses from
9.1.1.0 through 9.1.1.255 (the 9.1.1.0/255.255.255.0 subnet) while
another can represent addresses from 9.2.0.0 through 9.2.255.255
(the 9.2.0.0/255.255.0.0 subnet).

IPv6 RIP
IPv6 RIP uses the same distance vector algorithm used by RIP to calculate
the best path to a destination. It is intended to allow routers to exchange
information for computing routes through an IPv6-based network.

Open Shortest Path First (OSPF)
OSPF uses a link state or shortest path first algorithm. OSPF's most
significant advantage compared to RIP is the reduced time needed to
converge after a network change. In general, OSPF is more complicated to
configure than RIP and might not be suitable for small networks.

IPv6 OSPF
IPv6 OSPF also uses a link state or shortest path first algorithm to calculate
the best path to a destination. IPv6 OSPF has the same advantages and
more complicated configuration compared to IPv6 RIP, like OSPF
compared to RIP.

Table 15. Interior Gateway Protocol characteristics

Feature RIP-1 RIP-2 IPv6 RIP OSPF IPv6 OSPF

Algorithm Distance
vector

Distance
vector

Distance
vector

Shortest path
first

Shortest path
first

Network load
(1)

High High High Low Low

CPU
processing
requirement
(1)

Low Low Low High High

IP network
design
restrictions

Many Some Some Virtually
none

Virtually
none

Convergence
time

Up to 180
seconds

Up to 180
seconds

Up to 180
seconds

Low Low

Multicast
supported (2)

No Yes Yes Yes Yes

Multiple
equal-cost
routes

No (3) No(3) No(3) Yes Yes

Chapter 6. Routing 257

Table 15. Interior Gateway Protocol characteristics (continued)

Feature RIP-1 RIP-2 IPv6 RIP OSPF IPv6 OSPF

Notes:

1. Depends on network size and stability.

2. Multicast saves CPU cycles on hosts that are not interested in certain periodic updates,
such as OSPF link state advertisements or RIP-2 routing table updates. Multicast frames
are filtered out either in the device driver or directly on the interface card if this host
has not joined the specific multicast group.

3. RIP in OMPROUTE allows multiple equal-cost routes only for directly connected
destinations over redundant interfaces. See “Using static routing with OMPROUTE” on
page 345.

Route selection algorithm
Whether static, dynamic, or policy-based routing is used, the algorithm used by
the IP layer to select a route from a route table is the same. Route selection occurs
in the following order:
1. If a route exists to the destination address (a host route), it is chosen.
2. If no host route exists to the destination address, the route chosen depends

upon the version of IP being used:
v For IPv4:

a. If subnet, network, or supernetwork routes exist to the destination, the
route with the most specific network mask (the mask with the most bits
on) is chosen.

b. If the destination is a multicast destination and a multicast default route
exists, that route is chosen.

v For IPv6, if prefix routes exist to the destination, the route with the most
specific prefix is chosen.

3. Default routes are chosen when no other route exists to a destination.

Multiple equal-cost routes are allowed for static, dynamic, and policy-based
routing. Table 15 on page 257 and “Multiple equal-cost routes” on page 276
provide additional information about the use of multiple equal-cost routes.

In the absence of policy-based routing, the IP layer routes traffic by searching the
main route table for the most specific route known, using the selection order
described. If policy-based routing is being used, the IP layer routes traffic
according to the policy defined for the traffic. For more information about how the
IP layer routes traffic when policy-based routing is being used, see “Policy-based
routing” on page 337.

The sample network
Figure 37 on page 259 and Figure 38 on page 260 show network diagrams that
depict a sample network. This sample network is used in the following topics as
the configuration of static, dynamic, and policy-based routing is described:
v “IPv4 static routing” on page 260
v “IPv6 static routing” on page 263
v “IPv4 dynamic routing using OMPROUTE” on page 267
v “IPv6 dynamic routing using OMPROUTE” on page 271
v “Policy-based routing” on page 337

258 z/OS V1R12.0 Comm Svr: IP Configuration Guide

10.1.1.0

30.1.1.0

20.1.1.0

9.67.106.4

9.67.105.49.67.101.4

9.67.108.2

255.255.255.0
9.67.104.15
9.67.104.16
9.67.104.25

255.255.255.0

255.255.255.0

9.67.107.5

10.1.1.2 20.1.1.5

9.67.108.4

9.67.100.7

9.67.103.7

9.67.107.7

9.67.100.8

130.200.1.8130.200.1.3

9.67.103.6

30.1.1.6

9.67.102.3

9.67.102.7

9.67.105.8

9.67.106.7

9.67.104.7

z/OS
HOST
4.4.4.4
TCPCS4

ROUTER
5.5.5.5

ROUTER
3.3.3.3

ROUTER
8.8.8.8

z/OS
HOST
7.7.7.7
TCPCS7

130.201

130.200

130.200
255.252.0.0

130.202

2001:0DB8:0:A1C::/64

2001:0DB8:0:A10::/60

FE80::1:2:3:4 FE80::1:2:3:3

FE80::1:2:3:2FE80::1:2:3:1

2001:0DB8:0:A1B::/64

130.203

Area 1.1.1.1Area 0.0.0.0

OSPF AS

RIP ASIPv6 RIP
AS

(see sample network
part 2 for details)

IPv6 OSPF
AS

Area 0.0.0.0

z/OS
HOST
6.6.6.6
TCPCS6

ROUTER
2.2.2.2

Virtual Link

ROUTER
A

ROUTER
B

9.67.101.3

Figure 37. Sample network part 1

Chapter 6. Routing 259

In this sample network, TCPCS4 and TCPCS7 are both performing as OSPF area
border routers between OSPF areas 0.0.0.0 and 1.1.1.1. TCPCS64 and TCPCS67 are
both performing as OSPF area border routers between IPv6 OSPF areas 0.0.0.0 and
6.6.6.6. TCPCS7 is performing as an AS boundary router between the OSPF AS and
the RIP AS. TCPCS67 is performing as an AS boundary router between the IPv6
OSPF AS and the IPv6 RIP AS. TCPCS4 and TCPCS7 have interfaces to both the
IPv4 network and the IPv6 network.

IPv4 static routing
Static routing requires that routes are configured manually for each router or
destination; this is a significant reason system administrators avoid this technique
if given a choice. Static routing has the disadvantage that network reachability is
not dependent on the state of the network itself. If a destination is down or
unreachable over that statically configured route, the static routes remain in the
routing table, and traffic continues to be sent toward that destination without
success.

2001:0DB8:0:10::/64 2001:0DB8:0:20::/64

OSAQDIO1 OSAQDIO2

(see sample network
part 1 for details)

z/OS
HOST
64.64.64.64
TCPCS64

z/OS
HOST
67.67.67.67
TCPCS67

ROUTER
65.65.65.65

Area 0.0.0.0
IPv6 OSPF AS

Area 6.6.6.6

IPv6 RIP AS

Area 0.0.0.0

ROUTER
62.62.62.62

ROUTER
63.63.63.63

ROUTER
68.68.68. 68

Virtual Link

2001:0DB8:0:30::/60

2001:0DB8:0:31::/64 2001:0DB8:0:33::/64

2001:0DB8:0:32::/64 2001:0DB8:0:34::/64

Figure 38. Sample network part 2, IPv6 OSPF AS

260 z/OS V1R12.0 Comm Svr: IP Configuration Guide

To minimize network administrator tasks, configuration of static routes is to be
avoided, especially in a large network. However, certain circumstances make static
routing more appropriate. For example, static routes can be used:
v To define a default route or a route that is not being advertised within a

network using a dynamic routing protocol
v To replace exterior gateway protocols when trying to avoid:

– The cost of routing protocol traffic between ASs
– Complex routing policies

v In conjunction with a routing daemon to provide backup routes when the
daemon cannot find a dynamic route to the destination. In this case, the static
route must be configured as replaceable.

If static routing is used, only the PROFILE.TCPIP data set has to be updated with
either the BEGINROUTES or GATEWAY statements. The BEGINROUTES statement
is recommended to define static routes due to its ease of use and additional
functionality. Additionally, if static routes are to be replaceable by OMPROUTE, the
BEGINROUTES configuration statement must be used. GATEWAY does not
support definition of replaceable static routes, and a static route defined on a
GATEWAY statement will not be replaceable by a routing daemon.

The only ways to modify static routes are:
v Replace the routing table using the VARY TCPIP,,OBEYFILE command
v Use incoming ICMP Redirect packets
v Use ICMP Must Fragment packets
v If a static route is defined on a BEGINROUTES statement as being replaceable, it

can be replaced if a dynamic route is discovered by OMPROUTE. This is the
only way that a static route can be replaced by a dynamic route.

For more information on the VARY TCPIP,,OBEYFILE command, see z/OS
Communications Server: IP System Administrator's Commands. For more information
on the IPCONFIG statement, and the IGNOREREDIRECTS and PATHMTUDISC
parameters for the IPCONFIG statement, see z/OS Communications Server: IP
Configuration Reference.

Note that the first BEGINROUTES or GATEWAY statement in PROFILE.TCPIP, or
in the data set referenced by a VARY TCPIP,,OBEYFILE command, replaces all
static routes in the TCP/IP stack routing table (including those destination
addresses specified in the BSDROUTINGPARMS section of the PROFILE.TCPIP).
Subsequent statements within the same data set append to the routing table. Also,
both BEGINROUTES and GATEWAY statements cannot be used within the same
data set.

Every interface must have an IP address to transmit or receive packets. Along with
the IP address, each interface must have a subnet mask associated with it for
routing purposes. The combination of the address and mask will yield the subnet
that the interface belongs to and also determines the broadcast address for the
interfaces. For interfaces not involved in dynamic routing, the subnet mask can be
specified in one of the following ways:
v On the BSDROUTINGPARMS statement in PROFILE.TCPIP (required if running

NCPROUTE).
v On the INTERFACE statement in the OMPROUTE configuration file, if running

OMPROUTE. Also, if running OMPROUTE, OMPROUTE will always override
the stack's BSDROUTINGPARMS and set the subnet mask for every interface it
is aware of, even if you did not code the interface to OMPROUTE. Therefore, it

Chapter 6. Routing 261

is highly recommended that you either specify every interface to OMPROUTE
with the correct subnet mask, or configure OMPROUTE to ignore undefined
interfaces.

If you do not specify the subnet mask by one of these methods, the subnet mask is
determined by the stack using the stack routing table. Specifying the subnet mask
rather than letting it default is highly recommended.

For point-to-point links, such as CTC and CLAW, a destination address is used to
document the other end of a point-to-point connection. For interfaces not involved
in dynamic routing, this can be specified in one of the following ways:
v On the BSDROUTINGPARMS statement in PROFILE.TCPIP.
v On the INTERFACE statement in the OMPROUTE configuration file, if running

OMPROUTE. Also, if running OMPROUTE, OMPROUTE will always override
the stack's BSDROUTINGPARMS and set the destination address for every
point-to-point link it is aware of, even if you did not code the interface to
OMPROUTE. Therefore, it is highly recommended that you either specify every
interface to OMPROUTE with the correct destination address, or configure
OMPROUTE to ignore undefined interfaces.

If you do not specify the destination address by one of these methods, the stack
determines the address by using the stack routing table. Specifying the destination
address rather then letting it default is highly recommended.

Tip: You can use the IBM Health Checker for z/OS to check whether the total
number of indirect routes in a TCP/IP stack routing table exceeds a maximum
threshold. When this threshold is exceeded, OMPROUTE and the TCP/IP stack can
experience high CPU consumption from routing changes. For more information
about IBM Health Checker for z/OS, see z/OS Communications Server: IP Diagnosis
Guide and IBM Health Checker for z/OS: User's Guide.

Replaceable static routes: Because replaceable static routes are intended to be
last-resort routes, TCP/IP attempts to use them only if no dynamic routes to the
destination are available.

If a non-replaceable static route fails validation, even if the reason for the failure is
transient like gateway unreachable, the definition for the non-replaceable static
route is discarded. However, if a replaceable static route fails validation for a
transient reason, the definition of the route is retained. When there are no dynamic
routes to the destination, TCP/IP periodically retries to add the replaceable static
route to the routing table. Because of these periodic retries multiple EZZ4333I
messages may be seen. Retries will be performed no more often than every 30
seconds, and only as long as there are no active routes to the destination in the
routing table, and only if at least one new route has been added to the routing
table since the last retry. Retries are terminated as soon as a valid route to the
destination is installed into the routing table, whether it is dynamic, static, or
replaceable static.

For a discussion of things to consider when using IPv4 static routing and
OMPROUTE together on the same TCP/IP stack, see “Using static routing with
OMPROUTE” on page 345.

262 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|
|

IPv6 static routing
Static routing requires that routes are configured manually for each router or
destination; this is a significant reason system administrators avoid this technique
if given a choice. Static routing has the disadvantage that network reachability is
not dependent on the state of the network itself. If a destination is down, or
unreachable through a statically configured route, the static routes remain in the
routing table and traffic continues to be sent toward that destination without
success.

To minimize network administrator tasks, configuration of static routes is to be
avoided, especially in a large network. However, certain circumstances make static
routing more appropriate. For example, static routes can be used:
v To define a route that will not be learned dynamically from OMPROUTE or

from router advertisements received from routers as part of the router discovery
protocol

v In conjunction with dynamic routes to provide backup routes when a dynamic
route to the destination cannot be found. In this case, the static route must be
configured as replaceable.

If static routing is used, only the PROFILE.TCPIP data set has to be updated with
BEGINROUTES statements. The only ways to modify static routes are:
v Replace the routing table using the VARY TCPIP,,OBEYFILE command
v Use incoming ICMPv6 redirect packets
v If a static route is defined on a BEGINROUTES statement as being replaceable, it

can be replaced by a dynamic route

Note that the first BEGINROUTES statement in PROFILE.TCPIP, or in the data set
referenced by a VARY TCPIP,,OBEYFILE command, replaces all static routes in the
TCP/IP stack routing table. Subsequent statements within the same data set
append to the routing table.

Rule: If you use static routes and want to honor ICMPv6 redirect messages (that is,
you do not code IPCONFIG6 IGNOREREDIRECTS), then you must code the first
hop address using the link-local address of the router. This is required since all
redirect messages are sent using the router's link-local address, and if the source
address of the redirect message does not match the address of the first hop in the
routing table, the redirect message will be ignored.

For more information on the VARY TCPIP,,OBEYFILE command, see z/OS
Communications Server: IP System Administrator's Commands. For more information
on the IPCONFIG6 statement, and the IGNOREREDIRECTS parameter on the
IPCONFIG6 statement, see z/OS Communications Server: IP Configuration Reference.

Tip: You can use the IBM Health Checker for z/OS to check whether the total
number of indirect routes in a TCP/IP stack routing table exceeds a maximum
threshold. When this threshold is exceeded, OMPROUTE and the TCP/IP stack can
experience high CPU consumption from routing changes. For more information
about IBM Health Checker for z/OS, see z/OS Communications Server: IP Diagnosis
Guide and IBM Health Checker for z/OS: User's Guide.

Replaceable static routes: Since replaceable static routes are intended to be
last-resort routes, TCP/IP only attempts to use them if no dynamic routes to a
destination are available. If a non-replaceable static route fails validation, even if
the reason for the failure is transient (for example, gateway unreachable), the

Chapter 6. Routing 263

|
|
|
|
|
|

definition for the non-replaceable static route is discarded. However, if a
replaceable static route fails validation for a transient reason, the definition of the
route is retained. When there are no dynamic routes to the destination, TCP/IP
periodically retries to add the replaceable static route to the routing table. Because
of these periodic retries, multiple EZZ4348I messages might be seen. Retries are
performed at the most every 30 seconds, as long as there are no active routes to
the destination in the routing table and at least one new route has been added to
the routing table since the last retry. Retries are terminated as soon as a valid route
to the destination is installed into the routing table, whether it is a dynamic, static,
or replaceable static route.

For a discussion of things to consider when using IPv6 static routing and IPv6
router advertisements together on the same TCP/IP stack, see “Using IPv6 static
routing with router advertisements” on page 346. For a discussion of things to
consider when using IPv6 static routing and OMPROUTE together on the same
TCP/IP stack, see “Using static routing with OMPROUTE” on page 345.

Static routing configuration examples
The following topics illustrate static routing configuration examples.

z/OS TCPCS4
Static route statements for z/OS TCPCS4
BEGINRoutes ;first BEGINRoutes in the profile
;
;Network/mask FirstHop LinkName PacketSize
Route 9.67.106.0/24 = CTC4TO7 MTU 1500 ;route1
Route 9.67.105.0/24 = CTC4TO8 MTU 1500 ;route2
Route 9.67.101.0/24 = CTC4TO3 MTU 1500 ;route3
Route 9.67.108.0/24 = CTC4TO2 MTU 1500 ;route4
Route 9.67.107.0/24 9.67.106.7 CTC4TO7 MTU 1500 ;route5
Route 7.7.7.7/32 9.67.106.7 CTC4TO7 MTU 1500 ;route6
Route 9.67.103.0/24 9.67.101.3 CTC4TO3 MTU 1500 ;route7
Route 9.67.103.0/24 9.67.106.7 CTC4TO7 MTU 1500 ;route8
Route 30.1.1.0/24 9.67.106.7 CTC4TO7 MTU 1500 ;route9
Route 10.1.1.0/24 9.67.108.2 CTC4TO2 MTU 1500 ;route10
Route 130.200.0.0/14 9.67.101.3 CTC4TO3 MTU 1500 ;route11
Route 130.200.0.0/14 9.67.105.8 CTC4TO8 MTU 1500 ;route12
Route 130.203.0.0/16 9.67.105.8 CTC4TO8 MTU 1500 ;route13
Route DEFAULT 9.67.106.7 CTC4TO7 MTU 1500 ;route14
;
;Destination/PrefixLen FirstHop Interface PacketSize
Route FE80::1:2:3:3/128 = OSAQDIO46 MTU 5000 REPL ;route15
Route FE80::1:2:3:4/128 = OSAQDIO46 MTU 5000 REPL ;route16
Route 2001:0DB8:0:A1B::/64 FE80::1:2:3:3 OSAQDIO46 MTU 5000 REPL ;route17
Route 2001:0DB8:0:A1C::/64 FE80::1:2:3:4 OSAQDIO46 MTU 5000 REPL ;route18
Route DEFAULT6 FE80::1:2:3:4 OSAQDIO46 MTU 5000 REPL ;route19
EndRoutes
;

Notes:

1. In the BEGINROUTES block, the netmask can be specified by a /xx. This
number, denoted by xx, represents the number of significant bits in the
netmask. For example:
/16 = 16 significant bits = 11111111 11111111 00000000 00000000 = 255.255.0.0

For IPv6, you must specify the prefix length of the route using the /xxx
notation.

2. For direct routes, use an equals symbol (=) for the first hop.

264 z/OS V1R12.0 Comm Svr: IP Configuration Guide

BSDROUTINGPARMS statements for z/OS TCPCS4
BSDRoutingParms TRUE ; Shown only for completeness
; Linkname MTU Metric Subnet Mask Dest Address

CTC4TO8 1500 0 255.255.255.0 0
CTC4TO7 1500 0 255.255.255.0 0
CTC4TO3 1500 0 255.255.255.0 0
CTC4TO2 1500 0 255.255.255.0 0
VIPA1A 1500 0 255.255.255.252 0
EndBSDRoutingParms

;

z/OS TCPCS7
Static route statements for z/OS TCPCS7
BEGINRoutes
;
;Network/mask FirstHop LinkName PacketSize
Route 9.67.106.0/24 = CTC7TO4 MTU 1500 ;route1
Route 9.67.100.0/24 = CTC7TO8 MTU 1500 ;route2
Route 9.67.102.0/24 = CTC7TO3 MTU 1500 ;route3
Route 9.67.103.0/24 = CTC7TO6 MTU 1500 ;route4
Route 9.67.107.0/24 = CTC7TO5 MTU 1500 ;route5
Route 4.4.4.4/32 9.67.106.4 CTC7TO4 MTU 1500 ;route6
Route 10.1.1.0/24 9.67.106.4 CTC7TO4 MTU 1500 ;route7
Route 20.1.1.0/24 9.67.107.5 CTC7TO5 MTU 1500 ;route8
Route 30.1.1.0/24 9.67.103.6 CTC7TO6 MTU 1500 ;route9
Route 130.200.0.0/14 9.67.100.8 CTC7TO8 MTU 1500 ;route10
Route 130.200.0.0/14 9.67.102.8 CTC7TO3 MTU 1500 ;route11
Route 130.203.0.0/16 9.67.102.3 CTC7TO3 MTU 1500 ;route12
Route DEFAULT 9.67.107.5 CTC7TO5 MTU 1500 ;route13
;
;Destination/PrefixLen FirstHop Interface PacketSize
Route FE80::1:2:3:3/128 = OSAQDIO76 MTU 5000 REPL ;route14
Route FE80::1:2:3:4/128 = OSAQDIO76 MTU 5000 REPL ;route15
Route 2001:0DB8:0:A1B::/64 FE80::1:2:3:3 OSAQDIO76 MTU 5000 REPL ;route16
Route 2001:0DB8:0:A1C::/64 FE80::1:2:3:4 OSAQDIO76 MTU 5000 REPL ;route17
Route DEFAULT6 FE80::1:2:3:4 OSAQDIO76 MTU 5000 REPL ;route18
EndRoutes

BSDROUTINGPARMS statements for z/OS TCPCS7
BSDRoutingParms TRUE
; Linkname MTU Metric Subnet Mask Dest Address

CTC7TO8 1500 0 255.255.255.0 0
CTC7TO3 1500 0 255.255.255.0 0
CTC7TO6 1500 0 255.255.255.0 0
CTC7TO4 1500 0 255.255.255.0 0
CTC7TO5 1500 0 255.255.255.0 0
VIPA1A 1500 0 255.255.255.252 0
EndBSDRoutingParms

;

The sample configuration has an IPv4 supernet route for 130.200.0.0. An IPv4
supernet route means that the netmask for the route is smaller than the class
netmask. In this case, 130.200.0.0 is a class B address. The default netmask for class
B is 255.255.0.0. The netmask used for this sample is 255.252.0.0, which is less than
255.255.0.0, hence making this a supernet route. In routing, the stack prefers a
route that has the most bits in common. Therefore, the stack chooses a route in the
following order:
1. If a route exists to the destination address (a host route), it is chosen.
2. At this point, the route chosen depends upon the version of IP being used:

v For IPv4:

Chapter 6. Routing 265

a. If subnet, network, or supernetwork routes exist to the destination, the
route with the most specific network mask (the mask with the most bits
on) is chosen.

b. If the destination is a multicast destination and a multicast default route
exists, that route is chosen.

v For IPv6, if prefix routes exist to the destination, the route with the most
specific prefix is chosen.

3. Default routes are chosen when no other route exists to a destination.

For example, for TCPCS4 (and when trying to reach 130.200.0.0), route12 in the list
is used, which is the supernet route 130.200.0.0 with mask 255.252.0.0. If applying
the mask of that route, 255.252.0.0, to the destination IP address, 130.200.0.0, the
result is 130.200.0.0, which is the IP address of this route. Now, when trying to
reach destination 130.203.5.2, the stack would use route13 in the list, which is a
network route for 130.203.00 with mask 255.255.0.0. If applying the mask of that
route, 255.255.0.0, to the destination IP address, 130.203.5.2, the result is 130.203.00,
which is the IP address of this route.

For TCPCS4, route7 and route8 are examples of equal cost multipath routes to get
to 9.67.103.0 subnet. This means that TCPCS4 has two different routes to get to this
destination. If IPCONFIG MULTIPATH is not enabled, then only route7 will be
used as long as it is active. This is because the stack chooses the first route and
ignores route8. If route7 becomes inactive, then the stack will switch and use
route8. If MULTIPATH is enabled, then the stack will use both routes according to
the MULTIPATH specification.

In the preceding example, all of the IPv4 links have a subnet mask of 255.255.255.0
because this is what is specified for the links in the BSDROUTINGPARMS.
Therefore, to determine the broadcast addresses for link CTC4TO3, AND the IP
Address, 9.67.101.4, and the subnet mask, 255.255.255.0, to yield the subnet for this
link, 9.67.101.0. Then, OR the subnet, 9.67.101.0, with the complement of the subnet
mask, 0.0.0.255. This determines that the broadcast address for this link is
9.67.101.255.

For TCPCS4, route15 and route16 would be selected to reach host FE80::1:2:3:3 and
host FE80::1:2:3:4 respectively. Route17 and route18 would be selected to reach any
IPv6 address that had the first 64 bits of 2001:0DB8:0:A1B and 2001:0DB8:0:A1C
respectively. Route19 would be selected for any other IPv6 destination.

Rules:

1. All IPv4 IP addresses must follow Classless Inter-Domain Routing (CIDR)
convention that requires the actual mask to be one or more on-bits followed by
zero or more off-bits. On-bits cannot be followed by off-bits followed by
on-bits. Therefore, a mask of 255.255.254.0 is valid (an actual mask of FFFFE00),
but a mask of 255.255.253.0 is not valid (an actual mask of FFFFD00) because
253 is 11111101.

2. VIPA links or VIPA interfaces are not allowed on BEGINROUTES statements.
3. DEFAULT and DEFAULT6 routes are always indirect routes and therefore must

always have a first hop address specified.

266 z/OS V1R12.0 Comm Svr: IP Configuration Guide

IPv4 dynamic routing using OMPROUTE
Daemon is a UNIX term for a background server process, and daemons are used
for dynamic routing. For z/OS Communications Server IP, there is a multiprotocol
routing daemon available. For IPv4, OMPROUTE supports the RIP Version 1, RIP
Version 2, and OSPF routing protocols. You can send RIP Version 1 or RIP Version
2, but not both at the same time on a single interface. However, you can configure
a RIP interface to receive both versions.

Guideline: If OROUTED was used in a prior release and the RIP protocol is still
the preferred dynamic routing method in your host configuration, use
OMPROUTE to provide RIP support.

For IPv4, OMPROUTE implements the OSPF protocol described in RFC 1583
(OSPF Version 2), the OSPF subagent protocol described in RFC 1850 (OSPF Version
2 Management Information Base), and the RIP protocols described in RFC 1058
(Routing Information Protocol) and in RFC 1723 (RIP Version 2 - Carrying Additional
Information). It provides an alternative to the static TCP/IP gateway definitions.
The MVS host running with OMPROUTE becomes an active OSPF or RIP router in
a TCP/IP network. Either or both of these routing protocols can be used to
dynamically maintain the host routing table. For example, OMPROUTE can detect
when a route is created, is temporarily unavailable, or if a more efficient route
exists. If both OSPF and RIP protocols are used simultaneously, OSPF routes will
be preferred over RIP routes to the same destination.

Tip: You can use the IBM Health Checker for z/OS to check whether the total
number of indirect routes in a TCP/IP stack routing table exceeds a maximum
threshold. When this threshold is exceeded, OMPROUTE and the TCP/IP stack can
experience high CPU consumption from routing changes. For more information
about IBM Health Checker for z/OS, see z/OS Communications Server: IP Diagnosis
Guide and IBM Health Checker for z/OS: User's Guide.

Open Shortest Path First
Open Shortest Path First (OSPF) is classified as an Interior Gateway Protocol (IGP).
This means that it distributes routing information between routers belonging to a
single autonomous system (AS), a group of routers all using a common routing
protocol. The OSPF protocol is based on link-state or shortest path first (SPF)
technology. It has been designed expressly for the TCP/IP Internet environment,
including explicit support for IP subnetting and the tagging of externally derived
routing information.

OSPF performs the following tasks:

Multiple routes
Provides support for up to 16 equal-cost routes.

Authentication
Provides for the authentication of routing updates.

IP multicast
Uses IP multicast when sending or receiving the updates.

Allows network grouping
Allows sets of networks to be grouped together. Such a grouping is called
an area. The topology of an area is hidden from the rest of the autonomous
system. This method of hiding information enables a significant reduction
in routing traffic. Also, routing within the area is determined only by the

Chapter 6. Routing 267

|
|
|
|
|
|

area's own topology, lending the area protection from bad routing data. An
area is a generalization of an IP subnetted network.

IP subnet configuration
Enables the flexible configuration of IP subnets. Each route distributed by
OSPF has a destination and mask. Two different subnets of the same IP
network number may have different sizes (that is, different masks). This is
commonly referred to as variable length subnetting. A packet is routed to
the best (longest or most specific) match. Host routes are considered to be
subnets whose masks are all ones (0xFFFFFFFF).

Authenticate OSPF protocol exchanges
Can be configured such that all OSPF protocol exchanges are
authenticated. This means that only trusted routers can participate in the
autonomous system's routing. A single authentication scheme is configured
for each physical link. This enables some links to use authentication while
others do not.

OSPF is a dynamic routing protocol. It quickly detects topological changes in the
AS (such as router interface failures) and calculates new loop-free routes after a
period of convergence. This period of convergence is short and involves a
minimum of routing traffic as compared to the RIP protocol.

In a link-state routing protocol, each router maintains a database describing the
autonomous system's topology. Each individual piece of this database is a
particular router's local state (for example, the router's usable interfaces and
reachable neighbors). The router distributes its local state throughout the
autonomous system by flooding.

To generate routes, all routers run the exact same algorithm, in parallel. From the
topological database, each router constructs a tree of shortest paths with itself as
root. This shortest-path tree gives the route to each destination in the autonomous
system. Externally derived routing information (for example, routes learned from
the RIP protocol) appears on the tree as leaves. When multiple equal-cost routes to
a destination exist, the routes (up to 16) are added to the TCP/IP stack's route
table. The TCP/IP stack uses these equal-cost routes according to the multipath
setting configured for the route table. “Multiple equal-cost routes” on page 276
provides additional information about the multipath setting configured for a route
table and the use of multiple equal-cost routes.

Externally derived routing data (for example, routes learned from the RIP protocol)
is passed transparently throughout the autonomous system. This externally derived
data is kept separate from the OSPF protocol's link state data. Each external route
can also be tagged by the advertising router, but not by OMPROUTE, enabling the
passing of additional information between routers on the boundaries of the
autonomous system. OMPROUTE does pass tags created by others. For
information on configuring OSPF, see “Steps for configuring OSPF and RIP (IPv4
and IPv6)” on page 288.

Routing Information Protocol
Routing Information Protocol (RIP) is an Interior Gateway Protocol (IGP) designed
to manage a relatively small network. RIP is based on the Bellman-Ford or the
distance-vector algorithm. RIP has many limitations and is not suitable for every
TCP/IP environment. Before using the RIP function in OMPROUTE, read RFCs
1058 and 1723 to decide if RIP can be used to manage the routing tables of your

268 z/OS V1R12.0 Comm Svr: IP Configuration Guide

network. For more information about RFCs 1058 and 1723, see Appendix G,
“Related protocol specifications,” on page 1555.

RIP uses the number of hops, or hop count, to determine the best possible route to
a host or network. The term hop count is also referred to as the metric. In RIP, a
hop count of 16 means infinity, or that the destination cannot be reached. This
limits the longest path in the network that can be managed by RIP to 15 gateways.

A RIP router broadcasts routing information to its directly connected networks
every 30 seconds. It receives updates from neighboring RIP routers every 30
seconds and uses the information contained in these updates to maintain the
routing table. If an update has not been received from a neighboring RIP router in
180 seconds, a RIP router assumes that the neighboring RIP router is down, sets all
routes through that router to a metric of 16 (infinity), and stops using those routes
when routing IP packets. If an update has still not been received from the
neighboring RIP router after another 120 seconds, the RIP router deletes from the
routing table all of the routes through that neighboring RIP router.

RIP Version 2 is an extension of RIP Version 1 and provides the following features:

Route Tags
The route tags are used to separate internal RIP routes (routes for networks
within the RIP routing domain) from external RIP routes, which may have
been imported from an EGP (external gateway protocol) or another IGP.
OMPROUTE does not generate route tags, but preserves them in received
routes and readvertises them when necessary.

Variable subnetting support
Variable length subnet masks are included in routing information so that
dynamically added routes to destinations outside subnetworks or networks
can be reached.

Immediate next hop for shorter paths
Next hop IP addresses, whenever applicable, are included in the routing
information to eliminate packets being routed through extra hops in the
network.

Multicasting to reduce load on hosts
IP multicast address 224.0.0.9, reserved for RIP Version 2 packets, is used
to reduce unnecessary load on hosts which are not listening for RIP
Version 2 messages. This support is dependent on interfaces that are
multicast-capable.

Authentication for routing update security
Authentication keys can be configured for inclusion in outgoing RIP
Version 2 packets. Incoming RIP Version 2 packets are checked against the
configured keys.

Configuration switches for RIP Version 1 and RIP Version 2 packets
Configuration parameters allow for controlling which version of RIP
packets are to be sent or received over each interface.

Supernetting support
The supernetting feature is part of Classless InterDomain Routing (CIDR).
Supernetting provides a way to combine multiple network routes into
fewer supernet routes, thus reducing the number of routes in the routing
table and in advertisements.

Chapter 6. Routing 269

For configuration information for RIP, see “Steps for configuring OSPF and RIP
(IPv4 and IPv6)” on page 288.

IPv6 dynamic routing using router discovery
Enabling IPv6 router discovery in z/OS Communications Server requires no
additional z/OS Communications Server configuration. All that is needed is at
least one IPv6 interface that is defined and started, and at least one adjacent router
through that interface that is configured for IPv6 router discovery. If these things
exist, then z/OS Communications Server begins receiving router advertisements
from the adjacent routers. Depending on the configuration in the adjacent routers,
the following types of routes can be learned from the received router
advertisements:
v Default route for which the originator of the router advertisement is the next

hop
v Indirect routes to prefixes for which the originator of the router advertisement is

the next hop
v Direct routes (no next hop) to prefixes that reside on the link shared by z/OS

Communications Server and the originator of the router advertisement

If there are non-replaceable static routes to the same destinations as those in the
router advertisements, then the routes that are learned from the router
advertisements are not added to the stack routing table.

Multiple routes from router advertisements
Multiple default routes and multiple prefix routes to a single prefix might be
learned through router advertisements. If an adjacent router resides on a link onto
which z/OS Communications Server TCP/IP has multiple IPv6 interfaces, multiple
routes are learned for each route in the router advertisement from the adjacent
router (one route through each interface onto the link). Default routes and indirect
routes to a prefix might be learned from the router advertisements that are
originated by multiple adjacent routers.

When multiple direct prefix routes to a single prefix are learned, all of the routes
are installed in the stack route table.

When multiple default routes or multiple indirect prefix routes to a single prefix
are learned, the following information is used by the stack to determine the subset
of the routes that are installed in the stack route table:
v The reachability of the advertising routers
v The status (active or inactive) of the associated interfaces
v The preference values (high, medium, or low) that are advertised for the routes

in the router advertisements. This value enables the originator of the router
advertisement to indicate whether it should be preferred over other routers as
the next hop for the route.

The routes with the highest preference value are installed in the route table;
however, routes that were learned from routers that are reachable over active
interfaces take priority, regardless of preference value.

When multiple default routes or multiple prefix routes to a single prefix are
installed in the stack route table, TCP/IP uses those routes according to the setting
of the MULTIPATH parameter on the IPCONFIG6 statement.

270 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|
|

|
|
|

|

|
|
|
|
|
|
|

|
|

|

|
|
|

|
|
|

IPv6 dynamic routing using OMPROUTE
For IPv6, OMPROUTE implements the IPv6 RIP protocol described in RFC 2080
(RIPng for IPv6) and the IPv6 OSPF protocol described in RFC 2740 (OSPF for
IPv6). It provides an alternative to the static TCP/IP gateway definitions. The MVS
host running with OMPROUTE becomes an active OSPF or RIP router in a TCP/IP
network. Either or both of these routing protocols can be used to dynamically
maintain the host IPv6 routing table. For example, OMPROUTE can detect when a
route is created, is temporarily unavailable, or if a more efficient route exists. If
both IPv6 OSPF and IPv6 RIP protocols are used simultaneously, IPv6 OSPF routes
will be preferred over IPv6 RIP routes to the same destination.

Tip: You can use the IBM Health Checker for z/OS to check whether the total
number of indirect routes in a TCP/IP stack routing table exceeds a maximum
threshold. When this threshold is exceeded, OMPROUTE and the TCP/IP stack can
experience high CPU consumption from routing changes. For more information
about IBM Health Checker for z/OS, see z/OS Communications Server: IP Diagnosis
Guide and IBM Health Checker for z/OS: User's Guide.

IPv6 OSPF protocol
IPv6 OSPF is classified as an Interior Gateway Protocol (IGP). This means that it
distributes routing information between routers belonging to a single autonomous
system (AS), a group of routers all using a common routing protocol. The IPv6
OSPF protocol is based on link-state or shortest path first (SPF) technology.

IPv6 OSPF is a dynamic routing protocol. It quickly detects topological changes in
the AS (such as router interface failures) and calculates new loop-free routes after a
period of convergence. This period of convergence is short and involves a
minimum of routing traffic as compared to the IPv6 RIP protocol. However, it does
generally require more CPU resources on participating routers.

In IPv6 OSPF, sets of networks can be placed together in groups called areas. The
topology of an area is hidden from the rest of the AS. This method of hiding
information enables a significant reduction in routing traffic. Also, routing within
the area is determined only by the area's own topology, lending the area protection
from bad routing data.

Each IPv6 OSPF router maintains a database describing the autonomous system's
topology. Each individual piece of this database is a particular router's local state
(for example, the router's usable interfaces and reachable neighbors). The router
distributes its local state information by flooding. The routing information in an
area is summarized and advertised into adjacent areas, allowing for the generation
of interarea routes. This summarization and advertising of routing information
between areas is the responsibility of the routers that reside on the border between
areas (called area border routers).

To generate routes, all routers run the exact same algorithm, in parallel. From the
topological database, each router constructs a tree of shortest paths with itself as
root. This shortest-path tree gives the route to each destination in the autonomous
system. Externally derived routing information (for example, routes learned from
the IPv6 RIP protocol) appears on the tree as leaves. When multiple equal-cost
routes to a destination exist, the routes (up to 16) are added to the TCP/IP stack's
route table. The TCP/IP stack uses these equal-cost routes according to the
multipath setting configured for the route table. “Multiple equal-cost routes” on
page 276

Chapter 6. Routing 271

|
|
|
|
|
|

page 276 provides additional information about the multipath setting configured
for a route table and the use of multiple equal-cost routes.

Externally derived routing data is passed transparently throughout the
autonomous system. This externally derived data is kept separate from the IPv6
OSPF protocol's link state data. Each external route can also be tagged by the
advertising router, but not by OMPROUTE, enabling the passing of additional
information between routers on the boundaries of the autonomous system.
OMPROUTE does pass tags created by others. For information on configuring IPv6
OSPF, see “Steps for configuring OSPF and RIP (IPv4 and IPv6)” on page 288.

IPv6 RIP protocol
IPv6 RIP is an Interior Gateway Protocol (IGP) designed to manage a relatively
small network. IPv6 RIP is based on the Bellman-Ford or the distance-vector
algorithm. IPv6 RIP has limitations and is not suited for every TCP/IP
environment. Before using the IPv6 RIP function in OMPROUTE, read RFC 2080 to
decide if RIP can be used to manage the IPv6 routing tables of your network. For
more information about RFC 2080, see Appendix G, “Related protocol
specifications,” on page 1555.

IPv6 RIP uses the number of hops, or hop count, to determine the best possible
route to a host or network. The term hop count is also referred to as the metric. In
IPv6 RIP, a hop count of 16 means infinity, or that the destination cannot be
reached. This limits the longest path in the network that can be managed by IPv6
RIP to 15 gateways.

A IPv6 RIP router broadcasts routing information to its directly connected
networks every 30 seconds. It receives updates from neighboring IPv6 RIP routers
every 30 seconds and uses the information contained in these updates to maintain
the IPv6 routing table. If an IPv6 RIP update has not been received from a
neighboring router in 180 seconds, an IPv6 RIP router assumes that the
neighboring router is down, sets all IPv6 RIP routes through that router to a metric
of 16 (infinity), and stops using those routes when routing IP packets. If an update
has still not been received from the neighboring router after another 120 seconds,
the IPv6 RIP router deletes from the IPv6 routing table all of the IPv6 RIP routes
through that neighboring router.

Next hop IP addresses, whenever applicable, are included in IPv6 RIP updates to
eliminate packets being routed through extra hops in the network. IPv6 multicast
address FF02::9, reserved for IPv6 RIP packets, is used to reduce unnecessary load
on hosts that are not listening for IPv6 RIP messages.

For configuration information for IPv6 RIP, see “Steps for configuring OSPF and
RIP (IPv4 and IPv6)” on page 288.

OMPROUTE configuration
This topic includes items to consider when configuring OMPROUTE, and the steps
to use to configure OMPROUTE.

Run-time environment
OMPROUTE is a z/OS UNIX application, and it requires a z/OS UNIX file system
to operate. It can be started from an MVS started procedure, from the z/OS shell,
or from AUTOLOG (see step 2 on page 278 for restrictions on using AUTOLOG to

272 z/OS V1R12.0 Comm Svr: IP Configuration Guide

start OMPROUTE). OMPROUTE must be started by a RACF-authorized user ID,
and it must reside in an APF authorized library.

OMPROUTE uses the MVS operator's console, syslogd, CTRACE, and STDOUT for
its logging and tracing. The MVS operator's console and syslogd are used for major
events such as initialization, termination, and error conditions. CTRACE is used for
tracing the receipt and transmission of OSPF/RIP packets and communications
between OMPROUTE and the TCP/IP stack. In addition, OMPROUTE can be
configured to use CTRACE for detailed tracing and debugging. STDOUT is used
for detailed tracing and debugging.

When syslogd is active and /dev/console is defined in the syslog.conf file,
OMPROUTE logging messages are directed to syslogd and to the MVS console. If
syslogd is active and /dev/console is not defined, OMPROUTE logging messages
are directed to syslogd only.

When syslogd is inactive, OMPROUTE logging messages are directed to the
OMPROUTE JES joblog and to the MVS console.

If OMPROUTE tracing or debugging is enabled, the output can be directed to
STDOUT, the JES joblog, or OMPROUTE CTRACE. Additionally, the logging
messages (that is, interface initialization messages) can be found in syslogd,
provided it is active at the time of tracing or debugging. Syslogd directs urgent
OMPROUTE messages to the MVS console.

Tip: If you enable OMPROUTE tracing without syslogd active, large amounts of
data can be written to the console.

OMPROUTE uses a standard message catalog. The message catalog must be in the
z/OS UNIX file system. The directory location for the message catalog path is set
by the environment variables NLSPATH and LANG.

Configuration of OMPROUTE is accomplished using an OMPROUTE configuration
file. For details on the statements in the OMPROUTE configuration file, see z/OS
Communications Server: IP Configuration Reference.

Display of OMPROUTE information is performed using the DISPLAY or MODIFY
command. Modification of OMPROUTE information is performed using the
MODIFY command. For details on OMPROUTE's DISPLAY and MODIFY
commands, see z/OS Communications Server: IP System Administrator's Commands.

Language Environment run-time considerations
When starting OMPROUTE from a started or cataloged procedure, it is usually
recommended that OMPROUTE be started directly from the SEZALOAD data set
using PGM=OMPROUTE. However, there is a situation where it might be desirable
to start OMPROUTE using BPXBATCH.

When OMPROUTE is started using PGM=OMPROUTE, the STDENV DD card, if
used, is passed directly to the OMPROUTE program. The Language Environment
does not get access to the STDENV environment variables. As a result, any
Language Environment run-time options set in the STDENV DD data set using the
_CEE_RUNOPTS= environment variable are ignored. In this case, Language
Environment run-time options must be passed on the PARM= parameter and the
options must be specified before any OMPROUTE options. However, the PARM=
statement allows a maximum of 100 characters. If the desired Language

Chapter 6. Routing 273

Environment run-time options plus OMPROUTE parameters exceeds 100
characters, consideration should be given to using BPXBATCH to start
OMPROUTE. When PGM=BPXBATCH is used, the Language Environment
environment variable _CEE_RUNOPTS can be included on the STDENV DD card
to specify run-time options in excess of 100 characters long.

OMPROUTE tuning considerations
It might be desirable to tune OMPROUTE's storage usage when running in
complex network environments or when running with traces enabled for long
periods of time. To determine if tuning is necessary, use the Language
Environment run-time options RPTSTG and RPTOPTS. For information on these
options and the reports they generate, see z/OS Language Environment
documentation.

Multiple TCP/IP stacks
A one-to-one relationship exists between an instance of OMPROUTE and a stack.
OSPF, RIP, IPv6 OSPF, and IPv6 RIP support on multiple stacks requires multiple
instances of OMPROUTE.

TCP/IP stack routing table management
OMPROUTE's job is limited to the management of the TCP/IP stack routing table.
OMPROUTE is not involved in the actual routing decisions made by the TCP/IP
stack when routing a packet to its destination.

If IPv4 interfaces are defined in the OMPROUTE configuration file as OSPF or RIP
interfaces, all IPv4 dynamic routes are deleted from the stack's IPv4 routing table
upon initialization of OMPROUTE. If IPv6 interfaces are defined in the
OMPROUTE configuration file as OSPF or RIP interfaces, all IPv6 dynamic routes,
excluding those dynamic routes learned through IPv6 router discovery, are deleted
from the stack's IPv6 routing table upon initialization of OMPROUTE.
OMPROUTE then repopulates the stack routing tables that it cleared, using
information learned through the routing protocols.

IPv4 Internet Control Message Protocol (ICMP) redirects are ignored when
OMPROUTE is active and there are IPv4 interfaces configured to OMPROUTE as
RIP or OSPF interfaces. IPv6 ICMP redirects are ignored when OMPROUTE is
active and there are IPv6 interfaces configured to OMPROUTE as RIP or OSPF
interfaces.

OMPROUTE does not make use of the BSDROUTINGPARMS statement. Instead,
the IPv4 Maximum Transmission Unit (MTU), subnet mask, and destination
address parameters are configured using the OSPF_INTERFACE, RIP_INTERFACE,
and INTERFACE statements in the OMPROUTE configuration file. The MTU for
IPv6 interfaces is learned from the TCP/IP stack and therefore is not a parameter
on the IPV6_OSPF_INTERFACE, IPV6_RIP_INTERFACE, and IPV6_INTERFACE
statements.

Result: The Netstat DEvlinks/-d report displays these parameters under the
heading Routing Parameters, even though the BSDROUTINGPARMS statement is
not defined.

Using RIP, IPv6 RIP, OSPF, and IPv6 OSPF with OMPROUTE
When OMPROUTE is initialized, it uses the OMPROUTE configuration file to
determine which routing protocols will be enabled. If at least one OSPF interface is

274 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

configured, the OSPF protocol is enabled. If at least one RIP interface is configured,
RIP is enabled. If at least one IPv6 RIP interface is configured, IPv6 RIP is enabled.
If at least one IPv6 OSPF interface is configured, IPv6 OSPF is enabled. If
OMPROUTE is started with no interfaces defined for a particular protocol, that
protocol is disabled until one of the following occurs:
v OMPROUTE is stopped and restarted with a configuration file containing at

least one interface of the specific type.
v OMPROUTE is dynamically reconfigured using the MODIFY command with a

configuration file containing at least one interface of the specific type.

When OMPROUTE is configured for both the OSPF and RIP protocols (either IPv4
or IPv6), routes that are learned through the OSPF protocol take precedence over
routes learned through the RIP protocol.

The OSPF and RIP protocols are communicated over IPv4 interfaces that are
defined with the OSPF_INTERFACE and RIP_INTERFACE configuration
statements, respectively. An IPv4 interface involved in the communication of
neither the RIP nor the OSPF protocol should be configured to OMPROUTE with
the INTERFACE configuration statement, unless Ignore_Undefined_Interfaces=YES
is coded on the Global_Options configuration statement. OMPROUTE supports a
maximum of 255 real, physical, IPv4 interfaces (that is, interfaces on which data
can actually be sent and received). There is no theoretical limit on how many
VIPAs can be configured, though there are practical limits imposed by network
design. For special VIPA considerations, see step 4 on page 292.

The IPv6 OSPF and IPv6 RIP protocols are communicated over IPv6 interfaces that
are defined with the IPV6_OSPF_INTERFACE and IPV6_RIP_INTERFACE
configuration statements, respectively. An IPv6 interface not involved in the
communication of the IPv6 OSPF or IPv6 RIP protocol can be configured to
OMPROUTE with the IPV6_INTERFACE configuration statement. If default values
are acceptable and you do not need to define additional prefixes to an IPv6
interface not involved in the communication of the IPv6 OSPF or IPv6 RIP
protocol, it is not necessary to configure the interface to OMPROUTE at all.
OMPROUTE will learn about the interface and its MTU value from the stack and
use default values for other parameters. This is different from IPv4, where all
interfaces should be configured to prevent OMPROUTE from using default values
for MTU size and subnet mask, unless Global_Options is coded with
Ignore_Undefined_Interfaces=YES.

OMPROUTE allows for the generation of multiple, equal-cost routes to a
destination. For OSPF and IPv6 OSPF, up to 16 multiple equal-cost routes are
allowed. For RIP and IPv6 RIP, multiple equal-cost routes are supported only to
directly connected destinations over redundant interfaces.

Token-ring multicast
If OMPROUTE will be communicating through the OSPF or RIP Version 2 protocol
over a token ring media, and there will be routers attached to that token ring that
are not listening (at the DLC layer) for the token ring multicast MAC address
0xC000.0004.0000, the following TRANSLATE statement is required in the
PROFILE.TCPIP:
TRANSLATE 224.0.0.0 IBMTR FFFFFFFFFFFF linkname

Without this statement, OSPF and RIP Version 2 multicast packets are discarded at
the DLC layer by those routers that are not listening for the token ring multicast
MAC address.

Chapter 6. Routing 275

Restriction: The TRANSLATE statement cannot be used for OSA devices in QDIO
mode.

Virtual IP addresses
OMPROUTE is enhanced with virtual IP addressing (VIPA) to handle network
interface failures by switching to alternate paths. The VIPA routes are included in
the OSPF, RIP, IPv6 OSPF, and IPv6 RIP advertisements to adjacent routers.
Adjacent routers learn about VIPA routes from the advertisements and can use
them to reach the destinations at the MVS host.

Service policy
If service policy is going to be used to restrict access to neighbors on
point-to-multipoint interfaces (for example MPCPTP interfaces including XCF and
IUTSAMEH connections) for temporary intervals, those neighbors must be
explicitly defined on the OSPF_INTERFACE or RIP_INTERFACE statement.
Otherwise, OMPROUTE might not be able to communicate with those neighbors
when the access restriction expires.

Multiple equal-cost routes
When the TCP/IP main route table is used to route traffic, multiple routes exist in
the TCP/IP main route table for a destination, and the IPCONFIG MULTIPATH or
IPCONFIG6 MULTIPATH statement is specified in PROFILE.TCPIP, outbound
traffic for that destination is spread across all of the routes. The same is true when
a policy-based route table is used to route traffic, multiple routes exist in the
policy-based route table for a destination, and the Multipath parameter on the
RouteTable policy statement indicates that multipath support should be provided
for the policy-based route table. This traffic spreading is done on either a
packet-basis or connection-basis, depending on the type of multipath support
configured. For information on configuring different types of multipath support
using the IPCONFIG and IPCONFIG6 statements, and the RouteTable policy
statement, see z/OS Communications Server: IP Configuration Reference.

When OMPROUTE is being used to provide dynamic routing for a TCP/IP stack,
multiple routes to the same destination can be dynamically added to a TCP/IP
stack route table, based upon the routing information learned from other routers.
These multiple routes will be added when the route calculation for each has
resulted in the same route cost value. No more than 16 equal-cost routes will be
added for each destination. For RIP and IPv6 RIP, multiple equal-cost routes will
be added only to directly-connected destinations over redundant interfaces. The
RIP and IPv6 RIP protocols will generate no more than one indirect route to a
destination.

Table 16. Multipath route limitations

Multipath route type

Static
(BEGINROUTES
and policy-defined)

OMPROUTE (OSPF
and IPv6 OSPF)

OMPROUTE (RIP
and IPv6 RIP)

Direct host Yes (no limit) Yes (up to 16) No

Indirect host Yes (no limit) Yes (up to 16) No

Direct network Yes (no limit) Yes (up to 16) Yes (up to 16 for
redundant interfaces)

Indirect network Yes (no limit) Yes (up to 16) No

Default (indirect) Yes (no limit) Yes (up to 16) No

276 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Guidelines:

v If more equal-cost multipath routes are needed in the main IPv4 route table than
can be provided by an IPv4 dynamic routing protocol, you can configure static
routes using the GATEWAY or BEGINROUTES statements.

v If more equal-cost multipath routes are needed in the main IPv6 route table than
can be provided by an IPv6 dynamic routing protocol, you can configure static
routes using the BEGINROUTES statement.

v If more equal-cost multipath routes are needed in a policy-based route table than
can be provided by a dynamic routing protocol, you can configure static routes
using the RouteTable policy statement.

Sysplex autonomics
If you enable sysplex autonomics, it is very important that you ensure that the
WLM policy for the OMPROUTE address space receives sufficient resources in
relationship to other work being managed on the system. Under high load
conditions it is possible that OMPROUTE, if not properly classified, can trigger an
autonomic response from the TCP/IP stack it has an affinity with, resulting in the
TCP/IP address space removing itself from the sysplex group. It is recommended
that the TCP/IP and OMPROUTE address spaces be placed in the SYSSTC service
classification. Classification in another service class will leave the system
vulnerable to a sysplex distributor outage. For further information on sysplex
autonomics, see “Sysplex problem detection and recovery” on page 449.

Steps for configuring OMPROUTE
The steps to configure OMPROUTE are:
1. Create the OMPROUTE configuration file.
2. Reserve the ports, and ensure loopback availability.
3. Update the resolver configuration file.
4. Update the OMPROUTE cataloged procedure.
5. Specify the RIP UDP port numbers in the SERVICES file or data set (if using

the RIP or IPv6 RIP protocol).
6. RACF authorize user IDs for starting OMPROUTE.
7. Start syslogd.
8. Update the OMPROUTE environment variables (optional).
9. Create static routes (optional).

10. Configure OSPF authentication (optional, if using the IPv4 OSPF protocol).

Tip: If policy-based routing is used on the TCP/IP stack and the routing policy is
configured with dynamic routing parameters, you do not need to provide
additional configuration to OMPROUTE for dynamic routing support to be
provided for the policy-based route tables. The dynamic routing parameters
specified in the routing policy are provided to OMPROUTE by the TCP/IP stack to
control the scope of dynamic routes computed by OMPROUTE. For a description
of this function, see “Policy-based routing” on page 337.

Result: If policy-based routing is used on the TCP/IP stack and a route table is
configured to the Policy Agent with no dynamic routing parameters, OMPROUTE
has no knowledge of that route table. For example, the route table does not appear
in the display of OMPROUTE route tables.

Following are the details for the steps to configure OMPROUTE.

Chapter 6. Routing 277

1. Create the OMPROUTE configuration file.

The OMPROUTE configuration file provides information about the host's
routing capabilities and TCP/IP interfaces. For more detail about the
contents of this file, see “Steps for configuring OSPF and RIP (IPv4 and
IPv6)” on page 288. The following is the search order used by OMPROUTE
to locate the configuration data set or file:
a. DD:OMPCFG
b. If the environment variable, OMPROUTE_FILE, has been defined,

OMPROUTE uses the value as the name of an MVS data set or z/OS
UNIX file to access the configuration data. The syntax for an MVS data
set name is //'mvs.dataset.name'. The syntax for a z/OS UNIX file name is
/dir/subdir/file.name.

c. /etc/omproute.conf
d. hlq.ETC.OMPROUTE.CONF
Tip: If you are configuring a complex environment, you can use the
following OMPROUTE configuration file features:
v Group related statements into separate files and use the INCLUDE

statement to include them in your OMPROUTE configuration.
v Use MVS system symbols (such as &SYSCLONE, &SYSNAME, and

&SYSPLEX). This feature reduces the number of OMPROUTE
configuration files that must be maintained in a multisystem environment.

A sample configuration file is provided in SEZAINST(EZAORCFG). The
configuration files for TCPCS4, TCPCS6, TCPCS7, and TCPCS64 in the
sample network are shown in “Sample OMPROUTE configuration files” on
page 333. For a description of the syntax rules for the OMPROUTE
configuration file, as well as details on each of the configuration statements,
see z/OS Communications Server: IP Configuration Reference.

2. Reserve the ports.

RIP protocol

If the RIP protocol of OMPROUTE is going to be used, UDP port 520
should be reserved for OMPROUTE. If the IPv6 RIP protocol of
OMPROUTE is going to be used, UDP port 521 should be reserved for
OMPROUTE. This is done by adding the name of the member containing
the OMPROUTE cataloged procedure to the PORT statement in
PROFILE.TCPIP:
PORT

520 UDP OMPROUTE
521 UDP OMPROUTE

If you want to be able to start OMPROUTE from the z/OS shell, use the
special name OMVS as follows:
PORT

520 UDP OMVS
521 UDP OMVS

Autolog considerations for OMPROUTE when using the OSPF protocol

If a procedure in the AUTOLOG list also has a PORT statement reserving
a TCP or UDP port but does not have a listening connection on that port,
TCP/IP periodically attempts to cancel that procedure and start it again.
Therefore, if OMPROUTE is being started with AUTOLOG and only the
OSPF or IPv6 OSPF protocol is being used (no RIP or IPv6 RIP protocol,

278 z/OS V1R12.0 Comm Svr: IP Configuration Guide

so no listening connection on the RIP or IPv6 RIP UDP port), it is
important to do one of the following:
– Ensure that the RIP UDP port (520) and the IPv6 RIP UDP port (521)

are not reserved by the PORT statement in the PROFILE.TCPIP.
– Add the NOAUTOLOG parameter to the PORT statement in the

PROFILE.TCPIP. For example,
PORT
520 UDP OMPROUTE NOAUTOLOG
521 UDP OMPROUTE NOAUTOLOG

Tip: When using only the OSPF or IPv6 OSPF protocol, the auto-start
feature of AUTOLOG can be used as described. However, the monitoring
and auto-restart features of AUTOLOG are unavailable due to
AUTOLOG's dependence on listening to a TCP or UDP connection, which
does not exist with OSPF and IPv6 OSPF.
If you fail to take one of these actions, OMPROUTE will be periodically
canceled and restarted by TCP/IP.

3. Update the resolver configuration file.

The resolver configuration file contains keywords (DATASETPREFIX and
TCPIPjobname) used by OMPROUTE. The value assigned to
DATASETPREFIX will determine the high-level qualifier (hlq). The hlq is used
in the search order for the OMPROUTE configuration file. If no
DATASETPREFIX keyword is found, a default of TCPIP is used. The value
assigned to TCPIPjobname will be used as the name of the TCP/IP stack
with which OMPROUTE establishes a connection.
For a description of the search order used by the resolver to locate the
resolver configuration file, see “Resolver configuration files” on page 759.

4. Update the OMPROUTE cataloged procedure.

If OMPROUTE is to be started by a procedure, create the cataloged
procedure by copying the sample in SEZAINST(OMPROUTE) to your system
or recognized PROCLIB. Specify OMPROUTE parameters and change the
data set names to suit your local configuration.
//*
//* TCP/IP for MVS
//* SMP/E Distribution Name: EZBORPRC
//*
//* 5694-A01 (C) Copyright IBM Corp. 1998, 2003
//* Licensed Materials - Property of IBM
//* This product contains "Restricted Materials of IBM"
//* All rights reserved.
//* US Government Users Restricted Rights -
//* Use, duplication or disclosure restricted by
//* GSA ADP Schedule Contract with IBM Corp.
//* See IBM Copyright Instructions.
//*
//OMPROUTE PROC
//OMPROUTE EXEC PGM=OMPROUTE,REGION=10M,TIME=NOLIMIT,
// PARM=(’POSIX(ON)’,
// ’ENVAR("_CEE_ENVFILE=DD:STDENV")/’)
//*
//* Example of start parameters to OMPROUTE:
//*
//* PARM=(’POSIX(ON)’,

Chapter 6. Routing 279

//* ’ENVAR("_CEE_ENVFILE=DD:STDENV")/-t1 -6t1’)
//*
//* Provide environment variables to run with the
//* desired stack and configuration. As an example,
//* the file specified by STDENV could have these
//* five lines in it:
//*
//* RESOLVER_CONFIG=//’SYS1.TCPPARMS(TCPDATA2)’
//* OMPROUTE_FILE=/u/usernnn/config.tcpcs2
//* OMPROUTE_DEBUG_FILE=/tmp/logs/omproute.debug
//* OMPROUTE_IPV6_DEBUG_FILE=/tmp/logs/omprout6.debug
//* OMPROUTE_DEBUG_FILE_CONTROL=1000,5
//*
//* For information on the above environment variables,
//* refer to the IP CONFIGURATION GUIDE.
//*
//STDENV DD PATH=’/u/usernnn/envcs2’,
// PATHOPTS=(ORDONLY)
//*
//* The stdout stream may be redirected to a HFS file as
//* shown below.
//* The PATHOPTS OTRUNC option will clear the stdout file
//* every time OMPROUTE is started. If you want to retain
//* previous stdout information, change it to OAPPEND.
//*
//SYSPRINT DD SYSOUT=*
//*SYSPRINT DD PATH=’/tmp/omproute.stdout’,
//* PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
//* PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)
//*
//* The stderr stream may be redirected to a HFS file as
//* shown below.
//* The PATHOPTS OTRUNC option will clear the stderr file
//* every time OMPROUTE is started. If you want to retain
//* previous stderr information, change it to OAPPEND.
//*
//SYSOUT DD SYSOUT=*
//*SYSOUT DD PATH=’/tmp/omproute.stderr’,
//* PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
//* PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)
//*
//CEEDUMP DD SYSOUT=*,DCB=(RECFM=FB,LRECL=132,BLKSIZE=132)

5. Specify the RIP UDP port numbers in the SERVICES file or data set (if using
the RIP or IPv6 RIP protocol).
The services file contains the relationship between services and port numbers
as described in z/OS Communications Server: IP Configuration Reference. The
portion of the services file relevant to OMPROUTE is:

route 520/udp router omproute
route 521/udp ipv6rip ripng

The file must exist for the RIP and IPv6 RIP protocols of OMPROUTE to
operate.
For a description of the search order used to locate the services file, see
“Configuration files for TCP/IP applications” on page 30.

6. RACF authorize user IDs for starting OMPROUTE.

280 z/OS V1R12.0 Comm Svr: IP Configuration Guide

To reduce risk of an unauthorized user starting OMPROUTE and affecting
the contents of the routing table, users who start OMPROUTE must be
RACF-authorized to the entity MVS.ROUTEMGR.OMPROUTE and require a
UID of zero. To RACF-authorize, the following commands must be entered
from a RACF user ID, substituting the authorized user ID on the ID(userid)
parameter. The commands in this example are taken from
SEZAINST(EZARACF).

RDEFINE OPERCMDS (MVS.ROUTEMGR.OMPROUTE) UACC(NONE)
PERMIT MVS.ROUTEMGR.OMPROUTE ACCESS(CONTROL) CLASS(OPERCMDS) ID(userid)
SETROPTS RACLIST(OPERCMDS) REFRESH

Rule: OMPROUTE requires UID=0 for correct installation, configuration, and
operation.

7. Start syslogd.

To write only the urgent OMPROUTE messages to the z/OS console, syslogd
should be running while OMPROUTE is running. Syslogd sends the
non-urgent messages to the z/OS UNIX file system message log.

8. Update the OMPROUTE environment variables (optional).

The following environment variables are used by OMPROUTE and can be
tailored to a particular installation:

RESOLVER_CONFIG
The RESOLVER_CONFIG variable is used by OMPROUTE to locate
the resolver configuration file. For more information on
OMPROUTE's use of the resolver configuration file, see step 3 on
page 279. For more information about the RESOLVER_CONFIG
environment variable, see “Setting z/OS XL C/C++ environment
variables for configuration files” on page 763.

OMPROUTE_FILE
The OMPROUTE_FILE variable is used by OMPROUTE in the search
order for the OMPROUTE configuration file. For details on the
search order used for locating this configuration file, see step 1 on
page 278.

OMPROUTE_OPTIONS
The OMPROUTE_OPTIONS variable is used by OMPROUTE to set
various controls for OMPROUTE processing. Currently only the
hello_hi option is supported. The syntax of this variable is:
OMPROUTE_OPTIONS=hello_hi

Specifying OMPROUTE_OPTIONS=hello_hi changes the way
OMPROUTE processes the IPv4 OSPF hello packets. These packets
are then given a higher priority than other updates and processed by
the first available OMPROUTE task ahead of other received IPv4
OSPF packets. Prior to specifying this parameter, customers must be
aware of the impact to their network of processing hello packets out
of the received order sequence.

Tips:

a. Specifying OMPROUTE_OPTIONS=hello_hi only helps to keep
adjacencies up when OMPROUTE is running and getting flooded
with protocol packets. It does not provide any help for the case

Chapter 6. Routing 281

when adjacencies are not staying up because OMPROUTE is not
getting enough cycles (that is, swapped out or running in too low
a priority).

b. IPv6 OSPF always gives hello packets higher priority than other
IPv6 OSPF traffic, so this option is not necessary for IPv6 OSPF.

OMPROUTE_DEBUG_FILE
The OMPROUTE_DEBUG_FILE variable is used by OMPROUTE to
override the debug output destination for IPv4 dynamic routing
protocols and for processing common to both IPv4 and IPv6 routing
protocols.

Tip: When the OMPROUTE CTRACE with option DEBUGTRC (or
option ALL) is active, debug output is written to CTRACE and not to
the destination specified by this variable.

For more information on using this environment variable, see
“OMPROUTE parameters” on page 285.

OMPROUTE_DEBUG_FILE_CONTROL
The OMPROUTE_DEBUG_FILE_CONTROL variable is used by
OMPROUTE to control the size and quantity of trace files created
when the OMPROUTE_DEBUG_FILE or
OMPROUTE_IPV6_DEBUG_FILE variable is specified. The syntax of
this variable is:
OMPROUTE_DEBUG_FILE_CONTROL=<size of file>,<num of files>

The default values for <size of file> and <num of files> are 200 (KB)
and 5 respectively. In general, these values are sufficient for most
installations.

If OMPROUTE_DEBUG_FILE and OMPROUTE_IPV6_DEBUG_FILE
are both specified with different output destinations, the values
specified on the OMPROUTE_DEBUG_FILE_CONTROL variable will
apply to both the IPv4 debug files and the IPv6 debug files. The total
number of files created in this environment would be <num of files>
multiplied by 2.

OMPROUTE_IPV6_DEBUG_FILE
The OMPROUTE_IPV6_DEBUG_FILE variable is used by
OMPROUTE to override the debug output destination for IPv6
dynamic routing protocols.

Tip: When the OMPROUTE CTRACE with option DEBUGTRC (or
option ALL) is active, debug output is written to CTRACE and not to
the destination specified by this variable.

For more information on using this environment variable, see
“OMPROUTE parameters” on page 285.

OMPROUTE_CTRACE_MEMBER
The OMPROUTE_CTRACE_MEMBER variable is used by
OMPROUTE to specify the name of the parmlib member containing
CTRACE default settings. If not specified, the default value is
CTIORA00. Use this environment variable to set different CTRACE
options and buffer sizes for multiple OMPROUTE instances.

9. Create static routes (optional).

282 z/OS V1R12.0 Comm Svr: IP Configuration Guide

OMPROUTE does not use the environment variable GATEWAYS_FILE to
initialize static routes. To create IPv4 static routes, use the BEGINROUTES or
GATEWAY statement in PROFILE.TCPIP. To create IPv6 static routes, use the
BEGINROUTES statement in PROFILE.TCPIP. For information on the syntax
of the GATEWAY and BEGINROUTES statements, see z/OS Communications
Server: IP Configuration Reference.
During initialization, OMPROUTE learns of static routes by reading the
internal routing table set up by TCP/IP. If static routes are changed during
execution by VARY TCPIP,,OBEYFILE command processing, OMPROUTE is
dynamically notified of the changes by TCP/IP. OMPROUTE will advertise
active static routes to other routers if allowed by configuration (for example,
the IMPORT_STATIC_ROUTES parameter of the AS_BOUNDARY_ROUTING
or IPV6_AS_BOUNDARY_ROUTING configuration statements).
Static routes can be defined as replaceable or nonreplaceable, with
nonreplaceable being the default.
A nonreplaceable static route cannot be replaced or modified by
OMPROUTE, even if a better dynamic route can be learned and even if the
static route is not actually available (but a static route that is not available
will not be advertised by OMPROUTE). Because of this, the use of
nonreplaceable static routes with OMPROUTE is not recommended unless it
is to provide routing over an interface over which no routing protocol is
being communicated.
A replaceable static route will be replaced by OMPROUTE if it dynamically
learns a route to the destination. Any dynamically learned route will be
considered more desirable than a replaceable static route. A replaceable static
route should be considered as a last resort route, to be used by TCP/IP when
no dynamic route to a destination can be found.
For detailed information, see “Using static routing with OMPROUTE” on
page 345.

10. Configure OSPF authentication (optional, if using the IPv4 OSPF protocol).

OMPROUTE supports defining the IPv4 OSPF authentication type by area or
by interface. By default, all interfaces attached to an area use the type of
authentication defined for that area on the AREA configuration statement,
unless overridden on the OSPF_INTERFACE configuration statement. The
values of authentication keys must be defined on OSPF_INTERFACE
statements in any case. All routers which could become neighbors of each
other must use the same authentication type and key, or OSPF
communication between the routers will not be possible.
Virtual links behave similarly to interfaces for authentication purposes. By
default, a virtual link uses the same type of authentication that is specified
for the backbone area unless overridden on the VIRTUAL_LINK
configuration statement. When the authentication type is not NONE, the
value of the authentication key must be specified on the VIRTUAL_LINK
configuration statement. There is no requirement for a virtual link to have
the same authentication key value as its underlying real interface.
OSPF authentication does not protect the contents of an OSPF packet. These
packets are not encrypted. However, it does provide verification that the
packet is genuine.
Tip: Unlike IPv4 OSPF, IPv6 OSPF does not provide its own, protocol-layer
authentication. It relies instead on authentication provided by IPv6 IPSec.
There are two methods of IPv4 OSPF authentication, password and MD5
cryptographic.

Chapter 6. Routing 283

Password authentication is very basic: an 8-byte password is appended to all
OSPF packets and sent in the clear with the rest of the packet. If the sent
password matches that defined by the packet receiver, the packet is accepted.
MD5 authentication is more sophisticated. The combination of the OSPF
packet and the MD5 key is summarized into a 16-byte message digest, which
is appended to the packet and sent. The keys are never sent, only the
message digests. The receiver then attempts to re-create the message digest
from the combination of its defined key and the OSPF packet. If the digest is
successfully re-created, the packet is accepted; otherwise it is rejected. MD5
authentication also contains a monotonic increasing counter to protect
against replay attacks.
If MD5 cryptographic authentication is being used, a 16-byte MD5 key must
be defined on the OSPF_INTERFACE configuration statement. This key is
defined as a hexadecimal string and may be obtained in several ways. One
method for obtaining MD5 keys is provided in the pwtokey utility, which
converts a password into an MD5 key. This UNIX System Services utility
implements the algorithm defined in RFC 3414, User-based Security Model
(USM) for version 3 of the Simple Network Management Protocol (SNMPv3).
Since OSPF does not support localization of keys, it is only necessary to
provide a password to this utility to generate a single, 16-byte key. If
multiple sites have this utility, MD5 keys can easily be generated from
passwords, which are easier to remember and communicate than 16-byte
hexadecimal strings.

Starting and controlling OMPROUTE
After the necessary RACF authorization has been defined (see step 6 on page 280),
OMPROUTE can be started from an MVS procedure, from the z/OS shell, or from
AUTOLOG.
v You can start OMPROUTE from the MVS operators console by starting the

OMPROUTE start procedure. A sample start procedure is provided with the
product in SEZAINST(OMPROUTE).

v You can start OMPROUTE from the z/OS shell by starting OMVS and then
issuing the OMPROUTE command and, optionally, any parameters. For
information on parameters, see “OMPROUTE parameters” on page 285.

v You can use the AUTOLOG statement to start OMPROUTE automatically during
TCP/IP initialization. Insert the name of the OMPROUTE start procedure in the
AUTOLOG statement of the PROFILE.TCPIP data set.

AUTOLOG
OMPROUTE

ENDAUTOLOG

Note: For special considerations when using AUTOLOG to start OMPROUTE
with the OSPF or IPv6 OSPF protocol, see step 2 on page 278.

In a Common INET environment, OMPROUTE will attempt to connect to a stack
whose name is determined by the TCPIPjobname keyword from the resolver
configuration data set or file. In configurations with multiple stacks, a copy of
OMPROUTE must be started for each stack that requires OMPROUTE services. To
associate OMPROUTE with a particular stack, use the environment variable
RESOLVER_CONFIG to point to the data set or file that defines the unique
TCPIPjobname.

284 z/OS V1R12.0 Comm Svr: IP Configuration Guide

When running from an MVS procedure, the environment variables can be set by
using the STDENV DD statement in the OMPROUTE procedure. For information
concerning the environment variables used by OMPROUTE, see step 8 on page
281.

OMPROUTE parameters
OMPROUTE accepts five command line parameters, which govern tracing and
debug information. OMPROUTE's trace and debug information is written to stdout
with three exceptions:
v When OMPROUTE is started with no tracing, and then a MODIFY command is

issued to enable tracing. In this case, by default, the output destination is the file
omproute_debug in the current temporary directory (the default is /tmp).

v When the debug output destination has been overridden with the use of an
environment variable (OMPROUTE_DEBUG_FILE or
OMPROUTE_IPV6_DEBUG_FILE).
Rule: OMPROUTE_DEBUG_FILE and OMPROUTE_IPV6_DEBUG_FILE can
specify only a z/OS UNIX file. To have debug information go into an MVS data
set, instead of coding these environment variables, use the SYSPRINT DD card
to redirect stdout to the desired MVS data set.

v When the OMPROUTE CTRACE with option DEBUGTRC (or option ALL) is
enabled. In this case, the output is sent to the CTRACE facility.

If OMPROUTE is to be started from an MVS procedure, add your parameters to
PARM=() in the OMPROUTE cataloged procedure. For example:
//* PARM=(’POSIX(ON)’,
//* ’ENVAR("_CEE_ENVFILE=DD:STDENV")/-t1 -6t1’)
//*

If OMPROUTE is to be started from a z/OS shell command line, enter the
parameters on the command line.

For either method of starting OMPROUTE, parameters can be specified in mixed
case.

Note: The -tn, -dn, -6tn, -6dn, and -sn parameters affect OMPROUTE performance.
If you use these parameters, you might need to increase the
Dead_Router_Interval value on OSPF interfaces to prevent neighbor
adjacencies from collapsing. If this becomes necessary, you will also need to
modify other routers since the Dead_Router_Interval value must be the
same for all routers attached to a common network.

The -tn and -6tn command line parameters
The -tn parameter specifies the external tracing level for OMPROUTE initialization
and IPv4 routing protocols, where n is a supported trace level. The -6tn parameter
specifies the external tracing level for IPv6 routing protocols, where n is a
supported trace level. The -tn and -6tn traces are intended for customers, testers,
service, or developers, and provide information on the operation of the routing
application. These options can be used for many purposes, such as debugging a
configuration, education on the operation of the routing application, verification of
test cases, and so on. The following levels are supported:

1 Informational messages

2 Formatted packet trace

Chapter 6. Routing 285

These option levels are cumulative—level 2 includes level 1. For example, -t2
provides formatted packet trace and informational messages.

The -dn, -6dn, and -sn command line parameters
These options specify the internal debugging levels. They are intended for service
and provide internal debugging information needed for debugging problems. Use
of these parameters can significantly impact performance and are not
recommended unless needed to debug a problem. For more information about the
use of these parameters, see z/OS Communications Server: IP Diagnosis Guide.

Controlling OMPROUTE
You can control OMPROUTE from the operator's console using the MODIFY
command. The syntax of the MODIFY command can be found in z/OS
Communications Server: IP System Administrator's Commands. MODIFY commands
are available to perform the following functions:
v “Stopping OMPROUTE”
v “Rereading the configuration file” on page 287
v “Enabling or disabling the OMPROUTE subagent” on page 287
v “Changing the cost of OSPF links” on page 287
v “Controlling OMPROUTE tracing and debugging” on page 288

Stopping OMPROUTE
OMPROUTE can be stopped in several ways:
v From MVS, issue STOP <procname> or MODIFY <procname>,KILL.

If OMPROUTE was started from a cataloged procedure, procname is the
member name of that procedure. If OMPROUTE was started from the z/OS
shell, procname is useridX, where X is the sequence number set by the system.
To determine the sequence number, from the SDSF LOG window on TSO, issue
/D OMVS,U=userid. This will show the programs running under this user ID.
The procname can also be set using the environment variable _BPX_JOBNAME
and then starting OMPROUTE in the shell background.

v From a z/OS shell superuser ID, issue the kill command to the process ID (PID)
associated with OMPROUTE. To determine the PID, use one of the following
methods:
– From the MVS console, issue D OMVS,U=userid, or issue /D OMVS,U=userid

at the SDSF LOG window on TSO (where userid is the user ID that started
omproute from the shell).

– Issue the ps -ef command from the z/OS shell.
– Record the PID when you start OMPROUTE.

For information on the environment variable _BPX_JOBNAME, see z/OS UNIX
System Services Planning. For information on the D OMVS,U=userid command, see
z/OS MVS System Commands.

Tip: When OMPROUTE is taken down, it should be kept down for at least 3 times
the largest dead router interval of any IPv4 OSPF interfaces using MD5
authentication. The same applies to routers adjacent to interfaces using MD5
authentication. Do not stop and start OMPROUTE without waiting for this
required time interval.

286 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Rereading the configuration file
The MODIFY procname,RECONFIG command is used to reread the OMPROUTE
configuration file. This command accepts and applies only statements of the
following types that have been added to the configuration file since the last time
the file was read:
v OSPF_INTERFACE
v RIP_INTERFACE
v INTERFACE
v IPV6_OSPF_INTERFACE
v IPV6_OSPF (ROUTERID parameter only)
v IPV6_RIP_INTERFACE
v IPV6_INTERFACE

These configuration statements must be reread from the configuration file using
the MODIFY procname,RECONFIG command before the interfaces to which they
refer are defined to the TCP/IP stack. If you have coded GLOBAL_OPTIONS
IGNORE_UNDEFINED_INTERFACES=YES in your OMPROUTE configuration file,
you can use OMPROUTE reconfiguration to add a definition for an interface that
has already been configured in the stack but ignored by OMPROUTE. However,
OMPROUTE does not associate the interface with the new definition until the
interface has been deleted from the stack and re-added.

Restriction: The IPV6_OSPF statement (ROUTERID parameter only) is recognized
by this command only if there is no existing IPv6 OSPF router ID value set in
OMPROUTE. This command cannot be used to change the value of an existing
IPv6 OSPF router ID.

Enabling or disabling the OMPROUTE subagent
Use the MODIFY <procname>,ROUTESA=ENABLE command or the MODIFY
<procname>,ROUTESA=DISABLE command to enable or disable the OMPROUTE
subagent.

Rule: To change any other value on the ROUTESA_CONFIG statement, the
OMPROUTE application must be recycled.

The OMPROUTE subagent implements RFC 1850, OSPF Version 2 Management
Information Base, for the OSPF protocol. The ROUTESA_CONFIG statement is used
in the OMPROUTE configuration file to configure the OMPROUTE subagent. For
details on ROUTESA_CONFIG, see z/OS Communications Server: IP Configuration
Reference.

Changing the cost of OSPF links
The cost of an OSPF interface can be dynamically changed using the MODIFY
<procname>,OSPF,WEIGHT,NAME=<if_name>,COST=<cost> command. The cost
of an IPv6 OSPF interface can be dynamically changed using the MODIFY
<procname>,IPV6OSPF,WEIGHT,NAME=<if_name>,COST=<cost> command. This
new cost is flooded quickly throughout the OSPF routing domain, and modifies
the routing immediately.

The cost of the interface reverts to its configured value whenever OMPROUTE is
restarted. To make the cost change permanent, you must change the appropriate
OSPF_INTERFACE or IPV6_OSPF_INTERFACE statement in the configuration file.

Chapter 6. Routing 287

Controlling OMPROUTE tracing and debugging
The following commands are used to start, stop, or change the level of
OMPROUTE tracing and debugging:
v MODIFY <procname>,TRACE=n : for OMPROUTE tracing for initialization and

IPv4 routing protocols; n can be 0–2.
v MODIFY <procname>,DEBUG=n : for OMPROUTE debugging for initialization

and IPv4 routing protocols; n can be 0–4.
v MODIFY <procname>,SADEBUG=n : for OMPROUTE subagent debugging; n

can be 0 or 1.
v MODIFY <procname>,TRACE6=n : for OMPROUTE tracing for IPv6 routing

protocols; n can be 0–2.
v MODIFY <procname>,DEBUG6=n : for OMPROUTE debugging for IPv6 routing

protocols; n can be 0–4.

Tip: Use of OMPROUTE tracing and debugging affects OMPROUTE performance
and might require increasing the Dead_Router_Interval on OSPF interfaces to keep
neighbor adjacencies from collapsing.

Steps for configuring OSPF and RIP (IPv4 and IPv6)
The steps for configuring OSPF and RIP are:
1. Set the OSPF router ID, if the OSPF protocol is used.
2. Define OSPF areas, if the OSPF protocol is used.
3. Limit information exchange between OSPF areas, if the OSPF protocol is used.
4. Define IPv4 interfaces, if the IPv4 OSPF or IPv4 RIP protocol is used.
5. Define IPv6 interfaces, if the IPv6 OSPF or IPv6 RIP protocol is used.
6. Define interface costs (OSPF_INTERFACE, RIP_INTERFACE,

IPV6_OSPF_INTERFACE, and IPV6_RIP_INTERFACE).
7. Configure virtual links, if the OSPF protocol is used.
8. Manage high-cost links, if the OSPF protocol is used.
9. Define RIP filters, if the RIP protocol is used.

10. Define route precedence in a multiprotocol environment, if the OSPF protocol
is used.

Tip: If policy-based routing is used on the TCP/IP stack and the routing policy is
configured with dynamic routing parameters, you do not need to provide
additional configuration to OMPROUTE for dynamic routing support to be
provided for the policy-based route tables. The dynamic routing parameters
specified in the routing policy are provided to OMPROUTE by the TCP/IP stack to
control the scope of dynamic routes computed by OMPROUTE. For a description
of this function, see “Policy-based routing” on page 337.

Following are the detailed steps to configure OSPF and RIP (IPv4 and IPv6).

1. Set the OSPF router ID, if the OSPF protocol is used.

Every router in an OSPF autonomous system must be assigned a unique
router ID.

IPv4 OSPF

The ROUTERID parameter of the OSPF configuration statement should be
coded within the OMPROUTE configuration file to assign the router ID.
The value must be the IP address of one of the OSPF_INTERFACEs
defined in the OMPROUTE configuration file. If the ROUTERID

288 z/OS V1R12.0 Comm Svr: IP Configuration Guide

parameter of the OSPF configuration statement is not coded, OMPROUTE
chooses the IP address from one of the OSPF_INTERFACE statements as
the router ID. Because dynamic VIPAs (DVIPAs) can move between z/OS
hosts within a sysplex, the router ID should be the IP address of a
physical interface or a static VIPA, but not a dynamic VIPA. For more
information about the rules and guidelines for the ROUTERID parameter
of the OSPF statement, see z/OS Communications Server: IP Configuration
Reference.
In the example network shown in Figure 37 on page 259, the router ID is
set to the static VIPA address that represents each OMPROUTE router.
TCPCS4 has ROUTERID=4.4.4.4, and TCPCS7 has ROUTERID=7.7.7.7.
IPv6 OSPF

The ROUTERID parameter of the IPV6_OSPF configuration statement is
coded within the OMPROUTE configuration file to assign the IPv6 OSPF
router ID. This router ID is any IPv4-style dotted-decimal value except for
0.0.0.0, with care taken to assure its uniqueness across routers within the
IPv6 autonomous system. If the ROUTERID parameter of the IPV6_OSPF
configuration statement is not coded and the IPv4 OSPF protocol is also
being used, OMPROUTE will use the IPv4 OSPF router ID as the IPv6
OSPF router ID. If the IPv4 OSPF protocol is not being used, the
ROUTERID parameter of the IPV6_OSPF statement must be specified. For
more information about the rules and guidelines for the ROUTERID
parameter of the IPV6_OSPF statement, see z/OS Communications Server:
IP Configuration Reference.
In the example network shown in Figure 38 on page 260, the ROUTERID
parameter of the IPV6_OSPF statement on TCPCS64 will be explicitly
configured using ROUTERID=64.64.64.64.

2. Define OSPF areas, if the OSPF protocol is used.

The sample network shown in Figure 37 on page 259 and Figure 38 on page
260 depicts an IPv4 network and an IPv6 network, both divided using two
methods. The first division is between IP subnetworks within the OSPF
autonomous system (AS) and IP subnetworks external to the OSPF AS (those
within the RIP AS). The subnetworks included within each OSPF AS are
further subdivided into regions called areas. OSPF areas are collections of
contiguous IP subnetworks. The function of areas is to reduce the OSPF
overhead required to compute routes to destinations in different areas.
Overhead is reduced because less information is exchanged and stored by
routers and because fewer CPU cycles are required for a less complex route
table calculation.
Every OSPF AS that will have multiple areas must have at least a backbone
area. The backbone is always identified by area number 0.0.0.0. For networks
with multiple areas, the backbone provides a core that connects the areas.
Unlike other areas, the backbone's subnets can be physically separate. In this
case, logical connectivity of the backbone is maintained by configuring
virtual links between backbone routers across intervening non-backbone
areas. See step 7 on page 305 for more information on this subject.
Routers that attach to more than one area function as area border routers. All
area border routers are part of the backbone, so they must either attach
directly to a backbone IP subnet or be connected to another backbone router
over a virtual link.
The information and algorithms used by OSPF to calculate routes vary
according to whether the destination is within the same area, in a different

Chapter 6. Routing 289

area within the OSPF AS, or external to the OSPF AS. Every router maintains
a database of all links within its area. A shortest path first algorithm is used
to calculate the best routes to destinations within the area from this database.
Routes between areas are calculated from summary advertisements
originated by area border routers for destinations located in other areas of
the OSPF AS. External routes (for example, routes to destinations that lie
within a RIP AS) are calculated from AS external advertisements originated
by AS boundary routers and flooded throughout the OSPF AS.

IPv4 OSPF

Use the AREA configuration statement to define the areas to which a
router attaches. If you do not use the AREA statement, the default is that
all OSPF interfaces attach to the backbone area. In the sample network,
TCPCS4 and TCPCS7 are both area border routers belonging to both the
backbone area (0.0.0.0) and area 1.1.1.1.
AREA

Area_Number=0.0.0.0;

AREA
Area_Number=1.1.1.1;

IPv6 OSPF

Use the IPV6_AREA configuration statement to define the areas to which
a router attaches. If you do not use the IPV6_AREA statement, the default
is that all IPv6 OSPF interfaces attach to the backbone area. In the sample
network, TCPCS64 and TCPCS67 are area border routers belonging to
both the backbone area (0.0.0.0) and area 6.6.6.6.
IPV6_AREA

Area_Number=0.0.0.0;
IPV6_AREA

Area_Number=6.6.6.6;

3. Limit information exchange between OSPF areas, if the OSPF protocol is
used.
When area border routers are configured, the OSPF route information that
crosses the area boundary can be controlled using configuration statements.
For recommendations regarding the usefulness of multiple areas in the z/OS
CS environment, see “Minimizing the routing responsibility of z/OS
Communications Server” on page 309.
One option is to define an area as a stub area. AS external advertisements are
never flooded into stub areas. In addition, the origination into the stub area
of summary advertisements for interarea routes can be suppressed, creating
what is commonly known as a totally stubby area.
Destinations external to the stub area are still reachable due to the area
border routers advertising default routes into stub areas. Traffic within the
stub area for unknown destinations is forwarded to the area border router
(using the default route). It is acceptable for routers within the area to use a
default route for traffic destined outside the AS. The border router uses its
more complete routing information to forward the traffic on an appropriate
path toward its destination.
The following requirements must be met for an area to be defined as a stub
area:
v No virtual links are configured through the area to maintain backbone

connectivity.

290 z/OS V1R12.0 Comm Svr: IP Configuration Guide

v No routers within the area are AS boundary routers (OSPF routers that
advertise routes from external sources as AS external advertisements).
Tip: Static routes and RIP routes are AS external.

Another option is to use IP address ranges to limit the number of summary
advertisements originated out of an area. In IPv4, a range is defined by an IP
address and an address mask. Destinations are considered to fall within the
range if the destination address and the range IP address match after the
range mask has been applied to both addresses. In IPv6, a range is defined
by an IP address prefix and a prefix length, and destinations are considered
to fall within the range if a destination address and a range IP address match
for the length of the range's prefix.
When a range is configured for an area at an area border router, the border
router suppresses summary advertisements for destinations within that area
that fall within the range. The suppressed advertisements would have been
originated into the other areas to which the border router attaches. Instead,
the area border router may originate a single summary advertisement for the
range or no advertisement at all, depending on the option chosen with the
configuration statement.
Rules:

a. If the range is not advertised, there will be no interarea routes for any
destination that falls within the range.

b. Ranges cannot be used for areas through which virtual links are
configured to maintain backbone connectivity.
IPv4 OSPF

The following statement configures an OSPF area as a stub area. The
Import_Summaries=No parameter will result in the suppression of
summary advertisements for interarea routes into the stub area, creating a
totally stubby area:
AREA

Area_Number=2.2.2.2
Stub_area=Yes
Import_Summaries=No;

In the sample network shown in Figure 37 on page 259, the following
RANGE statement could be configured on TCPCS7 to prevent TCPCS7
from advertising destinations in the 9.67.101.0 subnet into the backbone
area (Area 0.0.0.0):
RANGE

IP_Address=9.67.101.0
Subnet_Mask=255.255.255.0
Area_Number=1.1.1.1
Advertise=No;

IPv6 OSPF

The following statement configures an IPv6 OSPF area as a stub area. The
Import_Summaries=No parameter will result in the suppression of
summary advertisements for interarea routes into the stub area, creating a
totally stubby area:
IPV6_AREA

Area_Number=1.1.1.1
Stub_area=Yes
Import_Prefixes=No;

In the sample network, the following IPV6_RANGE statement could be
configured on TCPCS67 to cause TCPCS67 to advertise all destinations in
the 2001:0DB8:0:31::/64 prefix into the backbone area (Area 0.0.0.0) as a
single route to the 2001:0DB8:0:31::/64 prefix:

Chapter 6. Routing 291

IPV6_RANGE
Prefix=2001:0DB8:0:31::/64
Area_Number=6.6.6.6
Advertise=Yes;

4. Define IPv4 interfaces, if the IPv4 OSPF or IPv4 RIP protocol is used.

Each interface in use by the stack should be defined to OMPROUTE using an
OSPF_INTERFACE, RIP_INTERFACE, or INTERFACE statement. This topic
describes the differences between interface types that you should consider
when configuring interfaces to OMPROUTE. In general, use the following
guidelines:
v An interface over which the OSPF protocol is communicated with other

routers must be configured with the OSPF_INTERFACE statement.
v An interface over which the RIP protocol is communicated with other

routers must be configured with the RIP_INTERFACE statement.
v Either all other interfaces should be configured with the INTERFACE

statement, or OMPROUTE should be configured to ignore undefined
interfaces using the IGNORE_UNDEFINED_INTERFACES parameter of
the GLOBAL_OPTIONS statement in the OMPROUTE configuration file. It
is important that one or the other be done.
If OMPROUTE is not configured to ignore undefined interfaces, it
configures stack interfaces that are not defined to OMPROUTE with
default values. These values might not be desirable. For example, the class
mask will be used as the subnet mask and 576 will be used as the MTU
value. Furthermore, OMPROUTE overrides stack values with its default
values. To prevent this from happening, either configure every interface,
even those that are not using RIP or OSPF, or configure OMPROUTE to
ignore undefined interfaces.

A VIPA interface is an exception to these guidelines and is discussed in more
detail in this step.
z/OS Communications Server enforces RFC rules against using either a
subnetwork's broadcast or network address as a host address. (An address
that has all ones in the host portion is a subnet broadcast address. An
address that has all zeros in the host portion is the subnet's network
address.) Therefore, the subnet_mask on an OSPF_INTERFACE,
RIP_INTERFACE, or INTERFACE statement should have enough zero bits
such that no home address in that subnet has all zeros or all ones in the host
portion of the address. For example if a subnet has two home addresses
10.1.1.1 and 10.1.1.2, the subnet mask must have zeros in at least two bits; for
example, 255.255.255.252. However, if a subnet has four home addresses
10.1.1.1, 10.1.1.2, 10.1.1.3, and 10.1.1.4, the subnet mask must have zeros in at
least three bits; for example, 255.255.255.248. In this case, there could be up
to 6 home addresses in that subnet (10.1.1.1 through 10.1.1.6). In general, if a
subnet mask has n zero bits, then there can be up to ((2**n)-2) home
addresses in that subnet. This limit applies even if the home addresses are
configured on different TCP/IP stacks.
Rules:

a. OMPROUTE supports a maximum of 255 real, physical, IPv4 interfaces
(that is, interfaces on which data can actually be sent and received). There
is no theoretical limit on how many VIPAs can be configured, though
there are practical limits imposed by network design.

b. RIP version 1 uses broadcast and RIP version 2 uses multicast. RIP
version 1 will not run on a medium that supports multicast but not

292 z/OS V1R12.0 Comm Svr: IP Configuration Guide

broadcast, which is the default QDIO configuration. To configure the
OSA-Express feature operating in QDIO mode (for example, gigabit
Ethernet) to send and receive broadcast packets, use the IPBCAST
parameter on the LINK statement in your TCP/IP profile. The
OSA-Express microcode level must support broadcast to use this
parameter. Some levels of OSA-Express microcode support multicasting
but not broadcasting. In this case, RIP version 2, which relies on
multicast, is recommended over RIP version 1, which relies on broadcast.
Configuring multi-access parallel interfaces

Whenever configuring multi-access parallel interfaces (primary and
backup redundant interfaces having IP addresses in the same network)
for OMPROUTE (OSPF), use the Parallel_OSPF parameter on the
OSPF_INTERFACE statement to designate whether each OSPF interface is
primary or backup. If the IP_address parameter on an OSPF_INTERFACE
statement is using wildcards (*), also include the Name parameter for the
interface to distinguish the primary from the backups. For additional
information on the OSPF_INTERFACE statement and its parameters, see
z/OS Communications Server: IP Configuration Reference.
Point-to-point (For example CTC and CLAW)

For point-to-point interfaces, the destination IP address must be known to
OMPROUTE. If OSPF or RIP is run on the interface, the destination IP
address is learned when the router at the other end comes up and shares
information with OMPROUTE. Additionally, defining a destination
address on an interface that is running OSPF or RIP allows OMPROUTE
to learn and advertise a route to that destination address before a
neighboring router has become fully adjacent. This can be beneficial if the
neighboring router takes a long time to come up, or is otherwise not
expected to be promptly and reliably available.
Tip: For a point-to-point interface running OSPF, OMPROUTE does not
advertise a host route to its own home address on the point-to-point
interface. By default, OMPROUTE advertises a host route to the link
destination, and relies on the router at the other end to advertise a host
route to OMPROUTE's home address. This behavior is described by the
OSPF architecture, RFC 1583 (OSPF version 2), section 12.4.1. This means
that OMPROUTE's home address on the point-to-point link will not be
advertised as reachable unless there is a neighboring router available to
advertise it. OMPROUTE implements an extension described in RFC 2328
to overcome this limitation. If a neighboring router will not be reliably
available over the point-to-point link, you might want to code the
parameter SUBNET=YES on the OSPF_INTERFACE statement for the
point-to-point interface. This causes OMPROUTE to implement option 2
described in RFC 2328, section 12.4.1.1, and advertise a route to the
point-to-point link's subnet address. This makes both endpoints reachable
regardless of the status of a neighboring router.
If the interface is simply an INTERFACE (not running OSPF or RIP),
specify the DESTINATION_ADDR parameter to allow for the creation of
a host route to the address at the remote end of the interface.
Sample OSPF_INTERFACE
OSPF_INTERFACE
IP_Address=9.67.106.7
Name=CTC7TO4
Subnet_mask=255.255.255.0
Attaches_to_Area=1.1.1.1
Destination_Addr=9.67.106.4;

Sample RIP_INTERFACE

Chapter 6. Routing 293

RIP_INTERFACE
IP_Address=9.67.103.7
Name= CTC7TO6
Subnet_mask=255.255.255.0
Destination_Addr=9.67.103.6
RIPV2=Yes;

Sample INTERFACE
INTERFACE
IP_Address=9.67.111.1
Name=CTCX
Subnet_mask=255.255.255.0
Destination_addr=9.67.111.2;

Note: If another router is directly attached through a CLAW device, and
the OSPF protocol is being communicated with that router, the
other router must also be configured to view the CLAW device as
a point-to-point interface. Failure to do this results in a failure to
add any routes through that router.

Point-to-multipoint

For point-to-multipoint capable interfaces (for example MPCPTP
interfaces including XCF and IUTSAMEH connections), OMPROUTE
must know the IP addresses of the other routers (neighbors) with which it
needs to communicate the OSPF or RIP packets. However, due to
underlying signaling that takes place when a host connects to these
network types, the stack is able to learn the required addresses. In turn,
OMPROUTE learns those IP addresses from the stack. As a result, it is
not necessary to configure the IP addresses of the other routers on the
interface statements.
Sample OSPF_INTERFACE
OSPF_INTERFACE
IP_Address=9.27.13.81
Name=XCFD00

Attaches_to_Area=1.1.1.1
Subnet_mask=255.255.255.0;

Sample RIP_INTERFACE
RIP_INTERFACE
IP_Address=9.27.23.81
Name=MPCA01
Subnet_mask=255.255.255.0
RIPV2=Yes;

Sample INTERFACE
INTERFACE
IP_Address=9.27.33.81
Name=XCFB00
Subnet_mask=255.255.255.0;

Non-broadcast network interfaces (For example, Hyperchannel and
ATM)

If the OSPF or RIP protocol communicates with one or more routers over
a non-broadcast network interface, OMPROUTE must know the IP
addresses of the other routers (neighbors) with which it needs to
communicate. For non-broadcast network interfaces, there is no
underlying signaling that allows the stack to learn the required IP
addresses. As a result, the neighbor addresses must be configured to
OMPROUTE with the parameters configured as follows:
– DR_NEIGHBOR and/or the NO_DR_NEIGHBOR parameters on the

OSPF_INTERFACE statement

294 z/OS V1R12.0 Comm Svr: IP Configuration Guide

– NEIGHBOR parameter on the RIP_INTERFACE statement
– NON_BROADCAST=YES and ROUTER_PRIORITY parameters on the

OSPF_INTERFACE statement
In the OSPF case, DR_NEIGHBOR defines which routers within the
non-broadcast network can become the designated router.
NO_DR_NEIGHBOR defines which routers cannot become the designated
router. ROUTER_PRIORITY defines the priority of this router on the
non-broadcast network so that the designated router can be elected for
the network. Note that multiple DR_NEIGHBOR and
NO_DR_NEIGHBOR parameters can be coded on one statement.
Sample OSPF_INTERFACE
OSPF_INTERFACE
IP_Address=9.37.84.49
Name=HCHE00
Subnet_mask=255.255.255.0

Attaches_to_Area=1.1.1.1
Non_Broadcast=Yes
DR_Neighbor=9.37.84.53
No_DR_Neighbor=9.37.84.63
Cost0=3
Router_Priority=2;

Sample RIP_INTERFACE
RIP_INTERFACE
IP_Address=9.37.104.79
Name=ATME00
Subnet_mask=255.255.255.0
RIPV2=Yes
Neighbor=9.37.104.85
Neighbor=9.37.104.53;

Sample INTERFACE
INTERFACE
IP_Address=9.77.13.49
Name=ATMB00
Subnet_mask=255.255.255.0;

Broadcast network interfaces (For example, Ethernet)

When the OSPF or RIP protocol is communicated over a broadcast
medium such as Ethernet, these networks allow for broadcasting and
multicasting. Therefore, it is not necessary for OMPROUTE to know the
IP addresses of the other routers on the network for OSPF or RIP packets
to be communicated with those routers. OMPROUTE sends packets to the
other routers on the network by using appropriate broadcast or multicast
addresses. The IP addresses of the other routers are learned as OSPF/RIP
packets are received from them. The OSPF_INTERFACE must include the
ROUTER_PRIORITY parameter to assist in electing a designated router
for the network.
Sample OSPF_INTERFACE
OSPF_INTERFACE
IP_Address=9.59.101.5
Name=TR1

Subnet_mask=255.255.255.0
Attaches_to_Area=1.1.1.1
Cost0=2
Router_Priority=1;

Sample RIP_INTERFACE

Chapter 6. Routing 295

RIP_INTERFACE
IP_Address=9.29.107.3
Name=TR2
Subnet_mask=255.255.255.0
RIPV2=Yes;

Sample INTERFACE
INTERFACE
IP_Address=9.77.14.49
Name=ETHB00
Subnet_mask=255.255.255.0;

If OMPROUTE will be communicating with the OSPF or RIP Version 2
protocol over a token ring media where an attached router does not listen
for multicast MAC address 0xC000.0004.0000, see “Token-ring multicast”
on page 275.
For interfaces into broadcast media which contain routers that do not
support multicast, it is possible to configure the interfaces as
non-broadcast network interfaces. This would cause OMPROUTE to
unicast to the neighbor addresses rather than using a multicast address.
However, it would also be necessary to configure all the routers on the
network to unicast. Otherwise, their multicast packets would never be
received.
Note that it is possible to define neighbors using DR_NEIGHBOR and/or
NO_DR_NEIGHBOR parameters for OSPF_INTERFACEs and using
NEIGHBOR parameters for RIP_INTERFACEs that are broadcast capable,
but it is not required or recommended. If you define neighbors on these
interfaces, you must define all of them, as OMPROUTE will not
communicate RIP or OSPF to undefined neighbors if any are defined on
an interface.
VIPA interfaces (Static VIPA and Dynamic VIPA)

If only the RIP protocol is used by OMPROUTE, VIPA interfaces should
be defined with the INTERFACE statement. If only OSPF or if both OSPF
and RIP are used by OMPROUTE, VIPA interfaces should be defined
with the OSPF_INTERFACE statement.
Sample OSPF_INTERFACE
OSPF example:
OSPF_INTERFACE
IP_Address=4.4.4.4
Name=VIPA1

Subnet_mask=255.255.255.252;

Sample INTERFACE
non-OSPF example:
INTERFACE
IP_Address=6.6.6.6
Name=VIPA1
Subnet_mask=255.255.255.252;

Rule: The most specific subnet mask you can specify is 255.255.255.252.
If the name in an OSPF_INTERFACE or INTERFACE statement refers to a
link of type VIRTUAL, then OMPROUTE generates and advertises the
following routes whenever applicable:
– A network route to the network specified in that statement
– A subnet route to the subnet specified in that statement
– A host route to the IP_address specified in that statement
Following are the conditions for advertising these routes on a physical
network interface to a network:

296 z/OS V1R12.0 Comm Svr: IP Configuration Guide

– Network route - if VIPA is not in the same network as the physical
network interface and is allowed by filters or RANGE.

– Subnet route - VIPA subnet routes are advertised in OMPROUTE in all
conditions, except for RIP when filters prevent it.

– Host route - as allowed by filters or RANGE. Advertisement of the
host route for a VIPA defined on an OSPF_INTERFACE statement can
be controlled by the SUBNET parameter on the OSPF_INTERFACE
statement that defines that VIPA. If SUBNET=YES, then the host route
is not advertised. If SUBNET=NO (the default), the host route is
advertised. Take care in using this parameter. VIPA host routes should
not be suppressed for dynamic VIPAs or for VIPAs whose subnet
might exist on multiple hosts. It is up to the user to ensure these
restrictions are enforced, as they are not and cannot be enforced by
OMPROUTE.

On the RIP_INTERFACE statement for a physical network interface, the
VIPA routes are allowed to be advertised by the following filter
parameters:
– Send_Net_Routes
– Send_Subnet_Routes
– Send_Host_Routes, and Send_Only

In addition, the global FILTER and Send_Only statements for RIP can be
used to specify which routes are advertised or not.
For OSPF, the RANGE statement can be used to advertise or not to
advertise the VIPA routes external to an area in terms of address range
based on a subnet mask.

Note: For RIP, the Send_Only = (VIRTUAL) filter in conjunction with the
Send_Net_Routes, Send_Subnet_Routes, and Send_Host_Routes
filters, or the FILTER statement with VIPA routes, indicates
whether or not VIPA routes can be advertised over a RIP interface.
Unlike RIP, there are no routing filters for OSPF. For OSPF, the
RANGE statement can be used to control which address range of
routes can be advertised or not advertised external to an area;
however, it is not granular enough for use as a routing filter. In
area-border router configurations, if there are multiple VIPA
addresses that are uniquely subnetted, the RANGE statement can
be used to specify which VIPA subnet address range of routes can
be advertised or not advertised external to an area.

For Dynamic VIPA (DVIPA), link names are assigned programmatically
by the stack when the DVIPA is created. Therefore, the name field set on
the INTERFACE or OSPF_INTERFACE statement is ignored by
OMPROUTE for DVIPAs.
Because a stack could have a large number of DVIPAs defined, as well as
DVIPA ranges, additional wildcard capabilities exist on the
OSPF_INTERFACE and INTERFACE statements for use only with
DVIPAs.
Ranges of DVIPA interfaces can be defined using the Subnet_Mask
parameter on the OSPF_INTERFACE or INTERFACE statement. The
range defined in this way will be all the IP addresses that fall within the
subnet defined by the mask and the IP address. The IP address parameter
must be the subnet number of the range being defined, not a host address
within that range. Further information on the Subnet_Mask parameter is
available earlier in this step.

Chapter 6. Routing 297

In the following example, DVIPA interfaces in the range of 10.138.65.81
through 10.138.65.94 are defined:
Sample OSPF_INTERFACE
OSPF example:
OSPF_INTERFACE
IP_Address=10.138.65.80
Name=DVIPAs

Subnet_mask=255.255.255.240;

Sample INTERFACE
non-OSPF example:
INTERFACE
IP_Address=10.138.65.80
Name=DVIPAs
Subnet_mask=255.255.255.240;

In the following example, only an interface with home address
10.138.65.98 is being defined, because the subnet number (obtained by
performing a binary AND operation of the IP_Address parameter and the
Subnet_mask parameter) for this definition is 10.138.65.96. Since the
IP_Address parameter does not equal that subnet number, this definition
will not be treated as a DVIPA wildcard.
OSPF_INTERFACE
IP_Address=10.138.65.98
Name=DVIPA
Subnet_mask = 255.255.255.240;

You must consider an additional issue when VIPAs are being moved
between TCP/IP stacks and dynamic routing is provided for those stacks
by OMPROUTE. This movement of VIPAs can be done manually or
automatically using Dynamic VIPAs. For the VIPAs to be correctly
processed and advertised by the routing protocols, they (like all other
interfaces) must be configured to OMPROUTE at the time that they
become active on the TCP/IP stack. This configuration of VIPAs to
OMPROUTE can be accomplished by:
– Explicitly configuring each VIPA with its own OSPF_INTERFACE or

INTERFACE statement
– Configuring a range of DVIPAs with a single OSPF_INTERFACE or

INTERFACE statement
– Configuring a group of VIPAs with a single OSPF_INTERFACE or

INTERFACE statement, using the wildcarding feature available on the
interface statements

The recommended approach for configuring OMPROUTE for VIPAs that
might move is to preconfigure the OMPROUTE on each TCP/IP stack
with all VIPAs that could potentially exist on that stack at some time.
Preconfiguring in this way prepares each OMPROUTE for the possible
addition of the VIPAs to its stack. During times when the VIPAs do not
exist on a particular OMPROUTE's stack, the configuration information
will not be used. However, during periods when the VIPAs do exist on
that OMPROUTE's stack, the configuration information will be available
for use by OMPROUTE. This method is recommended because of its
ability to respond to movement of the VIPAs between TCP/IP stacks
without modification of the OMPROUTE configuration with each move.
If the pre-configuration of VIPAs described in this topic has not been
done, it is still possible to define a VIPA to OMPROUTE such that it is
properly processed and advertised when it becomes active on the
corresponding TCP/IP stack. To do this, add the appropriate
OSPF_INTERFACE or INTERFACE statement to the OMPROUTE

298 z/OS V1R12.0 Comm Svr: IP Configuration Guide

configuration file and then cause OMPROUTE to reread the configuration
file by issuing the MODIFY procname,RECONFIG command.
Rule: If you have not coded GLOBAL_OPTIONS
IGNORE_UNDEFINED_INTERFACES=YES in your OMPROUTE
configuration file, you must modify the OMPROUTE configuration file
and issue the RECONFIG command prior to the first time that the VIPA
moves to the corresponding TCP/IP stack.
Guideline: If you have coded GLOBAL_OPTIONS
IGNORE_UNDEFINED_INTERFACES=YES in your OMPROUTE
configuration file, you can use OMPROUTE reconfiguration to add a
definition for a VIPA interface that is or has been active in the stack but
ignored by OMPROUTE. However, OMPROUTE does not associate the
VIPA with the new definition until the interface has been deleted from
the stack and re-added, either by DVIPA movement or by some other
method.

Method of assigning interface definitions to stack interfaces (wildcard and
explicit):

Wildcard interface definitions can be a convenient way of making your
interface definitions easier. However, to avoid unintended results, be sure to
understand how they are parsed, and how different types of interface
definitions interact with each other. Following is the outline of the algorithm
OMPROUTE uses to find the matching definitions in the OMPROUTE
configuration file for an IPv4 stack interface.
a. Search for a RIP_Interface definition for the interface as follows:

1) Search for an explicit matching RIP_Interface definition (IP address
matches exactly if a dynamic VIPA, otherwise name and IP address
match exactly). If found, use that definition and go to step b.

2) If the interface is a dynamic VIPA, search for a RIP_Interface
definition that matches as a dynamic VIPA wildcard. A matching
dynamic VIPA wildcard definition is one where the definition IP
address matches the value obtained by ANDing the definition subnet
mask with the interface home address. The definition name parameter
is ignored when searching for a dynamic VIPA wildcard definition. If
a matching dynamic VIPA wildcard definition is found, use that
definition and go to step b.

3) Search for a one-octet wildcard RIP_Interface definition (n.n.n.*),
where the first three octets match the first three octets of the
interface's home address and the name matches the interface's link
name. If found, use that definition and go to step b.

4) Search for a two-octet wildcard RIP_Interface definition (n.n.*.*),
where the first two octets match the first two octets of the interface's
home address and the name matches the interface's link name. If
found, use that definition and go to step b.

5) Search for a three-octet wildcard RIP_Interface definition (n.*.*.*),
where the first octet matches the first octet of the interface's home
address and the name matches the interface's link name. If found, use
that definition and go to step b.

6) Search for a one-octet wildcard RIP_Interface definition (n.n.n.*),
where the first three octets match the first three octets of the
interface's home address, ignoring the name parameter if coded. If
found, use that definition and go to step b.

Chapter 6. Routing 299

7) Search for a two-octet wildcard RIP_Interface definition (n.n.*.*),
where the first two octets match the first two octets of the interface's
home address, ignoring the name parameter if coded. If found, use
that definition and go to step b.

8) Search for a three-octet wildcard RIP_Interface definition (n.*.*.*),
where the first octet matches the first octet of the interface's home
address, ignoring the name parameter if coded. If found, use that
definition and go to step b.

9) If there is a four-octet wildcard RIP_Interface definition (*.*.*.* or
ALL), use that definition and go to step b.
Restriction: Only one four-octet wildcard of each type
(OSPF_INTERFACE or RIP_INTERFACE) is allowed.

b. Search for an OSPF_Interface definition for the interface. Note that this
step is done regardless of the outcome of step a. The steps for searching
OSPF_Interface definitions are the same as the steps for searching
RIP_Interface definitions, except that OSPF_Interface definitions are
searched.

c. If either a RIP_Interface or an OSPF_Interface definition, or both, are
found, the algorithm is complete. In this case, Interface definitions are not
searched. If neither a RIP_Interface nor an OSPF_Interface definition was
found, go to step d.

d. Search for an Interface definition for the interface. The steps for searching
Interface definitions are the same as the steps for searching RIP_Interface
statements, except that Interface definitions are searched.

e. If no definitions are found, check the value of Global_Options
Ignore_Undefined_Interfaces. If this option is turned on, the interface is
ignored. If it is not turned on, the interface is treated as if it were defined
with an Interface statement, with an MTU value of 576 and a subnet
mask of the class mask.

The algorithm is complete. Key conclusions of this algorithm are as follows:
v A wildcard interface definition with a matching name is preferred over a

wildcard interface definition of the same type without a matching name,
regardless of which definition is a more specific wildcard.

v If the interface is not a dynamic VIPA, the subnet mask coded on the
definition statement has no influence on which definition, wildcard or
otherwise, is selected for an interface. The subnet mask is a characteristic
of the definition, not a selection criterion.

v If a RIP_Interface or an OSPF_Interface definition, or both, are found,
Interface definitions are not considered. This means that any matching
RIP_Interface or OSPF_Interface definition supersedes all Interface
definitions, even if the Interface definitions are explicit or are more specific
wildcard matches. For example, a three-octet wildcard OSPF_Interface
definition supersedes an explicit Interface definition.

v An interface can be both a RIP_Interface and an OSPF_Interface.
OMPROUTE supports running both protocols over the same interface.
However, an interface cannot be both an interface that runs no routing
protocol (that is, defined with the Interface statement) and one that runs
RIP, OSPF, or both.

5. Define IPv6 interfaces, if the IPv6 OSPF or IPv6 RIP protocol is used.

Each IPv6 interface in use by the stack can be defined to OMPROUTE using
an IPV6_OSPF_INTERFACE, IPV6_RIP_INTERFACE, or IPV6_INTERFACE

300 z/OS V1R12.0 Comm Svr: IP Configuration Guide

statement. Defining IPv6 interfaces to OMPROUTE is much simpler than
defining IPv4 interfaces, because you do not specify IP addresses or MTU
sizes to OMPROUTE. Instead, you simply define interfaces by their names
and OMPROUTE learns IP addresses and MTU sizes from the TCP/IP stack.
Also, because multicast support is a basic requirement of IPv6, there are no
non-broadcast multiaccess considerations or other considerations that might
require definitions of neighbors or destination addresses.
Use the following guidelines when configuring IPv6 interfaces to
OMPROUTE:
v An interface over which the IPv6 OSPF protocol is communicated with

other routers must be configured with the IPV6_OSPF_INTERFACE
statement.

v An interface over which the IPv6 RIP protocol is communicated with other
routers must be configured with the IPV6_RIP_INTERFACE statement.

v All other interfaces can be configured with the IPV6_INTERFACE
statement, if OMPROUTE default values are not acceptable or you wish to
define additional prefixes on the interface.

v The interface name must be coded on the IPV6_INTERFACE,
IPV6_OSPF_INTERFACE, and IPV6_RIP_INTERFACE statements. The
value of the NAME parameter must match the interface name coded on
the INTERFACE statement in the TCP/IP profile. Wildcard names ending
with an asterisk (*) can be coded. For example, OSAQDIO* would match
stack interfaces named OSAQDIO1, OSAQDIO2, OSAQDIOABC, and so
on.
If the interface is dynamically generated by the TCP/IP stack, its name
parameter must match what is generated by the TCP/IP stack. Interfaces
that are dynamically generated by the TCP/IP stack are named as follows:
– An IPv6 dynamic XCF interface that is generated to attach to other

TCP/IP stacks within the same z/OS host is always named
EZ6SAMEMVS.

– An IPv6 dynamic XCF interface that is generated to attach to TCP/IP
stacks in another z/OS image is always named EZ6XCFxx, where xx is
the SYSCLONE value of the other z/OS host.

If the routing parameters for your dynamic XCF interfaces will all be the
same, you can use wildcard definitions to avoid having to know and build
definitions for every possible dynamic XCF interface on your system. For
example, a wildcard definition for name EZ6* would match all dynamic
XCF interfaces that could be generated on a TCP/IP stack. A wildcard
definition for EZ6XCF* would match all dynamic XCF interfaces that could
be generated to attach to other z/OS images.
The following definition would define all IPv6 dynamic XCF interfaces to
OMPROUTE, with the hello and dead router intervals changed from the
default values:
IPV6_OSPF_INTERFACE
NAME=EZ6*
HELLO_INTERVAL = 30
DEAD_ROUTER_INTERVAL = 120;

If the default values of 10 and 40 for the hello and dead router intervals
are acceptable, this definition can be simplified even more:
IPV6_OSPF_INTERFACE
NAME=EZ6*;

v To define one or more prefixes on an interface, use the PREFIX parameter
on the IPV6_OSPF_INTERFACE, IPV6_RIP_INTERFACE, and

Chapter 6. Routing 301

IPV6_INTERFACE statements. You should only need to do this for prefixes
that you need to define to an interface, which will not be learned using
IPv6 router discovery. Also note that prefixes defined to OMPROUTE in
this manner are not used by TCP/IP to autoconfigure home addresses on
the interface.
The following sample shows an IPv6 OSPF interface with prefixes defined:
IPV6_OSPF_INTERFACE
NAME=OSAQDIO4L6
PREFIX=2001:0DB8:1::/48
PREFIX=2001:0DB8:2::/48;

The prefixes defined in this manner on an IPv6 OSPF interface are
advertised as reachable, and are also included in the link LSA generated
by OMPROUTE, so all IPv6 OSPF routers on the link will know they are
local prefixes. If OMPROUTE is also running IPv6 RIP, they are also
advertised into the IPv6 RIP autonomous system as reachable, if IPv6 RIP
filters permit it.
The following sample shows an IPv6 RIP interface with prefixes defined:
IPV6_RIP_INTERFACE
NAME=OSAQDIO3L6
PREFIX=2001:0DB8:3::/48
PREFIX=2001:0DB8:4::/48;

The prefixes defined in this manner on an IPv6 RIP interface are
advertised into the IPv6 RIP autonomous system as reachable if IPv6 RIP
filters permit it. They are also advertised into the IPv6 OSPF autonomous
system as reachable, if OMPROUTE is running IPv6 OSPF and is
configured as an IPv6 AS boundary router importing RIP routes.
The following sample shows an IPv6 generic interface with prefixes
defined:
IPV6_INTERFACE
NAME=OSAQDIO2L6
PREFIX=2001:0DB8:5::/48
PREFIX=2001:0DB8:6::/48;

The prefixes defined in this manner on an IPv6 generic interface are
advertised into the RIP autonomous system as reachable, if OMPROUTE is
running IPv6 RIP and IPv6 RIP filters permit it. They are also advertised
into the IPv6 OSPF autonomous system as reachable, if OMPROUTE is
running IPv6 OSPF and is configured as an IPv6 AS boundary router
importing direct routes.

Method of assigning interface definitions to stack interfaces (wildcard and
explicit):

For IPv6 interfaces, interface-name wildcards can be used to simplify
definitions. However, be sure to understand how they are parsed, and how
different types of interface definitions interact with each other, to avoid
unintended results. Following is the outline of the algorithm OMPROUTE
uses to find the matching definitions in the OMPROUTE configuration file
for an IPv6 stack interface.
a. Search for an IPv6_RIP_Interface definition for the interface as follows:

1) Search for an explicit matching IPv6_RIP_Interface statement for the
interface. This is one where the name parameter exactly matches the
interface's name. If one is found, use that definition and go to step b.

2) Search for the best IPv6_RIP_Interface wildcard match for the name.
The IPv6_RIP_Interface wildcard definitions are searched, starting
with the most specific (longest wildcard name string) and checking

302 z/OS V1R12.0 Comm Svr: IP Configuration Guide

each in order of declining specificity until a match is found. As soon
as a match is found, use that definition and go to step b.

b. Search for an IPv6_OSPF_Interface definition for the interface. Note that
this step is done regardless of the outcome of step a. The steps for
searching IPv6_OSPF_Interface definitions are the same as the steps for
searching IPv6_RIP_Interface definitions, except that IPv6_OSPF_Interface
definitions are searched.

c. If either an IPv6_RIP_Interface or an IPv6_OSPF_Interface definition, or
both, are found, the algorithm is complete. In this case, IPv6_Interface
definitions are not searched. If neither an IPv6_RIP_Interface nor an
IPv6_OSPF_Interface definition was found, go to step d.

d. Search for an IPv6_Interface definition for the interface. The steps for
searching IPv6_Interface definitions are the same as the steps for
searching IPv6_RIP_Interface statements, except that IPv6_Interface
definitions are searched.

e. If no definitions are found, check the value of Global_Options
Ignore_Undefined_Interfaces. If this option is turned on, the interface is
ignored. If it is not turned on, the interface is treated as if it were defined
with an IPv6_Interface statement. Default values will be used for all
parameters.

The algorithm is complete. Key conclusions of this algorithm are as follows:
v If an IPv6_RIP_Interface definition, an IPv6_OSPF_Interface definition, or

both, are found, IPv6_Interface definitions are not considered. This means
that any matching IPv6_RIP_Interface or IPv6_OSPF_Interface definition
supersedes all IPv6_Interface definitions, even if the IPv6_Interface
definitions are explicit or more specific wildcard matches. For example, an
IPv6_OSPF_Interface definition with a name parameter of V* supersedes
any IPv6_Interface, explicit or wildcard, with a name parameter that
begins with V. In this case, the IPv6_Interface definition is redundant and
will never be used. If OMPROUTE detects this case, it issues message
EZZ8068I and deletes the redundant IPv6_Interface definition.

Note: If an IPv6_Interface definition has already been selected for an
interface that is installed in the stack, and then an
IPv6_OSPF_Interface or IPv6_RIP_Interface definition that would
make that IPv6_Interface definition redundant is added using
RECONFIG, OMPROUTE issues message EZZ8069I and retains the
IPv6_Interface definition.

v An interface can be both an IPv6_RIP_Interface and an
IPv6_OSPF_Interface. OMPROUTE supports running both protocols over
the same interface. However, an interface cannot be both an interface that
runs no routing protocol (that is, defined with the IPv6_Interface
statement) and one that runs IPv6 RIP, IPv6 OSPF, or both.

6. Define interface costs (OSPF_INTERFACE, RIP_INTERFACE,
IPV6_OSPF_INTERFACE, and IPV6_RIP_INTERFACE).
Both the OSPF and RIP protocols have a cost value associated with
interfaces. With both protocols, the cost of a route to reach a destination is
the sum of the costs of each link that will be traversed on the way to the
destination. In the sample network shown in Figure 37 on page 259, the cost
of a route to get from TCPCS7 to router 3.3.3.3 through TCPCS4 is the cost of
the link from TCPCS7 to TCPCS4 plus the cost of the link from TCPCS4 to
router 3.3.3.3.

Chapter 6. Routing 303

The method for configuring cost values differs between the OSPF and RIP
protocols. The cost values of OSPF links should be configured to ensure that
preferred routes to destinations will have a lower cost than less preferable
routes. The less preferable routes, with the higher cost, will not be used
except upon failure of the preferred routes.
For the purpose of the following examples, the sample network shown in
Figure 37 on page 259 is used and the convention stack (interface) is used to
refer to the cost configured for a particular interface on a stack. For instance
TCPCS7(9.67.106.7) refers to the cost configured for interface 9.67.106.7 on
TCPCS7. While these examples use the IPv4 portion of the sample network,
the same methods for computing route costs would also be used by the IPv6
portion.
There are three possible routes from TCPCS7 to router 3.3.3.3. They are:
v Direct (TCPCS7 —> 3.3.3.3),
v Through TCPCS4 (TCPCS7 —> TCPCS4 —> 3.3.3.3)
v Through router 8.8.8.8 and TCPCS4 (TCPCS7 —> 8.8.8.8 —> TCPCS4 —>

TCPCS3)
If the preferred route from TCPCS7 to router 3.3.3.3 is through TCPCS4, then
interface costs must be configured such that the following are true:
TCPCS7(9.67.106.7) + TCPCS4(9.67.101.4) < TCPCS7(9.67.102.7)
TCPCS7(9.67.106.7) + TCPCS4(9.67.101.4) < TCPCS7(9.67.100.7) +
8.8.8.8(9.67.105.8) + TCPCS4(9.67.101.4)

The reasons for preferring one route over another are numerous. One
approach for assigning OSPF link costs would be to set the costs to values
inversely proportional to the bandwidth of the physical media. This would
result in higher bandwidth routes having lower costs, thus becoming the
preferred routes.
The cost values of RIP links are generally set to a value of 1. This results in
the cost of a route to a destination being the number of hops to reach the
destination. In the sample network, this would result in the three possible
RIP routes from TCPCS7 to router 3.3.3.3 having the following costs:
v Direct (TCPCS7 -> 3.3.3.3), cost = 1
v Through TCPCS4 (TCPCS7 -> TCPCS4 -> 3.3.3.3), cost = 2
v Through router 8.8.8.8 and TCPCS4 (TCPCS7 -> 8.8.8.8 -> TCPCS4 ->

TCPCS3), cost = 3
If it were desired that the route through TCPCS4 be the preferred route, this
could be accomplished by increasing the cost of getting directly from
TCPCS7 to router 3.3.3.3. This could be done by increasing either the out
metric for 9.67.102.3 on router 3.3.3.3 or the in metric for 9.67.102.7 on
TCPCS7. Take care when increasing in metric and out metric values to be
sure that the cost to reach any destination does not exceed the RIP maximum
of 15.

IPv4 OSPF and RIP

The cost value of an OSPF interface is set using the COST0 parameter of
the OSPF_INTERFACE statement. The in metric and out metric of a RIP
interface are set using the IN_METRIC and OUT_METRIC parameters of
the RIP_INTERFACE statement.
IPv6 OSPF and RIP

The cost value of an IPv6 OSPF interface is set using the COST parameter
of the IPV6_OSPF_INTERFACE statement. The in metric and out metric
of an IPv6 RIP interface are set using the IN_METRIC and OUT_METRIC
parameters of the IPV6_RIP_INTERFACE statement.

304 z/OS V1R12.0 Comm Svr: IP Configuration Guide

7. Configure virtual links, if the OSPF protocol is used.

The OSPF protocol is dependent upon complete connectivity of the backbone
area. To maintain backbone connectivity, each backbone router must be
interconnected. If the configuration of an OSPF autonomous system is such
that the backbone area will become separated into two or more disconnected
sections, connectivity must be restored for the protocol to work correctly.
This can be done using a virtual link. An OSPF virtual link should not be
confused with a VIPA link. Virtual links can be configured between any two
backbone routers that have an interface to a common non-backbone area.

IPv4 OSPF

The VIRTUAL_LINK statements specify the router ID of the link endpoint
and must be configured at both endpoints. In the sample network shown
in Figure 37 on page 259, a virtual link is configured between TCPCS4
and TCPCS7 to restore backbone connectivity through area 1.1.1.1.
TCPCS4:
VIRTUAL_LINK

Virtual_Endpoint_RouterID=7.7.7.7
Links_Transit_Area=1.1.1.1;

TCPCS7:
VIRTUAL_LINK

Virtual_Endpoint_RouterID=4.4.4.4
Links_Transit_Area=1.1.1.1;

IPv6 OSPF

The IPV6_VIRTUAL_LINK statements specify the router ID of the link
endpoint and must be configured at both endpoints. In the sample
network, a virtual link is configured between TCPCS64 and TCPCS67 to
restore backbone connectivity through area 6.6.6.6.
TCPCS64:
IPV6_VIRTUAL_LINK

Virtual_Endpoint_RouterID=67.67.67.67
Links_Transit_Area=6.6.6.6;

TCPCS67:
IPV6_VIRTUAL_LINK

Virtual_Endpoint_RouterID=64.64.64.64
Links_Transit_Area=6.6.6.6;

8. Manage high-cost links, if the OSPF protocol is used.

The periodic nature of OSPF routing traffic requires a link's underlying
data-link connection to be constantly open. This can result in unwanted
usage charges on network segments whose costs are very high. There are
two configuration steps that can be taken to inhibit the periodic nature of the
protocol.
The first step that can be taken is to define the link as a demand circuit.
When this is done, link state advertisements (LSAs) sent over the interface
will not be periodically refreshed. Only LSAs with real changes will be
readvertised. In addition, aging of these LSAs will be disabled such that they
will not age out of the link state database.
Another step that can be taken is to define hello suppression for the link.
Hello suppression is only meaningful if the link is a demand circuit and is
either point-to-point or point-to-multipoint. Hello suppression will inhibit the
periodic transmission of OSPF hello packets.

IPv4 OSPF

Chapter 6. Routing 305

To define OSPF interfaces as demand circuits, the Demand_Circuit=YES
parameter must first be specified on the global OSPF configuration
statement. Then, the OSPF_INTERFACE statement for each interface to be
configured as a demand circuit must be specified with the
Demand_Circuit=YES parameter. Use the Hello_Suppression parameter of
the OSPF_INTERFACE statement to configure hello suppression. For
more information on configuring the Hello_Suppression parameter on the
OSPF_INTERFACE statement, see z/OS Communications Server: IP
Configuration Reference. If hello suppression is implemented, the
PP_Poll_Interval parameter of the OSPF_INTERFACE statement can be
used to specify the interval at which OMPROUTE should attempt to
contact a neighbor to reestablish a neighbor relationship when the
relationship has failed, but the interface is still available.
IPv6 OSPF

To define IPv6 OSPF interfaces as demand circuits, the
Demand_Circuit=YES parameter must first be specified on the global
IPV6_OSPF configuration statement. Then, the IPV6_OSPF_INTERFACE
statement for each interface to be configured as a demand circuit must be
specified with the Demand_Circuit=YES parameter. Use the
Hello_Suppression parameter of the IPV6_OSPF_INTERFACE statement
to configure hello suppression. For more information on configuring the
Hello_Suppression parameter on the IPV6_OSPF_INTERFACE statement,
see z/OS Communications Server: IP Configuration Reference. If hello
suppression is implemented, the PP_Poll_Interval parameter of the
IPV6_OSPF_INTERFACE statement can be used to specify the interval at
which OMPROUTE should attempt to contact a neighbor to reestablish a
neighbor relationship when the relationship has failed, but the interface is
still available.

9. Define RIP filters, if the RIP protocol is used.

RIP Filters can be configured to OMPROUTE such that certain RIP routing
information will not be broadcast out to other routers and/or accepted from
other routers. The filters can be applied to individual RIP interfaces or to all
RIP interfaces. When defining a filter, a filter type (sending or receiving) is
specified along with values identifying the route information to be filtered.
By using filters, an installation can limit the amount of RIP routing
information broadcast into the network and/or the amount of RIP routing
information maintained by OMPROUTE. In addition, filters can be used to
hide destination addresses from portions of the network.

IPv4 RIP

To configure a filter for an individual RIP interface, use the FILTER
parameter of the RIP_INTERFACE statement. To configure a filter that
applies to all IPv4 RIP interfaces, use the global FILTER statement. In the
sample network shown in Figure 37 on page 259, if you wanted to hide
the 10.1.1.0 subnet from TCPCS6 (as well as all routers and hosts on the
remote side of TCPCS6), you could define the following filter on TCPCS7:
Filter=(nosend,10.1.1.0,255.255.255.0);

IPv6 RIP

To configure a filter for an individual IPv6 RIP interface, use the FILTER
parameter of the IPV6_RIP_INTERFACE statement. To configure a filter
that applies to all IPv6 RIP interfaces, use the global IPV6_RIP_FILTER
statement. In the sample network shown in Figure 37 on page 259, for

306 z/OS V1R12.0 Comm Svr: IP Configuration Guide

example, if you wanted to hide the 2001:0DB8:0:A1B/64 prefix from
TCPCS4, you could define the following filter on TCPCS4:
IPv6_RIP_Filter=(noreceive,2001:0DB8:0:A1B/64);

10. Define route precedence in a multiprotocol environment, if the OSPF
protocol is used.
Note that this discussion of route precedence is quite complicated. If only the
OSPF or IPv6 OSPF routing protocol, or both, are used in your network,
route precedence is less of a concern. If, in addition, none of your OSPF or
IPv6 OSPF routers are configured as AS boundary routers, the route
precedence concern is entirely eliminated. For environments with multiple
protocols or AS boundary routers, the following information is provided.
Note that in this discussion, RIP is meant to apply to both RIP and IPv6 RIP,
OSPF is meant to apply to both OSPF and IPv6 OSPF, and the OSPF
configuration statement is meant to apply to both the OSPF statement and
the IPV6_OSPF statement.
OMPROUTE applies an order of precedence in choosing between two routes
to the same destination that were learned through different routing protocols
or using information provided by an OSPF AS boundary router. To describe
this order of precedence applied by OMPROUTE, a few terms must first be
defined.

RIP route
A route learned through the RIP protocol. A RIP route is generated
using information provided in a RIP packet from a neighboring
router. For example, in the sample network shown in Figure 37 on
page 259, the route from TCPCS7 to destination subnet 30.1.1.0 is a
RIP route.

OSPF internal route
A route learned through the OSPF protocol where the entire path
traversed to reach the destination lies within the OSPF autonomous
system. For example, in the sample network shown in Figure 37 on
page 259, the route from TCPCS7 to destination 9.67.108.2 on Router
2.2.2.2 is an OSPF internal route.

OSPF external route
A route learned through the OSPF protocol where part of the path
traversed to reach the destination does not lie within the OSPF
autonomous system. The path will leave the autonomous system if it
uses information brought into the OSPF autonomous system by an
AS boundary router. This information brought into the OSPF AS may
be information imported from a different autonomous system (for
example, RIP) or information about destinations statically configured
on or directly connected to the AS boundary router. For example, in
the sample network shown in Figure 37 on page 259, the route from
TCPCS4 to destination 9.67.103.6 on TCPCS6 is an OSPF external
route. TCPCS7, configured as an AS boundary router, has imported
information about that destination into the OSPF AS from the RIP
AS.

OSPF external routes fall into two categories based upon the setting
of the multiprotocol comparison value. If the comparison value is set
to Type1 on the AS boundary router that imports the external
information into the OSPF AS, then OSPF external routes generated
using this information will be OSPF type 1 external routes. If the

Chapter 6. Routing 307

comparison value is set to Type2 on the AS boundary router, then the
generated routes will be OSPF type 2 external routes. For example, in
the sample network shown in Figure 37 on page 259, if the
comparison value on TCPCS7 (an AS boundary router) is set to
Type1, the route from TCPCS4 to destination 9.67.103.6 on TCPCS6 is
an OSPF type 1 external route. If the comparison value on TCPCS7 is
set to Type2, the route is an OSPF type 2 external route.

Multiprotocol comparison

You can configure this comparison value to allow for the specification of
how route costs from different autonomous systems should be treated when
they coexist. In OMPROUTE, you can configure this value using the
COMPARISON parameter on the OSPF or IPV6_OSPF configuration
statements. When COMPARISON=Type1 is configured, the route cost values
used within different autonomous systems (for example, the OSPF AS and
the RIP AS) are considered comparable. With COMPARISON=Type2
configured, the route cost values used with the different autonomous
systems are considered non-comparable.
The comparison value can be used in several different ways, depending on
the function being performed by a router:
v As an AS boundary router, OMPROUTE uses the comparison value to

determine the type of external routes (type 1 or type 2) generated by
routers in the OSPF AS using routing information that the AS boundary
router imports into the OSPF AS.

v As an AS boundary router, OMPROUTE also uses the comparison value in
determining how route cost values will be assigned when importing routes
from the OSPF AS into the RIP AS.
– When COMPARISON=Type1 is configured (indicating that cost values

are comparable), an OSPF route imported into the RIP AS will be
advertised with the actual cost of the OSPF route. For example, in the
sample network, if TCPCS7 is configured with COMPARISON=Type1
and the OSPF route from TCPCS7 to destination 9.67.108.2 on TCPCS2
has a cost of 7, then TCPCS7 will advertise into the RIP AS a RIP route
to that destination with a cost of 7.

Notes:

a. An exception to this rule (defining how OSPF routes are advertised
into the RIP AS when COMPARISON=Type1) occurs when the OSPF
route to be imported is an OSPF type 2 external route. When this is
the case, the route is not advertised into the RIP AS at all.

b. It is important to remember the requirement that all destinations in
the RIP AS must be reachable with a cost no greater than 15. Using
COMPARISON=Type1 requires that the cost values of OSPF routes
be low. Any destinations in the OSPF AS that can only be reached
from the RIP AS with a cost greater than 15 will become
unreachable.

– When COMPARISON=Type2 is configured (indicating that cost values
are non-comparable), an OSPF route imported into the RIP AS is
advertised with a cost of 1. If a router in the RIP AS has two possible
routes to a destination, one internal to the RIP AS and another that was
imported from OSPF, this approach results in the route imported from
OSPF being favored. For example, in the sample network shown in
Figure 37 on page 259, if TCPCS7 is configured with
COMPARISON=Type2 and TCPCS7 can somehow reach a destination in

308 z/OS V1R12.0 Comm Svr: IP Configuration Guide

the 30.1.1.0 subnet without passing through TCPCS6 (using links not
shown in the sample), then TCPCS7 advertises into the RIP AS a RIP
route to the destination with a cost of 1. As a result, TCPCS6
determines that the destination can be reached through TCPCS7 with a
cost of 2. If the cost of the route for TCPCS6 to reach the destination
internal to the RIP AS is greater than 2, then the route through TCPCS7
is chosen.

Note: An exception to this rule (defining how OSPF routes are
advertised into the RIP AS when COMPARISON=Type2) occurs
when the OSPF route to be imported is an OSPF type 2 external
route. When this is the case, the route is advertised into the RIP
AS with the actual cost of the OSPF type 2 external route.

v As any router that has routing information from different autonomous
systems, OMPROUTE uses the comparison value while choosing between
the routes generated using the information from the different autonomous
systems. How the comparison value is used in this case is shown in
Table 17.

Given these definitions, the order of precedence used in choosing between
multiple routes to the same destination, which were learned through the
different protocols or by using information provided by an OSPF AS
boundary router, can be shown in Table 17. In Table 17, Source comparison
refers to the setting of the comparison value (using the COMPARISON
parameter on the OSPF configuration statement) on the router that is using
the order of precedence to choose between the multiple routes. Route 1 and
Route 2 are the two possible routes being chosen between.

Table 17. Route precedence

Source comparison Route 1 type Route 2 type Route chosen

Type 1 OSPF internal RIP OSPF internal

Type 1 OSPF internal OSPF type 1 external OSPF internal

Type 1 OSPF internal OSPF type 2 external OSPF internal

Type 1 RIP OSPF type 1 external Lowest cost route

Type 1 RIP OSPF type 2 external RIP route

Type 1 OSPF type 1 external OSPF type 2 external OSPF type 1 external

Type 2 OSPF internal RIP OSPF internal

Type 2 OSPF internal OSPF type 1 external OSPF internal

Type 2 OSPF internal OSPF type 2 external OSPF internal

Type 2 RIP OSPF type 1 external OSPF type 1 external

Type 2 RIP OSPF type 2 external Lowest cost route

Type 2 OSPF type 1 external OSPF type 2 external OSPF type 1 external

Minimizing the routing responsibility of z/OS Communications Server
OMPROUTE may be run on z/OS Communications Server for a variety of reasons.
If the z/OS Communications Server host is being used as an application or server
host and the routing daemon is being run primarily to provide access to network
resources, or to provide network resources access to the z/OS Communications
Server host, then care must be taken to ensure that the z/OS Communications
Server host is not overly burdened with routing work. Unlike routers or other
network boxes whose sole purpose is routing, an application host z/OS

Chapter 6. Routing 309

Communications Server will be doing many things other than routing, and it is not
desirable for a large percentage of machine resources (memory and CPU) to be
used for routing tasks, as can happen in very complex or unstable networks. In
this case the z/OS Communications Server should not be configured as a backbone
router, either intentionally or inadvertently. Careful network design can minimize
the routing burdens on the z/OS Communications Server application host without
compromising the accessibility of z/OS Communications Server resources to the
network and vice versa. If care is not taken to minimize the routing work required
by the z/OS Communications Server host, OMPROUTE may consume excessive
cycles or memory processing huge numbers of routing updates from the network.
Or the burden of routing updates may become so large that the z/OS
Communications Server cannot keep up because of other workloads on the
machine. Since OSPF is heavily timer-driven, this could cause loss of adjacencies
and routing problems.

The primary way to reduce the routing burdens on the z/OS Communications
Server host is by use of OSPF areas. See step 2 on page 289 for more information.
A z/OS Communications Server application host or sysplex can be placed into a
non-backbone area with dedicated routers acting as area-border routers. The
area-border routers would advertise the z/OS Communications Server resources to
other attached areas (for example the backbone) and would summarize the
network outside the local area to the z/OS Communications Server hosts. If
possible, this can be further refined to reduce routing protocol traffic by use of
interarea route summarization, accomplished in OMPROUTE area-border routers
by the RANGE and IPV6_RANGE statements, and in Cisco routers with the area
range command. For more information, see z/OS Communications Server: IP
Configuration Reference and step 3 on page 290.

An even further, and ideal, optimization would be to make the area containing the
z/OS Communications Server application host or sysplex a stub area. A stub area
can be configured such that route summaries (IPv4) or prefixes (IPv6) from other
areas are not flooded into the stub area by the area border routers. When this is
done, only routes to destinations within the stub area are shared among the hosts.
Default routes are used to represent all destinations outside the stub area. The stub
area's resources are still advertised to the network at large by the area-border
routers. You can use this optimization, sometimes referred to as a totally stubby
area, if the following apply to your network:
v It is acceptable to use default routes to reach destinations outside the stub area.

This means that either there is only one area-border router connecting the stub
area to the rest of the network, or if there are multiple such connections they are
redundant, so that it does not matter which one is used to get outside the stub
area.

v You have no non-OSPF destinations to advertise to the network at large. Stub
areas do not permit importation of OSPF external routes. This means for
example that you do not have a RIP network attached to the stub area, or if you
do, you do not want its destinations reachable from the stub area. Other types of
routes that cannot be imported into stub areas include direct routes (for
example, for networks attached to interfaces that are not running the OSPF
protocol) and static routes. RIP or static routes can be used by the z/OS
Communications Server that learns them, they just cannot be advertised.
Tip: If you define your VIPAs as OSPF interfaces in your OMPROUTE
configuration file, routes to their addresses will be considered OSPF routes, and
therefore importable into the stub area and able to be advertised by the
area-border routers to the network at large.

310 z/OS V1R12.0 Comm Svr: IP Configuration Guide

It is highly recommended to put z/OS Communications Server application hosts or
sysplexes into stub areas if at all possible.

A further optimization is to prevent z/OS Communications Server from becoming
the designated router on multiaccess media, when pure routers that can perform
this function are present. On a multiaccess medium, the designated router and the
backup designated router will carry the majority of the routing protocol load for
all hosts on the medium. While z/OS Communications Server is capable of
performing this role, it does impose additional routing overhead on the system. It
would be preferable to allow pure routers to perform this role, if they are
available. This is accomplished by ensuring that the pure routers' interfaces onto
the medium have higher ROUTER_PRIORITY values than the z/OS
Communications Server interfaces on the same medium. However, if the only hosts
on a medium are z/OS Communications Server, such as in HiperSockets
communications, then one or two of them will have to be designated router or
backup designated router.

Tip: You can use the IBM Health Checker for z/OS to check whether the total
number of indirect routes in a TCP/IP stack routing table exceeds a maximum
threshold. When this threshold is exceeded, OMPROUTE and the TCP/IP stack can
experience high CPU consumption from routing changes. For more information
about IBM Health Checker for z/OS, see z/OS Communications Server: IP Diagnosis
Guide and IBM Health Checker for z/OS: User's Guide.

Preventing futile neighbor state loops during adjacency formation
In OSPF environments in which there might be a problem with some remote
hardware (for example, router, switch, or network cable) that is beyond detection
by z/OS hardware or software, OMPROUTE can get into an infinite (or futile)
neighbor state loop over one of its interfaces with a neighbor. This loop might
contribute to increased workload. In LAN configurations in which there are
parallel OSPF interfaces that can reach the same neighbor for adjacency formation,
unless you are using OMPROUTE futile neighbor state loop detection or unless
you manually fix the problem, the backup interfaces are not used until after an
outage occurs for the OSPF interface that was initially involved in an adjacency
formation attempt with a designated router. For information about parallel OSPF
interfaces, see step 4 on page 292.

Futile neighbor state loops can occur during adjacency formation with a
neighboring designated router before full adjacency has been reached. According to
OSPF protocol, all routers on a multiaccess network attempt to establish adjacency
with the designated router (DR) and backup designated router (BDR) after
two-way communication has been established. When a problem occurs during the
adjacency formation process, the adjacency formation attempt is restarted.
Repeated adjacency attempts can continue until full adjacency has been established
or an interruption occurs. Interruption occurs from an interface outage to the
neighbor or from a neighbor outage. Whether or not parallel interfaces are used,
OMPROUTE repeatedly attempts to establish full adjacency with the neighbor, and
if the problem is due to a cabling error or failure or some other non-transient
condition, it is highly unlikely that the problem will be resolved and the loop will
become futile.

To stop a futile neighbor state loop, you can either manually deactivate the
interface or suspend the OSPF interface within OMPROUTE so that OMPROUTE
will stop attempting to form the adjacency over the interface. If the OSPF interface
is suspended, any active sessions using static routes over the interface will not be

Chapter 6. Routing 311

|
|
|
|
|
|

disrupted. If the interface is deactivated, all active sessions over the interface will
be disrupted. If a parallel OSPF interface is available, OMPROUTE will then
attempt to form adjacency with the neighbor over the parallel interface.

OMPROUTE futile neighbor state loop detection removes the need for manual
detection of futile neighbor state loops, manual intervention to resolve the loops,
and the disruption of existing sessions due to deactivating the interface. Code the
DR_MAX_ADJ_ATTEMPT parameter on the OSPF or IPV6_OSPF statement, or
both, in your OMPROUTE configuration file to enable this function. OMPROUTE
will then report and control futile neighbor state loops during the adjacency
formation process. For a list of interfaces that support the futile neighbor state loop
detection function, see z/OS Communications Server: IP Configuration Reference

If you use the DR_MAX_ADJ_ATTEMPT parameter, futile neighbor state loops are
automatically detected and reported using message EZZ8157I. If a parallel OSPF
interface is not available, adjacency formation attempts continue to be retried over
the same interface. If parallel OSPF interfaces are available, an interface change is
reported using message EZZ8158I and adjacency formation attempts are retried
over a parallel OSPF interface. The problematic interface is suspended within
OMPROUTE, but the interface is not deactivated and active sessions over the
interface are not disrupted.

After a problematic OSPF interface is suspended in OMPROUTE and adjacencies
are formed on a parallel OSPF interface, you might want to switch back to the
original interface once you have fixed the problem that caused the futile neighbor
state loop. To accomplish this, activate the repaired interface and then suspend the
parallel interface. Once OSPF adjacencies are established over the repaired
interface, the parallel interface can be reactivated so it is once again available as a
backup for the repaired interface. Use the ACTIVATE function of the OMPROUTE
MODIFY command to activate a suspended OSPF interface. Use the SUSPEND
function of the OMPROUTE MODIFY command to manually suspend an OSPF
interface. For more information about these functions of the MODIFY command for
OMPROUTE, see z/OS Communications Server: IP System Administrator's Commands.

Verification of OMPROUTE IPv4 configuration and state
The following topics show sample output from each of the commands that can be
used to display OMPROUTE IPv4 information. The syntax of these DISPLAY
commands, as well as detailed information about the data displayed, can be found
in z/OS Communications Server: IP System Administrator's Commands.

Note: All commands that include the LIST subparameter indicate that the
information being displayed is configured information only and does not
necessarily mean that the information is currently being used by
OMPROUTE. To display information in current use, use related commands
to display current, run-time statistics, and parameters. There are cases when
the configured information will not match the in-use information due to
some undefined or unresolved information in the OMPROUTE
configuration. For example, undefined interfaces or parameters in the
OMPROUTE configuration or an incorrect sequence of dynamic
reconfiguration with the MODIFY OMPROUTE,RECONFIG command can
result in no update of the in-use information at all. Information defined on
wildcard interfaces is not displayed in the LIST commands; it is only
displayed in the corresponding non-LIST commands when wildcard
information is resolved to actual physical interfaces.

312 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Displaying all OSPF configuration information
To display all of the OSPF configuration information, enter the following
command:
D TCPIP,TCPCS7,OMP,OSPF,LIST,ALL
EZZ7831I GLOBAL CONFIGURATION 735

TRACE: 0, DEBUG: 0, SADEBUG LEVEL: 0
STACK AFFINITY: TCPCS7
OSPF PROTOCOL: ENABLED
EXTERNAL COMPARISON: TYPE 2
AS BOUNDARY CAPABILITY: ENABLED
IMPORT EXTERNAL ROUTES: RIP SUB
ORIG. DEFAULT ROUTE: NO
DEFAULT ROUTE COST: (1, TYPE 2)
DEFAULT FORWARD. ADDR.: 0.0.0.0
LEARN HIGHER COST DFLT: NO
DEMAND CIRCUITS: ENABLED

EZZ7832I AREA CONFIGURATION
AREA ID AUTYPE STUB? DEFAULT-COST IMPORT-SUMMARIES?
0.0.0.0 0=NONE NO N/A N/A
1.1.1.1 0=NONE NO N/A N/A

--AREA RANGES--
AREA ID ADDRESS MASK ADVERTISE?
1.1.1.1 9.67.101.0 255.255.255.0 NO

EZZ7833I INTERFACE CONFIGURATION
IP ADDRESS AREA COST RTRNS TRNSDLY PRI HELLO DEAD DB_EX
7.7.7.7 1.1.1.1 1 N/A N/A N/A N/A N/A N/A
9.67.104.7 1.1.1.1 1 5 1 1 10 40 40
9.67.100.7 1.1.1.1 1 5 1 1 10 40 40
9.67.102.7 1.1.1.1 1 5 1 1 10 40 40
9.67.106.7 1.1.1.1 1 5 1 1 10 40 40
9.67.107.7 0.0.0.0 1 5 1 1 10 40 40

EZZ7836I VIRTUAL LINK CONFIGURATION
VIRTUAL ENDPOINT TRANSIT AREA RTRNS TRNSDLY HELLO DEAD DB_EX
4.4.4.4 1.1.1.1 10 5 30 180 180

EZZ7835I NBMA CONFIGURATION
INTERFACE ADDR POLL INTERVAL

9.67.104.7 180
EZZ7834I NEIGHBOR CONFIGURATION

NEIGHBOR ADDR INTERFACE ADDRESS DR ELIGIBLE?
9.67.104.15 9.67.104.7 YES
9.67.104.25 9.67.104.7 NO
9.67.104.16 9.67.104.7 NO

Displaying information about configured OSPF areas
To display information about configured OSPF Areas, enter the following
command:
D TCPIP,TCPCS7,OMP,OSPF,LIST,AREAS
EZZ7832I AREA CONFIGURATION 737
AREA ID AUTYPE STUB? DEFAULT-COST IMPORT-SUMMARIES?
0.0.0.0 0=NONE NO N/A N/A
1.1.1.1 0=NONE NO N/A N/A

--AREA RANGES--
AREA ID ADDRESS MASK ADVERTISE?
1.1.1.1 9.67.101.0 255.255.255.0 NO

Chapter 6. Routing 313

Displaying configuration information about configured OSPF
interfaces

To display configuration information about configured OSPF interfaces, enter the
following command:
D TCPIP,TCPCS7,OMP,OSPF,LIST,IFS
EZZ7833I INTERFACE CONFIGURATION 739
IP ADDRESS AREA COST RTRNS TRNSDLY PRI HELLO DEAD DB_EX
7.7.7.7 1.1.1.1 1 N/A N/A N/A N/A N/A N/A
9.67.104.7 1.1.1.1 1 5 1 1 10 40 40
9.67.100.7 1.1.1.1 1 5 1 1 10 40 40
9.67.102.7 1.1.1.1 1 5 1 1 10 40 40
9.67.106.7 1.1.1.1 1 5 1 1 10 40 40
9.67.107.7 0.0.0.0 1 5 1 1 10 40 40

Note: Wildcard interface definitions are not displayed. However, when an actual
interface is resolved to a wildcard definition, its information is displayed.

Displaying information about configured Non-broadcast
Multiple Access OSPF interfaces

To display information about configured Non-broadcast Multiple Access OSPF
interfaces, enter the following command:
D TCPIP,TCPCS7,OMP,OSPF,LIST,NBMA
EZZ7835I NBMA CONFIGURATION 745

INTERFACE ADDR POLL INTERVAL
9.67.104.7 180

Displaying information about configured OSPF virtual links
To display information about configured OSPF virtual links, enter the following
command:
D TCPIP,TCPCS7,OMP,OSPF,LIST,VLINKS
EZZ7836I VIRTUAL LINK CONFIGURATION 747
VIRTUAL ENDPOINT TRANSIT AREA RTRNS TRNSDLY HELLO DEAD DB_EX
4.4.4.4 1.1.1.1 10 5 30 180 180

Displaying information about configured OSPF neighbors
To display information about configured OSPF neighbors enter the following
command:
D TCPIP,TCPCS7,OMP,OSPF,LIST,NBRS
EZZ7834I NEIGHBOR CONFIGURATION 749

NEIGHBOR ADDR INTERFACE ADDRESS DR ELIGIBLE?
9.67.104.15 9.67.104.7 YES
9.67.104.25 9.67.104.7 NO
9.67.104.16 9.67.104.7 NO

Displaying the contents of a single OSPF link state
advertisement

To display the contents of a single OSPF link state advertisement, enter the
following command:
D TCPIP,TCPCS7,OMP,OSPF,LSA,LSTYPE=1,LSID=7.7.7.7,ORIG=7.7.7.7,AREAID=1.1.1.1
EZZ7880I LSA DETAILS 751

LS AGE: 521
LS OPTIONS: E,DC
LS TYPE: 1
LS DESTINATION (ID): 7.7.7.7
LS ORIGINATOR: 7.7.7.7
LS SEQUENCE NO: 0X80000013

314 z/OS V1R12.0 Comm Svr: IP Configuration Guide

LS CHECKSUM: 0XA9A
LS LENGTH: 120
ROUTER TYPE: ABR,ASBR,V
ROUTER IFCS: 8

LINK ID: 7.7.7.4
LINK DATA: 255.255.255.252
INTERFACE TYPE: 3

NO. OF METRICS: 0
TOS 0 METRIC: 1

LINK ID: 8.8.8.8
LINK DATA: 9.67.100.7
INTERFACE TYPE: 1

NO. OF METRICS: 0
TOS 0 METRIC: 1 (1)

LINK ID: 3.3.3.3
LINK DATA: 9.67.102.7
INTERFACE TYPE: 1

NO. OF METRICS: 0
TOS 0 METRIC: 1 (1)

LINK ID: 4.4.4.4
LINK DATA: 9.67.106.7
INTERFACE TYPE: 1

NO. OF METRICS: 0
TOS 0 METRIC: 1 (1)

LINK ID: 7.7.7.7
LINK DATA: 255.255.255.255
INTERFACE TYPE: 3

NO. OF METRICS: 0
TOS 0 METRIC: 1

LINK ID: 9.67.100.8
LINK DATA: 255.255.255.255
INTERFACE TYPE: 3

NO. OF METRICS: 0
TOS 0 METRIC: 1

LINK ID: 9.67.102.3
LINK DATA: 255.255.255.255
INTERFACE TYPE: 3

NO. OF METRICS: 0
TOS 0 METRIC: 1

LINK ID: 9.67.106.4
LINK DATA: 255.255.255.255
INTERFACE TYPE: 3

NO. OF METRICS: 0
TOS 0 METRIC: 1

Displaying statistics and parameters for OSPF areas
To display statistics and parameters for all OSPF areas attached to the router, enter
the following command:
D TCPIP,TCPCS7,OMP,OSPF,AREASUM
EZZ7848I AREA SUMMARY 757
AREA ID AUTHENTICATION #IFCS #NETS #RTRS #BRDRS DEMAND
0.0.0.0 NONE 2 0 4 2 ON
1.1.1.1 NONE 5 0 4 2 ON

Displaying the list of AS external advertisements
To display a list of AS external advertisements that are in the OSPF link state
database, enter the following command:
D TCPIP,TCPCS7,OMP,OSPF,EXTERNAL
EZZ7853I AREA LINK STATE DATABASE 759
TYPE LS DESTINATION LS ORIGINATOR SEQNO AGE XSUM

5 @6.6.6.6 7.7.7.7 0X80000007 825 0X1B5C
5 @9.67.103.6 7.7.7.7 0X80000007 831 0XE1F3
5 @10.1.1.0 2.2.2.2 0X80000003 1690 0X2775
5 @10.1.1.1 2.2.2.2 0X80000003 1690 0X1D7E

Chapter 6. Routing 315

5 @20.1.1.0 5.5.5.5 0X80000003 1616 0X4A3C
5 @20.1.1.1 5.5.5.5 0X80000003 1616 0X4045
5 @30.0.0.0 7.7.7.7 0X80000006 831 0XB0C0
5 @30.1.1.0 7.7.7.7 0X80000006 831 0X99D5
5 @30.1.1.4 7.7.7.7 0X80000001 825 0X7BF4
5 @30.1.1.8 7.7.7.7 0X80000001 825 0X5319
5 @130.200.0.0 3.3.3.3 0X80000003 1695 0X98C0
5 @130.200.0.0 8.8.8.8 0X80000003 1630 0X243
5 @130.200.1.1 3.3.3.3 0X80000003 1695 0X83D3
5 @130.200.1.18 8.8.8.8 0X80000003 1630 0X42EF
5 @130.201.0.0 3.3.3.3 0X80000003 1695 0X8CCB
5 @130.201.0.0 8.8.8.8 0X80000003 1630 0XF54E
5 @130.202.0.0 3.3.3.3 0X80000003 1694 0X80D6
5 @130.202.0.0 8.8.8.8 0X80000003 1629 0XE959

ADVERTISEMENTS: 18
CHECKSUM TOTAL: 0X83472

Displaying a list of non-AS external advertisements
To display a list of non-AS external advertisements that are in the OSPF link state
database for a particular OSPF area, enter the following command:
D TCPIP,TCPCS7,OMP,OSPF,DATABASE,AREAID=1.1.1.1
EZZ7853I AREA LINK STATE DATABASE 761
TYPE LS DESTINATION LS ORIGINATOR SEQNO AGE XSUM

1 @3.3.3.3 3.3.3.3 0X8000000F 879 0X8B11
1 @4.4.4.4 4.4.4.4 0X8000001A 713 0XA020
1 @7.7.7.7 7.7.7.7 0X80000013 711 0XA9A
1 @8.8.8.8 8.8.8.8 0X8000000D 861 0XBD81
3 @2.2.2.2 4.4.4.4 0X80000003 1676 0XC45C
3 @5.5.5.4 7.7.7.7 0X80000003 880 0XE327
3 @5.5.5.5 7.7.7.7 0X80000003 880 0XDF29
3 @7.7.7.4 7.7.7.7 0X80000001 710 0X956E
3 @9.67.107.5 7.7.7.7 0X80000006 881 0X4A14
3 @9.67.107.7 7.7.7.7 0X80000003 880 0X4618
3 @9.67.108.2 4.4.4.4 0X80000003 1667 0XBDB1
3 @9.67.108.4 4.4.4.4 0X80000003 1658 0XB3B8
4 @2.2.2.2 4.4.4.4 0X80000003 1658 0XAC74
4 @5.5.5.5 7.7.7.7 0X80000003 880 0XC741

ADVERTISEMENTS: 14
CHECKSUM TOTAL: 0X884B0

Displaying current, run-time statistics and parameters for
OSPF interfaces

To display current, run-time statistics and parameters for OSPF interfaces, enter the
following command:
D TCPIP,TCPCS7,OMP,OSPF,INTERFACE
EZZ7849I INTERFACES 763
IFC ADDRESS PHYS ASSOC. AREA TYPE STATE #NBRS #ADJS
7.7.7.7 VIPA1A 1.1.1.1 VIPA N/A N/A N/A
9.67.104.7 NBMA7 1.1.1.1 MULTI 1 3 0
9.67.100.7 CTC7TO8 1.1.1.1 P-P 16 1 1
9.67.102.7 CTC7TO3 1.1.1.1 P-P 16 1 1
9.67.106.7 CTC7TO4 1.1.1.1 P-P 16 1 1
9.67.107.7 CTC7TO5 0.0.0.0 P-P 16 1 1
UNNUMBERED VL/0 0.0.0.0 VLINK 16 1 1

Displaying current, run-time statistics and parameters for a
specific OSPF interface

To display current, run-time statistics and parameters for a specific OSPF interface,
enter the following command:

316 z/OS V1R12.0 Comm Svr: IP Configuration Guide

D TCPIP,TCPCS7,OMP,OSPF,IF,NAME=CTC7TO4
EZZ7850I INTERFACE DETAILS 769

INTERFACE ADDRESS: 9.67.106.7
ATTACHED AREA: 1.1.1.1
PHYSICAL INTERFACE: CTC7TO4
INTERFACE MASK: 255.255.255.0
INTERFACE TYPE: P-P
STATE: 16
DESIGNATED ROUTER: N/A
BACKUP DR: N/A

DR PRIORITY: N/A HELLO INTERVAL: 10 RXMT INTERVAL: 5
DEAD INTERVAL: 40 TX DELAY: 1 POLL INTERVAL: 0
DEMAND CIRCUIT: OFF HELLO SUPPRESS: OFF SUPPRESS REQ: OFF
MAX PKT SIZE: 1024 TOS 0 COST: 1 DB_EX INTERVAL: 40
AUTH TYPE: PASSWORD

NEIGHBORS: 1 # ADJACENCIES: 1 # FULL ADJS.: 1
MCAST FLOODS: 15 # MCAST ACKS: 4

NETWORK CAPABILITIES:
POINT-TO-POINT
DEMAND-CIRCUITS

Displaying current, run-time statistics and parameters for
OSPF neighbors

To display current, run-time statistics and parameters for OSPF neighbors, enter
the following command:
D TCPIP,TCPCS7,OMP,OSPF,NBR
EZZ7851I NEIGHBOR SUMMARY 771
NEIGHBOR ADDR NEIGHBOR ID STATE LSRXL DBSUM LSREQ HSUP IFC
9.67.104.16 0.0.0.0 1 0 0 0 OFF NBMA7
9.67.104.25 0.0.0.0 1 0 0 0 OFF NBMA7
9.67.104.15 0.0.0.0 1 0 0 0 OFF NBMA7
9.67.100.8 8.8.8.8 128 0 0 0 OFF CTC7TO8
9.67.102.3 3.3.3.3 128 0 0 0 OFF CTC7TO3
9.67.106.4 4.4.4.4 128 0 0 0 OFF CTC7TO4
9.67.107.5 5.5.5.5 128 0 0 0 OFF CTC7TO5
VL/0 4.4.4.4 128 0 0 0 OFF *

Displaying current run-time statistics and parameters for a
specific OSPF neighbor

To display current run-time statistics and parameters for a specific OSPF neighbor,
enter the following command:
D TCPIP,TCPCS7,OMP,OSPF,NBR,IPADDR=9.67.106.4
EZZ7852I NEIGHBOR DETAILS 779

NEIGHBOR IP ADDRESS: 9.67.106.4
OSPF ROUTER ID: 4.4.4.4
NEIGHBOR STATE: 128
PHYSICAL INTERFACE: CTC7TO4
DR CHOICE: 0.0.0.0
BACKUP CHOICE: 0.0.0.0
DR PRIORITY: 1
NBR OPTIONS: E

DB SUMM QLEN: 0 LS RXMT QLEN: 0 LS REQ QLEN: 0
LAST HELLO: 4 NO HELLO: OFF
LS RXMITS: 1 # DIRECT ACKS: 0 # DUP LS RCVD: 6
OLD LS RCVD: 0 # DUP ACKS RCVD: 1 # NBR LOSSES: 0
ADJ. RESETS: 0

Chapter 6. Routing 317

Displaying routes to other routers that have been calculated
by OSPF

To display routes to other routers that have been calculated by OSPF, enter the
following command:
D TCPIP,TCPCS7,OMP,OSPF,ROUTERS
EZZ7855I OSPF ROUTERS 781
DTYPE RTYPE DESTINATION AREA COST NEXT HOP(S)
ASBR SPF 2.2.2.2 0.0.0.0 2 9.67.106.4

BR SPF 4.4.4.4 0.0.0.0 1 9.67.106.4
ASBR SPF 5.5.5.5 0.0.0.0 1 9.67.107.5
ASBR SPF 3.3.3.3 1.1.1.1 1 9.67.102.3

BR SPF 4.4.4.4 1.1.1.1 1 9.67.106.4
ASBR SPF 8.8.8.8 1.1.1.1 1 9.67.100.8

Displaying the number of LSAs currently in the link state
database

To display the number of LSAs currently in the link state database, categorized by
type, enter the following command:
D TCPIP,TCPCS7,OMP,OSPF,DBSIZE
EZZ7854I LINK STATE DATABASE SIZE 783

ROUTER-LSAS: 8
NETWORK-LSAS: 0
SUMMARY-LSAS: 37
SUMMARY ROUTER-LSAS: 7
AS EXTERNAL-LSAS: 18
INTRA-AREA ROUTES: 24
INTER-AREA ROUTES: 1
TYPE 1 EXTERNAL ROUTES: 0
TYPE 2 EXTERNAL ROUTES: 0

Displaying statistics generated by the OSPF routing protocol
To display statistics generated by the OSPF routing protocol, enter the following
command:
D TCPIP,TCPCS7,OMP,OSPF,STATS
EZZ7856I OSPF STATISTICS 785

OSPF ROUTER ID: 7.7.7.7
EXTERNAL COMPARISON: TYPE 2
AS BOUNDARY CAPABILITY: YES
IMPORT EXTERNAL ROUTES: RIP SUB
ORIG. DEFAULT ROUTE: YES
DEFAULT ROUTE COST: (1, TYPE 2)
DEFAULT FORWARD. ADDR.: 0.0.0.0
LEARN HIGHER COST DFLT: NO

ATTACHED AREAS: 2 OSPF PACKETS RCVD: 821
OSPF PACKETS RCVD W/ERRS: 0 TRANSIT NODES ALLOCATED: 55
TRANSIT NODES FREED: 47 LS ADV. ALLOCATED: 263
LS ADV. FREED: 201 QUEUE HEADERS ALLOC: 96
QUEUE HEADERS AVAIL: 96 MAXIMUM LSA SIZE: 976
DIJKSTRA RUNS: 9 INCREMENTAL SUMM. UPDATES: 4
INCREMENTAL VL UPDATES: 0 MULTICAST PKTS SENT: 746
UNICAST PKTS SENT: 107 LS ADV. AGED OUT: 0
LS ADV. FLUSHED: 22 PTRS TO INVALID LS ADV: 0
INCREMENTAL EXT. UPDATES: 49

Displaying all of the RIP configuration information
To display all of the RIP configuration information, enter the following command:
D TCPIP,TCPCS7,OMP,RIP,LIST,ALL
EZZ7843I RIP CONFIGURATION 800
TRACE: 0, DEBUG: 0, SADEBUG LEVEL: 0

318 z/OS V1R12.0 Comm Svr: IP Configuration Guide

STACK AFFINITY: TCPCS7
RIP: ENABLED
RIP DEFAULT ORIGINATION: ALWAYS, COST = 1
PER-INTERFACE ADDRESS FLAGS:
CTC7TO6 9.67.103.7 RIP-2 MULTICAST.

SEND NET AND SUBNET ROUTES
RECEIVE NO DYNAMIC HOST ROUTES
RIP INTERFACE INPUT METRIC: 1
RIP INTERFACE OUTPUT METRIC: 0

EZZ7844I RIP ROUTE ACCEPTANCE
ACCEPT RIP UPDATES ALWAYS FOR:

30.1.1.8 30.1.1.4
IGNORE RIP UPDATES FROM:

NONE

Displaying information about configured RIP interfaces
To display information about configured RIP interfaces, enter the following
command:
D TCPIP,TCPCS7,OMP,RIP,LIST,IFS
EZZ7843I RIP CONFIGURATION 806
TRACE: 0, DEBUG: 0, SADEBUG LEVEL: 0
STACK AFFINITY: TCPCS7
RIP: ENABLED
RIP DEFAULT ORIGINATION: ALWAYS, COST = 1
PER-INTERFACE ADDRESS FLAGS:
CTC7TO6 9.67.103.7 RIP-2 MULTICAST.

SEND NET AND SUBNET ROUTES
RECEIVE NO DYNAMIC HOST ROUTES
RIP INTERFACE INPUT METRIC: 1
RIP INTERFACE OUTPUT METRIC: 0
RIP RECEIVE CONTROL: ANY

Displaying the routes to be unconditionally accepted
To display the routes to be unconditionally accepted, as configured with the
Accept_RIP_Route statement, enter the following command:
D TCPIP,TCPCS7,OMP,RIP,LIST,ACCEPTED
EZZ7844I RIP ROUTE ACCEPTANCE 808
ACCEPT RIP UPDATES ALWAYS FOR:

30.1.1.8 30.1.1.4

Displaying current run-time information about RIP interfaces
To display current, run-time information about RIP interfaces, enter the following
command:
D TCPIP,TCPCS7,OMP,RIP,IF
EZZ7859I RIP INTERFACES 810
IFC ADDRESS IFC NAME SUBNET MASK MTU DESTINATION
9.67.103.7 CTC7TO6 255.255.255.0 1024 0.0.0.0

Displaying current run-time information about a specific RIP
interface

To display current, run-time information about a specific RIP interface, enter the
following command:
D TCPIP,TCPCS7,OMP,RIP,IF,NAME=CTC7TO6
EZZ7860I RIP INTERFACE DETAILS 812
INTERFACE ADDRESS: 9.67.103.7
INTERFACE NAME: CTC7TO6
SUBNET MASK: 255.255.255.0
MTU 1024

Chapter 6. Routing 319

DESTINATION ADDRESS: 0.0.0.0

RIP VERSION: 2 SEND POIS. REV. ROUTES: YES
IN METRIC: 1 OUT METRIC: 0
RECEIVE NET ROUTES: YES RECEIVE SUBNET ROUTES: YES
RECEIVE HOST ROUTES: NO SEND DEFAULT ROUTES: NO
SEND NET ROUTES: YES SEND SUBNET ROUTES: YES
SEND STATIC ROUTES: NO SEND HOST ROUTES: NO

SEND ONLY: ALL

RIP RECEIVE CONTROL: ANY

Displaying the global RIP filters
To display the global RIP filters, enter the following command:
D TCPIP,TCPCS7,OMP,RIP,FILTERS
EZZ8016I GLOBAL RIP FILTERS 684
SEND ONLY: ALL

IGNORE RIP UPDATES FROM:
9.67.103.10 9.67.103.9

FILTERS: NOSEND 10.1.1.0 255.255.255.0

Displaying the routes in the OMPROUTE main routing table
To display all of the routes in the OMPROUTE main routing table, enter the
following command:
D TCPIP,TCPCS7,OMP,RTTABLE
EZZ7847I ROUTING TABLE 796
TYPE DEST NET MASK COST AGE NEXT HOP(S)

SBNT 2.0.0.0 FF000000 1 1368 NONE
SPF 2.2.2.0 FFFFFFFC 3 1380 9.67.106.4
SPF 2.2.2.2 FFFFFFFF 3 1380 9.67.106.4
SBNT 3.0.0.0 FF000000 1 1549 NONE
SPF 3.3.3.0 FFFFFFFC 2 1561 9.67.102.3
SPF 3.3.3.3 FFFFFFFF 2 1561 9.67.102.3
SBNT 4.0.0.0 FF000000 1 1549 NONE
SPF 4.4.4.4 FFFFFFFC 2 1561 9.67.106.4
SPF 4.4.4.4 FFFFFFFF 2 1561 9.67.106.4
SBNT 5.0.0.0 FF000000 1 1549 NONE
SPF 5.5.5.4 FFFFFFFC 2 1567 9.67.107.5
SPF 5.5.5.5 FFFFFFFF 2 1567 9.67.107.5
SBNT 6.0.0.0 FF000000 1 1549 NONE
RIP 6.6.6.4 FFFFFFFC 2 30 9.67.103.6
SBNT 7.0.0.0 FF000000 1 1368 NONE
SPIA* 7.7.7.4 FFFFFFFC 3 1380 9.67.106.4
DIR* 7.7.7.7 FFFFFFFF 1 1574 VIPA1A
SBNT 8.0.0.0 FF000000 1 1549 NONE
SPF 8.8.8.8 FFFFFFFC 2 1545 9.67.100.8
SPF 8.8.8.8 FFFFFFFF 2 1545 9.67.100.8
SBNT 9.0.0.0 FF000000 1 1368 NONE
DIR* 9.67.100.0 FFFFFF00 1 1576 9.67.100.7
SPF 9.67.100.7 FFFFFFFF 2 1545 CTC7TO8
SPF 9.67.100.8 FFFFFFFF 1 1572 9.67.100.8
SPF 9.67.101.3 FFFFFFFF 2 1561 9.67.106.4
SPF 9.67.101.4 FFFFFFFF 2 1561 9.67.102.3
DIR* 9.67.102.0 FFFFFF00 1 1575 9.67.102.7
SPF 9.67.102.3 FFFFFFFF 1 1566 9.67.102.3
SPF 9.67.102.7 FFFFFFFF 2 1561 CTC7TO3
DIR* 9.67.103.0 FFFFFF00 1 1575 9.67.103.7
RIP 9.67.103.6 FFFFFFFF 1 30 9.67.103.6
SPF 9.67.105.4 FFFFFFFF 2 1545 9.67.100.8
SPF 9.67.105.8 FFFFFFFF 2 1561 9.67.106.4

320 z/OS V1R12.0 Comm Svr: IP Configuration Guide

DIR* 9.67.106.0 FFFFFF00 1 1576 9.67.106.7
SPF 9.67.106.4 FFFFFFFF 1 1566 9.67.106.4
SPF 9.67.106.7 FFFFFFFF 2 1561 CTC7TO4
DIR* 9.67.107.0 FFFFFF00 1 1577 9.67.107.7
SPF 9.67.107.5 FFFFFFFF 1 1574 9.67.107.5
SPF 9.67.107.7 FFFFFFFF 2 1566 CTC7TO5
SPF 9.67.108.2 FFFFFFFF 2 1380 9.67.106.4
SPF 9.67.108.4 FFFFFFFF 3 1380 9.67.106.4
SBNT 10.0.0.0 FF000000 1 1368 NONE
SPE2 10.1.1.0 FFFFFF00 0 1379 9.67.106.4
SPE2 10.1.1.1 FFFFFFFF 0 1379 9.67.106.4
SBNT 20.0.0.0 FF000000 1 1549 NONE
SPE2 20.1.1.0 FFFFFF00 0 1379 9.67.107.5
SPE2 20.1.1.1 FFFFFFFF 0 1379 9.67.107.5
RIP 30.0.0.0 FF000000 2 30 9.67.103.6
RIP 30.1.1.0 FFFFFF00 2 30 9.67.103.6
RIP % 30.1.1.4 FFFFFFFF 2 30 9.67.103.6
RIP % 30.1.1.8 FFFFFFFF 2 30 9.67.103.6
SPE2 130.200.0.0 FFFF0000 0 1379 9.67.100.8 (2)
SPE2 130.200.1.1 FFFFFFFF 0 1379 9.67.102.3
SPE2 130.200.1.18 FFFFFFFF 0 1379 9.67.100.8
SPE2 130.201.0.0 FFFF0000 0 1379 9.67.100.8 (2)
SPE2 130.202.0.0 FFFF0000 0 1379 9.67.100.8 (2)

0 NETS DELETED, 4 NETS INACTIVE

Displaying the routes to a specific destination in the main
routing table

To display information about the routes to a specific destination that are in the
main routing table, enter the following command:
D TCPIP,TCPCS7,OMP,RTTABLE,DEST=130.201.0.0
EZZ7874I ROUTE EXPANSION 798
DESTINATION: 130.201.0.0
MASK: 255.255.0.0
ROUTE TYPE: SPE2
DISTANCE: 0
AGE: 1485
NEXT HOP(S): 9.67.100.8 (CTC7TO8)

9.67.102.3 (CTC7TO3)

Displaying the routes in all OMPROUTE policy-based routing
tables

To display all of the routes in all OMPROUTE policy-based routing tables, enter
the following command:
D TCPIP,TCPCS7,OMP,RTTABLE,PR=ALL
EZZ7847I ROUTING TABLE 154
TABLE NAME: SECHIGH
TYPE DEST NET MASK COST AGE NEXT HOP(S)

SBNT 2.0.0.0 FF000000 1 192 NONE
SPIA 2.2.2.0 FFFFFFFC 4 201 9.67.100.8
SPIA 2.2.2.2 FFFFFFFF 4 201 9.67.100.8
SBNT 3.0.0.0 FF000000 1 192 NONE
SPF 3.3.3.0 FFFFFFF0 103 201 9.67.100.8
SPF 3.3.3.3 FFFFFFFF 103 201 9.67.100.8
SBNT 4.0.0.0 FF000000 1 192 NONE
SPF 4.4.4.4 FFFFFFFC 3 201 9.67.100.8
SPF 4.4.4.4 FFFFFFFF 3 201 9.67.100.8
SBNT 7.0.0.0 FF000000 1 192 NONE
STAT* 7.7.77.77 FFFFFFFF 0 203 8.8.88.8
SBNT 8.0.0.0 FF000000 1 192 NONE
SPF 8.8.8.8 FFFFFFFC 2 201 9.67.100.8
SPF 8.8.8.8 FFFFFFFF 2 201 9.67.100.8

Chapter 6. Routing 321

SBNT 9.0.0.0 FF000000 1 192 NONE
DIR* 9.67.100.0 FFFFFF00 1 201 9.67.100.7
SPF 9.67.100.8 FFFFFFFF 1 201 9.67.100.8
SPF 9.67.101.3 FFFFFFFF 102 201 9.67.100.8
SPF 9.67.101.4 FFFFFFFF 103 201 9.67.100.8
SPF 9.67.105.4 FFFFFFFF 2 201 9.67.100.8
SPF 9.67.105.8 FFFFFFFF 7 201 9.67.100.8
SPIA 9.67.106.4 FFFFFFFF 4 201 9.67.100.8
SPIA 9.67.107.7 FFFFFFFF 5 201 9.67.100.8
SPIA 9.67.108.2 FFFFFFFF 3 201 9.67.100.8
SBNT 10.0.0.0 FF000000 1 192 NONE
SPE2 10.1.1.0 FFFFFF00 1 201 9.67.100.8
SPE2 10.1.1.1 FFFFFFFF 1 201 9.67.100.8
SPE2 130.200.0.0 FFFF0000 0 192 9.67.100.8
SPE2 130.200.1.1 FFFFFFFF 0 201 9.67.100.8
SPE2 130.200.1.18 FFFFFFFF 0 201 9.67.100.8
SPE2 130.201.0.0 FFFF0000 0 201 9.67.100.8
SPE2 130.202.0.0 FFFF0000 0 201 9.67.100.8

0 NETS DELETED
DYNAMIC ROUTING PARAMETERS

INTERFACE: CTC7TO8 NEXT HOP: ANY

TABLE NAME: SECLOW
TYPE DEST NET MASK COST AGE NEXT HOP(S)

SBNT 2.0.0.0 FF000000 1 192 NONE
SPIA 2.2.2.0 FFFFFFFC 4 201 9.67.102.3
SPIA 2.2.2.2 FFFFFFFF 4 201 9.67.102.3
SBNT 3.0.0.0 FF000000 1 192 NONE
SPF 3.3.3.0 FFFFFFF0 2 201 9.67.102.3
SPF 3.3.3.3 FFFFFFFF 2 201 9.67.102.3
SBNT 4.0.0.0 FF000000 1 192 NONE
SPF 4.4.4.4 FFFFFFFC 3 201 9.67.102.3
SPF 4.4.4.4 FFFFFFFF 3 201 9.67.102.3
SBNT 7.0.0.0 FF000000 1 192 NONE
STAT* 7.7.7.77 FFFFFFFF 0 203 3.3.33.3
SBNT 8.0.0.0 FF000000 1 192 NONE
SPF 8.8.8.8 FFFFFFFC 8 201 9.67.102.3
SPF 8.8.8.8 FFFFFFFF 8 201 9.67.102.3
SBNT 9.0.0.0 FF000000 1 192 NONE
SPF 9.67.101.3 FFFFFFFF 102 201 9.67.102.3
SPF 9.67.101.4 FFFFFFFF 2 201 9.67.102.3
DIR* 9.67.102.0 FFFFFF00 1 201 9.67.102.7
SPF 9.67.102.3 FFFFFFFF 1 201 9.67.102.3
SPF 9.67.105.4 FFFFFFFF 8 201 9.67.102.3
SPF 9.67.105.8 FFFFFFFF 7 201 9.67.102.3
SPIA 9.67.106.4 FFFFFFFF 4 201 9.67.102.3
SPIA 9.67.107.7 FFFFFFFF 5 201 9.67.102.3
SPIA 9.67.108.2 FFFFFFFF 3 201 9.67.102.3
SBNT 10.0.0.0 FF000000 1 192 NONE
SPE2 10.1.1.0 FFFFFF00 1 201 9.67.102.3
SPE2 10.1.1.1 FFFFFFFF 1 201 9.67.102.3
SPE2 130.200.0.0 FFFF0000 0 192 9.67.102.3
SPE2 130.200.1.1 FFFFFFFF 0 201 9.67.102.3
SPE2 130.200.1.18 FFFFFFFF 0 201 9.67.102.3
SPE2 130.201.0.0 FFFF0000 0 201 9.67.102.3
SPE2 130.202.0.0 FFFF0000 0 201 9.67.102.3

0 NETS DELETED
DYNAMIC ROUTING PARAMETERS

INTERFACE: CTC7TO3 NEXT HOP: ANY

Result: If a policy-based route table is configured with no dynamic routing
parameters, OMPROUTE has no knowledge of that route table. The route table
does not appear in this display. If there are no policy-based route tables configured
with dynamic routing parameters, message EZZ8150I is issued.

322 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Displaying the routes in an OMPROUTE policy-based routing
table

To display all of the routes in an OMPROUTE policy-based routing table, enter the
following command:
D TCPIP,TCPCS7,OMP,RTTABLE,PR=SECHIGH
EZZ7847I ROUTING TABLE 154
TABLE NAME: SECHIGH
TYPE DEST NET MASK COST AGE NEXT HOP(S)

SBNT 2.0.0.0 FF000000 1 192 NONE
SPIA 2.2.2.0 FFFFFFFC 4 201 9.67.100.8
SPIA 2.2.2.2 FFFFFFFF 4 201 9.67.100.8
SBNT 3.0.0.0 FF000000 1 192 NONE
SPF 3.3.3.0 FFFFFFF0 103 201 9.67.100.8
SPF 3.3.3.3 FFFFFFFF 103 201 9.67.100.8
SBNT 4.0.0.0 FF000000 1 192 NONE
SPF 4.4.4.4 FFFFFFFC 3 201 9.67.100.8
SPF 4.4.4.4 FFFFFFFF 3 201 9.67.100.8
SBNT 7.0.0.0 FF000000 1 192 NONE
STAT* 7.7.77.77 FFFFFFFF 0 203 8.8.88.8
SBNT 8.0.0.0 FF000000 1 192 NONE
SPF 8.8.8.8 FFFFFFFC 2 201 9.67.100.8
SPF 8.8.8.8 FFFFFFFF 2 201 9.67.100.8
SBNT 9.0.0.0 FF000000 1 192 NONE
DIR* 9.67.100.0 FFFFFF00 1 201 9.67.100.7
SPF 9.67.100.8 FFFFFFFF 1 201 9.67.100.8
SPF 9.67.101.3 FFFFFFFF 102 201 9.67.100.8
SPF 9.67.101.4 FFFFFFFF 103 201 9.67.100.8
SPF 9.67.105.4 FFFFFFFF 2 201 9.67.100.8
SPF 9.67.105.8 FFFFFFFF 7 201 9.67.100.8
SPIA 9.67.106.4 FFFFFFFF 4 201 9.67.100.8
SPIA 9.67.107.7 FFFFFFFF 5 201 9.67.100.8
SPIA 9.67.108.2 FFFFFFFF 3 201 9.67.100.8
SBNT 10.0.0.0 FF000000 1 192 NONE
SPE2 10.1.1.0 FFFFFF00 1 201 9.67.100.8
SPE2 10.1.1.1 FFFFFFFF 1 201 9.67.100.8
SPE2 130.200.0.0 FFFF0000 0 192 9.67.100.8
SPE2 130.200.1.1 FFFFFFFF 0 201 9.67.100.8
SPE2 130.200.1.18 FFFFFFFF 0 201 9.67.100.8
SPE2 130.201.0.0 FFFF0000 0 201 9.67.100.8
SPE2 130.202.0.0 FFFF0000 0 201 9.67.100.8

0 NETS DELETED
DYNAMIC ROUTING PARAMETERS

INTERFACE: CTC7TO8 NEXT HOP: ANY

Result: If the policy-based route table is configured with no dynamic routing
parameters, OMPROUTE has no knowledge of the route table. If there are no
policy-based route tables configured with dynamic routing parameters, message
EZZ8150I is issued.

Displaying the routes to a specific destination in a
policy-based routing table

To display information about the routes to a specific destination that are in a
policy-based routing table, enter the following command:
D TCPIP,TCPCS7,OMP,RTTABLE,PR=SECHIGH,DEST=130.201.0.0
EZZ7874I ROUTE EXPANSION 165
TABLE NAME: SECHIGH
DESTINATION: 130.201.0.0
MASK: 255.255.0.0
ROUTE TYPE: SPE2

Chapter 6. Routing 323

DISTANCE: 0
AGE: 548
NEXT HOP(S): 9.67.100.8 (CTC7TO8)

Result: If the policy-based route table is configured with no dynamic routing
parameters, OMPROUTE has no knowledge of the route table. If there are no
policy-based route tables configured with dynamic routing parameters, message
EZZ8150I is issued.

Displaying all of the generic configuration information
To display all of the IPv4 configuration information that is not related to any
routing protocol, enter the following command:
D TCPIP,TCPCS3,OMP,GENERIC,LIST,ALL
EZZ8053I IPV4 GENERIC CONFIGURATION
TRACE: 2, DEBUG: 3, SADEBUG LEVEL: 0
IPV4 TRACE DESTINATION: /TMP/AMPROUT3.DBG
STACK AFFINITY: TCPCS3

EZZ8056I IPV4 GEN INT CONFIGURATION
IFC NAME IFC ADDRESS SUBNET MASK MTU DESTADDR
NSQDIO3L 9.67.120.3 255.255.255.0 576 N/A
CTC3TO4 9.67.101.3 255.255.255.0 10000 9.67.101.4

Displaying information about configured generic interfaces
To display information about configured generic interfaces (that is, interfaces
defined to OMPROUTE with the INTERFACE statement, or not defined to
OMPROUTE but learned from the stack), enter the following command:
D TCPIP,TCPCS3,OMP,GENERIC,LIST,IFS
EZZ8056I IPV4 GEN INT CONFIGURATION
IFC NAME IFC ADDRESS SUBNET MASK MTU DESTADDR
NSQDIO3L 9.67.120.3 255.255.255.0 576 N/A
CTC3TO4 9.67.101.3 255.255.255.0 10000 9.67.101.4

Displaying current run-time information about generic
interfaces

To display current run-time information about generic interfaces, enter the
following command:
D TCPIP,TCPCS3,OMP,GENERIC,IFS
EZZ8060I IPV4 GENERIC INTERFACES
IFC NAME IFC ADDRESS SUBNET MASK MTU CFG IGN
NSQDIO3L 9.67.120.3 255.255.255.0 576 YES NO
CTC3TO1 130.200.1.3 N/A N/A NO YES
VIPA03 3.3.3.103 N/A N/A NO YES
CTC3TO4 9.67.101.3 255.255.255.0 10000 YES NO

Verification of OMPROUTE IPv6 configuration and state
The following topics show sample output from each of the commands that can be
used to display OMPROUTE IPv6 information. The syntax of these DISPLAY
commands, as well as detailed information about the data displayed, can be found
in z/OS Communications Server: IP System Administrator's Commands.

Displaying all IPv6 OSPF information
To display a comprehensive list of IPv6 OSPF information, enter the following
command:

324 z/OS V1R12.0 Comm Svr: IP Configuration Guide

D TCPIP,TCPCS67,OMP,IPV6OSPF,ALL
EZZ7970I IPV6 OSPF INFORMATION 322
TRACE6: 0, DEBUG6: 0
STACK AFFINITY TCPCS67
IPV6 OSPF PROTOCOL: ENABLED
IPV6 OSPF ROUTER ID: 67.67.67.67
DFLT IPV6 OSPF INST ID: 0
EXTERNAL COMPARISON: TYPE 2
AS BOUNDARY CAPABILITY: ENABLED
IMPORT EXTERNAL ROUTES: RIP
ORIG. DEFAULT ROUTE: NO
DEMAND CIRCUITS: ENABLED

EZZ7973I IPV6 OSPF AREAS
AREA ID STUB DFLT-COST IMPORT-PREF DEMAND IFCS NETS RTRS ABRS
6.6.6.6 NO N/A N/A OFF 2 1 4 2
0.0.0.0 NO N/A N/A OFF 2 0 4 2

--AREA RANGES--
AREA ID ADVERTISE PREFIX
6.6.6.6 NO 2001:DB8:0:101::/64

EZZ7958I IPV6 OSPF INTERFACES
NAME AREA TYPE STATE COST HELLO DEAD NBRS ADJS
VIPA1A6 6.6.6.6 VIPA N/A 1 N/A N/A N/A N/A
MPCPTP7TO5 0.0.0.0 P-2-MP 16 1 10 40 1 1
NSQDIO1L6 6.6.6.6 BRDCST 32 1 10 40 3 2
VL/0 0.0.0.0 VLINK 16 1 30 180 1 1

EZZ7972I IPV6 OSPF VIRTUAL LINKS
ENDPOINT TRANSIT AREA STATE COST HELLO DEAD NBRS ADJS
64.64.64.64 6.6.6.6 16 1 30 180 1 1

EZZ8129I IPV6 OSPF NEIGHBORS
ROUTER ID STATE LSRXL DBSUM LSREQ HSUP RTR-PRI IFC
65.65.65.65 128 0 0 0 OFF 1 MPCPTP7TO5
64.64.64.64 128 0 0 0 OFF 1 NSQDIO1L6
63.63.63.63 128 0 0 0 OFF 1 NSQDIO1L6
68.68.68.68 128 0 0 0 OFF 1 NSQDIO1L6
64.64.64.64 128 0 0 0 OFF 1 *

Displaying IPv6 OSPF area statistics and parameters
To display the statistics and parameters for all IPv6 OSPF areas attached to the
router, enter the following command:
D TCPIP,TCPCS67,OMP,IPV6OSPF,AREASUM
EZZ7973I IPV6 OSPF AREAS 536
AREA ID STUB DFLT-COST IMPORT-PREF DEMAND IFCS NETS RTRS ABRS
6.6.6.6 NO N/A N/A OFF 2 1 4 2
0.0.0.0 NO N/A N/A OFF 2 0 4 2

--AREA RANGES--
AREA ID ADVERTISE PREFIX
6.6.6.6 NO 2001:DB8:0:101::/64

Displaying IPv6 OSPF interface statistics and parameters
To display current, run-time statistics and parameters related to IPv6 OSPF
interfaces, enter the following command:
D TCPIP,TCPCS67,OMP,IPV6OSPF,IFS
EZZ7958I IPV6 OSPF INTERFACES 575
NAME AREA TYPE STATE COST HELLO DEAD NBRS ADJS
VIPA1A6 6.6.6.6 VIPA N/A 1 N/A N/A N/A N/A
MPCPTP7TO5 0.0.0.0 P-2-MP 16 1 10 40 1 1
NSQDIO1L6 6.6.6.6 BRDCST 32 1 10 40 3 2
VL/0 0.0.0.0 VLINK 16 1 30 180 1 1

Chapter 6. Routing 325

Displaying statistics and parameters for a specific IPv6 OSPF
interface

To display current, run-time statistics and parameters for a specific IPv6 OSPF
interface, enter the following command:
D TCPIP,TCPCS67,OMP,IPV6OSPF,IF,NAME=NSQDIO1L6
EZZ7959I IPV6 OSPF INTERFACE DETAIL 677
INTERFACE NAME: NSQDIO1L6
INTERFACE ID: 20
INSTANCE ID: 0
INTERFACE ADDRESS: FE80::7

2001:DB8:0:120::7
INTERFACE PREFIX: STAT 2001:DB8:0:120::/64
ATTACHED AREA: 6.6.6.6
INTERFACE TYPE: BRDCST
STATE: 32
DESIGNATED ROUTER: 68.68.68.68
BACKUP DR: 64.64.64.64

DR PRIORITY: 1 HELLO INTERVAL: 10 RXMT INTERVAL: 5
DEAD INTERVAL: 40 TX DELAY: 1 POLL INTERVAL: N/A
DEMAND CIRCUIT: OFF HELLO SUPPRESS: N/A SUPPRESS REQ: N/A
MTU: 9000 COST: 1 DB_EX INTERVAL: 40

NEIGHBORS: 3 # ADJACENCIES: 2 # FULL ADJS.: 2
MCAST FLOODS: 7 # MCAST ACKS: 9

NETWORK CAPABILITIES:
BROADCAST
DEMAND-CIRCUITS
MULTICAST

Displaying IPv6 OSPF virtual link statistics and parameters
To display current, run-time statistics and parameters related to IPv6 OSPF virtual
links, enter the following command:
D TCPIP,TCPCS67,OMP,IPV6OSPF,VLINK
EZZ7972I IPV6 OSPF VIRTUAL LINKS 703
ENDPOINT TRANSIT AREA STATE COST HELLO DEAD NBRS ADJS
64.64.64.64 6.6.6.6 16 1 30 180 1 1

Displaying statistics and parameters for a specific IPv6 OSPF
virtual link

To display current, run-time statistics and parameters for a specific IPv6 OSPF
virtual link, enter the following command:
D TCPIP,TCPCS67,OMP,IPV6OSPF,VLINK,ENDPT=64.64.64.64
EZZ7971I IPV6 VIRTUAL LINK DETAILS 713
VIRTUAL LINK ENDPOINT: 64.64.64.64
PHYSICAL INTERFACE NAME: NSQDIO1L6
VL TRANSIT AREA: 6.6.6.6
STATE: 16

HELLO INTERVAL: 30 DEAD INTERVAL: 180 DB_EX INTERVAL: 180
RXMT INTERVAL: 10 TX DELAY: 5 COST: 1
DEMAND CIRCUIT: ON HELLO SUPPRESS: OFF SUPPRESS REQ: ON

NEIGHBORS: 1 # ADJACENCIES: 1 # FULL ADJS.: 1

Displaying IPv6 OSPF neighbor statistics and parameters
To display the statistics and parameters related to IPv6 OSPF neighbors, enter the
following command:

326 z/OS V1R12.0 Comm Svr: IP Configuration Guide

D TCPIP,TCPCS67,OMP,IPV6OSPF,NBRS
EZZ8129I IPV6 OSPF NEIGHBORS 715
ROUTER ID STATE LSRXL DBSUM LSREQ HSUP RTR-PRI IFC
65.65.65.65 128 0 0 0 OFF 1 MPCPTP7TO5
63.63.63.63 8 0 0 0 OFF 1 NSQDIO1L6
64.64.64.64 128 0 0 0 OFF 1 NSQDIO1L6
68.68.68.68 128 0 0 0 OFF 1 NSQDIO1L6
64.64.64.64 128 0 0 0 OFF 1 *

Tip: On multiaccess media (LANs), attached routers become adjacent only with the
designated router and the backup designated router. Routers that are not
performing a designated router role do not become adjacent to each other on LAN
networks. Therefore, in this example, the state of 8 for 63.63.63.63 does not
necessarily represent a problem or an incomplete adjacency. You can conclude that
64.64.64.64 and 68.68.68.68 are the designated routers, and 63.63.63.63 is simply
another router on the network. State 8 is the final state in this case.

Displaying statistics and parameters for a specific IPv6 OSPF
neighbor

To display current, run-time statistics and parameters for a specific IPv6 OSPF
neighbor, enter the following command:
D TCPIP,TCPCS67,OMP,IPV6OSPF,NBR,ID=64.64.64.64,IFNAME=NSQDIO1L6
EZZ8130I IPV6 OSPF NEIGHBOR DETAILS 737
NEIGHBOR IP ADDRESS: FE80::4
OSPF ROUTER ID: 64.64.64.64
NEIGHBOR STATE: 128
PHYSICAL INTERFACE: NSQDIO1L6
DR CHOICE: 68.68.68.68
BACKUP CHOICE: 64.64.64.64
DR PRIORITY: 1
NBR OPTIONS: (0X00)

DB SUMM QLEN: 0 LS RXMT QLEN: 0 LS REQ QLEN: 0
LAST HELLO: 5 NO HELLO: OFF
LS RXMITS: 1 # DIRECT ACKS: 5 # DUP LS RCVD: 4
OLD LS RCVD: 0 # DUP ACKS RCVD: 3 # ADJ. RESETS: 1

Displaying IPv6 OSPF link state database statistics
To display the number of LSAs currently in the link state database, categorized by
type, enter the following command:
D TCPIP,TCPCS67,OMP,IPV6OSPF,DBSIZE
EZZ8128I IPV6 OSPF LS DATABASE SIZE 841
ROUTER-LSAS: 8
NETWORK-LSAS: 1
INTER-AREA PREFIX LSAS: 50
INTER-AREA ROUTER LSAS: 6
AS EXTERNAL-LSAS: 6
LINK LSAS: 6
INTRA-AREA PREFIX LSAS: 21
UNKNOWN LSAS: 0
INTRA-AREA ROUTES: 24
INTER-AREA ROUTES: 0
TYPE 1 EXTERNAL ROUTES: 0
TYPE 2 EXTERNAL ROUTES: 0

Displaying IPv6 OSPF link state advertisement
To display the contents of a single link state advertisement contained in the IPv6
OSPF database, enter the following command:

Chapter 6. Routing 327

D TCPIP,TCPCS67,OMP,IPV6OSPF,LSA,LSTYPE=2001,LSID=0,ORIG=64.64.64.64,
AREAID=6.6.6.6
EZZ7880I LSA DETAILS 834

LS AGE: 61
LS TYPE: 0X2001 (ROUTER LSA)
LS ID: 0
LS ORIGINATOR: 64.64.64.64
LS SEQUENCE NO: 0X8000000F
LS CHECKSUM: 0X3886
LS LENGTH: 40
ROUTER TYPE: (0X01) ABR
LS OPTIONS: (0X000033) V6,E,R,DC

INTERFACES:
TYPE METRIC INTERFACE ID NBR INTERFACE ID NBR ROUTER ID

2 1 16 14 68.68.68.68

Displaying IPv6 OSPF external advertisements
To display the AS external advertisements belonging to the IPv6 OSPF routing
domain, enter the following command:
D TCPIP,TCPCS67,OMP,IPV6OSPF,EXTERNAL
EZZ8127I IPV6 OSPF AS EXTERNAL LSDB 555

AS EXTERNAL LSAS (LS TYPE=4005)
LS ORIGINATOR LS ID SEQNO AGE PREFIX
67.67.67.67 5 0X80000001 565 6:6:6:6:6:6:6:6/128
67.67.67.67 6 0X80000001 561 2001:DB8:0:A1C::6/128
67.67.67.67 7 0X80000001 558 2001:DB8:0:103::6/128
67.67.67.67 8 0X80000001 222 2001:DB8:0:A10::/60
67.67.67.67 9 0X80000001 222 2001:DB8:0:A1B::/64
67.67.67.67 10 0X80000001 222 2001:DB8:0:A1C::/64

ADVERTISEMENTS: 6 CHECKSUM TOTAL: 0X000271C6

Displaying IPv6 OSPF area link state database
To display the contents of a particular IPv6 OSPF area link state database, enter the
following command:
D TCPIP,TCPCS67,OMP,IPV6OSPF,DATABASE,AREAID=6.6.6.6
EZZ8126I IPV6 OSPF AREA LS DATABASE 829

ROUTER LSAS (LS TYPE=2001)
LS ORIGINATOR LS ID SEQNO AGE LINKS RTR-TYPE
63.63.63.63 0 0X80000001 376 1
64.64.64.64 0 0X80000002 321 1 ABR,V
67.67.67.67 0 0X80000004 320 1 ABR,ASBR,V
68.68.68.68 0 0X80000002 595 1

ADVERTISEMENTS: 4 CHECKSUM TOTAL: 0X0001D024

NETWORK LSAS (LS TYPE=2002)
LS ORIGINATOR LS ID SEQNO AGE ROUTERS
68.68.68.68 14 0X80000004 375 4

ADVERTISEMENTS: 1 CHECKSUM TOTAL: 0X0000F5CC

INTER-AREA PREFIX LSAS (LS TYPE=2003)
LS ORIGINATOR LS ID SEQNO AGE PREFIX
64.64.64.64 4 0X80000002 395 2001:DB8:0:108::4/128
64.64.64.64 8 0X80000001 395 2001:DB8:0:108::2/128
64.64.64.64 9 0X80000001 395 2001:DB8:0:10::2/128
64.64.64.64 10 0X80000001 395 2001:DB8:0:10::/64
64.64.64.64 11 0X80000001 395 2:2:2:2:2:2:2:2/128
64.64.64.64 22 0X80000001 375 2001:DB8:0:120::4/128
64.64.64.64 26 0X80000001 321 2001:DB8:0:107::7/128
64.64.64.64 27 0X80000001 321 2001:DB8:0:120::7/128
64.64.64.64 28 0X80000001 321 2001:DB8:0:107::5/128
64.64.64.64 29 0X80000001 321 2001:DB8:0:20::5/128
64.64.64.64 30 0X80000001 321 2001:DB8:0:20::/64
67.67.67.67 15 0X80000002 358 2001:DB8:0:107::7/128
67.67.67.67 16 0X80000001 358 2:2:2:2:2:2:2:2/128

328 z/OS V1R12.0 Comm Svr: IP Configuration Guide

67.67.67.67 19 0X80000001 358 2001:DB8:0:107::5/128
67.67.67.67 20 0X80000001 358 2001:DB8:0:20::5/128
67.67.67.67 21 0X80000001 358 2001:DB8:0:20::/64
67.67.67.67 25 0X80000001 356 2001:DB8:0:120::7/128
67.67.67.67 26 0X80000001 317 2001:DB8:0:108::4/128
67.67.67.67 27 0X80000001 317 2001:DB8:0:108::2/128
67.67.67.67 28 0X80000001 317 2001:DB8:0:10::2/128
67.67.67.67 29 0X80000001 317 2001:DB8:0:10::/64
67.67.67.67 30 0X80000001 317 2001:DB8:0:120::4/128

ADVERTISEMENTS: 22 CHECKSUM TOTAL: 0X000E7320

LINK LSAS (LS TYPE=0008)
LS ORIGINATOR LS ID SEQNO AGE INTERFACE
63.63.63.63 34 0X80000001 387 NSQDIO1L6
64.64.64.64 16 0X80000001 402 NSQDIO1L6
67.67.67.67 20 0X80000002 640 NSQDIO1L6
68.68.68.68 14 0X80000002 638 NSQDIO1L6

ADVERTISEMENTS: 4 CHECKSUM TOTAL: 0X000295E4

INTRA-AREA PREFIX LSAS (LS TYPE=2009)
LS ORIGINATOR LS ID SEQNO AGE REF-LSTYPE REF-LSID
63.63.63.63 34 0X80000001 387 0X2001 0
63.63.63.63 36 0X80000001 387 0X2001 0
63.63.63.63 38 0X80000001 387 0X2001 0
64.64.64.64 16 0X80000001 402 0X2001 0
64.64.64.64 20 0X80000001 402 0X2001 0
67.67.67.67 20 0X80000002 639 0X2001 0
67.67.67.67 26 0X80000002 639 0X2001 0
68.68.68.68 14 0X80000003 595 0X2001 0
68.68.68.68 16 0X80000001 1738 0X2001 0
68.68.68.68 18 0X80000002 638 0X2001 0
68.68.68.68 65550 0X80000004 375 0X2002 14

ADVERTISEMENTS: 11 CHECKSUM TOTAL: 0X00068473

Displaying IPv6 OSPF router routes
To display all routes to other routers that have been calculated by IPv6 OSPF and
are now present in the routing table, enter the following command:
D TCPIP,TCPCS67,OMP,IPV6OSPF,ROUTERS
EZZ8125I IPV6 OSPF ROUTERS 820
DEST: 68.68.68.68

NEXT HOP: FE80::8
DTYPE: RTR RTYPE: SPF COST: 1 AREA: 6.6.6.6

DEST: 64.64.64.64
NEXT HOP: FE80::4
DTYPE: BR RTYPE: SPF COST: 1 AREA: 6.6.6.6

DEST: 65.65.65.65
NEXT HOP: FE80::5:7
DTYPE: RTR RTYPE: SPF COST: 1 AREA: 0.0.0.0

DEST: 63.63.63.63
NEXT HOP: FE80::3
DTYPE: RTR RTYPE: SPF COST: 1 AREA: 6.6.6.6

DEST: 62.62.62.62
NEXT HOP: FE80::4
DTYPE: RTR RTYPE: SPF COST: 2 AREA: 0.0.0.0

DEST: 64.64.64.64
NEXT HOP: FE80::4
DTYPE: BR RTYPE: SPF COST: 1 AREA: 0.0.0.0

Displaying IPv6 OSPF routing protocol statistics
To display statistics generated by the IPv6 OSPF routing protocol, enter the
following command:
D TCPIP,TCPCS67,OMP,IPV6OSPF,STATS
EZZ8124I IPV6 OSPF STATISTICS 839
ATTACHED AREAS: 2 # DIJKSTRA RUNS: 12

Chapter 6. Routing 329

OSPF PACKETS RCVD: 619 OSPF PACKETS RCVD W/ERRS: 0
TRANSIT NODES ALLOCATED: 26 TRANSIT NODES FREED: 17
LS ADV. ALLOCATED: 275 LS ADV. FREED: 175
QUEUE HEADERS ALLOC: 64 QUEUE HEADERS AVAIL: 64
INCREMENTAL SUMM. UPDATES: 5 INCREMENTAL VL UPDATES: 0
INCREMENTAL EXT. UPDATES: 27 PTRS TO INVALID LS ADV: 0
MULTICAST PKTS SENT: 421 UNICAST PKTS SENT: 40
LS ADV. AGED OUT: 0 LS ADV. FLUSHED: 41

Displaying all of the IPv6 RIP information
To display all of the IPv6 RIP information, enter the following command:
D TCPIP,TCPCS4,OMP,IPV6RIP,ALL
EZZ8030I IPV6 RIP CONFIGURATION
TRACE6: 2, DEBUG6: 3
STACK AFFINITY: TCPCS4
IPV6 RIP: ENABLED
IPV6 RIP DEFAULT ORIGINATION: DISABLED

EZZ8027I IPV6 RIP INTERFACES
---------SEND----------- --RCV--

NAME MTU STATE IN OUT PRF HST STA DEF RADV PSN PRF HST
OSAQDIO46 9000 UP 1 0 YES NO NO NO YES YES YES NO

EZZ8031I IPV6 RIP ROUTE ACCEPTANCE
ACCEPT IPV6 RIP UPDATES ALWAYS FOR:

2001:0DB8:0:A1C::2
2001:0DB8:0:A1C::1

EZZ8029I GLOBAL IPV6 RIP FILTERS

SEND ONLY: ALL

IGNORE IPV6 RIP UPDATES FROM:
FE80::1:2:3:8

FILTERS: NORECEIVE 2001:0DB8:0:A1C::/64

Displaying information about IPv6 RIP interfaces
To display information about IPv6 RIP interfaces, enter the following command:
D TCPIP,TCPCS4,OMP,IPV6RIP,IFS
EZZ8027I IPV6 RIP INTERFACES

---------SEND----------- --RCV--
NAME MTU STATE IN OUT PRF HST STA DEF RADV PSN PRF HST
OSAQDIO46 9000 UP 1 0 YES NO NO NO YES YES YES NO

Displaying information about a specific IPv6 RIP interface
To display information about a specific IPv6 RIP interface, enter the following
command:
D TCPIP,TCPCS4,OMP,IPV6RIP,IF,NAME=OSAQDIO46
EZZ8028I IPV6 RIP INTERFACE DETAILS
INTERFACE NAME: OSAQDIO46
INTERFACE ADDRESS: FE80::1:2:3:1
INTERFACE PREFIX: RADV 2001:0DB8:1::/48
MTU: 9000 STATE: UP
IN METRIC: 1 OUT METRIC: 0
SEND PREFIX ROUTES: YES SEND HOST ROUTES: NO
SEND STATIC ROUTES: NO SEND DEFAULT ROUTES: NO
SEND RTR. ADV. ROUTES: YES SEND POIS. REV. ROUTES: YES
RECEIVE PREFIX ROUTES: YES RECEIVE HOST ROUTES: NO

330 z/OS V1R12.0 Comm Svr: IP Configuration Guide

SEND ONLY: ALL

FILTERS: NONE

Displaying the routes to be unconditionally accepted by IPv6
RIP

To display the routes to be unconditionally accepted by IPv6 RIP, as configured
with the IPv6_Accept_RIP_Route statement, enter the following command:
D TCPIP,TCPCS4,OMP,IPV6RIP,ACCEPTED
EZZ8031I IPV6 RIP ROUTE ACCEPTANCE
ACCEPT IPV6 RIP UPDATES ALWAYS FOR:

2001:0DB8:0:A1C::2
2001:0DB8:0:A1C::1

Displaying the global IPv6 RIP filters
To display the global IPv6 RIP filters, enter the following command:
D TCPIP,TCPCS4,OMP,IPV6RIP,FILTERS
EZZ8029I GLOBAL IPV6 RIP FILTERS

SEND ONLY: ALL

IGNORE IPV6 RIP UPDATES FROM:
FE80::1:2:3:8

FILTERS: NORECEIVE 2001:0DB8:0:A1C::/64

Displaying the routes in the OMPROUTE IPv6 routing table
To display all of the routes in the OMPROUTE IPv6 routing table, enter the
following command:
D TCPIP,TCPCS67,OMP,RT6TABLE
EZZ7979I IPV6 ROUTING TABLE 641
DESTINATION: 2:2:2:2:2:2:2:2/128

NEXT HOP: FE80::4
TYPE: SPF COST: 2 AGE: 32

DESTINATION: 3:3:3:3:3:3:3:3/128
NEXT HOP: FE80::3
TYPE: SPF COST: 1 AGE: 352

DESTINATION: 4:4:4:4:4:4:4:4/128
NEXT HOP: FE80::4
TYPE: SPF COST: 1 AGE: 2170

DESTINATION: 5:5:5:5:5:5:5:5/128
NEXT HOP: FE80::5:7
TYPE: SPF COST: 1 AGE: 2197

DESTINATION: 6:6:6:6:6:6:6:6/128
NEXT HOP: FE80::6:7
TYPE: RIP COST: 2 AGE: 0

DESTINATION: 7:7:7:7:7:7:7:7/128
NEXT HOP: ::
TYPE: SPF * COST: 0 AGE: 59

DESTINATION: 8:8:8:8:8:8:8:8/128
NEXT HOP: FE80::8
TYPE: SPF COST: 1 AGE: 31

DESTINATION: 2001:DB8:0:10::/64
NEXT HOP: FE80::4
TYPE: SPF COST: 3 AGE: 32

DESTINATION: 2001:DB8:0:10::2/128
NEXT HOP: FE80::4
TYPE: SPF COST: 2 AGE: 32

DESTINATION: 2001:DB8:0:30::/60
NEXT HOP: FE80::3 (2)

Chapter 6. Routing 331

TYPE: SPF COST: 2 AGE: 31
DESTINATION: 2001:DB8:0:31::/64

NEXT HOP: FE80::3 (2)
TYPE: SPF COST: 2 AGE: 31

DESTINATION: 2001:DB8:0:32::/64
NEXT HOP: FE80::3 (2)
TYPE: SPF COST: 2 AGE: 31

DESTINATION: 2001:DB8:0:33::/64
NEXT HOP: FE80::3 (2)
TYPE: SPF COST: 2 AGE: 32

DESTINATION: 2001:DB8:0:33::3/128
NEXT HOP: FE80::3
TYPE: SPF COST: 1 AGE: 352

DESTINATION: 2001:DB8:0:34::/64
NEXT HOP: FE80::3 (2)
TYPE: SPF COST: 2 AGE: 32

DESTINATION: 2001:DB8:0:38::8/128
NEXT HOP: FE80::8
TYPE: SPF COST: 1 AGE: 31

DESTINATION: 2001:DB8:0:103::6/128
NEXT HOP: FE80::6:7
TYPE: RIP COST: 2 AGE: 0

DESTINATION: 2001:DB8:0:103::7/128
NEXT HOP: ::
TYPE: DIR * COST: 1 AGE: 2209

DESTINATION: 2001:DB8:0:107::5/128
NEXT HOP: FE80::5:7
TYPE: SPF COST: 1 AGE: 2198

DESTINATION: 2001:DB8:0:107::7/128
NEXT HOP: ::
TYPE: SPF * COST: 0 AGE: 2198

DESTINATION: 2001:DB8:0:108::2/128
NEXT HOP: FE80::4
TYPE: SPF COST: 2 AGE: 32

DESTINATION: 2001:DB8:0:108::4/128
NEXT HOP: FE80::4
TYPE: SPF COST: 1 AGE: 32

DESTINATION: 2001:DB8:0:120::/64
NEXT HOP: ::
TYPE: SPF * COST: 1 AGE: 2172

DESTINATION: 2001:DB8:0:120::3/128
NEXT HOP: FE80::3
TYPE: SPF COST: 1 AGE: 352

DESTINATION: 2001:DB8:0:120::4/128
NEXT HOP: FE80::4
TYPE: SPF COST: 1 AGE: 2170

DESTINATION: 2001:DB8:0:120::7/128
NEXT HOP: ::
TYPE: SPF * COST: 0 AGE: 2172

DESTINATION: 2001:DB8:0:120::8/128
NEXT HOP: FE80::8
TYPE: SPF COST: 1 AGE: 31

DESTINATION: 2001:DB8:0:A10::/60
NEXT HOP: FE80::6:7
TYPE: RIP COST: 2 AGE: 0

DESTINATION: 2001:DB8:0:A1B::/64
NEXT HOP: FE80::6:7
TYPE: RIP COST: 2 AGE: 0

DESTINATION: 2001:DB8:0:A1C::/64
NEXT HOP: FE80::6:7
TYPE: RIP COST: 2 AGE: 0

DESTINATION: 2001:DB8:0:A1C::6/128
NEXT HOP: FE80::6:7
TYPE: RIP COST: 2 AGE: 0

0 NETS DELETED, 5 NETS INACTIVE

332 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Displaying the routes to a specific IPv6 destination
To display information about the routes to a specific IPv6 destination, enter the
following command:
D TCPIP,TCPCS4,OMP,RT6TABLE,DEST=2001:0DB8:0:A10::
EZZ7980I IPV6 ROUTE EXPANSION
DESTINATION: 2001:0DB8:0:A10::/60
ROUTE TYPE: RIP
COST: 2
AGE: 352
NEXT HOP(S): FE80::1:2:3:3 (OSAQDIO46)

FE80::1:2:3:4 (OSAQDIO46)

Displaying all of the IPv6 generic information
To display all of the IPv6 generic information, enter the following command:
D TCPIP,TCPCS4,GENERIC6,ALL
EZZ8053I IPV6 GENERIC CONFIGURATION
TRACE6: 2, DEBUG6: 3
IPV6 TRACE DESTINATION: /TMP/OMPROUT6.DBG
STACK AFFINITY: TCPCS4

EZZ8060I IPV6 GENERIC INTERFACES
NAME MTU STATE CONFIGURED
VIPA16 65535 UP YES

Displaying information about IPv6 generic interfaces
To display information about IPv6 generic interfaces (that is, interfaces defined in
the OMPROUTE configuration file using IPv6_INTERFACE statements, or IPv6
interfaces not defined to OMPROUTE but learned from the stack), enter the
following command:
D TCPIP,TCPCS4,OMP,GENERIC6,IFS
EZZ8060I IPV6 GENERIC INTERFACES
NAME MTU STATE CONFIGURED
VIPA16 65535 UP YES

Displaying information about a specific IPv6 generic interface
To display information about a specific IPv6 generic interface, enter the following
command:
D TCPIP,TCPCS4,OMP,GENERIC6,IF,NAME=VIPA16
EZZ8065I IPV6 GEN INTERFACE DETAILS
INTERFACE NAME: VIPA16
INTERFACE ADDRESS: 2001:0DB8:6:6:6:6:6:6
INTERFACE PREFIX: STAT 2001:0DB8:6::/48
MTU: 65535
STATE: UP
CONFIGURED: YES

Sample OMPROUTE configuration files
The following is an example of an OSPF and IPv6 RIP environment (from TCPCS4
in the Figure 37 on page 259).
;**********************************
; OSPF Configuration Statements *
;**********************************
OSPF

RouterID=4.4.4.4;
Area

Area_Number = 0.0.0.0;
Area

Area_Number = 1.1.1.1;

Chapter 6. Routing 333

OSPF_Interface
IP_Address=9.67.108.4
Name = CTC4TO2
Subnet_Mask=255.255.255.0
Attaches_To_Area=0.0.0.0
MTU = 1024
Cost0 = 1;

OSPF_Interface
IP_Address=9.67.106.4
Name = CTC4TO7
Subnet_Mask=255.255.255.0
Attaches_To_Area=1.1.1.1
MTU = 1024
Cost0 = 1;

OSPF_Interface
IP_Address=9.67.105.4
Name = CTC4TO8
Subnet_Mask=255.255.255.0
Attaches_To_Area=1.1.1.1
MTU = 1024
Cost0 = 1;

OSPF_Interface
IP_Address=9.67.101.4
Name = CTC4TO3
Subnet_Mask=255.255.255.0
Attaches_To_Area=1.1.1.1
MTU = 1024
Cost0 = 1;

OSPF_Interface
IP_Address=4.4.4.4
Name = VIPA1A
Subnet_Mask=255.255.255.252
Attaches_To_Area=1.1.1.1
Cost0 = 1;

Virtual_Link
Virtual_Endpoint_RouterID=7.7.7.7
Links_Transit_Area=1.1.1.1;

;************************************
; IPv6 RIP Configuration Statements *
;************************************
IPv6_Accept_RIP_Route

IP_Address=2001:0DB8:0:A1C::1;
IPv6_Accept_RIP_Route

IP_Address=2001:0DB8:0:A1C::2;
IPv6_RIP_Filter=(noreceive,2001:0DB8:0:A1C::/64);
IPv6_RIP_Interface

Name = OSAQDIO46;
IPv6_Default_Route

Name=OSAQDIO46
Next_Hop=FE80::1:2:3:4;

The following is an example of mixed OSPF, IPv4 RIP, and IPv6 RIP environments
(from TCPCS7 in Figure 37 on page 259).
;**********************************
; OSPF Configuration Statements *
;**********************************
OSPF

RouterID=7.7.7.7;
Area

Area_Number = 0.0.0.0;
Area

Area_Number = 1.1.1.1;
AS_Boundary_Routing

Import_Subnet_Routes=YES
Import_RIP_Routes=YES;

OSPF_Interface

334 z/OS V1R12.0 Comm Svr: IP Configuration Guide

IP_Address=9.67.107.7
Name = CTC7TO5
Subnet_Mask=255.255.255.0
Attaches_To_Area=0.0.0.0
MTU = 1024
Cost0 = 1;

OSPF_Interface
IP_Address=9.67.106.7
Name = CTC7TO4
Subnet_Mask=255.255.255.0
Attaches_To_Area=1.1.1.1
MTU = 1024
Cost0 = 1;

OSPF_Interface
IP_Address=9.67.102.7
Name = CTC7TO3
Subnet_Mask=255.255.255.0
Attaches_To_Area=1.1.1.1
MTU = 1024
Cost0 = 1;

OSPF_Interface
IP_Address=9.67.100.7
Name = CTC7TO8
Subnet_Mask=255.255.255.0
Attaches_To_Area=1.1.1.1
MTU = 1024
Cost0 = 1;

OSPF_Interface
IP_Address=9.67.104.7
Name = NBMA7
Subnet_Mask=255.255.255.0
Attaches_To_Area=1.1.1.1
Non_Broadcast=YES
NB_Poll_Interval=180
MTU = 1024
Cost0 = 1
DR_Neighbor=9.67.104.15
No_DR_Neighbor=9.67.104.16
No_DR_Neighbor=9.67.104.25;

OSPF_Interface
IP_Address=7.7.7.7
Name = VIPA1A
Subnet_Mask=255.255.255.252
Attaches_To_Area=1.1.1.1
Cost0 = 1;

Range
IP_Address=9.67.101.0
Subnet_Mask=255.255.255.0
Area_Number=1.1.1.1
Advertise=NO;

Virtual_Link
Virtual_Endpoint_RouterID=4.4.4.4
Links_Transit_Area=1.1.1.1;

;*********************************
; RIP Configuration Statements *
;*********************************
Originate_RIP_Default

Condition=Always;
Accept_RIP_Route

IP_Address=30.1.1.4;
Accept_RIP_Route

IP_Address=30.1.1.8;
Filter=(nosend,10.1.1.0,255.255.255.0);
RIP_Interface

IP_Address=9.67.103.7
Name = CTC7TO6
Subnet_Mask=255.255.255.0

Chapter 6. Routing 335

Receive_Dynamic_Hosts=NO
MTU = 1024
RipV2=YES;

;************************************
; IPv6 RIP Configuration Statements *
;************************************
IPv6_Accept_RIP_Route

IP_Address=2001:0DB8:0:A1B::1;
IPv6_Accept_RIP_Route

IP_Address=2001:0DB8:0:A1B::2;
IPv6_RIP_Filter=(noreceive,2001:0DB8:0:A1B::/64);
IPv6_RIP_Interface

Name = OSAQDIO76;

The following is an example of a pure RIP environment (from TCPCS6 in Figure 37
on page 259).
;*********************************
; RIP Configuration Statements *
;*********************************
RIP_Interface

IP_Address=9.67.103.6
Name = CTC6TO7
Subnet_Mask=255.255.255.0
MTU = 1024
Send_Static_Routes=YES
Send_Host_Routes=YES
RipV2=YES;

Interface
IP_Address=6.6.6.6
Name = VIPA1A
Subnet_Mask=255.255.255.252;

The following is an example of a pure IPv6 OSPF environment (from TCPCS64 in
Figure 38 on page 260).
;*************************************
; IPv6 OSPF Configuration Statements *
;*************************************
IPv6_OSPF

RouterID = 64.64.64.64;
IPv6_Area

Area_Number = 0.0.0.0;
IPv6_Area

Area_Number = 6.6.6.6;
IPv6_OSPF_Interface

Name = NSQDIO4L6
Prefix = 2001:0DB8:0:120::/64
Attaches_to_Area = 6.6.6.6;

IPv6_OSPF_Interface
Name = VIPA1A6
Attaches_to_Area = 6.6.6.6
Cost = 1;

IPv6_OSPF_Interface
Name = MPCPTP4TO2
Attaches_to_Area = 0.0.0.0
Cost = 1;

IPv6_Virtual_Link
Virtual_Endpoint_RouterID = 67.67.67.67
Links_Transit_Area = 6.6.6.6;

336 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Policy-based routing
Policy-based routing enables the TCP/IP stack to make routing decisions that take
into account criteria other than just the destination IP address. The additional
criteria can include job name, source port, destination port, protocol type (TCP or
UDP), source IP address, NetAccess security zone, and multilevel secure
environment security label. Policy-based routing might be useful in the following
sample scenarios:
v You might want to favor high bandwidth links for batch traffic, but for

interactive traffic you prefer low-latency links. If so, you could define policies
such that Telnet traffic is routed over the low-latency links, and FTP traffic is
routed over the high bandwidth links.

v You could define a policy to ensure that traffic that is tagged with a security
label and zone is routed to a secured network over an appropriate outbound
interface.

v You might want to control the links used by Enterprise Extender traffic to keep
that traffic from being impacted by other IP traffic loads.

Restrictions:

v Policy-based routing applies to only IPv4 TCP and UDP traffic that originates at
the TCP/IP stack. Traffic using protocols other than TCP and UDP, all traffic
being forwarded by the TCP/IP stack, and all IPv6 traffic is always routed using
the main route table, even when policy-based routing is in use.

v If Common INET (CINET) is used to run multiple z/OS Communications Server
TCP/IP stacks concurrently, CINET has no knowledge of the policy-based route
tables used by those TCP/IP stacks. CINET has knowledge only of the routes in
each TCP/IP stack's main route table. Avoid using policy-based routing in a
CINET environment, unless at least one of the following is true:
– All applications establish affinity with a particular TCP/IP stack.
– The route destinations in each TCP/IP stack route table are mutually

exclusive with the route destinations on the other TCP/IP stacks, including
the default route.

Options for configuring policy-based routing
Policy-based routing is configured using a set of configuration statements and
parameters coded into a flat file, which is parsed by the Policy Agent to establish
the policy-based routing for each TCP/IP stack. In a complex environment, this file
can become large. For this reason, there are two alternatives for creating the Policy
Agent files.

Option 1: Use the IBM Configuration Assistant for z/OS
Communications Server
The IBM Configuration Assistant for z/OS Communications Server, an optional
GUI-based tool, provides a guided interface for configuring TCP/IP policy-based
networking functions. You can use the Configuration Assistant to generate the
Policy Agent files.

The Configuration Assistant is available in either of the following forms:
v As a task in IBM z/OS Management Facility (z/OSMF)

z/OSMF provides a Web browser interface for a variety of z/OS system
management functions. When you invoke the Configuration Assistant in
z/OSMF, the Configuration Assistant runs natively in the z/OS system and you

Chapter 6. Routing 337

|

|
|

|

can access it through a Web browser. To use the Configuration Assistant in
z/OSMF, your system must be z/OS V1R11 or later.

v As a standalone application that you can run on your workstation
You can download the Configuration Assistant from the z/OS Communications
Server product support Web page.

You can use the Configuration Assistant on your workstation and then later
migrate your work to the z/OSMF environment. For information about
transferring Configuation Assistant data to z/OSMF, see IBM z/OS Management
Facility Configuration Guide.

Through a series of wizards and online help panels, you can use the Configuration
Assistant to create policy-based routing configuration files for any number of z/OS
images with any number of TCP/IP stacks per image.

With the Configuration Assistant you use traffic descriptors, reusable objects that
define traffic by its ports, protocol, security zone, security label, or sending
application job name. The Configuration Assistant comes with a number of
IBM-supplied traffic descriptors that are easily applied, or you can use the
IBM-supplied definitions as the basis for your own set of reusable objects. For each
TCP/IP stack, you then create a set of policy-based route tables and routing rules,
which map traffic descriptors and IP addresses to the policy-based route tables to
be used when making routing decisions for that traffic.

The Configuration Assistant can dramatically reduce the amount of time that is
required to create policy-based routing files, contributing to ease of configuration
and maintenance. Using the GUI ensures that you have a consistent and easily
manageable interface for implementing policy-based routing.

This information primarily describes option 2, manual configuration. However, if
you are using the Configuration Assistant, reading this information will help you
understand policy-based routing concepts and the relationship between Policy
Agent and policy-based routing.

Option 2: Manual configuration
You can manually create the policy-based routing configuration files by coding all
the required statements in a z/OS UNIX file or MVS data set. This information
describes the procedure for creating a routing policy by manually creating and
editing the configuration files. For details about the routing policy statements, see
z/OS Communications Server: IP Configuration Reference.

Specifying the routing configuration file based on Policy Agent
role
The Policy Agent can act as a policy server, a policy client, or neither. For more
information about these different roles, see “Policy types and infrastructure
overview” on page 829. Regardless of which option you use to configure Routing
policies, the resulting configuration files need to be specified using different
statements, depending on the role of the Policy Agent.
v If you are using the Policy Agent as a policy client that retrieves Routing policies

from the policy server, specify the configuration files using the
DynamicConfigPolicyLoad statement on the policy server.

v If you are using the Policy Agent as a policy client, but the policy client does not
retrieve Routing policies from the policy server, specify the configuration files
using the RoutingConfig statement on the policy client.

338 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|

|
|
|
|

|
|

|

|

|

|

http://www.ibm.com/software/network/commserver/zos/support/
http://www.ibm.com/software/network/commserver/zos/support/

v If you are not using a policy client and policy server environment, specify the
configuration files using the RoutingConfig statement on the single Policy Agent.

When specifying configuration files, keep in mind where the files should exist,
based on the role of the Policy Agent.

Routing policy configuration
Routing policy is provided to the stack by the Policy Agent. The Policy Agent main
configuration file contains a TcpImage statement for each stack that is to receive
policy, and can optionally contain a CommonRoutingConfig statement that
identifies a local shared routing policy file. The TcpImage statement identifies the
z/OS UNIX file or MVS data set that contains policy for that stack. This policy file
can contain a RoutingConfig statement to identify the z/OS UNIX file or MVS data
set that contains the local routing policy. The RoutingConfig statement is required
for each stack that is to receive routing policy. If both a RoutingConfig statement
and a CommonRoutingConfig statement are defined, the specified
CommonRoutingConfig file is processed before the RoutingConfig policy file
specified for that stack.

On the policy server, use the DynamicConfigPolicyLoad statement to specify the
remote routing policies. On the policy client, use the PolicyServer statement to
retrieve the remote routing policies from the policy server.

In the routing policy file, routing rules define sets of conditions that are compared
when a route is being selected to send IPv4 TCP or UDP traffic that originates in
the TCP/IP stack. If a rule match is found, an appropriate route for the traffic is
selected based on the route tables that are specified in the action associated with
the rule.

Routing rules
A RoutingRule statement consists of a set of conditions that are compared against
the traffic that is being sent. When a match is found, policy lookup stops and the
traffic is assigned the actions associated with the rule. The rule conditions are as
follows:

IPSourceAddr
Source IP address or addresses. The source IP address for a TCP outbound
connection, or for a UDP outbound packet, can be influenced by a number
of configuration and application options. For the hierarchy of ways that the
source IP address of an outbound packet is determined, see “Source IP
address selection” on page 218. For the following source IP address
selection methods, a route lookup is needed to determine the source IP
address.
v SOURCEVIPA: Static VIPA address from the HOME list (IPv4 interface

defined with the LINK statement) or from the
SOURCEVIPAINTERFACE parameter (IPv4 interface defined with the
INTERFACE statement)

v HOME IP address of the interface over which the packet is sent

The IpSourceAddr condition should not be used as a selector for traffic
that relies on these methods to select its source IP address. At the time that
the route lookup is performed, the source IP address has not yet been
selected.

IPDestAddr
Destination IP address or addresses.

Chapter 6. Routing 339

SourcePortRange
Source port or ports.

DestinationPortRange
Destination port or ports.

Protocol
TCP or UDP.

Jobname
Job name of the sending application or wildcard job name.

SecurityZone
NetAccess security zone that outbound traffic must match. The outbound
traffic's destination IP address is used to determine the NetAccess security
zone in the NetAccess table defined in the TCP/IP profile. For more
information about network access control and the NETACCESS TCP/IP
profile statement, see z/OS Communications Server: IP Configuration Reference.

SecurityLabel
Multilevel secure networking security label of the NetAccess security zone
that outbound traffic must match. The outbound traffic's destination IP
address is used to determine the packet's NetAccess security zone in the
NetAccess table defined in the TCP/IP profile. The security label is the
label associated with the NetAccess zone. For more information, see
Chapter 4, “Preparing for TCP/IP networking in a multilevel secure
environment,” on page 153.

If a condition is not specified, that condition is not considered when comparing the
rule and the traffic for a match. You can specify multiple values for the conditions,
either directly in the condition or as a referenced group.

Each RoutingRule statement can also have a priority. Priority values can be
integers in the range 1 – 2 000 000 000; 2 000 000 000 is the highest priority. When
assigning priorities, you should skip some values to accommodate future rule
insertion between existing rules.

If traffic does not map to any of the active routing rules, the IP layer routes traffic
by searching the main route table.

Tip: If traffic can map to more than one rule, always use priority and leave priority
space between rules.

A RoutingRule statement must reference an action using the RoutingActionRef
parameter. The RoutingActionRef parameter includes the name of a globally
defined RoutingAction statement.

Routing actions
The RoutingAction statement must specify a minimum of one policy-based route
table using the RouteTableRef parameter, or it must specify UseMainRouteTable
YES. Specify UseMainRouteTable YES and no RouteTableRef parameters if you
want traffic that matches the corresponding RoutingRule statement to be routed
using only the main route table.

A maximum of eight RouteTableRef parameters can be specified on a
RoutingAction statement. Each RouteTableRef parameter includes the name of a
globally defined RouteTable statement. The order in which the RouteTableRef
parameters are specified on the RoutingAction statement determines the order in
which the TCP/IP stack uses the route tables when making routing decisions. The

340 z/OS V1R12.0 Comm Svr: IP Configuration Guide

stack searches the first table for a route that can be used to reach the destination of
the traffic. If no usable route (host, subnet, network, or default) exists in that route
table, the next table is searched. This continues until a usable route to the
destination is found, or all specified tables are exhausted. Specify the
UseMainRouteTable parameter to indicate whether the main route table should
also be searched when no usable route is located in any of the specified
policy-based route tables. For a description of the algorithm used by the IP layer to
search a route table for a usable route to a destination, see “Route selection
algorithm” on page 258.

Performance guideline: There is a performance cost for each policy-based route
table that is searched on a route lookup. Minimize the number of RouteTableRef
parameters that you specify on a RoutingAction statement.

Routing tables
The RouteTable statement can include the following:
v A set of static routes (both replaceable and non-replaceable static routes are

supported)
v A set of dynamic routing parameters, used to control the scope of dynamic

routes computed by OMPROUTE
v A dynamic XCF routes indicator

A static route is included using the Route parameter of the RouteTable statement.
A dynamic routing parameter is included using the DynamicRoutingParms
parameter of the RouteTable statement. A dynamic routing parameter consists of
an interface, and optionally a next-hop router. OMPROUTE adds dynamic routes
to a policy-based route table only if that interface is included in the dynamic
routing parameters for that table. If a next-hop router is specified with an interface,
dynamic indirect routes that use the specified interface are added only if they also
use the specified next-hop router.

If only static routes are included in a RouteTable statement, the static routes are
added to the policy-based route table, but no dynamic routes are added to the
table by OMPROUTE. If only dynamic routing parameters are included, dynamic
routes are added to the policy-based route table by OMPROUTE, but no static
routes are added to the table. If both static routes and dynamic routing parameters
are included, the static routes are added to the policy-based route table and
OMPROUTE updates the table with the appropriate dynamic routes.

A dynamic route that is added to a policy-based route table is the best route
known by OMPROUTE to that destination. The calculation of the best route is
based on the current network topology. The best route might be a route that was
learned from the OSPF protocol or from the RIP protocol, depending on the
OMPROUTE configuration. For a description of these protocols, see “IPv4 dynamic
routing using OMPROUTE” on page 267. When computing the best routes for a
policy-based route table, OMPROUTE considers only routes that adhere to the
dynamic routing parameters configured on the RouteTable statement as described.

Performance guideline: Each policy-based route table that is configured for
dynamic routing adds additional processing cost to OMPROUTE. Do not configure
duplicate route tables, and do not configure a large number of policy-based route
tables that use dynamic routing.

If DynamicXCFRoutes Yes is specified on the RouteTable statement and IPCONFIG
DYNAMICXCF is specified in the TCP/IP profile, direct host routes to dynamic

Chapter 6. Routing 341

XCF addresses on other TCP/IP stacks are added to the route table when the
dynamic XCF links to those stacks are active. These are the same routes that are
automatically generated in the main route table when dynamic XCF links are
active. For information about the dynamic XCF function and the definitions that
are automatically generated when IPCONFIG DYNAMICXCF is specified in the
TCP/IP profile, see “Dynamic XCF” on page 434.

After a new routing policy is installed in the TCP/IP stack, traffic is mapped using
the new policy, even for existing connections.

Getting started with policy-based routing
Assume you have a TCP application that has the name SECBATCH running on a
z/OS TCP/IP stack. Because this application handles sensitive data sent as batch
traffic, you want the traffic to be sent only over secure networks and you want to
prefer high bandwidth links over lower bandwidth links. The application creates a
TCP socket bound to IP address INADDR_ANY and port 7000.

For the tasks that must be completed to configure the local routing policy to
control routing decisions made for traffic sent by the application, see Table 18.
Assuming that the link names specified on the routing policy statements are
already defined to TCP/IP and OMPROUTE, you do not need to perform
additional configuration in the TCP/IP profile or in the OMPROUTE configuration
file to enable policy-based routing.

Table 18. Configuring policy-based routing

Task Specification

Determine routing requirements Determine your requirements for the TCP/IP stack to make routing
decisions based on more than just destination IP address. The
additional criteria can include job name, source port, destination port,
protocol type (TCP or UDP), source IP address, NetAccess security
zone, and security label.

Create Policy Agent files 1. Create a Policy Agent main configuration file containing a TcpImage
statement for the stack.

2. Create a Policy Agent image configuration file for the stack.

3. If routing policies are to be retrieved from the policy server, create
image-specific routing configuration files, and optionally, common
routing configuration files, on the policy server.

342 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Table 18. Configuring policy-based routing (continued)

Task Specification

Add routing configuration 1. For local Routing policies, add a RoutingConfig statement to the
Policy Agent image configuration file, identifying the RoutingConfig
policy file location:

RoutingConfig configFilepath

2. For remote Routing policies, add a PolicyServer statement to the
policy client image configuration file:

PolicyServer
{

ClientName name
PolicyType Routing
{

...
}
...

}

Add a DynamicConfigPolicyLoad statement to the policy server
main configuration file:

DynamicConfigPolicyLoad clientname
{

PolicyType Routing
{

PolicyLoad configFilepath
}
...

}

Add statements to the Routing policy file
to configure the policy-based route tables
to be used by the TCP/IP stack for
routing the application traffic.

Table SecFast contains a replaceable static
default route. The dynamic routing
parameters for SecFast direct OMPROUTE
to compute routes that use only link
SECHIGH2, with any first hop, and link
SECHIGH1, with a first hop of 9.67.101.3.

Table SecSlow contains a replaceable static
default route. The dynamic routing
parameters for SecSlow direct
OMPROUTE to only compute routes that
use link SECLOW2, with a first hop of
9.67.104.3, and link SECLOW1, with a first
hop of either 9.67.106.7 or 9.67.106.15.

Add the following Routing policy statements to the configFilepath file:
RouteTable SecFast # Secure link, high bandwidth
{

Static Routes:
Destination Subnet Mask First Hop Link Name Packet Size Options
Route DEFAULT 9.67.101.3 SECHIGH1 MTU 2000 Replaceable
#
Dynamic Routing Parameters:
Link Name First Hop
DynamicRoutingParms SECHIGH2
DynamicRoutingParms SECHIGH1 9.67.101.3

}

RouteTable SecSlow # Secure link, low bandwidth
{

Static Routes:
Destination Subnet Mask First Hop Link Name Packet Size Options
Route DEFAULT 9.67.106.7 SECLOW1 MTU 2000 Replaceable
#
Dynamic Routing Parameters:
Link Name First Hop
DynamicRoutingParms SECLOW2 9.67.104.3
DynamicRoutingParms SECLOW1 9.67.106.7
DynamicRoutingParms SECLOW1 9.67.106.15

}

Chapter 6. Routing 343

Table 18. Configuring policy-based routing (continued)

Task Specification

Add statements to the Routing policy file
to ensure that the application traffic is sent
over only secure links, favoring high
bandwidth links over lower bandwidth
links.

Add the following Routing policy statements to the configFilepath file:

RoutingRule SecBatchRule
{

TrafficDescriptor
{

Protocol TCP
SourcePortRange 7000
Jobname SECBATCH

}
RoutingActionRef SecBatchAction

}
RoutingAction SecBatchAction
{

UseMainRouteTable No
RouteTableRef SecFast
RouteTableRef SecSlow

}

Start Policy Agent You know you are done when the Routing policies are installed to the
TCP/IP stack and the following console message is displayed:
EZZ8771I PAGENT CONFIG POLICY PROCESSING COMPLETE FOR image : ROUTING

Considerations for using policy-based routing with IP security
Policy-based routing allows traffic described in a routing rule to be routed using
one or more route tables. When IP security is active on a TCP/IP stack that is
using policy-based routing, it is important to understand how the two functions
interact. On a stack with IP security active, traffic can be encapsulated in an AH,
ESP, or UDP-encapsulated ESP header. An additional IP header can be added if the
encapsulated traffic is being sent to a security gateway (that is, the remote tunnel
endpoint is not the same as the remote data endpoint). A matching routing rule is
selected based on the characteristics of the original non-encapsulated traffic. The
route tables associated with the matching routing rule and action are used to route
the encapsulated traffic.

For example, assume the following configuration:
v An IPSec filter rule, FilterRule1, is configured for traffic with source address

9.1.1.1 and destination address 167.0.0.0/8 to have IPSec protection. Traffic is
encapsulated and sent to router 9.2.2.2, the security gateway.

v A routing rule, FTPRULE, is configured for FTP traffic with source address
9.1.1.1. The associated action specifies that route table FTPRTES should be used
to route traffic and that the main route table should not be searched.

Given this configuration, the following processing is performed for FTP traffic sent
from IP address 9.1.1.1 to IP address 167.1.1.1:
1. The FTP traffic matches routing rule FTPRULE, and a route is found in route

table FTPRTES that is used to route to destination 167.1.1.1.
2. The FTP traffic matches IPSec filter rule FilterRule1.
3. The FTP traffic is encapsulated and a new IP header is added with destination

address 9.2.2.2.
4. The encapsulated packet is routed based on the routes defined in route table

FTPRTES. To successfully send the traffic, route table FTPRTES must also
contain a route that is used to route to destination 9.2.2.2. Otherwise, the traffic

344 z/OS V1R12.0 Comm Svr: IP Configuration Guide

would be sent using the route that was found to destination 167.1.1.1. The
success of the traffic depends on network connectivity.

Requirement: When a routing rule applies to traffic that will be IPSec encapsulated
and sent to a security gateway, the route tables associated with the routing rule
and action must contain a route that can be used to reach the security gateway, as
well as a route that can be used to reach the original destination.

For more information about IP security, see Chapter 19, “IP security,” on page 923.

Considerations for mixed routing environments
Read this topic if you will be using any combination of static, dynamic, and
policy-based routing on a single TCP/IP stack. These considerations will help you
understand how these different types of routing interact, and how to configure
them to get the results that you want.

Using static routing with OMPROUTE
You should not use non-replaceable static routes with OMPROUTE because this
prevents those routes from being dynamically updated in response to network
topology changes. An exception is when routes need to be defined to destinations
that, for some reason, will not be learned dynamically through the routing
protocol. If IPv4 static routes are required, use the BEGINROUTES or GATEWAY
statement in PROFILE.TCPIP to define them. If IPv6 static routes are required, use
the BEGINROUTES statement in PROFILE.TCPIP to define them.

TCP/IP treats static routes that are defined as replaceable on the BEGINROUTES
statement as last-resort routes. If a dynamic route is learned for the destination that
was specified in a replaceable static route, the dynamic route replaces the static
route in the route table. Additionally, if a replaceable static route is replaced with a
dynamic route, TCP/IP always retains knowledge of the replaceable static route
and re-installs it if the destination becomes unreachable using dynamic routes.
TCP/IP does not need to relearn replaceable static routes that have been replaced.
For this reason, replaceable static routes can be used with OMPROUTE as backup
routes to use if nothing is found dynamically.

Another situation in which static routes might be required is when multiple,
equal-cost routes to a destination are needed and the RIP or IPv6 RIP routing
protocol is used. Static routes might be required in this case because, with the
exception of directly attached resources, the RIP and IPv6 RIP protocols do not
create multiple, equal-cost routes to a destination. In other words, if multiple
adjacent routers are advertising through RIP or IPv6 RIP that they can reach the
same destination, OMPROUTE adds a route to the TCP/IP route table through
only one of those adjacent routers. If more than one of these routes must exist,
they need to be statically configured in PROFILE.TCPIP (using the BEGINROUTES
or GATEWAY statement for IPv4 routes and the BEGINROUTES statement for IPv6
routes). For example, using Figure 37 on page 259, this would be necessary if you
wanted host TCPCS4 to have two routes to the IPv6 prefix 2001:DB8:0:A10::/60
(one through router A and one through router B).

If a TCP/IP stack has multiple interfaces to a directly attached network and you
want to use one interface for input packets and one for output packets (traffic
splitting), you can use static routes. To use traffic splitting, you can define a static
route for one and only one interface, forcing all output packets to use that
interface. The other routers on the directly attached network have to be defined

Chapter 6. Routing 345

with a similar static route, but for the other interface. Although this is the easiest
way to implement traffic splitting, if one of the interfaces fails, a host might
become unreachable even though the other interface remains active.

Tip: A more robust way of accomplishing traffic splitting is to use dynamic routes
and make one route preferred over the other through the configured interface
costs. For more information, see step 6 on page 303.

The BSDROUTINGPARMS statement in PROFILE.TCPIP is not used when the
OMPROUTE routing daemon is used. Instead, the IPv4 interface characteristics,
including subnet mask, are defined in the OMPROUTE configuration file.

Requirement: If you are using NCPROUTE with OMPROUTE, the
BSDROUTINGPARMS statement is required to route Transport PDUs prior to
OMPROUTE activation. Because the BSDROUTINGPARMS parameters are
overridden by the IPv4 interface parameters defined in the OMPROUTE
configuration, ensure that the interface parameters for the SNALINK or IP/CDLC
channel connections are identical in the BSDROUTINGPARMS statement and the
OMPROUTE configuration file.

Using IPv6 static routing with router advertisements
You should not use non-replaceable static routes with IPv6 router discovery, when
those routes are to destinations that will be learned through received router
advertisements. Defining these non-replaceable static routes prevents them from
being dynamically updated in response to network topology changes. Examples of
routes that are not learned through router advertisements are routes for which the
destination address is a specific host address.

TCP/IP treats replaceable static routes as last-resort routes. These routes can be
replaced by dynamic (router discovery) routes. In addition, if a replaceable static
route is replaced with a dynamic route, TCP/IP always retains knowledge of the
replaceable static route and can re-install it if the destination becomes unreachable
using dynamic routes. TCP/IP does not need to relearn replaceable static routes
that have been replaced. For this reason, replaceable static routes can be used with
IPv6 router discovery as backup routes, to be used if nothing is learned
dynamically.

Using policy-based routing with static or dynamic routing
If a policy-based route table is configured with both static routes and dynamic
routing parameters, review the considerations in “Using static routing with
OMPROUTE” on page 345. The same considerations apply with the following
exceptions:
v References made to IPv6 in that topic do not apply, because policy-based routing

is supported for IPv4 only.
v References made to static routes in that topic refer to static routes configured

using the Route parameter on the RouteTable policy statement.

When policy-based routing is used, policies are defined that instruct the TCP/IP
stack to use specific policy-based route tables when making routing decisions,
based on the traffic being routed. The main route table is used only when one of
the following are true:
v The traffic for which a route is being selected does not match any active

policy-based routing rule.

346 z/OS V1R12.0 Comm Svr: IP Configuration Guide

v The traffic for which a route is being selected matches an active policy-based
routing rule. However, no usable route exists in the route tables specified by
policy to be used for the traffic, and the policy indicates that the main route
table is to be used when this occurs.

Verifying static, dynamic, and policy-based routing
v If OMPROUTE is used for the OSPF protocol only and AUTOLOG is not

configured correctly (see step 2 on page 278), OMPROUTE will be periodically
restarted and the following messages are displayed:
$HASP100 OMPROUTE ON STCINRDR
$HASP373 OMPROUTE STARTED
IEF403I OMPROUT1 - STARTED

OMPROUT1 OMPROUTE BPXBATCH 0000
EZZ7800I OMPROUTE STARTING
EZZ7872I OMPROUTE FOUND ANOTHER ROUTING APPLICATION ALREADY ACTIVE
EZZ8074I OMPROUTE PROCESSING ERROR
EZZ7805I OMPROUTE EXITING ABNORMALLY - RC(11)
OMPROUT1 *OMVSEX BPXPRECP 0011
IEF404I OMPROUT1 - ENDED
$HASP395 OMPROUT1 ENDED

v If a configuration statement in the OMPROUTE configuration file has a missing
semicolon, the syntax checker might issue the following message:
EZZ7830I SYNTAX ERROR AT LINE 22 OF OMPROUTE CONFIGURATION FILE
PROCESSING END OF FILE

v If policy-based routing is in use, see the Netstat ALL/-A command report to
determine the policy-based routing information in use by a TCP connection or
UDP socket. If the value Yes is displayed for RoutingPolicy, RoutingTableName
and RoutingRuleName reflect the last traffic attempted to be sent by the
displayed TCP connection or UDP socket. RoutingRuleName displays the name
of the routing policy rule that was last mapped to the traffic sent by the
displayed TCP connection or UDP socket. RoutingTableName displays the name
of the route table that was used to select the route for the last traffic sent by the
displayed TCP connection or UDP socket. This can be the name of a
policy-based route table associated with the displayed RoutingPolicyRule,
EZBMAIN if the main route table was used, or *NONE* if a route was not
found.
If no traffic has been sent or the last traffic sent did not map to a configured
routing rule, the value No is displayed for RoutingPolicy. RoutingTableName
and RoutingRuleName are not included in the display when RoutingPolicy has
the value No.

Verifying connections with Netstat, Ping, and Traceroute
The interfaces were verified with the instructions in Chapter 2, “IP configuration
overview,” on page 11. The first thing to verify is that the devices and interfaces
are started. In the case of point-to-point links like the CTCs in TCPCS4, the
following message is written to the z/OS console when the device starts:
EZZ4313I INITIALIZATION COMPLETE FOR DEVICE CTCE02

In the case of IPv6 interfaces like OSAQDIO46 in TCPCS4, the following message
is written to the z/OS console when the interface starts:
EZZ4340I INITIALIZATION COMPLETE FOR INTERFACE OSAQDIO46

The same information can be determined using the Netstat DEvlinks/-d command.
Following is a portion of the output of the Netstat DEvlinks/-d command with the

Chapter 6. Routing 347

CTCE02 device shown as ready. The Netstat DEvlinks/-d command can be issued
on TCPCS4 and TCPCS7 to verify that the devices on both systems are ready.
DevName: CTCE02 DevType: CTC DevNum: 0E00

DevStatus: Ready
LnkName: CTC4TO7 LnkType: CTC LnkStatus: Ready

NetNum: 0 QueSize: n/a
ActMtu: 32760

Routing Parameters:
MTU Size: 01500 Metric: 01
DestAddr: 0.0.0.0 SubnetMask: 255.255.255.0

Multicast Specific:
Multicast Capability: Yes

GROUP REFCNT
----- ------
224.0.0.5 0000000001
224.0.0.1 0000000001
Link Statistics:

BytesIn = 488
Inbound Packets = 0
Inbound Packets In Error = 0
Inbound Packets Discarded = 0
Inbound Packets With No Protocol = 0
BytesOut = 1092
Outbound Packets = 0
Outbound Packets In Error = 0
Outbound Packets Discarded = 0

Following is a portion of the output of the Netstat DEvlinks/-d command with an
IPv6 interface (OSAQDIO46) shown as ready.
IntfName: OSAQDIO46 IntfType: IPAQENET6 IntfStatus: Ready

NetNum: n/a QueSize: 0 Speed: 0000001000
MacAddress: 0002559A3F65
DupAddrDet: 1
CfgRouter: Non ActRouter: Non
CfgMtu: None ActMtu: 8992

Multicast Specific:
Multicast Capability: Yes
RefCnt Group
------ -----
0000000001 ff02::1:ff03:1
0000000002 ff02::1

Interface Statistics:
BytesIn = 592
Inbound Packets = 0
Inbound Packets In Error = 0
Inbound Packets Discarded = 0
Inbound Packets With No Protocol = 0
BytesOut = 1008
Outbound Packets = 0
Outbound Packets In Error = 0
Outbound Packets Discarded = 0

If the devices do not have a LnkStatus or IntfStatus of Ready, this must be resolved
before continuing. There are several things that might cause the LnkStatus or
IntfStatus to not be ready. For example, the device might not be defined to z/OS
correctly, the device might not be defined in PROFILE.TCPIP correctly, and so on.

You can use the PING command to verify indirect routes exist to others hosts
within the network .
ping 9.67.107.7
CS V1R6: Pinging host 9.67.107.7
Ping #1 response took 0.048 seconds.
READY

348 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|

ping 2001:0db8:0:a1b:2:559a:3f65:3
CS V1R6: Pinging host 2001:0db8:0:a1b:2:559a:3f65:3
Ping #1 response took 0.051 seconds.
READY

Use the Traceroute command to verify that the correct route is being taken for each
indirectly attached host:
tracerte 9.67.107.5
CS V1R6: Traceroute to 9.67.107.5 (9.67.107.5)
1 9.67.106.7 (9.67.106.7) 40 ms 7 ms 6 ms
2 9.67.107.5 (9.67.107.5) 9 ms 8 ms 9 ms
READY

Following is an IPv6 example for indirectly attached hosts:
tracerte 2001:0db8:0:a1c:2:36a4:b39a:7
CS V1R6: Traceroute to 2001:0db8:0:a1c:2:36a4:b39a:7
at IPv6 address: 2001:0db8:0:a1c:2:36a4:b39a:7
1 fe80::1:2:3:4
(fe80::1:2:3:4) 13 ms 25 ms 40 ms
2 2001:0db8:0:a1c:2:36a4:b39a:7
(2001:0db8:0:a1c:2:36a4:b39a:7) 29 ms 263 ms 196 ms

Chapter 6. Routing 349

350 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Chapter 7. Virtual IP Addressing

This topic contains information about the following subtopics:
v Terminology
v Introduction to VIPA
v Moving VIPA (Upon outage of TCP/IP)
v Static VIPAs, dynamic VIPAs (DVIPAs), and distributed dynamic VIPAs
v Using static VIPAs
v Using dynamic VIPAs (DVIPAs)
v Choosing which form of dynamic VIPA to use
v Configuring distributed DVIPAs — sysplex distributor
v Resolution of DVIPA conflicts
v IPv6 considerations
v Other considerations
v Example of configuring dynamic and distributed VIPAs
v Verifying the DVIPAs in a sysplex
v Verifying sysplex distributor workload
v DVIPAs and routing protocols

Note: This information applies to both IPv4 and IPv6, unless otherwise noted.

Terminology
Virtual IP Address (VIPA)

A VIPA is a generic term that refers to an internet address on a z/OS host
that is not associated with a physical adapter. There are two types of
VIPAs:
v A Static VIPA cannot be changed except through a VARY

TCPIP,,OBEYFILE operator command.
v A dynamic VIPA (DVIPA) can move to other TCP/IP stack members in a

sysplex or it can be activated by an application program or by a
supplied utility. Dynamic VIPAs are used to implement sysplex
distributor as described in “Considerations for VIPA” on page 61.

Distributed DVIPA
A distributed DVIPA, which is a special type of DVIPA, can distribute
connections within a sysplex.

Dynamic routing
VIPAs are designed to interoperate with a dynamic routing daemon.
Therefore, it is highly recommended that a routing daemon be used on a
z/OS host that uses VIPAs.

Introduction to VIPA
Traditionally, an IP address is associated with each end of a physical link (or each
point of access to a shared-medium LAN), and the IP addresses are unique across
the entire visible network, which can be the Internet or a closed intranet. The
majority of IP hosts have a single point of attachment to the network, but some

© Copyright IBM Corp. 2000, 2011 351

hosts (particularly large server hosts) have more than one link into the network. A
TCP/IP host with multiple points of attachment also has multiple IP addresses,
one for each link.

Within the IP routing network, failure of any intermediate link or adapter disrupts
end user service only if there is not an alternate path through the routing network.
Routers can route IP traffic around failures of intermediate links in such a way that
the failures are not visible to the end applications or IP hosts. However, because an
IP packet is routed based on ultimate destination IP address, if the adapter or link
associated with the destination IP address fails, there is no way for the IP routing
network to provide an alternate path to the stack and application. Endpoint (source
or destination) IP adapters and links thus constitute single points of failure. While
this might be acceptable for a client host, where only a single user will be cut off
from service, a server IP link might serve hundreds or thousands of clients, all of
whose services would be disrupted by a failure of the server link.

The virtual IP address (VIPA) removes the adapter as a single point of failure by
providing an IP address that is associated with a stack without associating it with
a specific physical network attachment. Because the virtual device exists only in
software, it is always active and never experiences a physical failure. A VIPA has
no single physical network attachment associated with it. Also, the TCP/IP stack
does not maintain interface counters for VIPA interfaces (VIRTUAL links).

To the routing network, a VIPA appears to be a host address indirectly attached to
the z/OS. When a packet with a VIPA destination reaches the stack, the IP layer
recognizes the address and passes it to the protocol layer in the stack.

The failure of the physical interface can be extended to the failure of the TCP/IP
address space, the entire z/OS, or for planned outages. A VIPA just needs to move
to a backup stack, and the routes to the VIPA need to be updated. Then clients can
transparently connect to the backup stack. This process is known as VIPA takeover.

VIPA takeover improved with the introduction of dynamic virtual IP address
(DVIPA) and distributed dynamic virtual IP address (distributed DVIPA). The
DVIPA function improves VIPA takeover by allowing a system programmer to plan
for system outages and provide for backup systems to take over without operator
intervention or external automation. The distributed DVIPA function allows the
connections for a single DVIPA to be serviced by applications on several stacks
listed in the configuration statement (the distribution list). This adds the benefit of
limiting the scope of an application or stack failure, while also providing enhanced
work load balancing.

In general, z/OS configured with VIPA provides the following advantages:
v Automatic and transparent recovery from device and adapter failure.

When a device (for example, a channel-attached router) or adapter (for example,
an OSA-Express adapter) fails, if there is another device or link that provides the
alternate paths to the destination:
– IP will detect the failure, find an alternate path for each network, and route

outbound traffic to hosts and routers on those networks via alternate paths.
– Inbound and outbound traffic will not need to reestablish the active TCP

connections that were using the failed device.
– For connection requests originating at a z/OS TCP/IP stack, tolerance of

device and adapter failures can be achieved by using source VIPA addressing.

352 z/OS V1R12.0 Comm Svr: IP Configuration Guide

v Recovery from z/OS TCP/IP stack failure (where an alternate z/OS TCP/IP
stack has the necessary redundancy).
Assuming that an alternate stack is installed to serve as a backup, the use of
VIPAs enables the backup stack to activate the VIPA address of the failed stack.
Connections on the failed primary stack will be disrupted but they can be
reestablished on the backup using the same IP address as the destination. In
addition, the temporarily reassigned VIPA address can be restored to the
primary stack after the cause of failure has been removed.

v Limited scope of a stack or application failure.
If a DVIPA is distributed among several stacks, the failure of only one stack
affects only the subset of clients connected to that stack. If the distributing stack
experiences the failure, a backup assumes control of the distribution and
maintains all existing connections.

v Enhanced workload management through distribution of connection requests.
With a single DVIPA being serviced by multiple stacks, connection requests and
associated workloads can be spread across multiple z/OS images, according to
Workload Manager (WLM) and Service Level Agreement policies (for example,
QOS) or according to configured active connection distribution goals.

v Allows the non-disruptive movement of an application server to another stack
so that workload can be drained from a system in preparation for a planned
outage.

Moving a VIPA (for TCP/IP outage)
While a VIPA provides non-disruptive rerouting of IP data during failure of a
physical interface, termination of the stack or the associated z/OS (including
planned outages) will disrupt connections or UDP sessions to applications on the
terminated stack. While failure of the TCP connection or UDP session will be
visible to the clients, the duration of the outage is determined by how long the
client application is unable to reconnect to an appropriate server application.
Because it is common in large enterprises to have multiple instances of an
application residing on different z/OS images, if the VIPA address can be moved
to another stack that supports the application, the clients can reconnect and the
perceived outage will be over.

An IP address associated with a particular physical device is unavailable until the
owning stack is restarted; however, a VIPA is not associated with any particular
physical interface. If termination of a stack is detected and a suitable application
already is active on another stack, the VIPA can be moved. Connections on the
terminated stack will be disrupted, but they can be reestablished on the backup
stack using the original VIPA.

Movement of a static VIPA to a backup stack can be accomplished by using VARY
TCPIP,,OBEYFILE commands on the backup. The data set specified on the
command must contain an appropriate set of DEVICE, LINK, HOME, and
optionally, BSDROUTINGPARMS statements for IPv4 static VIPAs or INTERFACE
statements for IPv6 static VIPAs. If OMPROUTE is used as the routing daemon, an
appropriate interface statement is needed in the OMPROUTE configuration file. If
the TCP/IP configuration file with the statements defining the VIPA is created in
advance, the transfer can be accomplished via automation. This procedure is
documented in z/OS Communications Server: IP Configuration Reference. Movement of
a DVIPA, on the other hand, can be accomplished by configuring a stack to backup
a specific DVIPA that is defined on another stack. In this case, failure of the
defining stack causes the DVIPA to move without operator intervention or extra

Chapter 7. Virtual IP Addressing 353

automation. See “Planning for dynamic VIPA takeover” on page 360 for more
information. Regardless of the type of VIPA to be moved, it is up to the system
programmer or operator to ensure that the VIPA is moved to a backup stack that
has the appropriate server applications.

In the absence of a failure, a VIPA is just like any other IP address, and routing for
a VIPA is the same as for an IP address associated with a physical link.

Static VIPAs, dynamic VIPAs, distributed DVIPAs
z/OS TCP/IP stack supports two types of VIPAs: static and dynamic. Dynamic
VIPAs (DVIPAs) can be used to distribute connections in a sysplex. This is referred
to as a distributed DVIPA.

All three VIPAs can coexist on a given stack, but there are differences in how these
VIPAs are configured and used.

Static VIPAs have the following characteristics:
v They can be activated during TCP/IP initialization or VARY TCPIP,,OBEYFILE

command processing, and are configured using an appropriate set of DEVICE,
LINK, HOME, and optionally, OMPROUTE configuration statements or
BSDROUTINGPARMS statements for IPv4 Static VIPAs or INTERFACE
statements for IPv6 Static VIPAs.

v Using the SOURCEVIPA configuration option, static VIPAs can be used as the
source IP address for outbound datagrams for TCP, RAW, UDP (except routing
protocols), and ICMP requests. For IPv6 static VIPAs to be used as source
addresses, the SOURCEVIPA configuration option must be enabled and the
VIPA interface must appear on the SOURCEVIPAINT keyword on some other
INTERFACE statement. This provides tolerance of device and adapter failures
for connection requests originating at a z/OS TCP/IP stack.

v They can be specified as the source IP address for outbound TCP connection
requests for all applications using this stack with TCPSTACKSOURCEVIPA.

v They can be specified as the source IP address for outbound TCP connection
requests for specific jobs or specific destinations through the use of the SRCIP
profile statement block.

v The number of static VIPAs on a stack is limited only by the range of host IP
addresses that are available for that host.

v They can be moved to a backup stack after the original owning stack has failed,
by using VARY TCPIP,,OBEYFILE command processing to configure the VIPA on
the backup stack and updating the routers.

Dynamic VIPAs have the following characteristics:
v They can be configured to be moved dynamically from a failing stack to a

backup stack within the same sysplex without operator intervention or external
automation.

v They can be moved manually by deactivating or reactivating them with the
VARY TCPIP,,SYSPLEX operator command.

v They can be dynamically activated by an application program.
v They can distribute connections within a sysplex.
v They can be specified on a TCPSTACKSOURCEVIPA statement. This allows a

user to specify one VIPA to be used as the source IP address for outbound
datagrams for TCP-only requests.

354 z/OS V1R12.0 Comm Svr: IP Configuration Guide

v They can be specified as the source IP address for outbound TCP connection
requests for specific jobs or specific destinations by using the SRCIP profile
statement block.

v Unlike static VIPAs, dynamic VIPAs:
– Are limited to 1024 per stack.
– Cannot be specified as the VIPA used by Enterprise Extender for connectivity

purposes. (See “Configuring static VIPAs for Enterprise Extender” on page
358 for details.)

Distributed DVIPAs have the following characteristics:
v They have all the characteristics of DVIPAs, except that they cannot be

dynamically activated by an application program.
v One stack defines a DVIPA and advertises its existence to the network. Stacks in

the target distribution list activate the DVIPA and accept connection requests.
v Connection workload can be spread across several stacks.

See “Configuring distributed DVIPAs — sysplex distributor” on page 371 for more
detailed descriptions.

Recommendation: OSA-Express devices have a limit on the number of IP
addresses (both IPv4 and IPv6 addresses) that can be registered to the device. The
limit is dependent on the microcode level of the OSA-Express device. This limit
applies across all TCP/IP stacks that share the OSA-Express device. When defining
a large number of VIPAs, take care not to exceed this limit. If the limit is exceeded,
IP addresses beyond the limit will not be registered with the OSA-Express devices,
and incoming packets with those IP addresses will not be routed to the correct
stack unless that stack is designated as the primary router.

Using static VIPAs
The following topics describe how to configure static VIPAs, the special case of
static VIPAs and Enterprise Extender, and how to implement static VIPA takeover.

Because a VIPA is associated with a z/OS TCP/IP stack and it is not associated
with a specific physical network attachment, it can be moved to a stack on any
image in the sysplex or even to any z/OS TCP/IP stack if the address fits into the
network configuration.

Steps for configuring static VIPAs for a z/OS TCP/IP stack
Perform the following steps to configure a static VIPA address in one stack:

1. When configuring static VIPAs for the IPv4 network, add DEVICE, LINK,
HOME, and optionally BSDROUTINGPARMS statements for each static VIPA
to be defined. When configuring static VIPAs for the IPv6 network, add
INTERFACE statements of type VIRTUAL6 for each static VIPA to be defined.

Notes:

a. A VIPA link or VIPA interface cannot be coded on a static route in the
GATEWAY or BEGINROUTES statements.

b. If you want to add a static VIPA in an IPv4 network with an address that
already exists in the HOME list, you must first delete the existing address
using the VARY TCPIP,,OBEYFILE command with the existing address
omitted from the HOME list. Then use the VARY TCPIP,,OBEYFILE
command with a new and complete HOME list.

Chapter 7. Virtual IP Addressing 355

2. For IPv4 networks, if tolerance of device and adapter failures is desired for
connection requests originating at a z/OS TCP/IP stack, specify the
SOURCEVIPA option on the IPCONFIG statement.
Tips:

v For the SOURCEVIPA option to work properly, the receiving nodes in the
network must be configured to recognize the SOURCEVIPA addresses using
the static or dynamic routing protocols. Otherwise, timeouts for the
connection or request responses will occur as a result of the VIPA addresses
being network unreachable.

v If TCPSTACKSOURCEVIPA is specified on the IPCONFIG statement, it
overrides SOURCEVIPA for outbound IPv4 TCP connections. If the SRCIP
profile statement block is defined to establish one or more job-specific or
destination-specific source IPv4 addresses, these IP addresses override
TCPSTACKSOURCEVIPA or the VIPAs in the HOME list for IPCONFIG
SOURCEVIPA, or both, for the specified job names and destinations. For
information about the hierarchy of various ways that the source IP address
of an outbound connection is determined, see “Source IP address selection”
on page 218.

For more information on configuring IPv4 SOURCEVIPA or
TCPSTACKSOURCEVIPA addresses on the IPCONFIG statement, or SRCIP
addresses in the SRCIP statement block, see z/OS Communications Server: IP
Configuration Reference.

3. For IPv6 networks, if tolerance of device and adapter failures is desired for
connection requests originating at a z/OS TCP/IP stack, specify the following:
v The SOURCEVIPA option on the IPCONFIG6 statement.
v The SOURCEVIPAINT keyword with a VIPA interface name on the

INTERFACE statements of the real (physical) interfaces, or on the
DYNAMICXCF specification on the IPCONFIG6 statement.

Tips:

v For the SOURCEVIPA option to work properly, the receiving nodes in the
network must be configured to recognize the SOURCEVIPAINT addresses
using the static or dynamic routing protocols. Otherwise, timeouts for the
connection or request responses will occur as a result of the VIPA addresses
being network unreachable.

v If the TCPSTACKSOURCEVIPA parameter is specified on the IPCONFIG6
statement, it overrides the SOURCEVIPA value for outbound IPv6 TCP
connections. If the SRCIP profile statement block is defined to establish one
or more job-specific or destination-specific source IPv6 addresses, these IP
addresses override the TCPSTACKSOURCEVIPA value, the
SOURCEVIPAINT value, or both, for the specified job names and
destinations. For information about the hierarchy of various ways that the
source IP address of an outbound connection is determined, see “Source IP
address selection” on page 218.

For more information on configuring IPv6 SOURCEVIPA or
TCPSTACKSOURCEVIPA addresses on the IPCONFIG6 statement, or SRCIP
addresses in the SRCIP statement block, see z/OS Communications Server: IP
Configuration Reference.

356 z/OS V1R12.0 Comm Svr: IP Configuration Guide

4. For host name resolution of a VIPA address, configure the domain name
servers to associate the host name with the VIPA.

5. Configure the routing daemon to advertise the presence of the VIPA.

As described in prior steps, remember that the VIPA to be advertised can be
determined by the SOURCEVIPA or TCPSTACKSOURCEVIPA parameters on
the IPCONFIG and IPCONFIG6 statements, or by the SRCIP statement. For
more information, see z/OS Communications Server: IP Configuration Reference.

Figure 39 illustrates a simple configuration showing multiple network attachments
using a single static VIPA address. Since any other network interface can be used
with static VIPA's, see “Setting up physical characteristics in PROFILE.TCPIP” on
page 221 for descriptions of other network interfaces. The simple configuration will
be used as the TCPCS6 system throughout this information.

TCPCS6
z/OS

Device Drivers

VIPA

Device1 Device2

TR1 TR2 ETH1 ETH2

LAN2

LAN1

9.2.1.1 .2 9.3.1.2

.3

.3

Router1

Router2

.2

10.1.1.1
Host

FE80::6:2900:40DC:217C
50C9:C2D4::6:2900:40DC:217C

50C9:C2D4::0:A:9:67:115:5

9.1.1.1

FE80::5:2900:40DC:217C
50C9:C2D4::5:2900:40DC:217C

9.3.1.1

FE80::260:8FF:FEF6:E46E
50C9:C2D4::0:1:260:8FF:FEF6:E46E

Figure 39. Static VIPA configuration

Chapter 7. Virtual IP Addressing 357

Configuring static VIPAs for Enterprise Extender
Defining at least one static VIPA is required by VTAM to access the IP network.
Since VTAM does not move within a sysplex, a dynamic VIPA cannot be used.
Enterprise Extender supports the use of multiple static VIPA addresses, and a VIPA
address is chosen as follows:
1. VTAM uses the IPADDR value specified on the Enterprise Extender XCA major

node GROUP definition statement, or the VIPA address obtained when
name-to-address resolution is performed on the HOSTNAME value specified
on the Enterprise Extender XCA major node GROUP definition statement.

2. If the GROUP definition statement specifies neither IPADDR nor HOSTNAME,
VTAM uses the static VIPA address specified on the VTAM IPADDR start
option, or the static VIPA address returned by the resolver when
name-to-address resolution is performed on the value of the VTAM
HOSTNAME start option.

3. If neither the IPADDR nor the HOSTNAME start option is specified, VTAM
uses the first IPv4 static VIPA in the HOME list.

If remote APPN nodes use a host name and not a host address to define the
destination of an Enterprise Extender connection, the domain name server must
return the VIPA address used by VTAM for the host name. Alternatively, if the
Enterprise Extender endpoints reside across a firewall or for another reason require
network address translation, the domain name server should return a network
address translation (NAT) address. This NAT address should in turn map, on the
destination side, to the static VIPA address of the intended target VTAM host.

Rule: If you plan on using IPv4 protocols for your Enterprise Extender
communication, you must define DEVICE, LINK, and optionally HOME statements
for IUTSAMEH, or specify IPCONFIG DYNAMICXCF in the appropriate TCPIP
profile data set. If you plan on using IPv6 protocols for your Enterprise Extender
communication, you must define an INTERFACE statement for IUTSAMEH or
specify IPCONFIG6 DYNAMICXCF in the appropriate TCPIP profile data set.

For more information about using Enterprise Extender, see z/OS Communications
Server: SNA Network Implementation Guide.

Considerations when using static VIPAs with IPv6
When static VIPAs are configured for use with IPv6, it is recommended that the
prefixes of the IPv6 VIPA addresses be different than the prefixes used for
addresses assigned to real interfaces. This reduces the likelihood of address
collisions between the manually configured VIPA addresses and the autoconfigured
addresses of the real interfaces.

To allow other hosts that share links with the z/OS TCP/IP stack to access the
IPv6 VIPA addresses, without the need for manual route configuration, a router on
each of the links should include the VIPA prefix in its router advertisements. The
router advertisements should define the prefix as being on-link and should
indicate that the prefix should not be used for autoconfiguration.

Planning for static VIPA takeover and takeback
Because a VIPA is associated with a z/OS TCP/IP stack and is not associated with
a specific physical network attachment, it can be moved to a stack on any image in
the sysplex or even to any z/OS TCP/IP stack as long as the address fits into the
network configuration. Moving a static VIPA can be done manually by an operator
or by customer-programmed automation. Movement of the static VIPA allows

358 z/OS V1R12.0 Comm Svr: IP Configuration Guide

other hosts that were connected to the primary stack to reestablish connections
with a backup TCP/IP stack using the same VIPA. After the primary TCP/IP stack
has been restored, the reassigned VIPA address can be moved back.

Consider the following when backing up and restoring a z/OS TCP/IP stack:
v All connections on the failing host will be disrupted.
v The client can use any ephemeral port number when reestablishing the

connection to the backup server.
v Having a different port number for the backup and primary server is not

recommended. For example, if the primary FTP used port 21 and the backup
FTP used port 1021, when backing up and restoring a z/OS TCP/IP stack, the
client would have to know whether to use port 21 or 1021.

If you are deploying both static VIPA and OSA-Express QDIO, see “VIPAs,
OSA-Express QDIO, and Spanning Tree Protocol” on page 406 to determine
whether or not network bridge or switch configuration settings might potentially
impact the environment for VIPA takeover and takeback.

Using dynamic VIPAs
Dynamic VIPA (DVIPA) support allows:
v Dynamic movement of a VIPA from a failing TCP/IP stack to a backup stack
v Dynamic allocation of a VIPA by an application program
v Manual movement of a VIPA by deactivating or reactivating it with the VARY

TCPIP,,SYSPLEX command

Dynamic VIPAs (DVIPAs) are IP addresses like all other IP addresses associated
with a TCP/IP, and they appear as though they had been defined at the end of the
HOME list.

Dynamic VIPAs can be either IPv4 or IPv6, and both can be configured within the
same VIPADYNAMIC block. A single statement (for example, VIPADEFINE or
VIPABACKUP) must contain either IPv4 addresses or IPv6 addresses, but not both.
However, statements containing IPv4 addresses can be intermixed with statements
containing IPv6 addresses within the same VIPADYNAMIC block in any manner
desired.

Configuring DVIPA support
Unlike static VIPAs, DVIPAs are not configured using DEVICE, LINK, and HOME
statements (for IPv4) or using INTERFACE statements (for IPv6). The configuration
statements for the DVIPA support are contained within the VIPADYNAMIC block
and consist of the following:
v VIPADEFINE and VIPABACKUP statements used to configure DVIPAs to be

dynamically moved from a failing TCP/IP to a backup TCP/IP
v VIPARANGE used to specify a range of IP addresses which may be dynamically

activated as a VIPA by an application program
v VIPADELETE used to delete existing DVIPAs
v VIPADISTRIBUTE used to configure a DVIPA as a distributed DVIPA and

designate the target stacks

The following topics discuss how these statements are used to provide the DVIPA
support. For syntax details, see z/OS Communications Server: IP Configuration

Chapter 7. Virtual IP Addressing 359

Reference. For more information, see Communications Server for z/OS V1R10 TCP/IP
Implementation Volume 3: High Availability, Scalability, and Performance, SG24–7698.

When dynamically created DVIPAs are deleted, any applications bound to those
DVIPAs (VIPARANGE or MODDVIPA) will receive an asynchronous error,
EUNATCH (3448) - the protocol required to support the address family is
unavailable.

Planning for dynamic VIPA takeover
Movement by network management automation or operator intervention is not
always desirable. Operator intervention takes time and is subject to errors.
Automation requires proper detection of the failure and is also prone to error if the
failure does not produce the exact console messages anticipated.

The dynamic VIPA takeover function addresses this problem. It is important to
understand that dynamic VIPA takeover does not introduce functions that could
not be accomplished by operator action or automation. It just removes the
dependency on human detection of the error or customer programming for
automation. Dynamic VIPA takeover is completely accomplished by the TCP/IP
stacks.

DVIPA takeover is possible when a DVIPA is configured as active (using
VIPADEFINE) on one stack and as backup (using VIPABACKUP) on another stack
within the sysplex. When the stack on which the DVIPA is active terminates or
leaves the sysplex group, the backup stack automatically activates the DVIPA and
notifies the routing daemon. For information on what causes a stack to leave the
sysplex group, see “Sysplex problem detection and recovery” on page 449.

For DVIPA takeover to be useful, the applications that service the DVIPA addresses
must be available on the backup stacks. In the absence of the application, the
DVIPA will be active, but client connections to the application will still fail. If
OMPROUTE is used, it is recommended that GLOBALCONFIG
SYSPLEXMONITOR DELAYJOIN be configured. This causes DVIPA takeover to be
delayed until OMPROUTE is active and able to advertise DVIPAs on the takeover
stack. For more information on how DELAYJOIN works, see “Sysplex problem
detection and recovery” on page 449.

To preserve connections during DVIPA takeover, the TCP/IP stacks require XCF
links. The DYNAMICXCF option must be coded in the TCP/IP profile of both
stacks.

A determination of how the workload will be distributed among the backup stacks
when the primary stack fails should be made. It is possible to designate a single
stack as a backup and move all the workload to it, or the workload can be spread
among several stacks. In the first case, you need to configure only one DVIPA with
a VIPADEFINE statement on the primary stack, and only one VIPABACKUP
statement is required on the backup stack. For the second option, you must
configure multiple DVIPAs with a VIPADEFINE statement on the primary stack.

After determining the workload distribution, each of the secondary stacks will
require a VIPABACKUP statement for the DVIPA it will be supporting.

The following example shows how to implement a single stack backup for
multiple applications.

360 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Stack TCPCS:
Uses VIPADEFINE to define 201.2.10.11
Has a Web server running that binds to INADDR_ANY.

Web client programs use 201.2.10.11 as their destination address.
Has an FTP server running that binds to INADDR_ANY.

FTP client programs use 201.2.10.11 as their destination address.

Stack TCPCS3:
Uses VIPABACKUP to define 201.2.10.11 as backup for stack TCPCS.
Has a Web server running that binds to INADDR_ANY.
Has an FTP server running that binds to INADDR_ANY.

In the preceding scenario, when stack TCPCS goes down, stack TCPCS3 receives
all new connection requests for both the Web and FTP servers. FTP and Web client
programs continue to use 201.2.10.11 as their destination address, but they now
connect to stack TCPCS3.

The following example shows how to implement a multiple stack backup for
multiple applications.

Stack TCPCS:
Uses VIPADEFINE to define 201.2.10.11 and 201.2.10.12
Has a Web server running that binds to INADDR_ANY.

Web client programs use 201.2.10.11 as their destination address.
Has an FTP server running that binds to INADDR_ANY.

FTP client programs use 201.2.10.12 as their destination address.

Stack TCPCS2:
Uses VIPABACKUP to define 201.2.10.11 as backup for stack TCPCS.
Has a Web server running that binds to INADDR_ANY.

Stack TCPCS3:
Uses VIPABACKUP to define 201.2.10.12 as backup for stack TCPCS.
Has an FTP server running that binds to INADDR_ANY.

In the preceding scenario, when stack TCPCS goes down, new connections for the
Web server at 201.2.10.11 will connect with stack TCPCS2, and new connections for
the FTP server at 201.2.10.12 will connect with stack TCPCS3.

9.1.1.1 201.2.10.11
201.2.10.12

201.2.10.21
201.2.10.22

201.2.10.13

201.2.10.13
201.2.10.21
201.2.10.22

201.2.10.11
201.2.10.12
201.2.10.21
201.2.10.22

201.2.10.13
201.2.10.11
201.2.10.12

201.2.10.192-255 201.2.10.192-255 201.2.10.192-255

TCPCS6 TCPCS TCPCS2 TCPCS3

Active Active

DIST
Port

20,21

DIST
Port

20,21

Active Active

Backup
to TCPCS3

Backup
to TCPCS3

VIPA
Range

VIPA
Range

Backup
to TCPCS

Backup
to TCPCS2

Backup
to TCPCS2

Backup
to TCPCS

Figure 40. Sample DVIPA addressing in a sysplex environment

Chapter 7. Virtual IP Addressing 361

Manually initiating takeover for an individual dynamic VIPA
There might be times when you want a takeover to occur for an individual DVIPA
for temporary, operational purposes, such as dealing with temporary shifts in
available capacity. An operator command, VARY TCPIP,,SYSPLEX,DEACTIVATE, is
provided to deactivate an active VIPADEFINE DVIPA so that it appears to have
been deleted from the stack. This enables an already-configured backup stack to
takeover the DVIPA. This command also saves the original configuration
definition.

When you want to move the DVIPA back to the original stack, you can issue
another operator command, VARY TCPIP,,SYSPLEX,REACTIVATE, on the original
stack to cause the DVIPA to be redefined with its saved configuration. This causes
a VIPADEFINE DVIPA to be activated again on the original stack, and causes the
backup stack to relinquish ownership of the DVIPA and return to being a backup
stack.

The following example shows how to deactivate a DVIPA:
VARY TCPIP,,SYSPLEX,DEACTIVATE,DVIPA=203.1.1.99

The following example shows how to reactivate a DVIPA that has been
deactivated:
VARY TCPIP,,SYSPLEX,REACTIVATE,DVIPA=203.1.1.99

Deactivating a DVIPA can be done only for DVIPAs that have been configured on
the stack with VIPADEFINE or VIPABACKUP. You cannot deactivate a
VIPARANGE DVIPA created by BIND, the SIOCSVIPA or SIOCSVIPA6 ioctl
command, or the MODDVIPA utility. When you deactivate a DVIPA, if there are
any existing connections to the DVIPA on this stack and there is another stack able
to maintain the connections, the DVIPA is kept in QUIESCING status until the last
connection terminates, and then the DVIPA is deactivated.

You can also use these operator commands to deactivate and reactivate a backup
DVIPA. If you deactivate a DVIPA that is in backup status, it makes that stack
ineligible to takeover the DVIPA. Reactivating a VIPABACKUP DVIPA makes the
stack eligible again to takeover the DVIPA.

While a DVIPA is deactivated it still appears in the Netstat VIPADCFG/-F report,
where it is identified as deactivated, but it does not appear in any other Netstat
reports unless the DVIPA is in QUIESCING status or this stack is a target for that
DVIPA from some other distributing stack.

Different application uses of IP addresses and DVIPAs
Not all IP-based server applications relate to IP addresses in the same way.
Automated movement of DVIPAs, and the planning for dynamic VIPA takeover,
must take this difference into account.

Some IPv4 or IPv6 applications, such as FTP or the TN3270E Telnet server (Telnet)
will accept client requests on any IP address by binding to INADDR_ANY or the
IPv6 unspecified address (in6addr_any). The distinguishing feature of such an
application is the function it provides, such as the particular set of SNA
applications for Telnet. If the function is replicated across multiple z/OS images in
the sysplex, as is often the case for distributed workload, the DVIPA must merely
be moved to a stack supporting the application. This scenario is called the multiple

362 z/OS V1R12.0 Comm Svr: IP Configuration Guide

application-instance scenario. For the multiple application-instance scenario, the
stacks in the sysplex do all the work of activating a DVIPA in the event of a
failure.

For other types of applications, each application instance must have a unique IP
address. This scenario is called the unique application-instance scenario and uses
DVIPAs that are activated with an ioctl or a bind().

To maintain the relationship between an application instance and its DVIPA, the
application must indicate to the stack that the DVIPA needs to be activated. This
occurs in the following cases:
v When the application instance issues a bind() function call and specifies an IP

address that is not active on the stack. The stack will activate the address as a
DVIPA, provided it meets certain criteria. When the application instance closes
the socket, the DVIPA is deleted.

v Some applications cannot be configured to issue bind() for a specific IP address,
but are unique application-instance scenario applications. For such applications,
a utility is provided (MODDVIPA), which issues SIOCSVIPA or SIOCSVIPA6
ioctl() to activate or deactivate the DVIPA. This utility can be included in a JCL
procedure or OMVS script to activate the DVIPA before initiating the
application. As long as the same JCL package or script is used to restart the
application instance on another node in the event of a failure, the same DVIPA
will be activated on the new stack. For information about the authorization
required to execute the MODDVIPA utility, see “Using the MODDVIPA utility”
on page 368.

v An alternative for unique application-instance scenario server applications that
cannot themselves bind to a unique IP address is to use the BIND parameter on
the PORT reservation statement. It is always a good practice to reserve a port for
the listening socket of a server application. If the BIND parameter and an IP
address are specified on the PORT reservation statement for a server application,
and the application binds a socket to that port and either the IPv4
INADDR_ANY address or the IPv6 unspecified address (in6addr_any), z/OS
TCP/IP will convert the bind to be specific to the IP address specified on the
PORT reservation statement. From that point on, it will appear as though the
application itself had issued the bind() specifying the designated IP address,
including having the IP address deleted when the server application closes the
socket.

Configuring dynamic VIPAs
To allow continued and unchanged operation of static VIPAs in z/OS TCP/IP,
DVIPAs are defined with configuration statements in the PROFILE.TCPIP data set.
An overview of the relevant configuration statements is provided in the following
topics, and also see “Verifying the DVIPAs in a sysplex” on page 412 for a
description of the configuration statements. For an example of the VIPADYNAMIC
configuration statement and display commands for dynamic VIPAs, see z/OS
Communications Server: IP Configuration Reference.

Configuring the multiple application-instance scenario
For the multiple application-instance scenario, each instance is assigned a unique
DVIPA. The VIPADEFINE keyword of the VIPADYNAMIC configuration statement
is used to create the DVIPA on the stack where the DVIPA is normally expected to
be active. When the VIPADEFINE statement is processed in a TCP/IP profile,
corresponding DEVICE, LINK, HOME, and BSDROUTINGPARMS statements are

Chapter 7. Virtual IP Addressing 363

generated automatically for IPv4 addresses. For IPv6 addresses, an INTERFACE
statement is automatically generated. Routing daemons are automatically informed.

Additional configuration is required on other stacks in the sysplex to indicate
which stack should take over the DVIPA in the event of a failure. The
VIPADYNAMIC statement has a VIPABACKUP keyword for this purpose. A
VIPABACKUP configures the DVIPA but does not activate it until it is necessary.
Because more than one TCP/IP can backup a single DVIPA, a rank parameter on
the VIPABACKUP statement determines the order in which several stacks will
assume responsibility for a DVIPA.

The stacks in the sysplex exchange information on all VIPADEFINEs and
VIPABACKUPs defined in the sysplex, so that all are aware of which stack should
take over a particular DVIPA. The list of backup stacks for a specific DVIPA can be
different from the list of backup stacks for all other DVIPAs.

In the multiple application-instance scenario, instances of the application in
question are activated among sysplex nodes according to some plan, presumably
related to balancing workload across available capacity. This activation is done
independently of VIPA takeover. Configure the associated DVIPAs as follows:
1. For each instance of a particular application to be supported via DVIPA, add a

VIPADEFINE statement to the TCP/IP profile for the TCP/IP associated with
the application instance.

2. For each of the dynamic VIPAs in step 1, determine which application instance
or instances should take over the workload (considering probable capacity and
any other application-related considerations). If more than one TCP/IP is to
provide backup for a DVIPA, determine the order in which the selected
TCP/IPs should be designated as backup. Add a VIPABACKUP statement to
each TCP/IP that is to provide backup for the DVIPA, with appropriate rank
values to determine the order. Do this for each of the DVIPAs in step 1.

3. Perform steps 1 and 2 for each other application to be supported by DVIPAs.

Note: It is possible to share a dynamic VIPA among several different
applications, but in doing so, ensure that instances of all such
applications will exist together on any TCP/IP to which the DVIPA may
be moved in case of a failure.

After these steps are complete, start the affected TCP/IPs (or modify their
configuration using the VARY TCPIP,,OBEYFILE command), if applicable,
configure DNS for the application names, and start the application instances. From
that point on, the TCP/IPs in the sysplex will collaborate to ensure that each
dynamic VIPA is kept active somewhere within the sysplex as long as there is at
least one functioning TCP/IP which has been designated as backup for the
dynamic VIPA.

Configuring the unique application-instance scenario
The unique application-instance scenario ties a DVIPA to a specific instance of an
application. To isolate errors in configuring applications, TCP/IP needs a
mechanism to identify permissible DVIPAs. This is provided with one or more
VIPARANGE statements. The VIPARANGE statement identifies a range of IP
addresses which can be activated as DVIPAs by an application instance. Each
TCP/IP stack can have up to 256 VIPARANGE definition statements for IPv4 and
up to 256 for IPv6. The VIPARANGE statement consists of an IPv4 address and
subnet mask, or an interface name and an IPv6 address and prefix length, and
defines a subnet for DVIPAs. More than one VIPARANGE statement with different

364 z/OS V1R12.0 Comm Svr: IP Configuration Guide

ranges can be defined on a TCP/IP. VIPARANGE does not itself cause any DVIPAs
to be activated. Rather, DVIPAs are activated either by an application issuing a
bind() for a specific IP address, by use of the SIOCSVIPA or SIOCSVIPA6 ioctl()
command issued by an authorized application, or by the MODDVIPA utility.

When an application issues bind() for a specific IP address or an address was
selected using the BIND keyword on the PORT statement, the receiving stack
checks it against addresses in the HOME list. If the IP address has already been
activated on this stack (whether for a physical device, a static VIPA, or a dynamic
VIPA), the bind() execution is successful. If the IP address is not active on this
TCP/IP, the current VIPARANGEs are checked to see if the IP address falls within
one of them. If an appropriate VIPARANGE is found, the IP address is activated as
a DVIPA and the operation succeeds. If no appropriate VIPARANGE is found, or if
the IP address is active elsewhere in the sysplex other than by a NONDISRUPTIVE
bind(), the request fails and bind() returns EADDRNOTAVAIL.

When an authorized application issues the SIOCSVIPA or SIOCSVIPA6 ioctl()
command to create a DVIPA, or when the MODDVIPA utility is executed in JCL or
an OMVS script to activate a DVIPA on behalf of an application instance, the
current VIPARANGES are checked to see whether the IP address falls within one
of them. If an appropriate VIPARANGE is found, and the IP address is not
currently active on this TCP/IP or elsewhere in the sysplex as an IP address or a
VIPADEFINE/VIPABACKUP dynamic VIPA, then the IP address is activated as a
DVIPA. However if no appropriate VIPARANGE is found on this TCP/IP, or if the
IP address is currently defined on this TCP/IP or configured elsewhere in the
sysplex as an IP address or a VIPADEFINE/VIPABACKUP dynamic VIPA, then the
request fails with errno and errnojr set to indicate the reason for the failure and the
utility ends with a nonzero condition code. See “Dynamic VIPA creation results”
on page 396 for more information.

Tip: If the requested IP address has been activated as a dynamic VIPA by a bind(),
SIOCSVIPA ioctl, or SIOCSVIPA6 ioctl elsewhere in the sysplex, the result depends
on how the stacks were configured. See “Dynamic VIPA creation results” on page
396 for more information.

Application-instance DVIPAs provide high availability features for applications and
workloads that exploit them. The creation and movement of these DVIPAs is quite
flexible, as it can be triggered without modification to the TCP/IP profile and
without issuing TCP/IP operator commands. While this flexibility is useful, it can
also present problems for the network administrator in determining when and how
a DVIPA is activated on a TCP/IP stack.

To help alleviate these problems, TCP/IP provides auditing facilities to track the
state changes of application-instance DVIPAs. When an application-instance DVIPA
is created or deleted dynamically through an explicit bind, by executing the
MODDVIPA utility or by invoking the SIOCSVIPA or SIOCSVIPA6 ioctl command,
messages are issued (EZD1204I, EZD1205I, EZD1206I, or EZD1207I) to the job log
of the TCP/IP started procedure and to the system log. These messages include the
method (bind, ioctl, or MODDVIPA utility) used to create or delete the DVIPAs,
and the job name at the time the bind, ioctl, or MODDVIPA utility was invoked.
For more information about EZD1204I, EZD1205I, EZD1206I, and EZD1207I, see
z/OS Communications Server: IP Messages Volume 2 (EZB, EZD).

The Netstat VIPADyn/-v report is enhanced for application-instance DVIPAs to
include the job name and the time stamp that this DVIPA was activated on the
local TCP/IP stack (either because it is the owner of the DVIPA or is a target for

Chapter 7. Virtual IP Addressing 365

this DVIPA). For more details about Netstat VIPADyn/-v, see z/OS Communications
Server: IP System Administrator's Commands.

In the unique application-instance scenario, each application instance is assigned a
unique IP address as its DVIPA. Before defining individual DVIPAs, one or more
blocks of IP addresses must be defined for these DVIPAs, and the individual
DVIPAs must be defined from within the blocks. Each block should be represented
as a subnet, so that a VIPARANGE statement can be defined for it.

Follow these steps when setting up any unique application instances:
1. For each application instance, assign a DVIPA from one of the blocks of IP

addresses for this purpose. Do not assign an IP address which is also assigned
to another application instance, or which is defined by VIPADEFINE for the
multiple application-instance scenario. Configure the application to use this
DVIPA [if it issues bind() for a particular IP address], or add a BIND parameter
to the PORT reservation statement for the port of the application's listening
socket to cause the listening socket to be bound to this DVIPA. Alternatively,
add the MODDVIPA utility to the JCL or OMVS script and configure the
MODDVIPA utility to activate the DVIPA before starting the application. When
the application ends, use the MODDVIPA utility to delete the DVIPA.

2. For each application instance, determine on which stack the application
instance will normally be executed and to which stacks the application instance
could be moved in case of failure of the normal stack or the application itself.
For each such stack, add a valid VIPARANGE statement to the profile.

Note: The dynamic VIPA must be within the VIPARANGE subnet. The
broadcast address and the net prefix cannot be used.

3. Perform steps 1 and 2 until all application instances have been allocated a
unique DVIPA.

The application restart strategy should ensure that the worst-case failure scenario
does not attempt to activate more than 1024 DVIPAs on a single stack. If such an
attempt is made, activation of the 1025th DVIPA will fail, with possible resulting
loss of connectivity from clients to the server application.

Note: The limit of 1024 DVIPAs on a single TCP/IP applies to all DVIPAs, whether
defined by VIPADEFINE/ VIPABACKUP configuration statements, through
a VIPADISTRIBUTE statement on another stack, by a bind() call, or by
executing the MODDVIPA utility.

Defining a single block makes the definition process easier, but also provides less
individual control. Alternatively, since the smallest subnet consists of four IP
addresses, defining a unique subnet for each DVIPA in this scenario wastes three
other IP addresses that could have been used for DVIPAs.

Using the SIOCSVIPA or SIOCSVIPA6 ioctl command
An ioctl command, SIOCSVIPA or SIOCSVIPA6, allows an application to create or
delete a dynamic VIPA on the stack where the application is running. The
application issuing the SIOCSVIPA or SIOCSVIPA6 ioctl command must be APF
authorized. If there is no security product, or if the security product indicates that
no profile for MODDVIPA has been defined, the application must be running
under a user ID with superuser authority. If the profile for the MODDVIPA
program has been defined, the user ID must be permitted READ access to the
profile even if the ID has superuser authority. Some security products indicate that
there is no access available when no profile is defined. If you are not using RACF,

366 z/OS V1R12.0 Comm Svr: IP Configuration Guide

you might need to define the profile to use these ioctl commands. For more
information, see “Defining a security profile for MODDVIPA” on page 369.

To create a new dynamic VIPA, the requested IP address must be within a subnet
that has been previously specified by a VIPARANGE configuration statement in
the PROFILE.TCPIP data set for this stack. The SIOCSVIPA or SIOCSVIPA6 ioctl
command can be used to delete any existing dynamic VIPA on the stack, except for
distributed DVIPAs.

The following example shows how to set up the SIOCSVIPA ioctl command for
applications that will use IPv4 addresses.
#include "ezbzdvpc.h" /* header that contains

the structure for
SIOCSVIPA ioctl
and needed constants*/

struct dvreq dv; /* the structure passed
on the ioctl command*/

dv.dvr_version = DVR_VER1; /*version */
dv.dvr_length = sizeof(struct dvreq); /* structure length */
dv.dvr_option = DVR_DEFINE; /* to define a new

dynamic VIPA. Use
DVR_DELETE to delete
a dynamic VIPA */

dv.dvr_addr.s_addr = inet_addr(my_ipaddr); /* where my_ipaddr is
a character string
in standard
dotted-decimal
notation */

The ioctl command is then invoked as follows:
rc = ioctl(s, SIOCSVIPA, &dv);

The following example shows how to set up the SIOCSVIPA6 ioctl command using
the input parameter list that supports IPv6 addresses.
#include "ezbzdvpc.h" /* header that contains

the structure for
SIOCSVIPA6 ioctl
and needed constants */

struct dvreq6 dv6; /* the structure passed on
the ioctl command */

dv6.dvr6_version = DVR_VER2; /* version */
dv6.dvr6_length = sizeof(struct dvreq6); /* structure length */
dv6.dvr6_option = DVR_DEFINE; /* to define a new dynamic

VIPA. Use DVR_DELETE to
delete a dynamic VIPA. */

inet_pton(AF_INET6, my_ipv6addr, dv6.dvr6_addr6.s6_addr);
/* where my_ipv6addr

is a character string in
standard IPv6 address
notation, representing a
fully qualified IPv6
address */

The ioctl command is then invoked as follows:
rc = ioctl(s, SIOCSVIPA6, &dv6);

The SIOCSVIPA or SIOCSVIPA6 ioctl command sets nonzero errno and errnojr
values to indicate error conditions. See z/OS Communications Server: IP and SNA
Codes for a description of the errnojr values returned.

Chapter 7. Virtual IP Addressing 367

Using the MODDVIPA utility
You can use the MODDVIPA utility to activate or delete a dynamic VIPA. The
utility can be initiated from JCL or an OMVS script. MODDVIPA must be loaded
from an APF-authorized library and be run under a user ID that has an OMVS
segment defined (or by default). If there is no security product, or if the profile for
MODDVIPA has not been defined, the application must be running under a user
ID with superuser authority. If the profile for the MODDVIPA program has been
defined, the user ID must be permitted READ access to the profile even if the ID
has superuser authority. For more information, see “Defining a security profile for
MODDVIPA” on page 369.

Input parameters: The input parameters for the utility are:

-p <tcpipname>
Specifies the TCP/IP which is to create or delete a DVIPA.

-c <IPaddress> or -d <IPaddress>
Specifies to create (-c) or delete (-d) the address (IP address) specified.

Notes:

1. The input parameters -p, -c, and -d must be entered in lowercase.
2. <tcpipname> must be entered in upper case.
3. For IPv4 addresses, <IPaddress> is dotted-decimal notation. For IPv6 addresses,

<IPaddress> is standard colon-hexadecimal notation for specifying IPv6
addresses.

4. To create a DVIPA, the specified IP address must be within a subnet that has
been previously specified by a VIPARANGE configuration statement in the
PROFILE.TCPIP data set for the specified TCP/IP.

Output: The MODDVIPA utility sets the following exit (completion) codes for
create (-c):

0 Success: The DVIPA was activated.

4 Warning: The requested DVIPA was not activated because the specified IP
address is already active on this stack.

8 Error: The IP address was not defined as a DVIPA on this TCP/IP.

12 An error was found in the input parameters

The MODDVIPA utility sets the following exit (completion) codes for delete (-d):

0 Success: The dynamic VIPA was deleted.

8 Error: The requested DVIPA was not deleted.

12 An error was found in the input parameters

Notes:

1. When an error is detected, the ernno text and errnojr value are printed to
stderr.

2. If the IP address requested for the DVIPA is not within a VIPARANGE
configured on this stack, completion code 8 is returned even if the IP address is
currently active on this stack

Examples

Within JCL:

368 z/OS V1R12.0 Comm Svr: IP Configuration Guide

//TCPDVP EXEC PGM=MODDVIPA,REGION=0K,TIME=1440, X
// PARM=’POSIX(ON) ALL31(ON)/-p TCPCS3 -c 1.2.3.4’

From OMVS shell:
moddvipa -p TCPCS3 -c 1.2.3.4

From the TSO command prompt:
moddvipa -p TCPCS3 -c 1.2.3.4

Restriction: MODDVIPA must be listed in the AUTHCMD NAMES section of the
IKJTSOxx member of SYS1.PARMLIB.

Defining a security profile for MODDVIPA

Note: Wherever SIOCSVIPA is used in this topic, SIOCSVIPA6 can be used as well.

You can restrict access to the MODDVIPA (EZBXFDVP) program by defining a
security profile under the SERVAUTH class and specifying the user IDs that are
authorized to execute the SIOCSVIPA ioctl or the MODDVIPA utility program. You
can decide on the level of control that is appropriate for your installation.

To restrict access to the SIOCSVIPA ioctl (and thus the MODDVIPA utility), you
can define a security profile using the following RACF example:

RDEFINE SERVAUTH (EZB.MODDVIPA.sysname.tcpname)
UACC(NONE)

PERMIT EZB.MODDVIPA.sysname.tcpname
ACCESS(READ) CLASS(SERVAUTH) ID(USER1)

If you are using another security product, see the documentation for that product
for the equivalent commands.

In this example, sysname is the name of the MVS system where the ID will execute
the MODDVIPA utility or issue the SIOCSVIPA ioctl, and tcpname is the job name
of the TCP/IP started task. The job name for started tasks, such as TCP/IP, is
derived depending on how it is started:
v If the START command is issued with the name of a member in a cataloged

procedure library (for example, S TCPIPX), the job name will be the member
name (for example, TCPIPX).

v If the member name on the START command is qualified by a started task
identifier (for example, S TCPIPX.ABC), the job name will be the started task
identifier (for example, ABC). The started task identifier is not visible to all MVS
components, but TCP/IP uses it to build the RACF resource name.

v The JOBNAME parameter can also be used on the START command to identify
the job name (for example, S TCPIPX,JOBNAME=XYZ).

v The JOBNAME can also be included on the JOB card.

In this example, user ID USER1 is being permitted to invoke the MODDVIPA
utility (and thus the SIOCSVIPA ioctl).

If this security profile is created, the user ID must be permitted to access this
profile or else the SIOCSVIPA ioctl (and thus the MODDVIPA utility) will fail with
a 'permission denied' error, regardless of SuperUser authority.

Chapter 7. Virtual IP Addressing 369

Also note that when using RACF, a refresh of these profiles might be required
before they take effect. This can be accomplished by the following RACF
command:
SETROPTS RACLIST(SERVAUTH) REFRESH

For more information, see z/OS Security Server RACF Security Administrator's Guide.

Choosing which form of dynamic VIPA support to use
The following topics explain which of the features should be used for the type of
application being used.

When should VIPADEFINE and VIPABACKUP be used to define a dynamic
VIPA?

v One or more applications bind to the IPv4 INADDR_ANY address or to the IPv6
unspecified address (in6addr_any), and the applications exist on multiple
TCP/IPs.

v Dynamic VIPA takeover is desired.
v The DVIPA does not need to be deleted when the application is stopped.

When should VIPARANGE and bind() be used to define a dynamic VIPA?

v The application cannot bind to INADDR_ANY or in6addr_any, or dynamic VIPA
takeover is not desired.

v The IP address to which the application binds can be controlled by the user. The
application's first explicit bind (the listening socket) will remain for the life of
the application. Otherwise, the DVIPA will be removed everytime the
application's DVIPA owning socket is closed, and re-added everytime there is a
new DVIPA owning socket (another explicit bind has been done and the DVIPA
does not exist).

v Automatic deletion of the dynamic VIPA when the application is stopped is
acceptable.

v A specific dynamic VIPA address must be associated with a specific application.
v The application is not APF authorized, or not run under a user ID with

superuser authority.

When should VIPARANGE and the MODDVIPA utility (or ioctl command
SIOCSVIPA or SIOCSVIPA6) be used to define a dynamic VIPA?

v The application cannot bind to INADDR_ANY or in6addr_any, or dynamic VIPA
takeover is not desired.

v The IP address to which the application binds is known but cannot be controlled
by the user.

v Automatic deletion of the dynamic VIPA when the application is stopped is not
acceptable.

v The MODDVIPA utility (or application issuing the ioctl command) will be run
from an APF-authorized library and under a user ID with appropriate authority.
See “Using the SIOCSVIPA or SIOCSVIPA6 ioctl command” on page 366 or
“Using the MODDVIPA utility” on page 368.

370 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Configuring distributed DVIPAs — sysplex distributor
A distributed DVIPA exists on several stacks, but is advertised outside the sysplex
by only one stack. This stack receives all incoming connection requests and routes
them to all the stacks in the distribution list for processing. This provides the
benefit of distributing the workload of incoming requests and providing additional
fail-safe precautions in the event of a server failure.

You can distribute connections destined for a dynamic VIPA (DVIPA) by adding a
VIPADISTRIBUTE configuration statement for a previously defined dynamic VIPA.
The order of the statements is important. The VIPA is first defined with the
VIPADEFINE statement and then included on a VIPADISTRIBUTE statement.
Another TCP/IP can act as a backup for the distributed DVIPA by properly coding
a VIPABACKUP statement; the backup will perform the routing function in the
event of a failure. The options specified on a VIPADISTRIBUTE statement are
inherited by a backup stack unless the second stack has its own VIPADISTRIBUTE
statement for that DVIPA, in which case it will use its own VIPADISTRIBUTE
statement for distributing. You can also code a VIPADISTRIBUTE statement with
just the VIPABACKUP statement and not for the VIPADEFINE statement. This
would allow workload distribution only during a primary outage.

You can change the distribution of a DVIPA after a backup stack has activated it.
However, if the backup stack did not not have its own distribution defined by a
VIPADISTRIBUTE statement before it activated the DVIPA, any distribution
changes made while the DVIPA is active on the backup stack are temporary. Those
changes will be in effect while the DVIPA remains active on the backup stack, but
will not be remembered if this stack takes over the DVIPA again in the future.

Following is an example of a properly coded distributed DVIPA:
IPCONFIG SYSPLEXROUTING DYNAMICXCF 193.9.200.4 255.255.255.240 1
IPCONFIG6 DYNAMICXCF 2000::93:9:200:4
VIPADYNAMIC

VIPADEFINE 255.255.255.192 9.67.240.02
VIPADISTRIBUTE DEFINE 9.67.240.02 PORT 20 21 8000 9000 DESTIP

193.9.200.2
193.9.200.4
193.9.200.6

VIPADEFINE V6DVIPA1 2000::9:67:240:2
VIPADISTRIBUTE DEFINE V6DVIPA1 PORT 20 21 8000 9000 DESTIP

2000::93:9:200:2
2000::93:9:200:4
2000::93:9:200:6

ENDVIPADYNAMIC

Prior to z/OS V1R6 Communications Server, the TCP/IP stack that was configured
as a distributor of dynamic VIPAs was required to enable IP forwarding using the
IPCONFIG (or IPCONFIG6) DATAGRAMFWD TCP/IP profile statement. For
installations that do not wish to configure their TCP/IP stack as a forwarding
node, it is no longer a requirement for distributing dynamic VIPAs. However, if
your installation is configured such that target TCP/IP stacks only have XCF
connectivity, datagram forwarding still needs to be configured on the distributor,
as all packets originating from the target will be forwarded by the distributor.

There are several configuration changes that can be made to affect the method the
distributing stack will use to forward connections to the target stacks. In each of
the following items, all participating stacks is used to refer to the distributing stack
and all target stacks.

Chapter 7. Virtual IP Addressing 371

WLM-based forwarding based on target system workload
If the DISTMethod BASEWLM parameter is specified on the respective
VIPADISTRIBUTE statement, or if the DISTMethod parameter is not
specified, this distribution method is enabled. This is the default
distribution method. To enable the distributing stack to forward
connections based upon the workload of each of the target stacks, specify
SYSPLEXROUTING on the IPCONFIG statement in all participating stacks.
This registers all participating stacks with WLM and enables the
distributing stack to request workload information from WLM.

The WLM workload information is based on a comparison of available
general CPU capacity for each target system. If the application uses System
z Application Assist Processor (zAAP) capacity or System z Integrated
Information Processor (zIIP) capacity, you can configure the
VIPADISTRIBUTE statement so that available zAAP CPU capacity and zIIP
CPU capacity are also considered. For these additional processor types to
be considered, no distributor and target systems used by this application
can be earlier than z/OS V1R9 Communications Server. If you need to
consider zAAP and zIIP CPU capacity, evaluate whether you can use
SERVERWLM distribution as an alternative to BASEWLM distribution for
this application. SERVERWLM distribution has the advantage that
processor proportions are automatically determined and dynamically
updated by WLM based on the actual CPU usage of the application. If you
need BASEWLM distribution, to determine the processor proportions to
configure, study the workload usage of assist processors by analyzing SMF
records, using performance monitors reports such as RMF, and so on.

WLM-based forwarding based on server-specific workload
If the DISTMethod SERVERWLM parameter is specified on the respective
VIPADISTRIBUTE statement, the distributing stack selects from the
available servers for a DVIPA/port and forwards connections based on a
WLM recommendation indicating how well each server is executing on its
system. To enable the distributing stack to forward connections based on
server-specific workload, specify SYSPLEXROUTING on the IPCONFIG
statement in all participating stacks.

If the server uses System z Application Assist Processor (zAAP) capacity or
System z Integrated Information Processor (zIIP) capacity, processor
proportions are automatically determined and dynamically updated by
WLM, based on the actual CPU usage of the application; however, you can
influence the WLM server-specific recommendation with configuration
options on the VIPADISTRIBUTE statement. You can use the PROCXCOST
parameter on the VIPADISTRIBUTE statement so that the WLM
recommendation favors servers with available zAAP or zIIP capacity over
servers on which work targeted for the specialty processors might instead
run on the conventional processor. You can also use the ILWEIGHTING
parameter on the VIPADISTRIBUTE statement to influence how
aggressively the WLM recommendation favors servers on systems with
displaceable capacity at lower importance levels over servers on systems
with displaceable capacity at higher importance levels. For these additional
factors to be considered by WLM, no systems can run a release prior to
z/OS V1R11 Communications Server.

WLM/QoS-based forwarding
Regardless of whether BASEWLM or SERVERWLM weights are being
used, to enable the distributing stack to forward connections based upon a
combination of workload information and network performance
information (TCP retransmissions and time-outs), specify

372 z/OS V1R12.0 Comm Svr: IP Configuration Guide

SYSPLEXROUTING on the IPCONFIG statement in all participating stacks,
and also define a sysplex distributor performance policy on the target
stacks. For information on configuring these policies, see “Sysplex
distributor policy example” on page 884.

Round-robin forwarding
If the DISTMethod ROUNDROBIN parameter is specified on the respective
VIPADISTRIBUTE statement, the distributing stack uses a round-robin
mechanism to select one of the DVIPA/port targets for each connection.

Weighted active forwarding
If the DISTMethod WEIGHTEDActive parameter is specified on the
respective VIPADISTRIBUTE statement, the distribution of incoming TCP
connection requests is balanced across the targets, such that the number of
active connections on each target is proportionally equivalent to a
configured active connection weight for each target. However,
server-specific abnormal completion information, server-specific health
information, and the TSR value are used to reduce the active connection
weight when these indicators are not optimal. To enable the distributing
stack to use server-specific abnormal completion and health information to
affect the active connection weight, specify SYSPLEXROUTING on the
IPCONFIG statement for all participating stacks.

Hot-standby forwarding
If the DISTMethod HOTSTANDBY parameter is specified on the respective
VIPADISTRIBUTE statement, one preferred target server and one or more
backup (hot-standby) target servers are configured. The distributing stack
does not perform load balancing of new connection requests across
multiple targets; Instead, the preferred target server with an active listener
receives all new incoming connection requests, and the hot-standby target
servers, which typically also have a ready listener application, do not
receive any new connection requests. If the preferred target server becomes
unavailable, then the highest ranked backup server becomes the active
target server and receives all new connection requests. To enable the
distributing stack to use server-specific abnormal completion and health
information to affect the availability of the preferred target, specify
SYSPLEXROUTING on the IPCONFIG statement for all participating
stacks.

Target-controlled forwarding
If the DISTMethod TARGCONTROLLED parameter is specified on the
respective VIPADISTRIBUTE statement, distribution is controlled using
weights that are received from the targets. This distribution method can be
used with only non-z/OS tier 1 targets, such as DataPower appliances. For
more information, see “Sysplex distribution with DataPower” on page 491.

Result: If you have not made the changes needed to enable WLM-based
forwarding (SYSPLEXROUTING has not been specified for all participating stacks),
and BASEWLM or SERVERWLM is specified, the distributing stack will use
round-robin forwarding to distribute connections.

Tip: The weights received from WLM are returned based on the first 24 characters
of the HOSTNAME value. The HOSTNAME value is determined by the search
path at initialization time. To ensure correct distribution, verify that the first 24
characters of each HOSTNAME value are unique for every system.

Regardless of the distribution method used, sysplex distributor routing policies can
further affect the distribution of connections. Sysplex distributor routing policies,

Chapter 7. Virtual IP Addressing 373

|
|
|
|
|
|
|

|

|

|

|

|

configured on the distributing stack, are used to specify a set of target stacks for a
given set of traffic. For example, all traffic destined to a given port/DVIPA from a
specified subnet can be assigned one group of target stacks, while traffic for the
same port/DVIPA from another subnet can be assigned to a different group of
target stacks. For more information on configuring these types of policies, see
“Sysplex distributor policy example” on page 884.

Distribution of connections to target servers can also be affected by the
responsiveness of the target stacks or target servers. The sysplex distributor stack
monitors how well target servers respond to connection setup requests, calculating
a target server responsiveness (TSR) value for each server.

For WLM-based forwarding based on target system workload, WLM/QoS-based
forwarding, WLM-based forwarding based on server-specific workload, or
weighted active forwarding, new connection setup requests are diverted away
from target servers that are handling connection setup requests relatively poorly.
For round-robin forwarding, if the sysplex distributor determines that a target
server is not successfully accepting connection setup requests at all, that target
server is bypassed. Periodically, the distributor sends a new connection request to a
target with a TSR of 0, to check whether the responsiveness of that target has
improved.

By default, the sysplex distributor updates the status of each target server at
1-minute intervals as follows:
v When BASEWLM distribution is being used, the distributor polls WLM for new

system weights.
v When SERVERWLM distribution is being used, each target stack polls WLM for

server-specific weights and sends these weights to the distributor.
v The TSR value for each server is updated.

The default 1-minute interval is sufficient for most workloads. However, in some
environments, particularly when the load on each target system will be close to
100% capacity and when the workload consists of a high volume of short-lived
connections, you might want to use a shorter interval so that the distributor reacts
faster to changes in a target server's status. You can change the interval by using
the SYSPLEXWLMPOLL parameter on the GLOBALCONFIG statement.

Each distributing stack and each target stack must have an IPv4 or IPv6
DYNAMICXCF address, or both. This address is used by other distributing stacks
as a destination point. When using sysplex distributor, do not define an
IUTSAMEH link. These links will be created automatically from the
DYNAMICXCF statement. See z/OS Communications Server: IP Configuration
Reference for directions for coding DYNAMICXCF on the IPCONFIG or
IPCONFIG6 statements. For more information on additional configuration
parameters required, also see the usage notes related to the DYNAMICXCF
parameter under the IPCONFIG or IPCONFIG6 statements in z/OS Communications
Server: IP Configuration Reference.

The VIPADISTRIBUTE statement specifies how new connection requests are routed
to a set of candidate target stacks. The VIPADISTRIBUTEd DVIPA can be followed
by up to 64 ports. The preceding example shows the well-known ports for FTP and
the ports for a custom application.

Up to 32 target TCP/IPs follow the DESTIP keyword and are identified by their
respective dynamic XCF IP addresses. Alternatively, the VIPADISTRIBUTE

374 z/OS V1R12.0 Comm Svr: IP Configuration Guide

statement can specify DESTIP ALL, in which case all current and future stacks
with activated dynamic XCF can participate in the distribution as candidate target
stacks. As an application listens to one of the specified ports on each listed TCP/IP,
the routing TCP/IP begins to forward connections to that stack.

Guideline: If you are using OMPROUTE for connectivity to a dynamic VIPA, the
LPAR with the distributing stack that owns that dynamic VIPA is the only target
stack (that is, no remote target stacks are available), and a HiperSockets (iQDIO)
interface is not configured, code a static route representing the shared IP address in
the attached network router to maintain connectivity; otherwise, because a
HiperSockets interface is not configured, OMPROUTE does not advertise the
routing information representing the shared IP address for the dynamic XCF
interfaces in that LPAR, and the address might become unreachable because the
interfaces to the remote target stacks are deleted or marked inactive. Unlike
IUTSAMEH and DXCF interfaces, a HiperSockets interface that shares an IP
address can remain active when there are no more remote target stacks available,
and OMPROUTE advertises the routing information to the neighboring network
routers (for example, Cisco) for connectivity to the shared IP address.

For more information about sysplex distributor, see Communications Server for z/OS
V1R10 TCP/IP Implementation Volume 3: High Availability, Scalability, and Performance,
SG24–7698.

Manually quiescing DVIPA sysplex distributor server
applications

You can stop a particular server application, or all server applications, on a target
stack from receiving new DVIPA sysplex distributor workload using the VARY
TCPIP,,SYSPLEX command with the QUIESCE parameter and either the
PORT=portnum, JOBNAME=jobname, or TARGET parameter.

This command, entered on the target stack where the application exists, prevents
the application from receiving any new DVIPA sysplex distributor connections but
does not affect existing connections. This command can be issued to gracefully
quiesce a target application or target system, before the application or system is
brought down for planned maintenance. It can also be used to temporarily divert
new workload requests from a particular application or a target stack.

The VARY TCPIP,,SYSPLEX command with the RESUME parameter and either the
PORT=portnum, JOBNAME=jobname, or TARGET parameter can then be used to
resume using the application as a target for new DVIPA sysplex distributor
connections.

For more details on the VARY TCPIP,,SYSPLEX command and its parameters, see
z/OS Communications Server: IP System Administrator's Commands.

Route selection for distributing packets
Sysplex distributor uses the dynamic XCF interfaces (DYNAMICXCF parameter on
the IPCONFIG or IPCONFIG6 statements) to distribute all incoming packets to
target stacks. For information about how to determine route selection to tier 1
non-z/OS targets, see “Sysplex distribution with DataPower” on page 491.

Using dynamic XCF interfaces has several advantages, such as simplified
configuration, because you can leverage the existing XCF communication links in
your sysplex environment and do not have to define separate communication

Chapter 7. Virtual IP Addressing 375

|
|
|
|
|
|
|
|
|
|
|
|
|

paths to all target systems. This is especially useful in scenarios where target
systems do not have direct network connectivity, but rather rely on the network
connectivity of the routing stacks.

Sysplex distributor also includes some optimization logic that enables it to select
alternative network paths for forwarding DVIPA packets. This optimization logic is
automatically performed by the sysplex distributor in the following configurations:
v When the routing stack and the target stacks reside in the same MVS image, the

routing stack uses internal communication links (IUTSAMEH) to forward DVIPA
packets to the target, avoiding an external network altogether.

v When the routing stack and a target stack are running in different LPARs but on
the same zSeries central processor complex (CPC), and HiperSockets
connectivity is available, the HiperSockets connectivity is automatically used for
forwarding DVIPA packets instead of the dynamic XCF interfaces.

These optimizations provide the best performance characteristics for forwarding
DVIPA packets within the same CPC.

For configurations where the routing and target stacks reside in different CPCs,
there are some scenarios where it might be desirable to use interfaces other than
the dynamic XCF interfaces for forwarding distributed DVIPA packets:
v When sysplex XCF communication interface links, whether configured through

CTCs or through the coupling facility, are constrained or are heavily used by
other, non-DVIPA communications.

v When the routing and target stacks have direct network connectivity over high
speed, low latency, and wide bandwidth networks, such as access to the same
Gigabit Ethernet segments using the OSA-Express feature.

In these configurations, forwarding DVIPA packets over these alternative network
connections can actually improve performance (that is, reduce latency and CPU
cost) while reducing the utilization of sysplex XCF interfaces.

You can use the VIPAROUTE statement in the VIPADYNAMIC block in the
TCP/IP profile to influence the sysplex distributor's logic in selecting a route and
interface to forward DVIPA packets to a target stack. Using the VIPAROUTE
statement, you can indicate which IP address on the target stack is to be used as
the destination or target IP address during the route lookup selection. When
sysplex distributor processes the incoming packet, it determines whether a
matching VIPAROUTE statement has been defined, and if it has, the TCP/IP stack
returns the best available route to reach the target IP address. The incoming packet
is then encapsulated using a destination of the VIPAROUTE target IP address in
the outer header, and forwarded to the target stack. Generic routing encapsulation
(GRE) is used to encapsulate IPv4 packets, while an outer IPv6 header is used to
encapsulate IPv6 packets. This enables you to select the optimal interface for
forwarding DVIPA packets across different CPCs, while retaining the optimized
communication paths when the routing and target stacks reside on the same MVS
image, the same CPC, or both.

If you do not want to use the dynamic XCF interfaces at all, you must define the
dynamic routes so that the cost to reach the IP address on the target stack using
the dynamic XCF interfaces is higher than the cost to reach that IP address using
other interfaces. For more information, see “Steps for configuring OSPF and RIP
(IPv4 and IPv6)” on page 288. If this is not done, it is possible that dynamic XCF
interfaces will be used if the normal routing tables select those interfaces. By
ensuring that the route using the dynamic XCF interfaces has a higher cost, you

376 z/OS V1R12.0 Comm Svr: IP Configuration Guide

can exploit the other interfaces for forwarding most DVIPA traffic, yet maintain the
dynamic XCF interface as a backup should the preferred network interfaces fail.

In the following cases, even though VIPAROUTE was specified, the dynamic XCF
interface is used for distribution:
v A target IP address is specified that is not owned by the target stack.
v The defined dynamic XCF address is for a pre-V1R7 target stack.

When these conditions are detected, messages are issued at the distributing stack,
as well as when the distributing stack first attempts to route a connection request
to the target stack.

The dynamic XCF address must still be configured even if VIPAROUTE definitions
are used, as sysplex distributor continues to use a dynamic XCF address to identify
every target TCP/IP stack in the sysplex. In addition, there are several functions
that continue to depend on dynamic XCF connectivity for intra-sysplex
communications:
v Sysplex-wide security associations (SWSA)
v Multilevel security packets
v QoS performance data collection of Policy Agent

Generic routing encapsulation
Generic routing encapsulation (GRE) is a standard protocol described by RFC 1701,
and is used for several TCP/IP functions. GRE is implemented for only IPv4
packets. GRE enables a wrapper to be placed around a packet during transmission
of the data. A receiving stack that supports GRE removes the GRE wrapper,
enabling the original packet to be processed by the receiving stack. GRE is often
used to deliver a packet to a stack using an alternate destination IP address.

Fragmentation considerations
For IPv4, when incoming packets destined for a DVIPA address need to be
forwarded to a target TCP/IP stack using a route that was determined by a
VIPAROUTE statement, the packet is encapsulated using GRE prior to being
forwarded. This enables the packet to be forwarded through the network to the
target stack while preserving the original packet's destination IP address (that is,
the DVIPA address). The GRE encapsulation process increases the size of the
forwarded packet by 28 bytes. As a result, if the size of the encapsulated GRE
packets are larger than the maximum transmission unit (MTU) of the network
interface that will be used for forwarding the packet, the TCP/IP stack might need
to perform fragmentation, creating two or more packets that are forwarded to the
target stack. The target stack then reassembles the fragmented packets.

While fragmentation and reassembly processing is not unusual in an IP network, it
is generally desirable to eliminate the need for this processing, thereby optimizing
performance. In the case of fragmentation resulting from GRE encapsulation, the
cost of the fragmentation and reassembly processing might become a concern if a
large percentage of the incoming DVIPA packets to be forwarded require
fragmentation. Fortunately, configuration options do exist that can help eliminate
the need for this fragmentation and reassembly processing, including the
following:
v Enable path MTU discovery on the client IP hosts (that is, client hosts sending

packets to the DVIPA). This enables the client hosts to dynamically discover the
smallest MTU along the path from the client to the server. In the case of
forwarded DVIPA traffic, the path MTU is adjusted (reduced) by the length of

Chapter 7. Virtual IP Addressing 377

the GRE header, if the addition of this header would have resulted in
fragmentation being required. For IPv6, path MTU discovery is automatically
enabled for all hosts, and no explicit configuration should be required.

v Ensure that the MTU size of the routes over the network interfaces that are used
to forward the DVIPA packets is large enough to account for the largest client
packet plus the length of the GRE header. This might be an option if the clients
are connected to networks with a smaller MTU size than what is available in the
network paths between the z/OS hosts (that is, the TCP/IP stack forwarding the
DVIPA packets and the target TCP/IP stack). Consider the following example:
– The majority of the client hosts are connected to the network using Fast

Ethernet, and as result use an MTU of 1492.
– The route selected using the VIPAROUTE statement specifies a network path

over OSA-Express Gigabit Ethernet between the two z/OS hosts. Gigabit
Ethernet accommodates a much larger MTU size than Fast Ethernet (8992
versus 1492). This larger MTU size with Gigabit Ethernet is often referred to
as jumbo frames.

In this configuration, the z/OS hosts can be configured to take advantage of the
larger MTU size when communicating with each other over the Gigabit Ethernet
network. As a result, fragmentation is avoided for these forwarded DVIPA
packets, as the larger MTU easily accommodates the increased packet size
resulting from the GRE encapsulation. However, it is important to ensure that
this larger MTU size is used only for communications among hosts where the
entire network path supports the larger MTU size. Otherwise, packets sent from
the z/OS hosts using the larger MTU size might need to be fragmented as they
cross network boundaries that support only lower MTU sizes. As a result, when
configuring larger MTU sizes, such as jumbo frames for Gigabit Ethernet, it is
also important to consider enabling path MTU discovery on the hosts using the
larger MTU size. This enables these hosts (in this example, the z/OS hosts) to
use the larger MTU size only where appropriate, without introducing
fragmentation. For more information on specifying MTU sizes on z/OS, see
“Maximum transmission unit considerations” on page 95.

Dynamic port assignment
Sysplex distributor can also react dynamically to servers binding to the distributed
DVIPA and creating a listening socket, adding a port to the list of ports for which
connection workload balancing will occur. If the PORT parameter is omitted from
the VIPADISTRIBUTE statement for the distributed DVIPA, any server that binds
to the distributed DVIPA and a nonzero port will be eligible for workload
distribution. If only one server binds to the distributed DVIPA and port and
establishes a listening socket, that server will get all of the work. When the second
server binds to the distributed DVIPA and the same port and establishes a listening
socket, it will immediately become eligible to participate in connection workload
balancing. TCP/IP will not enforce a limit on the number of ports that can
participate in connection workload balancing per distributed DVIPA, other than
the total number of allowable ports.

Sysplex-wide source VIPA
Sysplex distributor addresses the requirement of providing to clients outside a
parallel sysplex a single-IP-address appearance to application instances spread
across the sysplex, and also the distribution of the incoming work among the
various instances. Many applications are part of a cooperative network of
applications, and the sysplex applications that serve as clients to end users might
also have to initiate (client-like) outbound connection requests to cooperating
applications. The SOURCEVIPA feature allows applications to attain independence

378 z/OS V1R12.0 Comm Svr: IP Configuration Guide

of any physical adapter, but SOURCEVIPA is limited to statically defined VIPAs
within a stack. Different instances of the same application using sysplex distributor,
and thus having a single IP address for inbound connection requests, will use
different IP addresses for their outbound connection requests.

These problems are resolved by allowing a single sysplex-wide VIPA to be used as
the source IP address for TCP applications and to have the sysplex stacks
collaborate on assigning ephemeral ports to prevent duplicate connection 4-tuples
(combination of source and destination IP addresses and ports). These solutions are
provided by SYSPLEXPORTS, in conjunction with either job-specific source IP
addressing or sysplex-wide source VIPAs for TCP connections.

For information on job-specific or destination-specific source IP addressing using
the SRCIP statement, see z/OS Communications Server: IP Configuration Reference.

Sysplex-wide source VIPAs for TCP connections
The TCPSTACKSOURCEVIPA keyword on the IPCONFIG or IPCONFIG6
statements allows users to specify a single VIPA, static or dynamic, to be used as a
source IP address for TCP applications that initiate outbound connections on that
stack. TCPSTACKSOURCEVIPA is only in effect when SOURCEVIPA is enabled
and an application issues a connect() without a bind(). Applications that perform
an explicit bind() do not use the TCPSTACKSOURCEVIPA address. Applications
using the Pascal API TcpOpen() call have an explicit bind() performed for them.

Guideline: Because the SRCIP profile statement provides all of the functionality of
the TCPSTACKSOURCEVIPA parameter and additional granularity, consider using
the SRCIP statement instead of specifying the TCPSTACKSOURCEVIPA parameter.
Specifying JOBNAME * in a SRCIP profile statement provides the same result as
specifying the TCPSTACKSOURCEVIPA parameter for implicit bind scenarios, and
also applies to applications that issue a bind to the IPv4 INADDR_ANY address or
to the IPv6 unspecified address (in6addr_any).

Tip: The TCPSTACKSOURCEVIPA parameter overrides the VIPA IP addresses in
the HOME list or the SOURCEVIPAINTERFACE specification, but the
TCPSTACKSOURCEVIPA parameter can be overridden. For information about the
hierarchy of various ways that the source IP address of an outbound connection is
determined, see “Source IP address selection” on page 218.

If you specify TCPSTACKSOURCEVIPA and do not specify SOURCEVIPA in a
profile, a warning message is issued and TCPSTACKSOURCEVIPA will not be
enabled. The address specified does not need to be active on the stack at profile
processing time. For example, a valid TCPSTACKSOURCEVIPA address can be an
address that will be a target address on this stack for sysplex distribution.

If the TCPSTACKSOURCEVIPA address is not an active VIPA on the stack at the
time a connect() is issued, the connect() call goes through normal source IP address
selection. A warning message will be issued no more than once every five minutes
(to avoid flooding the system console), indicating an attempt to use the address
specified in TCPSTACKSOURCEVIPA failed.

TCPSTACKSOURCEVIPA can be coded on all target stacks. The target
TCPSTACKSOURCEVIPA statements can specify individual unique addresses, or
can be duplicates of those specified on the distributing stack (a target DVIPA).
Specifying the same DVIPA address for TCPSTACKSOURCEVIPA on the
distributor and all target stacks creates a sysplex-wide source VIPA and raises the
concern for coordination of ephemeral ports across the sysplex.

Chapter 7. Virtual IP Addressing 379

For information on diagnosing sysplex-wide source VIPAs for TCP connections
problems, see z/OS Communications Server: IP Diagnosis Guide.

SYSPLEXPORTS
Whenever two or more application instances use the same source IP address and
initate connections to the same destination IP address and port, sysplex-wide
coordination of assignment of ephemeral ports is required so that the 4-tuple for
each connection remains unique. As long as the source IP address is on a single
stack, this coordination is not a problem because the stack manages assignment of
ephemeral ports. However, with sysplex distributor applications, multiple
application instances might need to initiate connections using the same distributed
DVIPA, potentially to the same destination IP address and port, so uniqueness of
the connection 4-tuples cannot be guaranteed unless the stacks collaborate across
the sysplex for ephemeral port assignment for distributed DVIPAs. This can be
done by adding the optional SYSPLEXPORTS parameter to the VIPADISTRIBUTE
statement.

You must specify the SYSPLEXPORTS parameter on the first VIPADISTRIBUTE
statement processed for a particular DVIPA. SYSPLEXPORTS cannot be enabled
after a DVIPA has been configured for distribution. After you have enabled
SYSPLEXPORTS, you cannot disable it until you have deleted all distribution for
the DVIPA. If you want to specify the SYSPLEXPORTS parameter on a
VIPADISTRIBUTE statement in the data set referenced by a VARY
TCPIP,,OBEYFILE command, you must delete the existing VIPADISTRIBUTE
statement in one data set, and then add the statement back in a second data set.
An example of the contents of a data set that deletes an existing distributed DVIPA
is as follows:
VIPADYNAMIC
VIPADISTRIBUTE DELETE
10.1.1.1 PORT 20 21
DESTIP ALL
ENDVIPADYNAMIC
;

An example of the contents of a data set that adds SYSPLEXPORTS to this DVIPA
is as follows:
VIPADYNAMIC
VIPADISTRIBUTE DEFINE SYSPLEXPORTS
10.1.1.1 PORT 20 21
DESTIP ALL
;
ENDVIPADYNAMIC

When a distributed DVIPA can be active on more than one target stack,
SYSPLEXPORTS can be specified to cause the stacks to collaborate in the
assignment of ephemeral ports for outbound initiated TCP connections. This
ensures that two different connections do not end up with the same connection
4-tuple.

At profile processing time, a stack with a profile that contains a SYSPLEXPORTS
parameter on a VIPADISTRIBUTE statement connects to the coupling facility
SYSPLEXPORTS structure containing sysplex port assignment information. The
name of this structure is in the format EZBEPORTvvtt, where vv is the 2-character
VTAM group ID suffix specified on the XCFGRPID start option, and tt is the TCP
group ID suffix specified on the GLOBALCONFIG statement in the TCP/IP profile.
If no VTAM group ID suffix is specified, but a TCP/IP group ID suffix is specified,
vv is 01. If no TCP/IP group ID suffix is specified, but a VTAM group ID suffix is

380 z/OS V1R12.0 Comm Svr: IP Configuration Guide

specified, tt is not present. If neither group ID suffix is specified, both vv and tt are
not present. The structure will be a list structure with an entry for each DVIPA
address that has a VIPADISTRIBUTE statement with SYSPLEXPORTS specified
anywhere in the sysplex (or within the subplex, if subplexing is being used). The
first stack to connect to the EZBEPORTvvtt structure for a particular DVIPA creates
an entry for that DVIPA in the coupling facility. The stack creates and initializes, in
the EZBEPORTvvtt structure, a sublist for this DVIPA of assigned ports for this
stack. For more information about setting up EZBEPORTvvtt, see Setting up the
sysplex environment for VTAM and TCP/IP functions in z/OS Communications
Server: SNA Network Implementation Guide.

The stack also maintains a list of allowable ephemeral ports on this stack, which is
basically any port number above 1023 that has not been reserved for TCP by a
PORT or PORTRANGE statement. Only port number values in this list will be
allocated for use by this stack for its SYSPLEXPORTS DVIPAs. Since this list is
unique to a particular stack and determined by stack configuration, a port number
that is not permissible for one stack because it has been reserved might be
allowable for another stack, and could in fact be allocated for use by that stack for
a SYSPLEXPORTS DVIPA.

Under the following conditions, the first time an application issues a TCP bind()
with port 0 or a connect() request, TCP/IP will receive an unassigned group of
ports from the coupling facility structure that are allowable as ephemeral ports on
the stack (not otherwise reserved by PORT or PORTRANGE):
v The bind() or connect() request uses a distributed DVIPA as the source address

(whether by the application explicitly binding the socket to the designated
DVIPA or by the stack assigning the TCPSTACKSOURCEVIPA address).

v The distributed DVIPA is designated as SYSPLEXPORTS.

The stack will assign an ephemeral port from the obtained group as the source
port for the TCP connection request, and the coupling facility structure will be
updated to show the group of ports as assigned. The stack will assign ports from
within this group for each subsequent equivalent bind() request. If all the ports
within the group are used, the stack will obtain another group of ports from the
coupling facility.

This means that the maximum number of simultaneously active outbound
connections using sysplex-wide ephemeral port assignment is approximately 63000
for a particular distributed DVIPA, and is exactly equal to all port numbers
between 1024 and 65535 that have not been reserved with a PORT or
PORTRANGE configuration statement on all stacks at the same time. This is the
same as for ephemeral port assignment within a single stack. That is, a single z/OS
TCP stack supports no more than about 63000 simultaneously active, locally
initiated TCP connections whose source ports are ephemeral ports assigned by the
stack. If a stack is unable to successfully obtain an ephemeral port from the
coupling facility for a SYSPLEXPORTS DVIPA, the connection request will be
terminated with an error indication.

If you send a connection request to a distributed DVIPA that is enabled for
SYSPLEXPORTS and a random ephemeral port with no associated listener, then
this connection will time out.

For information on diagnosing SYSPLEXPORTS problems, see z/OS Communications
Server: IP Diagnosis Guide.

Chapter 7. Virtual IP Addressing 381

GLOBALCONFIG EXPLICITBINDPORTRANGE
You must specify the EXPLICITBINDPORTRANGE parameter on the
GLOBALCONFIG profile statement if you are using or intend to use either of the
following:
v A distributed DVIPA as a source IP address in a DESTINATION rule in a SRCIP

block
v A distributed DVIPA as a source IP address in a JOBNAME rule in a SRCIP

block for an application that might use an IPv6 socket to connect to a mapped
IPv4 destination address (this applies only if the stack is IPv6 enabled)

The EXPLICITBINDPORTRANGE parameter on the GLOBALCONFIG statement
establishes a pool of ephemeral ports that is managed to guarantee the uniqueness
of an assigned port across the sysplex (or subplex). This pool of ports is used to
provide a sysplex-wide unique ephemeral port for any application that issues an
explicit bind() to INADDR_ANY or the IPv6 unspecified address (in6addr_any)
and port 0 before issuing a connect() request.

If an application uses an explicit bind() to INADDR_ANY or in6addr_any and port
0 before connecting, TCP assigns an ephemeral port from this pool to assure
uniqueness across the sysplex, because it cannot be determined at the time of the
explicit bind() whether the source IP address determined at connect() time might
be a distributed DVIPA derived from a match on a JOBNAME or DESTINATION
rule in the SRCIP block. Sysplex-wide coordination of the assigned ephemeral port
value is required when the source IP address is a distributed DVIPA, so that each
connection 4-tuple remains unique across the sysplex.

Restriction: The use of the EXPLICITBINDPORTRANGE pool of sysplex-wide
unique ports is not supported in some common INET (CINET) configurations. It is
supported if stack affinity is established, or if there is only one active TCP/IP stack
for CINET to manage. In other cases, the parameter is accepted, but the results are
unpredictable.

When EXPLICITBINDPORTRANGE is configured, selecting a distributed DVIPA
during connect processing from a matching SRCIP JOBNAME or DESTINATION
rule is also permitted when the application has explicitly bound the source port to
either a port number less than 1024 or to an ephemeral port that is reserved for the
job by a PORT or PORTRANGE profile statement. However, if the source port is
bound to an ephemeral port that is not reserved for the job and the source address
selected from a SRCIP rule during connect processing is a distributed DVIPA, the
connect request will fail.

Rule: If the source port is either less than 1024 or a port that is reserved for this
job and the specified source is a distributed DVIPA, ensure that multiple outbound
connections to the same destination IP address and port cannot occur concurrently
with the same source IP address and port.

When a profile is processed, a stack with a profile that contains a
GLOBALCONFIG statement with an EXPLICITBINDPORTRANGE parameter does
the following:
v Connects to the coupling facility SYSPLEXPORTS structure that contains sysplex

port assignment information
v Associates the stack with the pool established by the

EXPLICITBINDPORTRANGE parameter

382 z/OS V1R12.0 Comm Svr: IP Configuration Guide

The structure is a list structure with an entry for each DVIPA address that has a
VIPADISTRIBUTE statement with the SYSPLEXPORTS parameter anywhere in the
sysplex (or within the subplex, if subplexing is being used). List 0 contains entries
to maintain the explicit bind port range pool. Each stack that associates itself with
the pool sets the port range for that pool. The stack creates and initializes, in the
structure, a sublist in list 0 of assigned ports for that stack.

Note: The name of this structure is in the format EZBEPORTvvtt, where the vv
value is the 2-character VTAM group ID suffix specified on the XCFGRPID
start option, and the tt value is the TCP group ID suffix specified on the
GLOBALCONFIG statement in the TCP/IP profile. If no VTAM group ID
suffix is specified, but a TCP/IP group ID suffix is specified, vv is 01. If no
TCP/IP group ID suffix is specified, but a VTAM group ID suffix is
specified, tt is not present. If neither group ID suffix is specified, both vv
and tt are not present. For more information about setting up
EZBEPORTvvtt, see setting up the sysplex environment for VTAM and
TCP/IP functions in z/OS Communications Server: SNA Network
Implementation Guide.

Guidelines:

v When the GLOBALCONFIG EXPLICITBINDPORTRANGE statement in the
TCP/IP profile is processed, each stack sets the range for the pool established by
the EXPLICITBINDPORTRANGE parameter for all the participating stacks in the
sysplex. If each stack defines a different range, the last
EXPLICITBINDPORTRANGE parameter processed supercedes any previously
specified port ranges. To prevent the range from varying based on the order in
which stacks complete their profile processing, specify the same port range for
each stack that configures GLOBALCONFIG EXPLICITBINDPORTRANGE. You
can do this by specifying the GLOBALCONFIG EXPLICITBINDPORTRANGE
statement in a file that is included in each stack's TCP/IP profile using an
INCLUDE statement.

v Avoid overlap of the explicit bind port range with other ports or port ranges
reserved through the PORT or PORTRANGE profile statements. If a port in the
pool established by the EXPLICITBINDPORTRANGE parameter is reserved on a
TCP/IP stack through the PORT or PORTRANGE statements, the port cannot be
allocated to that stack for EXPLICITBINDPORTRANGE processing. This might
restrict the number of ports in the explicit bind port range that are actually
available for EXPLICITBINDPORTRANGE processing. For example, if you have
defined an explicit bind port range 40000 – 41000, and you have a PORTRANGE
statement on that stack that reserves ports 40500 – 41000, only ports 40000 –
40499 are available to that stack for EXPLICITBINDPORTRANGE processing.
If an application binds to a port in the explicit bind port range that has been
reserved using a PORT or PORTRANGE statement, the bind is allowed, but the
port is not treated as an EXPLICITBINDPORTRANGE port. It is not marked in
the SYSPLEXPORTS coupling facility structure for coordination across the
sysplex. This situation might cause connections to fail as a result of duplicate
connection 4-tuples.
If an application binds to a port in the explicit bind port range that has not been
reserved using a PORT or PORTRANGE statement, the bind fails with errnojr
JrExpBndPortRangeConflict (x734C).

To remove a stack's participation in the EXPLICITBINDPORTRANGE pool, specify
the GLOBALCONFIG statement with the NOEXPLICITBINDPORTRANGE
parameter using a VARY TCPIP,,OBEYFILE command. This causes that stack to
disassociate itself from the EXPLICITBINDPORTRANGE pool. If you do this and

Chapter 7. Virtual IP Addressing 383

you have applications that issue an explicit bind() to INADDR_ANY or
in6addr_any and port 0 on this stack that might match the following rules, you
must ensure that no distributed DVIPAs are used as the source IP address on the
matching rule.
v The DESTINATION rule of the SRCIP block on this stack
v A JOBNAME rule of the SRCIP block on this stack, where the application

associated with the job name might use an IPv6 socket to connect to an IPv4
mapped destination address (this applies only to stacks that are IPv6 enabled)

Timed affinities
Sysplex distributor normally distributes each connection request, as it arrives to
one of the candidate server instances, based on available capacity and policies in
effect when the connection request arrives. In particular, each connection is
assumed to be independent of all other existing and future connections, with
respect to the server instance that will receive the incoming connection request.

Some applications, however, establish an affinity between a client and a particular
server instance that needs to span multiple connections. TN3270E Telnet server
printer sessions, for example, are based on a connection request from a Telnet
client, and that printer session connection request needs to be routed to the same
TN3270E Telnet server that is serving the LU2 session. Similarly, Web-based
applications, such as shopping carts, might need to have all connections from a
particular client come to the server instance that has the contents of the shopping
cart stored as session state.

The TIMEDAFFINITY parameter on the VIPADISTRIBUTE statement indicates to
sysplex distributor that connections to a particular distributed DVIPA need to take
into account the client origin. Connections from the same client, as identified by IP
address, need to be routed to the same server instance, even when multiple server
instances are hosted by a single target stack.

If a nonzero value for the TIMEDAFFINITY parameter is specified on a
VIPADISTRIBUTE statement, the first connection from a particular client is routed
as normal to a target stack and listening application. At that time, both the sysplex
distributor routing stack and the target stack establish an affinity to govern
subsequent connection requests from the same client. This affinity maintains a
connection count, initially one. As subsequent connection requests for the same
distributed DVIPA and port come in from the same client IP address, they are
routed to the same server instance and the affinity connection count is
incremented. As affinity-based connections, including the first one, are closed, the
connection count is decremented.

When the last existing connection is closed and the count gets to zero, a timer of
the duration (in seconds) specified by the TIMEDAFFINITY parameter is started. If
another connection request is received from the same client to the same distributed
DVIPA and port, the timer is stopped and the connection request is routed to the
designated server instance. If no connection request is received from that client for
the designated distributed DVIPA and port before the timer expires, the affinity is
removed from the sysplex distributor routing and target stacks. The next
connection request from that client for the distributed DVIPA and port will be
routed according to normal sysplex distributor considerations of relative capacity
and policies.

Connection requests that map to an existing affinity are always routed to that
target regardless of the distribution method being used. This also applies to

384 z/OS V1R12.0 Comm Svr: IP Configuration Guide

weighted active connection distribution. Although the established affinities are
honored, distribution decisions for connection requests that have no affinity will
include the active connections that were established as a result of an affinity
relationship.

Using the VARY TCPIP,,OBEYFILE command with a profile containing a
VIPADISTRIBUTE statement that specifies the TIMEDAFFINITY value as 0
prevents new affinities from being established. However, an existing affinity
remains until all connections using the affinity end and the timer for the affinity
expires. The timer value is not changed for an existing affinity by the new
statement; instead, it continues to use the configured TIMEDAFFINITY value that
was active when the affinity was established. To remove existing affinities, issue
the VARY TCPIP,,OBEYFILE command with a profile containing a
VIPADISTRIBUTE DELETE statement, followed by a VIPADISTRIBUTE DEFINE
statement with a TIMEDAFFINITY value of 0.

Note that under some circumstances, a client's affinity with a specific target
application server instance might be terminated prior to the specified time interval
if key resources needed to satisfy new client TCP connection requests are not
available. This includes the following scenarios:
v A target application server instance terminates, is quiesced for DVIPA sysplex

distributor workload balancing, or is no longer listening on its specified port.
Any affinities to the target application instance are terminated and new
connections for that port are no longer routed to this server.
One exception to this scenario occurs for configurations where multiple
applications reside on the same system and TCP/IP stack, and also listen on the
same port (that is, the set of applications comprises a shareport group). In this
case, when one of the application instances in the shareport group terminates, is
quiesced for DVIPA sysplex distributor workload balancing, or is no longer
listening on the specified port, the routing stack continues to maintain any
existing affinities, but only to this target system and TCP/IP stack, as long as at
least one application instance in the shareport group is active, is not quiesced,
and is listening to the specified port. When a new TCP connection is received
from a client that previously had an affinity to the server that is no longer
active, the request is routed to the same target system and TCP/IP stack. One of
the other available servers in the shareport group is selected to process the
request and a new affinity is established.

v A target system or TCP/IP stack is no longer available. All affinities associated
with applications running on that system and TCP/IP stack are terminated.

v A target TCP/IP stack is no longer reachable across dynamic XCF links (that is,
the dynamic XCF link to the target stack is no longer active). Any existing client
affinities to applications residing on that target stack are terminated if new
connection requests from these clients are received while the dynamic XCF link
is not active. Note that this scenario only occurs if a dynamic XCF link becomes
inactive and all attempts to automatically restart the link are unsuccessful.

v A target server is found to be unresponsive to accepting new connection
requests. All affinities to the target server are terminated and new connections
for that port are no longer routed to that server.

v A target server is unable to support new connections requests. Connections that
are protected by IPSec UDP-encapsulated security associations that are
negotiated with a peer behind a NAPT must be distributed to a V1R8 or later
target. It is not always possible for the distributing stack to detect that a security
association is being negotiated with a peer behind a NAPT. If an initial
connection is distributed to a V1R7 target and an affinity to that target is

Chapter 7. Virtual IP Addressing 385

established, and during negotiation of a subsequent security association it is
determined that the peer is behind a NAPT, the affinity to the target is
terminated.

Note that sysplex distributor's notion of client is tied exclusively to source IP
address on the connection request. This is not new, and is also true of other
functions such as Policy Agent and IPSec. However, it can present problems in
situations where many different connections from truly different client instances all
appear with the same source IP address. Examples include the following:
v Proxy applications, such as a Web HTTP server proxy, that initiate secondary

connections on behalf of a large number of different clients. The secondary
connections into sysplex distributor all look as though they come from the same
client, and any affinity for those connections directs all connection requests to
the same server.

v Network address translation (NAT), which keeps connection tables so that it can
map multiple client-side addresses into a single server-side source IP address.

v Clients on z/OS configured for SOURCEVIPA, or in general, many instances of a
client on the same network node with one or very few IP addresses (as far as
outbound connection requests are concerned).

v Clients running on the sysplex distributor routing stack, which is a special
instance of the previous scenario. The source IP address for a client running on
the sysplex distributor routing node is the distributed DVIPA, the same as the
destination IP address. This is not new, and is true for any connection request
issued for a server on the same stack, if the connection request socket was not
bound to a particular IP address before issuing the connect() call.

In cases like this, distribution might be significantly less than optimal, because
sysplex distributor has no way to distinguish among connection requests from
different real clients all using the same source IP address. In the worst case, where
all source IP addresses are the same (for example, where there is a single proxy
instance in a firewall), there will be no load balancing at all as long as an affinity
exists.

Essentially, timed affinity was created to allow connection workload distribution
where it was not possible before, due to the client/server application model
requiring a particular client to go to a particular server instance for some period of
time. Such applications are not, at present, workload balanced. If a network
configuration is such that a reasonable number of source IP addresses do not allow
workload balancing, techniques to partition the work at the source must be
implemented (configuring the clients to go to unique server addresses, or
configuring the proxy to spread the workload among multiple servers, as the
WebSphere HTTP server plug-in does). Where the anticipated number of different
source IP addresses, and the connection request arrival rate, is large enough to
provide reasonable balancing and reaction to changing sysplex workloads, this
provides a reasonable solution while respecting affinities between clients and
servers as required for the application. The main reason for configuring the affinity
on the basis of each distributed DVIPA and port pair is that affinity requirements
differ from application (port number) to application, and some applications do not
need affinity at all. You must take into account your specific network
configuration, and specifically the arrival rate of connections from different IP
addresses, in determining whether timed affinity with sysplex distributor is
appropriate for a particular application in your network.

Affinity information needs to be handled on the sysplex distributor routing stack,
backup stacks, and target stacks. If a target stack is not z/OS V1R5 or later, server

386 z/OS V1R12.0 Comm Svr: IP Configuration Guide

application instances that are part of a shareport group on that stack will not work
properly, and affinities for that target stack will not be communicated to the
backup routing stack on failure of a primary routing stack. If a backup routing
stack is not z/OS V1R5 or later, affinity information will not be sent to it from
surviving target stacks if it takes over from a failed routing stack. Therefore, it is
strongly recommended that all TCP/IP stacks participating in distribution for a
distributed DVIPA with affinities be at least z/OS V1R5.

You can use the Netstat VCRT/-V report option with the DETAIL modifier to
display the affinity related information for each connection, as follows:
MVS TCP/IP NETSTAT CS V1R8 TCPIP Name: TCPCS 15:10:28
Dynamic VIPA Connection Routing Table:
Dest: 203.1.10.18..21 (1)

Source: 193.10.1.118..0
DestXCF: 193.1.1.108

CfgTimAff: 0200 TimAffCnt: 0000000003 TimAffLft: 0000
Dest: 203.1.10.18..21 (2)

Source: 193.10.1.118..1026
DestXCF: 193.1.1.108

PolicyRule: FTPD1
PolicyAction: paPRD-SD-7-INTR-SPECIAL

Dest: 203.1.10.18..21 (2)
Source: 193.10.1.118..1027
DestXCF: 193.1.1.108

PolicyRule: FTPD1
PolicyAction: paPRD-SD-7-INTR-SPECIAL

Dest: 203.1.10.18..21 (2)
Source: 193.10.1.118..1028
DestXCF: 193.1.1.108

PolicyRule: FTPD1
PolicyAction: paPRD-SD-7-INTR-SPECIAL

Dest: 203.1.10.18..21 (3)
Source: 193.10.1.119..0
DestXCF: 193.1.2.108

CfgTimAff: 0200 TimAffCnt: 0000000001 TimAffLft: 0000
Dest: 203.1.10.18..21 (4)

Source: 193.10.1.119..1030
DestXCF: 193.1.2.108

PolicyRule: FTPD1
PolicyAction: paPRD-SD-7-INTR-SPECIAL

Dest: 203.1.10.18..21 (5)
Source: 193.10.1.120..0
DestXCF: 193.1.1.108

CfgTimAff: 0200 TimAffCnt: 0000000000 TimAffLft: 0099
Dest: 204.2.10.11..21 (6)

Source: 193.10.1.199..1031
DestXCF: 193.1.6.108

PolicyRule: FTPD1
PolicyAction: paPRD-SD-7-INTR-SPECIAL

Dest: 205.2.10.11..21 (6)
Source: 193.10.1.199..1032
DestXCF: 193.1.6.108

PolicyRule: *NONE*
PolicyAction: *NONE*

The following notes apply to the preceding example.

Notes:

1. Affinity CRT entry for the three regular CRT entries that follow. If there is an
affinity entry, it is shown before the regular CRT entries.

2. Three regular CRT entries, associated with the single preceding affinity entry.
3. Affinity CRT entry for the regular CRT entry that follows.

Chapter 7. Virtual IP Addressing 387

4. Regular CRT entry associated with the previous affinity entry.
5. An affinity CRT entry that has no connection associated with it. The use count

is zero. There are 99 seconds affinity time left before this affinity entry is
removed.

6. Regular CRT entry. There is no affinity associated with it.

Sysplex-wide security associations
To enable sysplex-wide security associations (SWSA) for IPv4 on a stack that has IP
security enabled, add the subparameter DVIPSEC to the IPSEC keyword in the
IPSEC statement block of the TCP/IP profile. To enable SWSA on a stack that has
firewall support enabled, add the subparameter DVIPSEC to the FIREWALL
parameter of the IPCONFIG statement.

Restriction: The FIREWALL parameter can be configured only on a stack that is at
a V1R7 or earlier level.

To take advantage of the functions described here, you must add the DVIPSEC
subparameter to your primary (including sysplex distributor hosts) and backup
hosts. It is not necessary to add DVIPSEC to hosts that serve only as targets for
sysplex distributor. For more information on configuring SWSA, see z/OS
Communications Server: IP Configuration Reference.

SWSA also requires the use of a coupling facility structure with a name in the form
EZBDVIPAvvtt, where vv is the 2-digit VTAM group ID suffix specified on the
XCFGRPID start option, and tt is the TCP group ID suffix specified on the
GLOBALCONFIG statement in the TCP/IP profile. If no VTAM group ID suffix is
specified, but a TCP/IP group ID suffix is specified, vv is 01. If no TCP/IP group
ID suffix is specified, but a VTAM group ID suffix is specified, tt is not present. If
neither group ID suffix is specified, both vv and tt are not present. For information
about setting up the sysplex environment and the use of the EZBDVIPAvvtt
coupling facility structure, see z/OS Communications Server: SNA Network
Implementation Guide.

Dynamic IPSec security associations (SA), negotiated by IKE, can use a DVIPA
address as the SA endpoint. Manually configured SAs are not supported by SWSA.
For more information on IPSec, see Chapter 19, “IP security,” on page 923.

When using SWSA, there are two possible configurations to consider:
v DVIPA takeover
v Sysplex distributor

To support IPSec in conjunction with DVIPA takeover and sysplex distributor,
some IKE and IPSec configuration is required. Loss of access to the coupling
facility is also discussed in the following subtopics.

IPv6 sysplex-wide security associations are not supported.

For information on diagnosing SWSA problems, see z/OS Communications Server: IP
Diagnosis Guide.

DVIPA takeover
When a DVIPA is moved during DVIPA takeover (planned or unplanned), SWSA
automatically reestablishes new IPSec SAs with the same security service
characteristics as the SAs that existed on the host that previously owned the
DVIPA. The SA reestablishment is transparent to the client that owns the other end

388 z/OS V1R12.0 Comm Svr: IP Configuration Guide

of the SA. That is, the SA reestablishment looks like a normal SA refresh. For
example, as shown in Figure 41, during DVIPA takeover, DVIPA 192.168.253.4 is
taken over by the backup host, and SAs are transparently reestablished between
the client and the backup host.

The IKE running on behalf of the TCP stack of the DVIPA owner is responsible for
all IKE SA negotiations. The TCP stack owning the DVIPA is responsible for
keeping the coupling facility updated with information needed to reestablish the
SAs in the event of a DVIPA takeover. When a takeover occurs, the IKE on the
backup host assumes responsibility for renegotiating new SAs based on the stored
information read from the coupling facility during the takeover by the TCP stack
of the new DVIPA owner.

Sysplex distributor
TCP traffic protected by an IPSec SA with a sysplex-distributed DVIPA endpoint
can be distributed to target hosts. IPSec cryptography for inbound traffic is
performed on the target host whenever possible. If not possible, the distributor
performs the cryptography before forwarding the packet to the target stack. IPSec
cryptography for outbound traffic is performed on the target host, and then sent
directly into the network without being routed through the distributor. Figure 42
on page 390 shows the target stack performing the cryptography for the inbound
and outbound traffic.

Original Owning Host
MVS A

Security
Associations

MVS Coupling Facility

Client

Security
Associations
Re-established

Backup Host
MVS B

TCP A TCP B

DVIPA
192.168.253.4

192.168.253.4

EZBDVIPAvvtt

DVIPA
takeover

DVIPA
192.168.253.4

Figure 41. DVIPA takeover with SWSA

Chapter 7. Virtual IP Addressing 389

The IKE running on behalf of the distributor TCP stack (the DVIPA owner) is
responsible for all IKE SA negotiations. The distributor stack keeps the master copy
of the SA associated with the DVIPA. Whenever a new SA is negotiated or
refreshed and the SA is installed in the distributor stack, a copy (shadow) of the
SA, which contains information necessary to perform IPSec cryptography, is sent
within the sysplex to the target hosts. The shadow SAs enable the distribution of
cryptography to the target stacks. The coupling facility is used as a central
repository for SA replay protection sequence numbers used for outbound
operations. The SA lifesizes (bytes sent and received over an SA) are maintained in
the master SA.

Using IPSec with DVIPAs and sysplex distributor
To support IPSec in conjunction with DVIPA takeover and sysplex distributor,
some IKE and IPSec configuration on the original or distributing host must be
replicated onto all systems that can either serve as a backup host for a VIPA
takeover or a target host for sysplex distributor. This includes IP Security policy
that affects traffic using distributed DVIPA (from an IKE definition perspective).
v From a stack perspective, all anchor rules that are applicable to distributed

DVIPA traffic must be identical on all systems. In addition, the ordering of the
rules must allow for consistent application of security policy on all systems.

v To be considered a sysplex-wide SA, the SA negotiated that applies to DVIPAs
must be at a granularity no coarser than host for the local address. That is, a

Distributing Host
MVS A

Security
Associations

MVS Coupling Facility

Client

Shadow
Security
Associations

Target Host
MVS B

TCP A TCP B

DVIPA
192.168.253.4

192.168.253.4

EZBDVIPAvvtt

IPSec Protected
TCP Packet

DVIPA
192.168.253.4

Figure 42. Sysplex distributor with SWSA

390 z/OS V1R12.0 Comm Svr: IP Configuration Guide

dynamic SA cannot use a subnet or range that encompasses a DVIPA address.
This rule ensures that on a DVIPA Giveback the SA can be moved from host to
host without concerns about an SA being applicable to both the backup and
primary host simultaneously. If such a dynamic SA is negotiated, the IPSec
traffic using it cannot be distributed or recovered through the DVIPA takeover
support.

Loss of access to coupling facility
If access is lost to the coupling facility containing the DVIPA structure
EZBDVIPAvvtt, it is possible the TCP connections using this DVIPA could
terminate and new connections needing IPsec will fail to establish. Loss of access
could be caused by any of the following:
v A disconnect from the coupling facility structure.
v The structure is rebuilt.
v The structure encounters a critical storage shortage.

Loss of coupling facility access should affect only sysplex distributor connections
that are being encrypted or authenticated. When access to EZBDVIPAvvtt is
restored, the sessions can be re-established.

Resolution of dynamic VIPA conflicts
The same dynamic VIPA can exist on more than one stack in the sysplex, playing
different roles on the different stacks. The TCP/IP stacks collaborate to prevent
conflicting definitions. For example, at any given time only one stack will advertise
a given dynamic VIPA to the routers.

Potentially conflicting dynamic VIPA definitions can arise during profile processing
or as the result of changes within the sysplex due to a stack or application failure
or as the result of movement of workload to a different stack. The following
scenarios are examples of dynamic VIPA conflict resolution handled automatically
by the TCP/IP stacks. For a summary of dynamic VIPA conflict identification and
resolution, see “Dynamic VIPA creation results” on page 396.

Restart of the original VIPADEFINE TCP/IP after an outage
When a dynamic VIPA is defined using VIPADEFINE on one TCP/IP, and other
stacks are designated as backup using VIPABACKUP statements for the same
dynamic VIPA, the stack with the highest backup rank for that DVIPA will activate
it if or when the VIPADEFINE stack fails.

If the failed stack is later restarted with the same VIPADEFINE profile statement, it
is likely that connections to that DVIPA will exist on the backup stack that now has
the DVIPA activated and advertised to the routers. How and when ownership of
the DVIPA is returned to the restarted stack is determined by how the DVIPA was
originally configured.

VIPADEFINE MOVEABLE IMMEDIATE
If the DVIPA is an IPv6 DVIPA, or is an IPv4 DVIPA that was originally configured
with MOVEABLE IMMEDIATE, the following occurs:
v The DVIPA ownership is immediately transferred to the restarting stack which

adds the DVIPA to its HOME list and the routers are dynamically notified. The
restarted stack receives all new connections for that DVIPA. The stack also can
receive packets for existing connections, and it routes these to the backup stack
to preserve those connections.

Chapter 7. Virtual IP Addressing 391

v At the same time, the backup stack notifies the routers that it no longer is the
owner of the DVIPA.
– If there are no current connections to the DVIPA, it is removed from the

HOME list on the backup stack and it reverts to backup status.
– If there are any existing connections, the DVIPA remains in the HOME list of

the backup stack and the DVIPA is put into Moving status until the last
existing connection is terminated. At that time, the DVIPA is removed from
the HOME list and reverts to backup status.

IBM recommends this form of a planned DVIPA takeback occur only during low
periods of connection activity. This gives the attached routers time to update their
routing tables and avoid connections being reset due to receiving an
ICMP_HOST_UNREACH or ICMP6_DST_UNREACH from the router.

Tip: If OMPROUTE is used, it is recommended that GLOBALCONFIG
SYSPLEXMONITOR DELAYJOIN be configured. This causes DVIPA takeback to be
delayed until OMPROUTE is active and able to advertise DVIPAs on the takeback
stack. For more information on using DELAYJOIN, see “Sysplex problem detection
and recovery” on page 449.

Notes:

1. To ensure preservation of existing connections on the prior owning stack, you
must define DYNAMICXCF on both stacks, on the IPCONFIG statement for
IPv4 dynamic VIPAs or on the IPCONFIG6 statement for IPv6 dynamic VIPAs.

2. MOVEABLE IMMEDIATE is the default for IPv4 DVIPAs, and the only
behavior for IPv6 DVIPAs.

VIPADEFINE MOVEABLE WHENIDLE
If an IPv4 DVIPA was originally configured with MOVEABLE WHENIDLE, the
following occurs:
v If it appears that there are no active connections to the DVIPA on the backup

stack:
– The DVIPA is removed from the HOME list on the backup stack and reverts

to backup status.
– The restarted stack assumes ownership of the DVIPA by adding it to its

HOME list and notifying the routers.
v If there are existing connections to the DVIPA on the backup stack:

– Ownership of the DVIPA remains with the backup stack. The DVIPA on the
restarting stack is placed in backup status at the head of the backup list for
the DVIPA.

– The backup stack periodically checks to see if it has any active connections to
the DVIPA.
When or if it appears that there are no active connections for the DVIPA, the
following occurs:
- The DVIPA is removed from the HOME list on the backup stack and

reverts to backup status.
- The restarted stack assumes ownership of the DVIPA by adding it to its

HOME list and notifying the routers.

Notes:

1. WHENIDLE is supported only for IPv4 DVIPAs.

392 z/OS V1R12.0 Comm Svr: IP Configuration Guide

2. A small period of time exists between the check for connections and the
movement of the dynamic VIPA to the restarted stack. If connections are
made to the old host (the backup stack) in this interval, they will be
broken.

3. During the time that TCP/IP is periodically checking for connections,
TCP/IP does not refuse new connections because this would be the same
as an outage. If moving the work back to the restarted stack is more
important than maintaining uninterrupted service to all clients, then the
system operator can use the VARY TCPIP,,OBEYFILE command to delete
the dynamic VIPA on the backup stack with the VIPADELETE profile
statement. This causes the restarted stack to immediately activate the
DVIPA. Optionally, the data set specified on the command can contain a
VIPABACKUP statement following the VIPADELETE statement. This will
restore the stack as a backup stack.

Movement of unique application-instance (BIND)
A dynamic VIPA is created when any application binds to a nonexistent, specific IP
address falling within a configured VIPARANGE on that stack.

In the case of a stack failure, the same application could be started on another
stack and (assuming the new stack also has an appropriate VIPARANGE
configured) when the application binds to the same IP address, the dynamic VIPA
is created on the second stack. Future client connections to that IP address are
routed to the second stack where the application is now running.

However, if the same (or a different) application is started on a second stack and
attempts to create the same dynamic VIPA using a bind() while it exists on the first
stack, the end result is determined by how the VIPARANGE was configured on the
stack where the first bind() occurred.

VIPARANGE (DEFINE) MOVEABLE NONDISRUPTIVE
If the first stack is configured with VIPARANGE MOVEABLE NONDISRUPTIVE,
the following occurs:
v If the RACF profile EZB.BINDDVIPARANGE.sysname.tcpname has been defined,

the application issuing the bind() must be permitted to the profile.

Note: If the RACF profile is not defined but the same VIPARANGE is
configured on another stack, any application on that stack can cause the
DVIPA to move there by issuing a BIND() to that DVIPA.

v The DVIPA ownership is immediately transferred to the second stack which
adds the DVIPA to its HOME list and dynamically notifies the routers. This
stack will now receive all new connections for the DVIPA.

v At the same time, the first stack notifies the routers that it no longer is the
owner of the DVIPA, and puts the DVIPA into moving status. The DVIPA
remains in moving status (and in the first stacks HOME list) until the application
closes the socket.

v Existing connections on the first stack are preserved. If the second stack receives
packets intended for existing connections, it routes the packets to the first stack.

Notes:

1. To ensure preservation of existing connections on the prior owning stack, you
must define DYNAMICXCF on both stacks, on the IPCONFIG statement for
IPv4 dynamic VIPAs or on the IPCONFIG6 statement for IPv6 dynamic VIPAs.

Chapter 7. Virtual IP Addressing 393

2. NONDISRUPTIVE is the default for V2R10 and later, and is the only option
supported for IPv6.

3. Both stacks must be running V2R10 or later to get non-disruptive behavior. If
either stack is running V2R8, the result will be as described in “VIPARANGE
(DEFINE) MOVEABLE DISRUPTIVE.”

VIPARANGE (DEFINE) MOVEABLE DISRUPTIVE
If the first stack is configured with VIPARANGE MOVEABLE DISRUPTIVE (or if
either stack is running V2R8), the following occurs:
v The bind() request for the application on the second stack will fail.
v The DVIPA on the first stack is not affected.

Notes:

1. If movement of the application from the first to the second stack is intended,
the application must be ended on the first stack before it is started on the
second stack.

2. DISRUPTIVE is supported only for IPv4 DVIPAs.

Defining a RACF profile for VIPARANGE
A RACF SERVAUTH class profile can control which applications can bind() to
define a DVIPA using VIPARANGE. To restrict applications that can bind() to a
DVIPA within a VIPARANGE, define the EZB.BINDDVIPARANGE.sysname.tcpname
profile in RACF, and permit the applications that are allowed to bind() as shown in
the following example. If the profile is not defined, then the bind() will be
processed.

To restrict access to all the IP addresses in the VIPARANGE definitions, you can
define a RACF profile using the following example:
RDEFINE SERVAUTH (EZB.BINDDVIPARANGE.sysname.tcpname)

UACC(NONE)

PERMIT EZB.BINDDVIPARANGE.sysname.tcpname
ACCESS(READ) CLASS(SERVAUTH) ID(userid)

In this example, sysname is the name of the MVS system, userid is the user ID that
the application is running on, and tcpname is the job name of the TCP/IP started
task.

The job name for started tasks, such as TCP/IP, is derived depending on how it is
started:
v If the START command is issued with the name of a member in a cataloged

procedure library (for example, S TCPIPX), the job name will be the member
name (for example, TCPIPX).

v If the member name on the START command is qualified by a started task
identifier (for example, S TCPIPX.ABC), the job name will be the started task
identifier (for example, ABC). The started task identifier is not visible to all MVS
components, but TCP/IP uses it to build the RACF resource name.

v The JOBNAME parameter can also be used on the START command to identify
the job name (for example, S TCPIPX,JOBNAME=XYZ).

v The JOBNAME can also be included on the JOB card.

If this RACF profile is created, the user ID must be permitted to access this profile,
or bind() requests will fail with a permission denied error, regardless of superuser
authority.

394 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Note also that before the RACF profiles take effect, a refresh of these profiles might
be required. This can be accomplished by the following RACF command:
SETROPTS RACLIST(SERVAUTH) REFRESH

Movement of a unique APF-authorized application instance
(ioctl)

APF-authorized applications running under a user ID with superuser authority (or
that have access through the MODDVIPA security profile) have the ability to
activate a dynamic VIPA with the SIOCSVIPA or SIOCSVIPA6 ioctl command,
either within the application itself or by invoking the MODDVIPA utility. Because
this is a controlled environment, it is assumed configuration errors are minimized
or avoided and the usage is correct. Thus, even if the requested DVIPA is currently
active on another TCP/IP stack via BIND() or ioctl(), the DVIPA will be
immediately activated on this stack. What happens on the other stack is
determined by how the VIPARANGE was configured on that stack.

VIPARANGE (DEFINE) MOVEABLE NONDISRUPTIVE
If the first stack is configured with VIPARANGE MOVEABLE NONDISRUPTIVE,
the following occurs:
v The DVIPA ownership is immediately transferred to the second stack which

adds the DVIPA to its HOME list and dynamically notifies the routers.
v At the same time, the first stack notifies the routers that it no longer is the

owner of the DVIPA, and puts the DVIPA into moving status. The DVIPA
remains in moving status (and in the first stack's HOME list) until the DVIPA is
deleted on that stack with the VIPADELETE profile statement or the SIOCSVIPA
or SIOCSVIPA6 ioctl DELETE option.

v Existing connections on the first stack are preserved. If the second stack receives
packets intended for existing connections, it will route the packets to the first
stack.

Notes:

1. To ensure preservation of existing connections on the prior owning stack, you
must define DYNAMICXCF on both stacks, on the IPCONFIG statement for
IPv4 dynamic VIPAs or on the IPCONFIG6 statement for IPv6 dynamic VIPAs.

2. NONDISRUPTIVE is the default for V2R10 and later.
3. Both stacks must be running V2R10 or later to get non-disruptive behavior. If

either stack is running V2R8, the result will be as described in “VIPARANGE
(DEFINE) MOVEABLE DISRUPTIVE.”

VIPARANGE (DEFINE) MOVEABLE DISRUPTIVE
If the first stack is configured with VIPARANGE MOVEABLE DISRUPTIVE (or if
either stack is running V2R8), the following occurs:
v The ioctl request for the application on the second stack succeeds. The DVIPA is

added to the HOME list on the second stack, and the routers are dynamically
notified.

v The DVIPA on the first stack is deleted.

Notes:

1. Any existing connections to the DVIPA on the first stack are broken.
2. DISRUPTIVE is IPv4 only.

Chapter 7. Virtual IP Addressing 395

Same dynamic VIPA for VIPADEFINE and BIND(), SIOCSVIPA
or SIOCSVIPA6 ioctl, or MODDVIPA utility

Regardless of careful implementation, it is possible that the same IP address is
inadvertently selected for VIPADEFINE and for use with BIND(), SIOCSVIPA or
SIOCSVIPA6 ioctl, or the MODDVIPA utility. Because the application scenarios are
quite different, this must be an error.

If this duplicate DVIPA address conflict occurs on the same TCP/IP, the second
attempt might fail. If an IP address is specified in a VIPADEFINE, and that same
IP address has already been activated on the TCP/IP by an application using
BIND(), the SIOCSVIPA or SIOCSVIPA6 ioctl, or the MODDVIPA utility, the
VIPADEFINE will be rejected during VARY TCPIP,,OBEYFILE command
processing. If an IP address is activated with VIPADEFINE, and the application
does a BIND(), ioctl(), or the MODDVIPA utility is used, the BIND() will succeed,
but the ioctl() will fail with a nonzero errno and the MODDVIPA utility will set a
nonzero condition to indicate that the IP address already exists.

The same situation could also occur on two different TCP/IPs in the sysplex.
Because the TCP/IPs are exchanging information among themselves, if the two
attempts are far enough apart in time, the second attempt will be caught
immediately and rejected. However, it is possible that the attempt will be made
almost simultaneously on two different TCP/IPs, such that neither TCP/IP is yet
aware of the attempt on the other TCP/IP. If both attempt such an activation, and
the exchange of information then shows a conflict, the internal sysplex time stamps
are used to determine which attempt was really first. The one that appears to be
first is allowed to continue, and the dynamic VIPA is deleted from the later
TCP/IP. While such a simultaneous attempt is somewhat unpredictable in respect
to which one will succeed, the dynamic VIPA will remain active on only one
TCP/IP, and examination of messages will indicate which TCP/IP successfully
created the DVIPA and on which TCP/IP it was rejected.

Dynamic VIPA creation results
Table 19 on page 397 summarizes the results of attempting to create a dynamic
VIPA when it (or the same IP address for HOME statement) already exists in the
sysplex.

396 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Table 19. Summary of dynamic VIPA creation results

First action Second action Result if second action is
on the same stack

Result if the second
action is on a different
stack within the sysplex

bind() bind() Second bind() succeeds,
but no new VIPA is
created.

If both stacks are running
V2R10 or later, and the
first BIND DVIPA was
created with MOVEABLE
NONDISRUPTIVE:

v On stack 2, bind()
succeeds

v On stack 1, the BIND
VIPA remains in the
HOME list
(unadvertised) and any
existing connections are
preserved

v New connections to
that IP address go to
the application on stack
2.

Otherwise, second bind
fails.

bind() ioctl() ioctl() fails with warning
condition code, but the
application associated with
the ioctl is still able to use
the dynamic VIPA.

ioctl() succeeds, bind is
deleted (even if BIND
DVIPA was created as
MOVEABLE
NONDISRUPTIVE)

bind() VIPADEFINE VIPADEFINE fails. VIPADEFINE fails.

bind() VIPABACKUP VIPABACKUP fails. VIPABACKUP fails.

bind() HOME See note. See note.

ioctl() bind() bind() succeeds, no new
VIPA is created.

bind() fails.

ioctl() ioctl() Second ioctl() fails with
warning condition code,
but the application
associated with the ioctl is
still able to use the
dynamic VIPA.

Second ioctl() succeeds.

If both stacks are running
V2R10 or later, and the
ioctl DVIPA on stack 1
was created with
MOVEABLE
NONDISRUPTIVE, the
DVIPA on stack 1 remains
in the HOME list
(unadvertised) and any
existing connections are
preserved. Otherwise, the
ioctl DVIPA on stack 1 is
deleted and any existing
connections are broken.

ioctl() VIPADEFINE VIPADEFINE fails. VIPADEFINE fails.

ioctl() VIPABACKUP VIPABACKUP fails. VIPABACKUP fails.

ioctl() HOME See note. See note.

VIPADEFINE bind() bind() succeeds, but no
new VIPA is created.

bind() fails.

Chapter 7. Virtual IP Addressing 397

Table 19. Summary of dynamic VIPA creation results (continued)

First action Second action Result if second action is
on the same stack

Result if the second
action is on a different
stack within the sysplex

VIPADEFINE ioctl() ioctl() fails. ioctl() fails.

VIPADEFINE VIPADEFINE If the second VIPADEFINE
statement is an exact
duplicate of the first, the
second VIPADEFINE is
ignored with no error
message. For IPv4, the
second VIPADEFINE fails
if it has different options or
a different mask than the
first VIPADEFINE
specified. For IPv6, the
second VIPADEFINE fails
if the interface name is
already defined with a
different address or the
address is already defined
for a different interface
name.

For IPv4, the second
VIPADEFINE succeeds
but activation on stack 2
might be deferred.

If both stacks are running
V2R10 or later, and the
DVIPA was created on
stack 1 as MOVEABLE
IMMEDIATE:

v Second VIPADEFINE is
activated immediately

v Any connections to the
DVIPA on stack 1 are
preserved. (DVIPA
stays in HOME list
unadvertised)

Otherwise, the second
VIPADEFINE activation is
deferred until there are
no connections on stack 1,
at which point, stack 1
reverts to backup status.

For IPv6, if both the
interface name and
address on the second
VIPADEFINE match the
first VIPADEFINE, the
DVIPA is activated on
stack 2. Any connections
to the DVIPA on stack 1
are preserved. If either
the interface name or
address is the same but
the other is not, the
second VIPADEFINE
fails.

VIPADEFINE VIPABACKUP VIPABACKUP fails. Both succeed.

VIPADEFINE HOME See note. See note.

VIPABACKUP bind() bind() fails. If the IP address is
already active on the
bind() stack, the bind()
will succeed. Otherwise,
the bind() fails.

VIPABACKUP ioctl() ioctl() fails. ioctl() fails.

398 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Table 19. Summary of dynamic VIPA creation results (continued)

First action Second action Result if second action is
on the same stack

Result if the second
action is on a different
stack within the sysplex

VIPABACKUP
is backup
status

VIPADEFINE VIPADEFINE succeeds,
replaces the VIPABACKUP.

For IPv6, both the interface
name and the address on
the VIPADEFINE must
match the VIPABACKUP. If
one matches and the other
does not match, the
VIPADEFINE fails.

VIPADEFINE succeeds.

For IPv6, both the
interface name and the
address on the
VIPADEFINE must match
the VIPABACKUP. If one
matches and the other
does not match, the
VIPADEFINE fails.

VIPABACKUP
in active status
(after takeover)

VIPADEFINE VIPADEFINE rejected For IPv4, the
VIPABACKUP DVIPA is
MOVEABLE
IMMEDIATE or
WHENIDLE depending
how the original
VIPADEFINE DVIPA was
created.

If both stacks are running
V2R10 or later, and the
VIPABACKUP DVIPA is
MOVEABLE
IMMEDIATE:

v The VIPADEFINE is
activated immediately.

v Any connections to the
DVIPA on stack 1 are
preserved (DVIPA stays
in HOME list
unadvertised).

v When there are no
more connections, stack
1 reverts to backup
status.

Otherwise, the
VIPADEFINE activation
on stack 2 is deferred
until there are no active
connections on stack 1, at
which point stack 1
reverts to backup status.

For IPv6, if both the
interface name and the
address on the
VIPADEFINE match the
VIPABACKUP, the DVIPA
is activated on stack 2.
Any connections to stack
1 are preserved. If only
one matches, the
VIPADEFINE fails.

Chapter 7. Virtual IP Addressing 399

Table 19. Summary of dynamic VIPA creation results (continued)

First action Second action Result if second action is
on the same stack

Result if the second
action is on a different
stack within the sysplex

VIPABACKUP VIPABACKUP If the DVIPA is in backup
status on this stack, the
second VIPABACKUP
succeeds. If the DVIPA is
in active status on this
stack (for example, after a
takeover), a VIPABACKUP
with a different rank will
be rejected.

For IPv6, both the interface
name and address must
match the first
VIPABACKUP. If one
matches and the other is
different, the second
VIPABACKUP fails.

Second VIPABACKUP
succeeds.

For IPv6, both the
interface name and
address must match the
first VIPABACKUP. If one
matches and the other is
different, the second
VIPABACKUP fails.

VIPABACKUP HOME See note. See note.

HOME bind() bind() succeeds, but no
new VIPA is created.

bind() fails.

HOME ioctl() ioctl() fails. ioctl() fails.

HOME VIPADEFINE VIPADEFINE fails. VIPADEFINE fails.

HOME VIPABACKUP VIPABACKUP fails. VIPABACKUP fails.

Note: Defining the same IP address in the HOME list as an existing dynamic VIPA will not
be rejected by the TCP/IP stack, but it is likely to cause routing problems.

TIER1, TIER2, and CPCSCOPE keyword DVIPA contention
resolution

Sysplex distributor supports load balancing across z/OS images in a sysplex and
to non-z/OS targets, as described in “Sysplex distribution optimizations for
multi-tier z/OS workloads” on page 485 and “Sysplex distribution with
DataPower” on page 491; the TIER1, TIER2, and CPCSCOPE keywords are used
with this support. Use the following guidelines to define dynamic VIPAs (DVIPAs)
that use these keywords.

Guidelines:

v If you want to change the TIER1, TIER2, or CPCSCOPE definition for a DVIPA,
delete the existing definition of the DVIPA from the sysplex first; the keyword
usage for a DVIPA must be the same throughout the sysplex. For example:
– If there is an existing VIPADEFINE or VIPABACKUP statement for DVIPA1

using the TIER2 keyword, use a VIPADELETE statement to remove this
DVIPA before using a VIPADEFINE TIER1 statement for DVIPA1.

– If there is an existing VIPADEFINE or VIPABACKUP statement for DVIPA1
that does not use the TIER1, TIER2, or CPCSCOPE keywords, use a
VIPADELETE statement to remove this DVIPA before defining DVIPA1 with
one of these keywords.

v When you are defining a DVIPA with the CPCSCOPE keyword, and the DVIPA
exists in a different central processor complex (CPC), delete it from that CPC

400 z/OS V1R12.0 Comm Svr: IP Configuration Guide

first; a DVIPA with the CPCSCOPE keyword can exist only on stacks in the
same CPC. For example, if DVIPA1 was defined using a VIPABACKUP
CPCSCOPE statement on a stack in CPC1, use a VIPADELETE statement to
remove this DVIPA before using a VIPABACKUP CPCSCOPE statement for a
stack in CPC2.

If you do not follow these guidelines, the changes to DVIPA creation results that
occur when the TIER1, TIER2, or CPCSCOPE keyword is changed, added, or
removed from a DVIPA that already exists in the sysplex are described in Table 20,
Table 21 on page 402, and Table 22 on page 403.

If you create a new definition for an existing DVIPA on the same stack, either in
the same profile or later using the VARY TCPIP,,OBEYFILE command, see Table 20.
When the new definition is processed, it cannot change the TIER1, TIER2, or
CPCSCOPE usage; if this is attempted, the new definition is rejected.

Table 20. DVIPA contention resolution for DVIPA definitions on the same stack

Original definition Later definition Result

VIPADEFINE or VIPABACKUP DVIPA1
TIER1

VIPADEFINE or VIPABACKUP DVIPA1
TIER1

Later definition replaces
the original definition

VIPADEFINE or VIPABACKUP DVIPA1
TIER2

VIPADEFINE or VIPABACKUP DVIPA1
TIER2

VIPADEFINE or VIPABACKUP DVIPA1
TIER2 CPCSCOPE

VIPADEFINE or VIPABACKUP DVIPA1
TIER2 CPCSCOPE

VIPADEFINE or VIPABACKUP DVIPA1
CPCSCOPE

VIPADEFINE or VIPABACKUP DVIPA1
CPCSCOPE

VIPADEFINE or VIPABACKUP DVIPA1
TIER1

VIPADEFINE or VIPABACKUP DVIPA1
TIER2 or CPCSCOPE

Configuration mismatch;
later definitions are
rejectedVIPADEFINE or VIPABACKUP DVIPA1

TIER2
VIPADEFINE or VIPABACKUP DVIPA1
TIER1 or CPCSCOPE

VIPADEFINE or VIPABACKUP DVIPA1
CPCSCOPE

VIPADEFINE or VIPABACKUP DVIPA1
TIER1 or TIER2

VIPADEFINE or VIPABACKUP DVIPA1 VIPADEFINE or VIPABACKUP DVIPA1
TIER1, TIER2, or CPCSCOPE

VIPADEFINE or VIPABACKUP DVIPA1
TIER1, TIER2, or CPCSCOPE

VIPADEFINE or VIPABACKUP DVIPA1

When two stacks define the same DVIPA, contention resolution is as follows:
v If there is a TIER1, TIER2, or CPCSCOPE mismatch for the DVIPA, the stack

with the later timestamp cannot change the keyword usage, and either rejects its
own definition during profile processing or deletes its definition when it learns
of the DVIPA definition with the earlier timestamp.

v If there is a mismatch between a DVIPA definition that uses a TIER1, TIER2, or
CPCSCOPE keyword and a DVIPA definition that does not use any of these
keywords, possible outcomes are as follows:
– If the second stack has already received the mismatched DVIPA definition

from the first stack prior to profile processing, contention resolution depends
on the release level of stack 2:
- If stack 2 is V1R11 or later, the earlier timestamp wins and stack 2 rejects

all DVIPA1 definitions (including the VIPADISTRIBUTE statement)

Chapter 7. Virtual IP Addressing 401

- If stack 2 is V1R10 or earlier, it is not aware of the new keywords and the
mismatch and it defines the DVIPA; stack 1 deletes its definition when it
learns that stack 2 defined the DVIPA

– After two stacks have successfully defined DVIPAs with mismatching
definitions, the stack that uses the keywords deletes all of its definitions for
that DVIPA, because the stack that uses no keywords might be using V1R10
or earlier.

Table 21 summarizes DVIPA contention resolution between stacks in the same CPC.

Table 21. DVIPA contention resolution between stacks in the same CPC

Stack 1 — Earlier timestamp Stack 2 — Later timestamp Result

VIPADEFINE DVIPA1
TIER1

VIPADEFINE DVIPA1
TIER1

Later timestamp wins
and stack 1 becomes a
backup for DVIPA1VIPADEFINE DVIPA1

TIER2
VIPADEFINE DVIPA1
TIER2

VIPADEFINE DVIPA1
TIER2 CPCSCOPE

VIPADEFINE DVIPA1
TIER2 CPCSCOPE

VIPADEFINE DVIPA1
CPCSCOPE

VIPADEFINE DVIPA1
CPCSCOPE

VIPADEFINE or VIPABACKUP DVIPA1
TIER1

VIPADEFINE or VIPABACKUP DVIPA1
TIER2 or CPCSCOPE

Configuration mismatch;
earlier timestamp wins
and stack 2 deletes all
DVIPA1 definitions
(including the
VIPADISTRIBUTE
statement)

VIPADEFINE or VIPABACKUP DVIPA1
TIER2

VIPADEFINE or VIPABACKUP DVIPA1
TIER1 or CPCSCOPE

VIPADEFINE or VIPABACKUP DVIPA1
CPCSCOPE

VIPADEFINE or VIPABACKUP DVIPA1
TIER1 or TIER2

VIPADEFINE or VIPABACKUP DVIPA1
TIER1, TIER2, or CPCSCOPE

VIPADEFINE or VIPABACKUP DVIPA1 Configuration mismatch
during profile processing
for stack 2:

v If stack 2 is V1R11 or
later, the earlier
timestamp wins and
stack 2 rejects all
DVIPA1 definitions
(including the
VIPADISTRIBUTE
statement)

v If stack 2 is V1R10 or
earlier, it is not aware
of the new keywords
and the mismatch and
it defines the DVIPA;
stack 1 deletes all
DVIPA1 definitions
(including the
VIPADISTRIBUTE
statement) when it
learns that stack 2
defined the DVIPA

402 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Table 21. DVIPA contention resolution between stacks in the same CPC (continued)

Stack 1 — Earlier timestamp Stack 2 — Later timestamp Result

VIPADEFINE or VIPABACKUP DVIPA1
TIER1, TIER2, or CPCSCOPE

VIPADEFINE or VIPABACKUP DVIPA1 Configuration mismatch
after profile processing
for stack 2 completes;
definition with no
keywords wins and stack
1 deletes all DVIPA1
definitions (including the
VIPADISTRIBUTE
statement)

VIPADEFINE or VIPABACKUP DVIPA1 VIPADEFINE or VIPABACKUP DVIPA1
TIER1, TIER2, or CPCSCOPE

Configuration mismatch
after profile processing
for stack 2 completes;
definition with no
keywords wins and stack
2 deletes all DVIPA1
definitions (including the
VIPADISTRIBUTE
statement)

Table 22 summarizes additional contention resolution rules used when the stacks
are in different CPCs.

Table 22. DVIPA contention resolution between stacks in different CPCs

Stack 1 CPC 1 — Earlier timestamp Stack 2 CPC 2 — Later timestamp Result

VIPADEFINE DVIPA1
TIER1

VIPADEFINE DVIPA1
TIER1

Later timestamp wins
and stack 1 becomes a
backup for DVIPA1VIPADEFINE DVIPA1

TIER2
VIPADEFINE DVIPA1
TIER2

VIPADEFINE or VIPABACKUP DVIPA1
TIER2 CPCSCOPE

VIPADEFINE or VIPABACKUP DVIPA1
TIER2 CPCSCOPE

Earliest Timestamp wins
and stack 2 deletes its
VIPADEFINE or
VIPABACKUP statement
because the DVIPA can
have VIPADEFINE and
VIPABACKUP definitions
only on stacks in the
same CPC

VIPADEFINE or VIPABACKUP DVIPA1
CPCSCOPE

VIPADEFINE or VIPABACKUP DVIPA1
CPCSCOPE

VIPADEFINE or VIPABACKUP DVIPA1
TIER1

VIPADEFINE or VIPABACKUP DVIPA1
TIER2 or CPCSCOPE

Configuration mismatch;
earlier timestamp wins
and stack 2 deletes all
DVIPA1 definitions
(including the
VIPADISTRIBUTE
statement)

VIPADEFINE or VIPABACKUP DVIPA1
TIER2

VIPADEFINE or VIPABACKUP DVIPA1
TIER1 or CPCSCOPE

VIPADEFINE or VIPABACKUP DVIPA1
CPCSCOPE

VIPADEFINE or VIPABACKUP DVIPA1
TIER1 or TIER2

Chapter 7. Virtual IP Addressing 403

Table 22. DVIPA contention resolution between stacks in different CPCs (continued)

Stack 1 CPC 1 — Earlier timestamp Stack 2 CPC 2 — Later timestamp Result

VIPADEFINE or VIPABACKUP DVIPA1
TIER1, TIER2, or CPCSCOPE

VIPADEFINE or VIPABACKUP DVIPA1 Configuration mismatch
during profile processing
for stack 2:

v If stack 2 is V1R11 or
later, the earlier
timestamp wins and
stack 2 rejects all
DVIPA1 definitions
(including the
VIPADISTRIBUTE
statement)

v If stack 2 is V1R10 or
earlier, it is not aware
of the new keywords
and the mismatch and
it defines the DVIPA;
stack 1 deletes all
DVIPA1 definitions
(including the
VIPADISTRIBUTE
statement) when it
learns that stack 2
defined the DVIPA

VIPADEFINE or VIPABACKUP DVIPA1
TIER1, TIER2, or CPCSCOPE

VIPADEFINE or VIPABACKUP DVIPA1 Configuration mismatch
after profile processing
for stack 2 completes;
definition with no
keywords wins and stack
1 deletes all DVIPA1
definitions (including the
VIPADISTRIBUTE
statement)

VIPADEFINE or VIPABACKUP DVIPA1 VIPADEFINE or VIPABACKUP DVIPA1
TIER1, TIER2, or CPCSCOPE

Configuration mismatch
after profile processing
for stack 2 completes;
definition with no
keywords wins and stack
2 deletes all DVIPA1
definitions (including the
VIPADISTRIBUTE
statement)

IPv6 considerations
This topic discusses special considerations for IPv6.

VIPARANGE
MOVeable DISTRUPTive is not supported for IPv6. To prevent an unauthorized
application from creating a dynamic VIPA with a bind() call, a RACF profile (called
EZB.BINDDVIPARANGE.sysname.tcpname) can be added. If the RACF check fails,
the bind() request fails, and if the RACF check is successful, the bind() request is
accepted.

404 z/OS V1R12.0 Comm Svr: IP Configuration Guide

VIPADEFINE and VIPABACKUP
VIPABACKUP must specify an interface name and IPv6 address. The interface
name and IPv6 address pair must match any preexisting dynamic VIPA definitions
for either that interface name or IPv6 address. If using VIPABACKUP for an initial
DVIPA activation, neither the interface name nor the IPv6 address can preexist.
Furthermore, for the takeover and backup functions to succeed, if a corresponding
VIPADEFINE is to be subsequently activated, the interface name and IPv6 address
on the VIPADEFINE statement must match the VIPABACKUP statement.

Unique application-instance scenario and IPv6-enabled
applications

A single instance of an IPv6-enabled TCP application can typically handle
communications with IPv4 or IPv6 partner applications. IPv6-enabled TCP server
applications usually accomplish this by using a single AF_INET6 socket to accept
connections from both IPv4 and IPv6 clients. As a result, IPv6-enabled applications
have some additional configuration considerations when compared to IPv4-only
applications, as they require both an IPv4 DVIPA and an IPv6 DVIPA to be
configured. If the application is using the MODDVIPA utility or the SIOCSVIPA
IOCTL to define the DVIPA, it needs to be modified as follows:
v If using the MODDVIPA utility, an additional set of invocations for this utility is

needed to define and delete the IPv6 DVIPA to be associated with the
application.

v If the application is using the SIOCSVIPA IOCTL, it needs to be modified to also
issue the SIOCSVIPA6 IOCTL to define and delete the IPv6 DVIPA to be
associated with the application.

Applications that are currently relying on defining the DVIPA dynamically using
the bind() socket API or the BIND parameter on the PORT reservation statement
have some additional considerations, as a single socket cannot be bound to more
than one IP address.

Following are some of the options that can help alleviate this issue:
v Instead of relying on the bind to trigger the DVIPA definition, the application or

configuration can be modified to allow the application to bind to the IPv6
unspecified address (in6addr_any). The MODDVIPA utility can then be used to
define and delete both the IPv4 and IPv6 DVIPAs associated with the
application. Another similar alternative would be for the application to issue the
SIOCSVIPA or SIOCSVIPA6 IOCTL for both of these DVIPAs, but this is
probably less desirable since it involves application changes.

v Start two instances of the application, one binding to the IPv4 DVIPA and the
other binding to the IPv6 DVIPA. This assumes that multiple instances of the
same application can be started within the same MVS image or across different
images in the sysplex. This configuration allows IPv4 clients to reach the
application instance bound to the IPv4 DVIPA and IPv6 clients to reach the
application instance bound to the IPv6 DVIPA.

v In some cases it might be possible to modify the application so that it can create
two sockets, one for IPv6 communications and one for IPv4 communications.
Each socket could then be bound to the IPv4 or IPv6 DVIPA as appropriate, and
a single instance of the application could handle both IPv4 and IPv6 clients. This
solution might be less desirable since it also involves application code changes.

Chapter 7. Virtual IP Addressing 405

VIPAs, OSA-Express QDIO, and Spanning Tree Protocol
Spanning Tree Protocol (STP) can potentially impact environments where both
OSA-Express QDIO and VIPA are deployed.

With dynamic VIPA, a TCP/IP address takeover occurs when a TCP/IP stack fails,
or a static or dynamic VIPA is manually moved by operator intervention. In either
case, when a static or dynamic VIPA moves, the IP address and respective
workloads are taken over by another TCP/IP stack through other OSA-Express
Ethernet devices running on a different server. When the original TCP/IP stack
and respective OSA-Express QDIO devices are returned to operation, both the IP
address and respective workload traffic are taken back by the recovered TCP/IP
stack.

If the network bridge or switch is not configured properly, packets can get lost in
the network or be blocked by the networking equipment. This is a result of a
physical looping condition identified by the STP, or expired OSA-Express QDIO
timers due to the increased latencies associated with blocked ports or delayed
packets. In these cases, static or dynamic VIPA connectivity can fail.

When configuring STP, use care in the bridge or switch configuration to avoid or
minimize potential loop conditions. For example, if the STP is not an integral
component of the overall network, disabling the STP on all of the Virtual LANs
(VLANs) that connect to OSA-Express QDIO devices will help avoid the problem.

Also, some networking switches provide a mechanism for suppressing the STP's
listening and learning states on specific switch ports. For example, Cisco Systems
provides an STP configuration feature called PortFast that can place specific switch
ports into forwarding state as soon as a link is detected. Without PortFast enabled,
a switch port has to transition through the listening and learning stages (30
seconds total) of Spanning Tree reconvergence before the switch port can actually
pass valid traffic. For PortFast capable Cisco switches, enabling PortFast on all
switch ports that OSA-Express QDIO is connected into allows network
administrators to both preserve their original Spanning Tree configuration by not
having to change it, while also providing a viable mechanism to avoid potential
static or dynamic VIPA problems.

For more information on configuring STP and immediate port forwarding, see the
bridge or switch operational manual.

Mixture of types of dynamic VIPAs within subnets
Any particular IP address can be used in only one way as a dynamic VIPA. A
dynamic VIPA can be defined either with VIPADEFINE or by application action
within a valid VIPARANGE, but not both. However, within a subnet defined as a
VIPARANGE, some IP addresses can be used for VIPADEFINE, and others may be
assigned to unique application instances, without conflict, as long as the limit of a
total of 1024 active and backup dynamic VIPAs on a single TCP/IP is not
exceeded. TCP/IP will make no attempt to reject a VIPADEFINE dynamic VIPA
that also falls within a VIPARANGE. This allows installations with limited
availability of IP addresses to assign individual addresses to either application
scenario, without having to define separate subnets and use up additional IP
addresses in that manner.

406 z/OS V1R12.0 Comm Svr: IP Configuration Guide

MVS failure and sysplex failure management
The TCP/IPs in a sysplex use MVS XCF messaging to exchange information about
dynamic VIPAs. When a TCP/IP fails or is ended by operator command, but the
underlying MVS remains active, the other TCP/IPs are immediately notified, and
takeover of VIPADEFINE dynamic VIPAs is automated and very fast. In addition,
each TCP/IP stack monitors for local problem conditions that might cause it to
leave the TCP/IP sysplex group, at which point the other TCP/IPs will be
immediately notified. For more information, see “Sysplex problem detection and
recovery” on page 449.

However, when an MVS fails, there is normally an operator message on the
console requiring a response (WTOR). Until this response is made by an operator
or automation, the other MVS systems do not notify the remaining TCP/IPs in the
sysplex of the failure of the TCP/IP on the failing MVS. This can delay automated
backup of dynamic VIPAs defined with VIPADEFINE. Sysplex Failure
Management (SFM) can be used to automate the required response to the console
message of the failing MVS. See z/OS MVS Setting Up a Sysplex for information on
how to set up SFM to avoid the requirement for a manual response and speed
backup of dynamic VIPAs defined with VIPADEFINE.

For more information, see z/OS Communications Server: IP Diagnosis Guide.

Applications and dynamic VIPAs
While most applications support multiple instances in a sysplex, very few
applications expect IP addresses to move around under them. TCP applications use
TCP connections to form a relationship between particular client and server
instances to exchange data over an extended period. They rely on notification of
TCP connection termination to initiate recovery and to reestablish a new
relationship (possibly from a client to a different server). Conversely, most UDP
applications do the equivalent function at the application layer. Movement of an IP
address to a different server could be confusing to the client, unless the new server
also is aware of the state of the client work.

UDP applications whose interactions consist of atomic interactions (a single request
followed by one or more responses, with no state information maintained at the
server between requests) can use dynamic VIPAs in the multiple
application-instance scenario. However, if the server application maintains state
information between interactions (for example, NFS), then moving a dynamic VIPA
to another server might not work unless the client/server application protocol can
detect the discontinuity. In that case, the unique application-instance scenario
might apply, which would require the restart of the server instance on another
TCP/IP.

In addition, the following types of work are not appropriate for distribution with
distributed dynamic VIPA:
v Applications that establish affinity with a particular TCP/IP stack, such as

SNMP.
v FTP servers that receive the PASV or EPSV command for a distributed DVIPA

that did not specify SYSPLEXPORTS. The PASV and EPSV commands are
supported when SYSPLEXPORTS was specified on the VIPADISTRIBUTE
statement of the distributed DVIPA that is the destination IP address being used
by the FTP server. These commands request that the FTP server bind() on a data
port that is not the default data port, or the one specified on the

Chapter 7. Virtual IP Addressing 407

VIPADISTRIBUTE statement, and to wait for a connection rather than initiate
one on receipt of a transfer command (for example, RETR). Because
SYSPLEXPORTS cannot be specified for a non-distributed dynamic VIPA,
passive mode FTP connections made to a non-distributed dynamic VIPA cannot
be recovered when the VIPA is moved through a planned takeover. The control
connection remains on the original stack, but attempts to create new data
connections for control connections that existed prior to the move will fail. When
SYSPLEXPORTS is used with a distributed dynamic VIPA, new data connections
are always sent to the same stack containing their control connection. For more
information on using the SYSPLEXPORTS parameter in the VIPADYNAMIC
block, see z/OS Communications Server: IP Configuration Reference.

v FTP servers that accept connections on an IPv6 distributed DVIPA that does not
have SYSPLEXPORTS specified. The FTP server expects an EPSV command for
data transfers to or from an IPv6 address, and use of the EPSV command is
supported only when SYSPLEXPORTS was specified on the VIPADISTRIBUTE
statement of the distributed DVIPA that is the destination IP address being used
by the FTP server.

Configuring VIPAs for activation with VIPABACKUP
When adding a dynamic VIPA to a functioning sysplex, the normal order is to add
VIPABACKUP statements to backup stacks, and then add a VIPADEFINE
statement to the TCP/IP stack where the VIPA should normally reside, at which
time the VIPA would be activated and ready for use. A VIPADISTRIBUTE
statement could be added at the same time, along with the VIPASMPARMS
statement if the SERVICEMGR parameter is coded on the VIPADEFINE statement.
The VIPA would only be activated when the VIPADEFINE was processed on the
TCP/IP that would normally own it, and not when a VIPABACKUP is processed
on another stack. This is, in part, because parameters on the VIPADEFINE that are
needed to activate the VIPA were not found on the VIPABACKUP statement.

However, on the rare occasion that a disaster occurs, it might be necessary to IPL
all of the systems in a sysplex. Assuming that many dynamic VIPAs are in use and
the VIPADEFINE statements are spread across the available TCP/IP stacks in the
sysplex, most of the dynamic VIPAs have a lengthy wait before the owning
operating system, TCP/IP, and application are started and fully operational. The
intent of dynamic VIPAs defined with VIPADEFINE and VIPABACKUP is to move
the dynamic VIPAs under a functioning application as soon as possible. Therefore,
optional parameters have been added to the VIPABACKUP statement to allow the
dynamic VIPA to be activated when the VIPABACKUP is processed at TCP/IP
initialization or VARY TCPIP,,OBEYFILE command processing. If the MOVEABLE
IMMEDIATE or MOVEABLE WHENIDLE parameter is specified on a
VIPABACKUP profile statement, along with required address mask and optional
SERVICEMGR parameters for an IPv4 DVIPA, the dynamic VIPA will be activated
when the profile statement is processed, if it is not active elsewhere in the sysplex
already. The following notes apply to this case:
v If the MOVEABLE parameter is specified, the address mask must also be

specified. For an IPv4 DVIPA, the SERVICEMGR parameter on a VIPABACKUP
statement is optional. The address mask and SERVICEMGR parameters can only
be specified on a VIPABACKUP statement if the MOVEABLE parameter has also
been specified.

v The first started VIPABACKUP TCP/IP stack that is configured to start a
particular dynamic VIPA with VIPABACKUP will activate the dynamic VIPA
and own it until the VIPADEFINE stack is started. As long as the first activating
VIPABACKUP stack remains operational, starting another stack with a

408 z/OS V1R12.0 Comm Svr: IP Configuration Guide

VIPABACKUP statement will not cause the dynamic VIPA to move, even if the
second stack has a higher backup rank. Only the initialization of the
VIPADEFINE stack will cause the VIPA to move automatically.

v When the VIPADEFINE is eventually processed, its parameters will override the
values specified on the VIPABACKUP that activated the dynamic VIPA, if the
VIPADEFINE has parameters that are different from those specified on the
VIPABACKUP.

It is always a good idea, when able to specify a parameter on both primary and
backup, to specify exactly the same values for each. When all the parameters
common to VIPADEFINE and VIPABACKUP are specified the same on both for a
particular DVIPA, the behavior exhibited when the VIPADEFINE stack comes up
will be the same as when the DVIPA is activated first by a VIPABACKUP stack.
However, for IPv4, there are several parameters that could be specified
inconsistently on the VIPABACKUP and VIPADEFINE statements. If they are
specified inconsistently, following are some of the implications by parameter:
v SERVICEMGR: If the Cisco forwarding agents are not configured to participate,

then it does not matter whether or not SERVICEMGR is specified. If the Cisco
forwarding agents are configured to participate, the following apply if
SERVICEMGR is specified differently on participating stacks:
– If SERVICEMGR is not specified on the VIPABACKUP stack, the Cisco

forwarding agents will send all packets through normal IP forwarding to the
stack owning the DVIPA (the VIPABACKUP stack until the VIPADEFINE
stack comes up). When the VIPADEFINE stack comes up with SERVICEMGR,
it will inform the forwarding agents and normal function will continue, even
for existing connections. In other words, nothing fails, including existing
connections, but optimal routing is not achieved unless all participating stacks
code SERVICEMGR.

– If SERVICEMGR is specified on the VIPABACKUP stack, things will operate
normally for MNLB integration until the VIPADEFINE stack is activated.
When that happens, no new updates will be sent to the Cisco forwarding
agents, meaning that existing connections will be routed optimally for a
while, but all packets for new connections will be sent to the VIPADEFINE
stack for routing. After the 15-minute timeout for connection routes in the
forwarding agents, the existing connections will have all packets sent to the
VIPADEFINE stack. Once again, nothing fails, including existing connections,
but optimal routing is not achieved unless all participating stacks code
SERVICEMGR.

v MOVEABLE: If there is any doubt, this parameter should be coded as
MOVEABLE IMMEDIATE on the VIPABACKUP stack, so that the stack will
maintain connection information to be sent to the VIPADEFINE stack when it
comes up. Subsequent operation in the sysplex will be determined by the coding
(or defaulting) of MOVEABLE on the VIPADEFINE statement, regardless of
what was coded on the VIPABACKUP of the stack that first activated the
DVIPA. This is true even if that same stack later takes over the DVIPA from the
VIPADEFINE or another stack. (This is the reason MOVEABLE was chosen as
the way to activate the new function on VIPABACKUP stacks, rather than a new
keyword, to force consideration of the setting of the MOVEABLE parameter for
VIPABACKUP stacks.)

v address_mask: The address_mask is used to build BSDROUTINGPARMS
statements. If the attached routing daemon is OMPROUTE and there is no
corresponding interface definition with the subnet mask parameter in
OMPROUTE configuration, OMPROUTE might send a different address mask
from the VIPADEFINE stack than it will for the VIPABACKUP stack, which

Chapter 7. Virtual IP Addressing 409

might confuse the routing network. The address_mask should be the same on
VIPABACKUP and VIPADEFINE statements for a particular DVIPA.
Result: Incorrect OMPROUTE configuration, such as missing interface
definitions for RIPv1, RIPv2, or OSPF, can lead to unexpected results, especially
if OMPROUTE uses defaults for the address mask.

Assuming that dynamic VIPAs are spread across the sysplex, and that critical
applications are as well, the first stack to be activated might activate most, if not
all, DVIPAs, and might therefore assume a considerable amount of the workload.
For any particular application, all of the workload is directed to the first stack
supporting that application to be activated, regardless of what other workload will
be executing on that same stack or LPAR.

Recommendation: Consider the planned sysplex TCP/IP activation sequence, and
have only those DVIPAs for critical applications activating on TCP/IP stacks early
in the sequence, so that less important work does not interfere with the
business-critical applications during sysplex startups.

Example of configuring dynamic and distributed VIPAs
The TCP/IP profiles needed to implement dynamic VIPA (DVIPA) on multiple
systems in a sysplex are shown in the following examples. The VIPADEFINE and
VIPABACKUP statements allow automatic dynamic VIPA takeover to occur if
needed (see “Configuring the multiple application-instance scenario” on page 363),
and the VIPARANGE statements allow dynamic VIPAs to be dynamically created
by an application or by the MODDVIPA utility (see “Configuring the unique
application-instance scenario” on page 364). The VIPADISTRIBUTE statements
allow a single VIPA to be shared among several TCP/IPs. Including the
SOURCEVIPA and TCPSTACKSOURCEVIPA parameters on the IPCONFIG and
IPCONFIG6 statements, on each target stack with the same dynamic VIPA
specified, enables a single DVIPA address to be used as a sysplex-wide source
DVIPA address for outbound TCP connections. The following examples show both
IPv4 and IPv6 DVIPAs, and the output is shown in the IPv6-enabled, or long,
format.
TCPCS
IPCONFIG SYSPLEXROUTING SOURCEVIPA TCPSTACKSOURCEVIPA 201.2.10.11
DYNAMICXCF 193.9.200.1 255.255.255.240 1
IPCONFIG6 DYNAMICXCF 2001:0DB8::151:0001 INTFID 6:7:8:9
SOURCEVIPAINT SVIPA1 SOURCEVIPA TCPSTACKSOURCEVIPA DVIPA1

VIPADYNAMIC
VIPADEFINE 255.255.255.240 201.2.10.11 201.2.10.12
VIPADEFINE 255.255.255.240 201.2.10.14 201.2.10.15
VIPADEFINE 255.255.255.240 201.2.10.23
VIPADISTRIBUTE SYSPLEXPORTS DISTM SERVERWLM 201.2.10.11
PORT 20 21 DESTIP ALL
VIPADISTRIBUTE 201.2.10.12 PORT 20 21 DESTIP 193.9.200.2
VIPADISTRIBUTE DISTMETHOD ROUNDROBIN 201.2.10.14 DESTIP 193.9.200.2
VIPADISTRIBUTE DISTM WEIGHTEDActive 201.2.10.15 PORT 5000
DESTIP 193.9.200.2 WEIGHT 10
DESTIP 193.9.200.3 WEIGHT 20
VIPADISTRIBUTE TIMEDAFF 30 201.2.10.15 PORT 23 DESTIP ALL
PROCTYPE CP 20 ZAAP 80 ZIIP 0
VIPADISTRIBUTE 201.2.10.23 PORT 4000 DESTIP ALL
VIPABACKUP 100 201.2.10.13
VIPABACKUP 80 201.2.10.21 201.2.10.22
VIPARANGE DEFINE 255.255.255.192 201.2.10.192
VIPADEFINE DVIPA1 2001:0DB8:1::1
VIPADISTRIBUTE SYSPLEXPORTS DISTMETHOD SERVERWLM DVIPA1 DESTIP ALL

410 z/OS V1R12.0 Comm Svr: IP Configuration Guide

VIPADEFINE DVIPA2 2001:0DB8:2::2
VIPADISTRIBUTE TIMEDAFF 45 DISTM ROUNDROBIN DVIPA2 PORT 23 DESTIP ALL
VIPARANGE VRANGE1 2001:0DB8:3::1/100

ENDVIPADYNAMIC

TCPCS2
IPCONFIG SYSPLEXROUTING SOURCEVIPA TCPSTACKSOURCEVIPA 201.2.10.11
DYNAMICXCF 193.9.200.2 255.255.255.240 1
IPCONFIG6 DYNAMICXCF 2001:0DB8::151:0002
SOURCEVIPA TCPSTACKSOURCEVIPA DVIPA1

VIPADYNAMIC
VIPADEFINE 255.255.255.192 201.2.10.13
VIPABACKUP 100 201.2.10.11 201.2.10.21
VIPABACKUP 75 201.2.10.12 201.2.10.22
VIPARANGE DEFINE 255.255.255.192 201.2.10.192
VIPADEFINE DVIPA3 2001:0DB8:3::3
VIPABACKUP 200 DVIPA2
VIPABACKUP 220 DVIPA1
VIPADISTRIBUTE SYSPLEXPORTS DVIPA1 PORT 23 DESTIP ALL
VIPABACKUP 10 DVIPA4

ENDVIPADYNAMIC

TCPCS3
IPCONFIG SYSPLEXROUTING SOURCEVIPA TCPSTACKSOURCEVIPA 201.2.10.11
DYNAMICXCF 193.9.200.3 255.255.255.240 1
IPCONFIG6 DYNAMICXCF 2001:0DB8::151:0003
SOURCEVIPA TCPSTACKSOURCEVIPA DVIPA1

VIPADYNAMIC
VIPADEFINE MOVE IMMED 255.255.255.192 201.2.10.21 201.2.10.22
VIPABACKUP 10 201.2.10.11 201.2.10.12 201.2.10.13
VIPARANGE DEFINE 255.255.255.192 201.2.10.192
VIPADEFINE DVIPA4 2001:0DB8:4::4
VIPABACKUP 110 DVIPA2
VIPABACKUP 100 DVIPA1

ENDVIPADYNAMIC

TCPCS6
IPCONFIG SYSPLEXROUTING SOURCEVIPA TCPSTACKSOURCEVIPA 201.2.10.11
DYNAMICXCF 193.9.200.6 255.255.255.240 1
IPCONFIG6 DYNAMICXCF 2001:0DB8::151:0006
SOURCEVIPA TCPSTACKSOURCEVIPA DVIPA1

TCPCS6 does not have dynamic VIPAs defined so it does not
contain a VIPADYNAMIC definition. It has DYNAMICXCF specified
for IPv4 and IPv6 to enable XCF dynamic support and to allow
TCPCS6 to be a target for dynamic VIPA distribution.

Start TCP/IP on each system as shown.
v On system1, start TCPCS and TCPCS2.
v On system2, start TCPCS3, on system3 start TCPCS6.
v On system1, run the MODDVIPA utility to define the DVIPA 201.2.10.193.

//TCPDVP PROC
//*
//*
//TCPDVP EXEC PGM=MODDVIPA ,REGION=0K,TIME=1440, x
// PARM=’POSIX(ON) ALL31(ON)/-p TCPCS -c 201.2.10.193’
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=FB,LRECL=132,BLKSIZE=132)
//SYSERR DD SYSOUT=*
//SYSERROR DD SYSOUT=*
//SYSDEBUG DD SYSOUT=*
//SYSUDUMP DD SYSOUT=A
//SYSABEND DD SYSOUT=*
//*
//*Run program here

Chapter 7. Virtual IP Addressing 411

//*
//TCPDVP EXEC PGM=MODDVIPA ,REGION=0K,TIME=1440, x
// PARM=’POSIX(ON) ALL31(ON)/-p TCPCS -d 201.2.10.193’

The PARM field can be -c for create or -d for delete. This example will create
DVIPA 201.2.10.193 for the TCP/IP named TCPCS. After intermediate program
has completed (and the comment character is removed), the DVIPA will be
deleted.

v On system 1, deactivate DVIPA 201.2.10.23 by issuing the following command
on the MVS console:
V TCPIP,TCPCS,SYSPLEX,DEACTIVATE,DVIPA=201.2.10.23

Verifying the DVIPAs in a sysplex
The following display command can be used to display dynamic VIPAs in a
sysplex:
d tcpip,tcpname,sysplex,vipadyn

In the following example taken from stack TCPCS, the ORIGIN lines show that
201.2.10.11, 201.2.10.12, 201.2.10.14, 201.2.10.15, DVIPA1, and DVIPA2 were all
created by VIPADEFINE on this stack. 201.2.10.13, 201.2.10.21, and 201.2.10.22 were
created by VIPABACKUP statements. (Note that the deactivated DVIPA 201.2.10.23
does not appear in this display.)

The ORIGIN line indicates how the DVIPA is configured on the stack specified by
tcpname. Each stack (TCPNAME) for each system (MVSNAME) is shown with its
status (STATUS). Two other status values not shown in the following example are:

QUIESCING
This DVIPA has been deactivated, or it was a target for distribution and
has been removed as a target. However, it is still servicing one or more
connections for this DVIPA. The DVIPA will be removed when all
connections complete.

MOVING
This DVIPA was active on this stack and has been moved to another stack.
Connections on this stack for this DVIPA prior to the move will still be
serviced by this stack until completion.

The rank (RANK) indicates which of the stacks is eligible to take over if the stack
on which the DVIPA is active stops. The stack with the highest rank is the one that
will take over the DVIPA.
d tcpip,tcpcs,sysplex,vipadyn
EZZ8260I SYSPLEX CS V1R8 711
VIPA DYNAMIC DISPLAY FROM TCPCS AT MVS004
LINKNAME: VIPLC9020A0B
IPADDR/PREFIXLEN: 201.2.10.11/28

ORIGIN: VIPADEFINE
TCPNAME MVSNAME STATUS RANK DIST
-------- -------- ------ ---- ----
TCPCS MVS004 ACTIVE BOTH
TCPCS2 MVS004 BACKUP 100 DEST
TCPCS3 MVS005 BACKUP 010 DEST
TCPCS6 MVS005 ACTIVE DEST

LINKNAME: VIPLC9020A0C
IPADDR/PREFIXLEN: 201.2.10.12/28

ORIGIN: VIPADEFINE
TCPNAME MVSNAME STATUS RANK DIST
-------- -------- ------ ---- ----
TCPCS MVS004 ACTIVE DIST

412 z/OS V1R12.0 Comm Svr: IP Configuration Guide

TCPCS2 MVS004 BACKUP 075 DEST
TCPCS3 MVS005 BACKUP 010

IPADDR: 201.2.10.13
ORIGIN: VIPABACKUP
TCPNAME MVSNAME STATUS RANK DIST
-------- -------- ------ ---- ----
TCPCS2 MVS004 ACTIVE
TCPCS MVS004 BACKUP 100
TCPCS3 MVS005 BACKUP 010

LINKNAME: VIPLC9020A0E
IPADDR/PREFIXLEN: 201.2.10.14/28

ORIGIN: VIPADEFINE
TCPNAME MVSNAME STATUS RANK DIST
-------- -------- ------ ---- ----
TCPCS MVS004 ACTIVE DIST
TCPCS2 MVS004 ACTIVE DEST

LINKNAME: VIPLC9020A0F
IPADDR/PREFIXLEN: 201.2.10.15/28

ORIGIN: VIPADEFINE
TCPNAME MVSNAME STATUS RANK DIST
-------- -------- ------ ---- ----
TCPCS MVS004 ACTIVE BOTH
TCPCS6 MVS005 ACTIVE DEST
TCPCS3 MVS005 ACTIVE DEST
TCPCS2 MVS004 ACTIVE DEST

IPADDR: 201.2.10.21
ORIGIN: VIPABACKUP
TCPNAME MVSNAME STATUS RANK DIST
-------- -------- ------ ---- ----
TCPCS3 MVS005 ACTIVE
TCPCS2 MVS004 BACKUP 100
TCPCS MVS004 BACKUP 080

IPADDR: 201.2.10.22
ORIGIN: VIPABACKUP
TCPNAME MVSNAME STATUS RANK DIST
-------- -------- ------ ---- ----
TCPCS3 MVS005 ACTIVE
TCPCS MVS004 BACKUP 080
TCPCS2 MVS004 BACKUP 075

INTFNAME: DVIPA1
IPADDR: 2001:0DB8:1::1

ORIGIN: VIPADEFINE
TCPNAME MVSNAME STATUS RANK DIST
-------- -------- ------ ---- ----
TCPCS MVS004 ACTIVE BOTH
TCPCS6 MVS005 ACTIVE DEST
TCPCS3 MVS005 ACTIVE DEST
TCPCS2 MVS004 ACTIVE DEST

INTFNAME: DVIPA2
IPADDR: 2001:0DB8:2::2

ORIGIN: VIPADEFINE
TCPNAME MVSNAME STATUS RANK DIST
-------- -------- ------ ---- ----
TCPCS MVS004 ACTIVE BOTH
TCPCS6 MVS005 ACTIVE DEST
TCPCS3 MVS005 ACTIVE DEST
TCPCS2 MVS004 ACTIVE DEST

INTFNAME: DVIPA3
IPADDR: 2001:0DB8:3::3

TCPNAME MVSNAME STATUS RANK DIST
-------- -------- ------ ---- ----
TCPCS2 MVS004 ACTIVE

INTFNAME: DVIPA4
IPADDR: 2001:0DB8:4::4

Chapter 7. Virtual IP Addressing 413

TCPNAME MVSNAME STATUS RANK DIST
-------- -------- ------ ---- ----
TCPCS3 MVS005 ACTIVE

32 OF 32 RECORDS DISPLAYED

TCPCS2, TCPCS3, and TCPCS6 all display the same information about all the
DVIPAs. ORIGIN fields are displayed for the DVIPAs that are configured on this
stack.
d tcpip,tcpcs2,sys,vipad
EZZ8260I SYSPLEX CS V1R8 714
VIPA DYNAMIC DISPLAY FROM TCPCS2 AT MVS004
IPADDR: 201.2.10.11

ORIGIN: VIPABACKUP
TCPNAME MVSNAME STATUS RANK DIST
-------- -------- ------ ---- ----
TCPCS MVS004 ACTIVE BOTH
TCPCS2 MVS004 BACKUP 100 DEST
TCPCS3 MVS005 BACKUP 010 DEST
TCPCS6 MVS005 ACTIVE DEST

IPADDR: 201.2.10.12
ORIGIN: VIPABACKUP
TCPNAME MVSNAME STATUS RANK DIST
-------- -------- ------ ---- ----
TCPCS MVS004 ACTIVE DIST
TCPCS2 MVS004 BACKUP 075 DEST
TCPCS3 MVS005 BACKUP 010

LINKNAME: VIPLC9020A0D
IPADDR/PREFIXLEN: 201.2.10.13/26

ORIGIN: VIPADEFINE
TCPNAME MVSNAME STATUS RANK DIST
-------- -------- ------ ---- ----
TCPCS2 MVS004 ACTIVE
TCPCS MVS004 BACKUP 100
TCPCS3 MVS005 BACKUP 010

IPADDR: 201.2.10.14
TCPNAME MVSNAME STATUS RANK DIST
-------- -------- ------ ---- ----
TCPCS MVS004 ACTIVE DIST
TCPCS2 MVS004 ACTIVE DEST

IPADDR: 201.2.10.15
TCPNAME MVSNAME STATUS RANK DIST
-------- -------- ------ ---- ----
TCPCS MVS004 ACTIVE BOTH
TCPCS6 MVS005 ACTIVE DEST
TCPCS3 MVS005 ACTIVE DEST
TCPCS2 MVS004 ACTIVE DEST

IPADDR: 201.2.10.21
ORIGIN: VIPABACKUP
TCPNAME MVSNAME STATUS RANK DIST
-------- -------- ------ ---- ----
TCPCS3 MVS005 ACTIVE
TCPCS2 MVS004 BACKUP 100
TCPCS MVS004 BACKUP 080

IPADDR: 201.2.10.22
ORIGIN: VIPABACKUP
TCPNAME MVSNAME STATUS RANK DIST
-------- -------- ------ ---- ----
TCPCS3 MVS005 ACTIVE
TCPCS MVS004 BACKUP 080
TCPCS2 MVS004 BACKUP 075

INTFNAME: DVIPA1
IPADDR: 2001:0DB8:1::1

TCPNAME MVSNAME STATUS RANK DIST
-------- -------- ------ ---- ----
TCPCS MVS004 ACTIVE BOTH
TCPCS6 MVS005 ACTIVE DEST

414 z/OS V1R12.0 Comm Svr: IP Configuration Guide

TCPCS3 MVS005 ACTIVE DEST
TCPCS2 MVS004 ACTIVE DEST

INTFNAME: DVIPA2
IPADDR: 2001:0DB8:2::2

TCPNAME MVSNAME STATUS RANK DIST
-------- -------- ------ ---- ----
TCPCS MVS004 ACTIVE BOTH
TCPCS6 MVS005 ACTIVE DEST
TCPCS3 MVS005 ACTIVE DEST
TCPCS2 MVS004 ACTIVE DEST

INTFNAME: DVIPA3
IPADDR: 2001:0DB8:3::3

ORIGIN: VIPADEFINE
TCPNAME MVSNAME STATUS RANK DIST
-------- -------- ------ ---- ----
TCPCS2 MVS004 ACTIVE

INTFNAME: DVIPA4
IPADDR: 2001:0DB8:4::4

TCPNAME MVSNAME STATUS RANK DIST
-------- -------- ------ ---- ----
TCPCS3 MVS005 ACTIVE

32 OF 32 RECORDS DISPLAYED

In the following example, TCPCS6 knows about the DVIPAs on the other stacks.
There are no DVIPAs configured on TCPCS6, thus, no ORIGIN fields displayed.
d tcpip,tcpcs6,sys,vipad
EZZ8260I SYSPLEX CS V1R8 904
VIPA DYNAMIC DISPLAY FROM TCPCS6 AT MVS005
IPADDR: 201.2.10.11

TCPNAME MVSNAME STATUS RANK DIST
-------- -------- ------ ---- ----
TCPCS MVS004 ACTIVE BOTH
TCPCS2 MVS004 BACKUP 100 DEST
TCPCS3 MVS005 BACKUP 010 DEST
TCPCS6 MVS005 ACTIVE DEST

IPADDR: 201.2.10.12
TCPNAME MVSNAME STATUS RANK DIST
-------- -------- ------ ---- ----
TCPCS MVS004 ACTIVE DIST
TCPCS2 MVS004 BACKUP 075 DEST
TCPCS3 MVS005 BACKUP 010

IPADDR: 201.2.10.13
TCPNAME MVSNAME STATUS RANK DIST
-------- -------- ------ ---- ----
TCPCS2 MVS004 ACTIVE
TCPCS MVS004 BACKUP 100
TCPCS3 MVS005 BACKUP 010

IPADDR: 201.2.10.14
TCPNAME MVSNAME STATUS RANK DIST
-------- -------- ------ ---- ----
TCPCS MVS004 ACTIVE DIST
TCPCS2 MVS004 ACTIVE DEST

IPADDR: 201.2.10.15
TCPNAME MVSNAME STATUS RANK DIST
-------- -------- ------ ---- ----
TCPCS MVS004 ACTIVE BOTH
TCPCS6 MVS005 ACTIVE DEST
TCPCS3 MVS005 ACTIVE DEST
TCPCS2 MVS004 ACTIVE DEST

IPADDR: 201.2.10.21
TCPNAME MVSNAME STATUS RANK DIST
-------- -------- ------ ---- ----
TCPCS3 MVS005 ACTIVE
TCPCS2 MVS004 BACKUP 100
TCPCS MVS004 BACKUP 080

IPADDR: 201.2.10.22

Chapter 7. Virtual IP Addressing 415

TCPNAME MVSNAME STATUS RANK DIST
-------- -------- ------ ---- ----
TCPCS3 MVS005 ACTIVE
TCPCS MVS004 BACKUP 080
TCPCS2 MVS004 BACKUP 075

INTFNAME: DVIPA1
IPADDR: 2001:0DB8:1::1

TCPNAME MVSNAME STATUS RANK DIST
-------- -------- ------ ---- ----
TCPCS MVS004 ACTIVE BOTH
TCPCS6 MVS005 ACTIVE DEST
TCPCS3 MVS005 ACTIVE DEST
TCPCS2 MVS004 ACTIVE DEST

INTFNAME: DVIPA2
IPADDR: 2001:0DB8:2::2

TCPNAME MVSNAME STATUS RANK DIST
-------- -------- ------ ---- ----
TCPCS MVS004 ACTIVE BOTH
TCPCS6 MVS005 ACTIVE DEST
TCPCS3 MVS005 ACTIVE DEST
TCPCS2 MVS004 ACTIVE DEST

INTFNAME: DVIPA3
IPADDR: 2001:0DB8:3::3

TCPNAME MVSNAME STATUS RANK DIST
-------- -------- ------ ---- ----
TCPCS2 MVS004 ACTIVE

INTFNAME: DVIPA4
IPADDR: 2001:0DB8:4::4

TCPNAME MVSNAME STATUS RANK DIST
-------- -------- ------ ---- ----
TCPCS3 MVS005 ACTIVE

32 OF 32 RECORDS DISPLAYED

Using Netstat support to verify dynamic VIPA configuration
You can use the Netstat VIPADCFG/-F report option to display the dynamic VIPA
configuration for a particular TCP/IP stack. Use the DETAIL modifier on the
distributing stack to verify all the options configured on the VIPADISTRIBUTE
statements.

Guideline: Use the Netstat CONFIG/-f report option to verify the rest of the stack
configuration, including SOURCEVIPA, TCPSTACKSOURCEVIPA, and
SYSPLEXROUTING; use the Netstat SRCIP/-J report option to verify the SRCIP
profile statement for particular jobs or destinations.

The dynamic VIPA information section is only displayed when there are DVIPAs
configured on this stack. The VIPA Range section, displayed only if a VIPARANGE
statement was processed in this stack's initial profile (or in a data set referenced by
a VARY TCPIP,,OBEYFILE command), indicates only that a range was configured.
It does not indicate whether any ioctl or BIND has actually created a DVIPA in the
specified range. The VIPA distribute section is displayed only if there are
VIPADISTRIBUTE statements configured on this stack. The deactivated dynamic
VIPA information section is displayed only when there are DVIPAs that have been
deactivated on this stack.

Netstat CONFIG/-F DETAIL output from stack TCPCS:
netstat -p tcpcs -F DETAIL
MVS TCP/IP NETSTAT CS V1R12 TCPIP Name: TCPCS 18:23:46
Dynamic VIPA Information:

VIPA Backup:
IpAddr/PrefixLen: 201.2.10.13

Rank: 000100 Moveable: SrvMgr:

416 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

IpAddr/PrefixLen: 201.2.10.21
Rank: 000080 Moveable: SrvMgr:

IpAddr/PrefixLen: 201.2.10.22
Rank: 000080 Moveable: SrvMgr:

VIPA Define:
IpAddr/PrefixLen: 201.2.10.11/28

Moveable: Immediate SrvMgr: No
IpAddr/PrefixLen: 201.2.10.12/28

Moveable: Immediate SrvMgr: No
IpAddr/PrefixLen: 201.2.10.14/28

Moveable: Immediate SrvMgr: No
IpAddr/PrefixLen: 201.2.10.15/28

Moveable: Immediate SrvMgr: No
IntfName: DVIPA1

IpAddr: 2001:0DB8:1::1
Moveable: Immediate SrvMgr: n/a

IntfName: DVIPA2
IpAddr: 2001:0DB8:2::2

Moveable: Immediate SrvMgr: n/a

VIPA Range:
IpAddr/PrefixLen: 201.2.10.192/26

Moveable: NonDisr
IntfName: VRANGE1

IpAddr/PrefixLen: 2001:0DB8:3::1/100
Moveable: NonDisr

VIPA Distribute:
Dest: 201.2.10.11..20

DestXCF: ALL
SysPt: Yes TimAff: No Flg: ServerWLM
OptLoc: No
ProcXcost:

zAAP: 001 zIIP: 001
ILWeighting: 0

Dest: 201.2.10.11..21
DestXCF: ALL

SysPt: Yes TimAff: No Flg: ServerWLM
OptLoc: No
ProcXcost:

zAAP: 001 zIIP: 001
ILWeighting: 2

Dest: 201.2.10.12..20
DestXCF: 193.9.200.2

SysPt: No TimAff: No Flg: BaseWLM
OptLoc: No
ProcType:

CP: 01 zAAP: 00 zIIP: 00
Dest: 201.2.10.12..21

DestXCF: 193.9.200.2
SysPt: No TimAff: No Flg: BaseWLM
OptLoc: No
ProcType:

CP: 01 zAAP: 00 zIIP: 00
Dest: 201.2.10.14..n/a

DestXCF: 193.9.200.2
SysPt: No TimAff: No Flg: Roundrobin

Dest: 201.2.10.15..5000
DestXCF: 193.9.200.2

SysPt: No TimAff: No Flg: WeightedActive
OptLoc: No Weight: 10

Dest: 201.2.10.15..23
DestXCF: ALL

SysPt: No TimAff: 30 Flg: BaseWLM
OptLoc: No
ProcType:

Chapter 7. Virtual IP Addressing 417

CP: 20 zAAP: 80 zIIP: 00
DestIntf: DVIPA1

Dest: 2001:0DB8:1::1..n/a
DestXCF: ALL
SysPt: Yes TimAff: No Flg: BaseWLM
OptLoc: No
ProcType:

CP: 01 zAAP: 00 zIIP: 00
DestIntf: DVIPA2

Dest: 2001:0DB8:2::2..23
DestXCF: ALL
SysPt: No TimAff: 45 Flg: Roundrobin

Deactivated Dynamic VIPA Information:

VIPA Define:
IpAddr/PrefixLen: 201.2.10.23/28

Moveable: Immediate SrvMgr: No

VIPA Distribute:
Dest: 201.2.10.23..4000

DestXCF: ALL
SysPt: No TimAff: No Flg: BaseWLM
OptLoc: No
ProcType:

CP: 01 zAAP: 00 zIIP: 00

On stack TCPCS2 from the console:
d tcpip,tcpcs2,net,vipadcfg
EZD0101I NETSTAT CS V1R8 TCPCS2 721
DYNAMIC VIPA INFORMATION:

VIPA BACKUP:
IPADDR/PREFIXLEN: 201.2.10.11

RANK: 000100 MOVEABLE: SRVMGR:
IPADDR/PREFIXLEN: 201.2.10.12

RANK: 000075 MOVEABLE: SRVMGR:
IPADDR/PREFIXLEN: 201.2.10.21

RANK: 000100 MOVEABLE: SRVMGR:
IPADDR/PREFIXLEN: 201.2.10.22

RANK: 000075 MOVEABLE: SRVMGR:
VIPA DEFINE:

IPADDR/PREFIXLEN: 201.2.10.13/26
MOVEABLE: IMMEDIATE SRVMGR: NO

INTFNAME: DVIPA3
IPADDR: 2001:0DB8:3::3

MOVEABLE: IMMEDIATE SRVMGR: N/A
VIPA RANGE:

IPADDR/PREFIXLEN: 201.2.10.192/26
MOVEABLE: NONDISR

END OF THE REPORT

On stack TCPCS3 from the console:
d tcpip,tcpcs3,net,vipadcfg
EZD0101I NETSTAT CS V1R8 TCPCS3 907
DYNAMIC VIPA INFORMATION:

VIPA BACKUP:
IPADDR/PREFIXLEN: 201.2.10.11

RANK: 000010 MOVEABLE: SRVMGR:
IPADDR/PREFIXLEN: 201.2.10.12

RANK: 000010 MOVEABLE: SRVMGR:
IPADDR/PREFIXLEN: 201.2.10.13

RANK: 000010 MOVEABLE: SRVMGR:
VIPA DEFINE:

IPADDR/PREFIXLEN: 201.2.10.21/26
MOVEABLE: IMMEDIATE SRVMGR: NO

IPADDR/PREFIXLEN: 201.2.10.22/26

418 z/OS V1R12.0 Comm Svr: IP Configuration Guide

MOVEABLE: IMMEDIATE SRVMGR: NO
INTFNAME: DVIPA4

IPADDR: 2001:0DB8:4::4
MOVEABLE: IMMEDIATE SRVMGR: N/A

VIPA RANGE:
IPADDR/PREFIXLEN: 201.2.10.192/26

MOVEABLE: NONDISR
END OF THE REPORT

On stack TCPCS6 from the console:
d tcpip,tcpcs6,net,vipadcfg
EZD0101I NETSTAT CS V1R8 TCPCS6 910
END OF THE REPORT

The Netstat VIPADyn/-v report option displays all the dynamic VIPAs available to
this stack, as shown in the following examples. (Note that deactivated DVIPAs do
not appear in this report.)

Netstat VIPADyn/-v output from stack TCPCS:
netstat -p tcpcs -v
MVS TCP/IP NETSTAT CS V1R8 TCPIP Name: TCPCS 18:32:26

IpAddr/PrefixLen: 201.2.10.11/28
Status: Active Origin: VIPADefine DistStat: Dist/Dest
ActTime: 03/02/2005 16:45:20

IpAddr/PrefixLen: 201.2.10.12/28
Status: Active Origin: VIPADefine DistStat: Dist
ActTime: 03/02/2005 16:45:20

IpAddr/PrefixLen: 201.2.10.13/26
Status: Backup Origin: VIPABackup DistStat:
ActTime: n/a

IpAddr/PrefixLen: 201.2.10.14/28
Status: Active Origin: VIPADefine DistStat: Dist
ActTime: 03/02/2005 16:45:20

IpAddr/PrefixLen: 201.2.10.15/28
Status: Active Origin: VIPADefine DistStat: Dist/Dest
ActTime: 03/02/2005 16:45:20

IpAddr/PrefixLen: 201.2.10.21/26
Status: Backup Origin: VIPABackup DistStat:
ActTime: n/a

IpAddr/PrefixLen: 201.2.10.22/26
Status: Backup Origin: VIPABackup DistStat:
ActTime: n/a

IntfName: DVIPA1
IpAddr: 2001:0DB8:1::1

Status: Active Origin: VIPADefine DistStat: Dist/Dest
ActTime: 03/02/2005 16:45:20

IntfName: DVIPA2
IpAddr: 2001:0DB8:2::2

Status: Active Origin: VIPADefine DistStat: Dist/Dest
ActTime: 03/02/2005 16:45:20

On stack TCPCS2 from the console:
d tcpip,tcpcs2,net,vipadyn
EZD0101I NETSTAT CS V1R8 TCPCS2 731

IPADDR/PREFIXLEN: 201.2.10.11/28
STATUS: BACKUP ORIGIN: VIPABACKUP DISTSTAT: DEST
ActTime: 03/02/2005 16:45:20

IPADDR/PREFIXLEN: 201.2.10.12/28
STATUS: BACKUP ORIGIN: VIPABACKUP DISTSTAT: DEST
ActTime: 03/02/2005 16:45:20

IPADDR/PREFIXLEN: 201.2.10.13/26
STATUS: ACTIVE ORIGIN: VIPADEFINE DISTSTAT:
ActTime: 03/02/2005 16:45:20

IPADDR/PREFIXLEN: 201.2.10.14/28

Chapter 7. Virtual IP Addressing 419

STATUS: ACTIVE ORIGIN: DISTSTAT: DEST
ActTime: 03/02/2005 16:45:20

IPADDR/PREFIXLEN: 201.2.10.15/28
STATUS: ACTIVE ORIGIN: DISTSTAT: DEST
ActTime: 03/02/2005 16:45:20

IPADDR/PREFIXLEN: 201.2.10.21/26
STATUS: BACKUP ORIGIN: VIPABACKUP DISTSTAT:
ActTime: n/a

IPADDR/PREFIXLEN: 201.2.10.22/26
STATUS: BACKUP ORIGIN: VIPABACKUP DISTSTAT:
ActTime: n/a

INTFNAME: DVIPA1
IPADDR: 2001:0DB8:1::1

STATUS: ACTIVE ORIGIN: DISTSTAT: DEST
ActTime: 03/02/2005 16:45:20

INTFNAME: DVIPA2
IPADDR: 2001:0DB8:2::2

STATUS: ACTIVE ORIGIN: DISTSTAT: DEST
ActTime: 03/02/2005 16:45:20

INTFNAME: DVIPA3
IPADDR: 2001:0DB8:3::3

STATUS: ACTIVE ORIGIN: VIPADEFINE DISTSTAT:
ActTime: 03/02/2005 16:45:20

10 OF 10 RECORDS DISPLAYED

On stack TCPCS3 from the console:
d tcpip,tcpcs3,net,vipadyn
EZD0101I NETSTAT CS V1R8 TCPCS3 913

IPADDR/PREFIXLEN: 201.2.10.11/28
STATUS: BACKUP ORIGIN: VIPABACKUP DISTSTAT: DEST
ActTime: 03/02/2005 16:45:20

IPADDR/PREFIXLEN: 201.2.10.12/28
STATUS: BACKUP ORIGIN: VIPABACKUP DISTSTAT:
ActTime: n/a

IPADDR/PREFIXLEN: 201.2.10.13/26
STATUS: BACKUP ORIGIN: VIPABACKUP DISTSTAT:
ActTime: n/a

IPADDR/PREFIXLEN: 201.2.10.15/28
STATUS: ACTIVE ORIGIN: DISTSTAT: DEST
ActTime: 03/02/2005 16:45:20

IPADDR/PREFIXLEN: 201.2.10.21/26
STATUS: ACTIVE ORIGIN: VIPADEFINE DISTSTAT:
ActTime: 03/02/2005 16:45:20

IPADDR/PREFIXLEN: 201.2.10.22/26
STATUS: ACTIVE ORIGIN: VIPADEFINE DISTSTAT:
ActTime: 03/02/2005 16:45:20

INTFNAME: DVIPA1
IPADDR: 2001:0DB8:1::1

STATUS: ACTIVE ORIGIN: DISTSTAT: DEST
ActTime: 03/02/2005 16:45:20

INTFNAME: DVIPA2
IPADDR: 2001:0DB8:2::2

STATUS: ACTIVE ORIGIN: DISTSTAT: DEST
ActTime: 03/02/2005 16:45:20

INTFNAME: DVIPA4
IPADDR: 2001:0DB8:4::4

STATUS: ACTIVE ORIGIN: VIPADEFINE DISTSTAT:
ActTime: 03/02/2005 16:45:20

9 OF 9 RECORDS DISPLAYED

On stack TCPCS6 from the console:
d tcpip,tcpcs6,net,vipadyn
EZD0101I NETSTAT CS V1R8 TCPCS6 916

IPADDR/PREFIXLEN: 201.2.10.11/28
STATUS: ACTIVE ORIGIN: DISTSTAT: DEST
ActTime: 03/02/2005 16:45:20

420 z/OS V1R12.0 Comm Svr: IP Configuration Guide

IPADDR/PREFIXLEN: 201.2.10.15/28
STATUS: ACTIVE ORIGIN: DISTSTAT: DEST
ActTime: 03/02/2005 16:45:20

INTFNAME: DVIPA1
IPADDR: 2001:0DB8:1::1

STATUS: ACTIVE ORIGIN: DISTSTAT: DEST
ActTime: 03/02/2005 16:45:20

INTFNAME: DVIPA2
IPADDR: 2001:0DB8:2::2

STATUS: ACTIVE ORIGIN: DISTSTAT: DEST
ActTime: 03/02/2005 16:45:20

4 OF 4 RECORDS DISPLAYED

Verifying sysplex distributor workload
You can use the Netstat VDPT/-O and VCRT/-V report options to verify sysplex
distributor workload. See z/OS Communications Server: IP System Administrator's
Commands for more information on these commands.

Use the Netstat VDPT/-O report option with the DETAIL modifier on the
distributing stack to confirm that there are target stacks available with server
applications ready. This display will only show target stacks that are currently up
and have joined the sysplex. The RDY field indicates how many, if any,
applications the target TCP/IP, identified by its DestXCF Addr, has bound to
DPort. If none, then this target TCP/IP will not receive any connection workload.
The TotalConn field indicates how many connections this distributing TCP/IP has
forwarded to the target TCP/IP. The ActiveConn field indicates how many
connections the distributing TCP/IP has forwarded to the target TCP/IP that are
currently active.

Tip: TotalConn is an historical count and will wrap.

The following Netstat display command on the distributing stack, TCPCS, shows
which target stacks are available with the server applications ready.
NETSTAT VDPT DETAIL

MVS TCP/IP NETSTAT CS V1R8 TCPIP Name: TCPCS 15:37:51
Dynamic VIPA Destination Port Table:
Dest: 201.2.10.11..21

DestXCF: 201.1.10.15
TotalConn: 0000000000 Rdy: 001 WLM: 01 TSR: 075
Flg: Dynamic, Roundrobin, Inactive

TCSR: 100 CER: 075 SEF: 100
Abnorm: 00 Health: 100

ActiveConn: 0000000000
QosPlcAct: *DEFAULT*

W/Q: 01
Dest: 201.2.10.12..4011

DestXCF: 201.1.10.15
TotalConn: 0000000000 Rdy: 001 WLM: 02 TSR: 100
Flg: Roundrobin

TCSR: 100 CER: 100 SEF: 100
Abnorm: 00 Health: 100

ActiveConn: 0000000000
QosPlcAct: *DEFAULT*

W/Q: 00
QosPlcAct: paPRD-SD-7-INTR-DONTCARE

W/Q: 02
Dest: 201.2.10.12..4011

DestXCF: 201.2.10.10
TotalConn: 0000000000 Rdy: 001 WLM: 02 TSR: 050
Flg: Roundrobin, Inactive

Chapter 7. Virtual IP Addressing 421

TCSR: 067 CER: 075 SEF: 100
Abnorm: 00 Health: 100

ActiveConn: 0000000000
QosPlcAct: *DEFAULT*

W/Q: 01
QosPlcAct: paPRD-SD-7-INTR-DONTCARE

W/Q: 02
Dest: 201.2.10.13..243

DestXCF: 201.3.10.16
TotalConn: 0000000000 Rdy: 001 WLM: 02 TSR: 085
Flg: BaseWLM

TCSR: 100 CER: 095 SEF: 090
Abnorm: 00 Health: 100
Weight 50

Raw CP: 50 zAAP: 00 zIIP: 63
Proportional CP: 50 zAAP: 00 zIIP: 00

ActiveConn: 0000000000
QosPlcAct: *DEFAULT*

W/Q: 02
Dest: 201.2.10.23..4000

DestXCF: 201.3.10.16
TotalConn: 0000000000 Rdy: 001 WLM: 15 TSR: 100
Flg: BaseWLM

TCSR: 100 CER: 100 SEF: 100
Abnorm: 00 Health: 100
Weight 60

Raw CP: 50 zAAP: 00 zIIP: 63
Proportional CP: 10 zAAP: 00 zIIP: 50

ActiveConn: 0000000000
QosPlcAct: *DEFAULT*

W/Q: 02
DestIntf:

Dest: 2001:0db8::522:f103..20
DestXCF: 2001:0db8::943:f003
TotalConn: 0000000000 Rdy: 001 WLM: 01 TSR: 094
Flg: BaseWLM Local
TCSR: 099 CER: 098 SEF: 097
Abnorm: 00 Health: 100
Weight 4

Raw CP: 20 zAAP: 00 zIIP: 00
Proportional CP: 04 zAAP: 00 zIIP: 00

ActiveConn: 0000000000
QosPlcAct: *DEFAULT*

W/Q: 00
DestIntf:

Dest: 2001:0db8::522:f103..21
DestXCF: 2001:0db8::943:f003
TotalConn: 0000000000 Rdy: 001 WLM: 01 TSR: 100
Flg: Roundrobin
TCSR: 100 CER: 100 SEF: 100
Abnorm: 00 Health: 100

ActiveConn: 0000000000
QosPlcAct: *DEFAULT*

W/Q: 01

v The target stack is identified by its dynamic XCF address (DESTXCF).
v The RDY field indicates how many applications on that target stack have bound

to the DEST port.
v TOTALCONN is the number of all connections the distributing stack, TCPCS,

has routed to the target stack.
v The ACTIVECONN value is the number of currently active connections that the

distributing stack, TCPCS, has routed to the target stack. The active connections
include all TCP connections that the target TCP/IP stack is still aware of, even if
the connections are in the process of terminating. For example, connections in
FIN_WAIT2 or TIMEWAIT states are also included in this count.

422 z/OS V1R12.0 Comm Svr: IP Configuration Guide

v The ABNORM value is the rate of abnormal terminations for this server. This
field affects the WLM weight and the operation of the OPTLOCAL distributor
setting.

v The HEALTH value is the health indicator for this server. This field affects the
WLM weight and the operation of the OPTLOCAL distributor setting.

v WLM is the normalized workload manager weight value for the target TCP/IP
stack.

v Weight is the raw composite weight for the target TCP/IP stack. The composite
weight is based on the application's general CPU utilization, the System z
Application Assist Processor (zAAP) utilization, and the System z Integrated
Information Processor (zIIP) utilization, as shown in Table 23.

Table 23. Weight determination

Processor DISTMETHOD BASEWLM
DISTMETHOD
SERVERWLM

CP The Raw value is the raw
WLM system general CP
weight.

The Proportional value is
the Raw value modified by
the expected CP utilization
proportion configured on the
VIPADISTRIBUTE
PROCTYPE statement for
this application.

The Raw value is the raw
WLM server-specific general
CP weight.

The Proportional value is
the Raw value modified by
the proportion of CP capacity
that is currently being
consumed by the
application's workload, as
compared to the other
processors (zIIP and zAAP).

zAAP The Raw value is the raw
WLM system zAAP weight.

The Proportional value is
the Raw value modified by
the expected zAAP
utilization proportion
configured on the
VIPADISTRIBUTE
PROCTYPE statement for
this application.

The Raw value is the raw
WLM server-specific zAAP
weight.

The Proportional value is
the Raw value modified by
the proportion of zAAP
capacity that is currently
being consumed by the
application's workload, as
compared to the other
processors (CP and zIIP).

zIIP The Raw value is the raw
WLM system zIIP weight.

The Proportional value is
the Raw value modified by
the expected zIIP utilization
proportion configured on the
VIPADISTRIBUTE
PROCTYPE statement for
this application.

The Raw value is the raw
WLM server-specific zIIP
weight.

The Proportional value is
the Raw value modified by
the proportion of zIIP
capacity that is currently
being consumed by the
application's workload, as
compared to the other
processors (CP and zAAP).

v FLG is a flag field indicating how the connection was distributed. For example,
the value DYNAMIC indicates this DVIPA is being distributed by the dynamic
port assignment function.

v The target server responsiveness (TSR) field indicates how well a target server is
accepting TCP connection setup requests. A value of 100 indicates that the target

Chapter 7. Virtual IP Addressing 423

server is accepting all TCP connection setup requests successfully. A value of 0
indicates that the target server is accepting no TCP connection setup requests
successfully. A value between 100 and 0 indicates the relative success rate of TCP
connection setup requests for this target server.

When weighted active distribution is being used, the configured active connection
weight for each target is shown as the WLM value in the Netstat VDPT/-O
display. By using the DETAIL modifier on the display, the active connection counts
are shown. The distributor balances incoming connection requests across the
targets with a goal of having the number of active connections on each target
proportionally equivalent to the configured active connection weight of each target.
d tcpip,tcpcs,net,vdpt,detail
DEST: 201.2.10.15..5000

DESTXCF: 193.9.200.2
TOTALCONN: 0000021015 RDY: 001 WLM: 10 TSR: 100
FLG: WeightedActive

TCSR: 100 CER: 100 SEF: 100
Abnorm: 00 Health: 100

ActiveConn: 0000001555

QosPlcAct: *DEFAULT*
W/Q: 00

DEST: 201.2.10.15..5000
DESTXCF: 193.9.200.2
TOTALCONN: 0000044015 RDY: 002 WLM: 20 TSR: 100
FLG: WeightedActive

TCSR: 100 CER: 100 SEF: 100
Abnorm: 00 Health: 100

ActiveConn: 0000003100

QosPlcAct: *DEFAULT*
W/Q: 00

The following Netstat display command on the distributing stack displays all
current connections being distributed by TCPCS.
d tcpip,tcpcs,net,vcrt
EZD0101I NETSTAT CS V1R8 TCPCS 844
DYNAMIC VIPA CONNECTION ROUTING TABLE:
DEST: 201.2.10.11..21

SOURCE: 193.9.200.5..1029
DESTXCF: 193.9.200.1

DEST: 201.2.10.11..21
SOURCE: 193.9.200.8..1050
DESTXCF: 193.9.200.2

DEST: 201.2.10.11..21
SOURCE: 193.9.200.11..1079
DESTXCF: 193.9.200.3

DEST: 201.2.10.12..21
SOURCE: 193.9.200.9..1030
DESTXCF: 193.9.200.2

DEST: 2001:0DB8:1::1..21
SOURCE: 2001:0DB8::151:0006..1038
DESTXCF: 2001:0DB8::151:0003

END OF THE REPORT

For more details, see z/OS Communications Server: IP System Administrator's
Commands.

424 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Dynamic VIPAs and routing protocols
With dynamic VIPAs, IP addresses may move from one stack to another. These
changes need to be communicated to the network. Therefore, dynamic routing
should be implemented when dynamic VIPAs are being used.

IPv4 considerations for OMPROUTE
The names of dynamic VIPA interfaces are assigned dynamically by the stack when
a dynamic VIPA interface is created. Therefore, the Name field set on the Interface
or OSPF_Interface statement for a dynamic VIPA will be ignored by OMPROUTE.

It is recommended that a host have an Interface or OSPF_Interface definition for
every dynamic VIPA address which that host might own. Because this could be a
large number of interfaces, additional wildcard capabilities have been added to
OMPROUTE, for dynamic VIPA interfaces only.

Ranges of dynamic VIPA interfaces can be defined using the subnet mask
parameter on the OSPF_Interface or Interface statement. The range defined will be
all the IP addresses that fall within the subnet defined by the mask and the IP
address. The IP address parameter must be the subnet number of the range being
defined, not a host address within that range. The following example defines a
range of dynamic VIPA addresses from 10.138.165.81 to 10.138.165.94:
OSPF_Interface

IP_address = 10.138.165.80
Name = dummy_name (see note)
Subnet_mask = 255.255.255.240;

Tips:

v The Name parameter is required and must be unique, but it is not actually used
for dynamic VIPAs.

v When defining ranges, it is not necessary or desirable to code a destination
address. OMPROUTE will automatically set the destination address of a
dynamic VIPA to its IP address.

v There is nothing in the interface definition statements that informs OMPROUTE
that a particular interface definition statement is for a dynamic VIPA or a range
of dynamic VIPAs. Rather, OMPROUTE learns this information from the stack
when these interfaces are created or taken over.

v Because dynamic VIPAs can move between z/OS hosts, you should configure a
router ID that specifies a physical interface or a static VIPA and not a dynamic
VIPA.

The MTU size defined on OSPF_INTERFACE statements limits the size of
advertisements that can be sent or received over OMPROUTE interfaces.
OMPROUTE cannot build an advertisement whose size would exceed the largest
MTU size of all its interfaces. Also, OMPROUTE cannot receive an advertisement
that is larger than the largest MTU size defined for all its interfaces. In either of
these cases, you will see the following message:
EZZ7967I ADVERTISEMENT DISCARDED, OVERFLOWS BUFFER: LS

TYPE x ID x.x.x.x ORG y.y.y.y

When this happens on an originating host, that host will not be able to send router
Link State Advertisements (LSAs), and therefore other hosts will not be able to
calculate routes to any destinations (for example, VIPAs) owned by the originating
host. OMPROUTE will terminate if it encounters this condition. If it cannot send
its router LSA, it is useless as a router. When this happens on a receiving host, that

Chapter 7. Virtual IP Addressing 425

host will not be able to compute routes to any destinations advertised in the
discarded LSA. Also note that other OSPF implementations might have similar or
stricter limitations, in which case they would be unable to receive or propagate
large router LSAs received from OMPROUTE. These scenarios can severely affect
network connectivity and routing capability. If large numbers of VIPA interfaces
are going to be used, we recommend you examine OSPF MTU sizes throughout
your network to ensure that large router LSAs can be propagated.

Normally, large router LSAs would not be a problem, as LSAs seldom exceed their
allowed MTU sizes. However, if a large number of VIPA or dynamic VIPA
interfaces are defined on a host, this can become a consideration. The size of the
router LSA will include 52 bytes for headers, plus the number of bytes required to
advertise the host's owned interfaces. The number of bytes required for each
interface is:

VIPA 12 bytes, plus 12 bytes for each VIPA subnet (see
the following example)

Point-to-point 24 bytes

Point-to-multipoint 12 bytes, plus 12 bytes for each neighbor on the
interface

All other types 12 bytes

For owned VIPA interfaces, OMPROUTE normally advertises both host and subnet
routes. The size of router LSAs required can be minimized by careful subnet
planning. For example, assume the following definition exists in the OMPROUTE
configuration file:
OSPF_Interface

IP_Address=3.3.3.*
Name = VIPA1A
Subnet_Mask=255.255.255.252
Attaches_To_Area=1.1.1.1
MTU=1024
Cost0 = 1;

If 101 VIPA interfaces, numbered 3.3.3.1 to 3.3.3.101, are activated, in addition to
the headers and any other owned interfaces, OMPROUTE would need 1512 bytes
to advertise 126 links in its router LSA (1 host route to each of the VIPAs, plus 25
subnet routes since each subnet contains only four addresses).

By contrast, assume the following definition exists in the OMPROUTE
configuration file:
OSPF_Interface

IP_Address=3.3.3.*
Name = VIPA1A
Subnet_Mask=255.255.255.0
Attaches_To_Area=1.1.1.1
MTU=1024
Cost0 = 1;

If the same 101 VIPA interfaces are activated, OMPROUTE would advertise 102
links in its router LSA (1 host route to each VIPA, plus 1 subnet route since all the
VIPAs are in the same subnet). This would only require 1224 bytes to advertise the
VIPAs. If the MTU size on the network is 1500, this can make the difference
between being able to send or receive a router LSA or not being able to send or
receive a router LSA. This limitiation can further be circumvented by suppressing
VIPA host routes by coding the Advertise_VIPA_Routes or Subnet parameters on

426 z/OS V1R12.0 Comm Svr: IP Configuration Guide

the OSPF_INTERFACE statement for the VIPA interfaces. However, there are limits
on when this can be done. For details, see the z/OS Communications Server: IP
Configuration Reference.

Ensure that all members of a sysplex are defined to be in the same OSPF area.
Failure to do this causes routing problems during the transition of ownership of a
DVIPA from a member in one area to a member in another area. It can also disrupt
sysplex distributor operation for clients within the sysplex.

IPv4 considerations for Routing Information Protocol
If using Routing Information Protocol (RIP) services and Host Route advertising is
not supported by adjacent routers (that is, inability to learn host routes), the
following restrictions for VIPA addresses must be applied to benefit from fault
tolerance support:
v If you use subnetting and VIPA addresses are in the same network as the

physical IP addresses, the subnetwork portion of any VIPA addresses must not
be the subnetwork portion of any physical IP addresses in the network. In this
case, assign a new subnetwork for the VIPA address.

v If subnetting is not used on any physical interface, the network portion of any
VIPA addresses must not be the network portion of any physical IP addresses in
the network. In this case, assign a new network for the VIPA address, preferably
a class C network address.

If using RIP services and Host Route advertising is supported by adjacent routers,
the network or subnetwork portions of VIPA addresses can be the same across
multiple z/OS TCP/IP stacks in the network. To enable Host Route advertising in
OMPROUTE, configure RIP_Interface Send_Host_Routes=YES.

IPv6 considerations
For IPv6, all interfaces are defined to OMPROUTE by name only, and name
wildcards are supported. This greatly simplifies definition considerations for
OMPROUTE and VIPA interfaces.

To define IPv6 interfaces to OMPROUTE, you must know their names. Unlike
IPv4, in which VIPA link names are generated by the stack, you specify link names
to TCP/IP when defining IPv6 dynamic VIPA interfaces. These link names should
be used when defining the same interfaces to OMPROUTE.

Tip: Using consistent naming conventions and name wildcards can make this task
easier. For example, if you require that all IPv6 VIPA link names start with the
letter V, and do not allow other interface types to have link names starting with V,
a single definition can define all IPv6 VIPA interfaces to OMPROUTE as follows:
IPV6_OSPF_INTERFACE

NAME=V*;

Unlike IPv4, there are no size limitations on the number of IPv6 dynamic VIPA
addresses that OMPROUTE can advertise. In IPv6 OSPF, OMPROUTE will
advertise all host and prefix addresses associated with owned interfaces, including
VIPAs and dynamic VIPAs. In IPv6 RIP, sending and receiving of host routes
should be turned on to allow host addresses associated with VIPAs to be
advertised.

Chapter 7. Virtual IP Addressing 427

428 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Chapter 8. TCP/IP in a sysplex

The increasing demands of network servers, and in particular System z servers,
has led to the creation of different techniques to address performance requirements
when a single server is not capable of providing the availability and scalability
demands placed on it by its clients. Specifically, network solutions make use of
what is referred to as the clustering technique, whereby multiple servers are
associated together into a cluster to provide sufficient processing power and
availability characteristics to handle the demands of the clients.

In the scope of this topic, this cluster functionality is provided by the sysplex. That
is, the sysplex provides the necessary capability to cluster together a number of
System z servers that cooperate with one another to deliver the processing power
needed to service the demands required of a particular service environment.

Solutions utilizing the clustering approach to increase server availability and
processing capability attempt to provide mechanisms by which they ensure the
viability of the cluster in an environment containing a large number of clients
generating a potentially high number of requests. To do so, the cluster technique
can provide for two main objectives, high availability and load balancing. In some
cases, clustering techniques address only high availability, as is the case with
dynamic VIPA that provides for availability in spite of potential TCP/IP stack or
z/OS image failures. In other cases, the intent is to provide for both high
availability and load balancing, as is done by sysplex distributor.

In general, load balancing refers to the ability to utilize different systems within
the cluster simultaneously, thereby taking advantage of the additional
computational function of each. Further, clustering techniques addressing load
balancing lead to other system requirements, such as that of a single systemwide
image (one identity by which clients access the system), horizontal growth, and
ease of management.

The traditional view of a single server has been primarily a single machine with
perhaps a few network interfaces (IP addresses). This tends to lead to many
potential points of failure within the server: the machine itself (hardware), the
operating system (including TCP/IP stack) kernel executing on the machine, or a
network interface (and the IP address associated with it). Static Virtual IP
Addresses (VIPAs) exclude the network interface as a point of failure while
dynamic VIPAs additionally aid with server (image) or kernel failure. In this way,
high availability is seen as the availability of the entire server cluster and the
service it provides. Furthermore, VIPAs can be used in conjunction with the
sysplex distributor load balancing solution.

Clustering techniques that address the load balancing of connections requests also
typically provide for some high availability. That is, these techniques dispatch
connections to target servers and can exclude failed servers from the list of target
servers that can receive connections. In this way, the dispatching function avoids
routing connections and requests to a server incapable of satisfying such requests.

Load balancing is the ability for a cluster to spread workload evenly (or based on
some policy) to target servers comprising the cluster. Usually, this load balancing is
measured by some notion of perceived load on each of the target servers. This

© Copyright IBM Corp. 2000, 2011 429

topic describes load balancing using the sysplex distributor, which identifies the
target System z servers willing to receive client connections based on some
specification.

By providing load balancing, clustering techniques must also provide for other
system requirements in addition to the dispatching of connections. These include
the ability to advertise some single systemwide image or identity so that clients
can uniquely and easily identify the service. Additionally, clustering techniques
should also provide for horizontal growth of the system and ease of management.

It is also sometimes useful to arrange the members in the sysplex into subsets of
members that communicate through XCF only amongst themselves. This is called
subplexing. Each member of a subplex joins a unique set of sysplex groups and
communicates through XCF with only other members that have joined the same
unique set of sysplex groups. Each TCP/IP stack can participate in one and only
one subplex. For more information, see “Sysplex subplexing.”

Note: This information applies to both IPv4 and IPv6, unless otherwise noted.

Connectivity in a sysplex
With dynamic VIPAs, IP addresses may move from one stack to another. These
changes need to be communicated to the network. Therefore, dynamic routing
should be implemented when dynamic VIPAs are being used. See “Dynamic VIPAs
and routing protocols” on page 425 for more detailed information.

Sysplex subplexing
A subplex is a subset of a sysplex that consists of all the members in the sysplex
that communicate through cross-system coupling facility (XCF) groups with each
other, and not with members outside the subset.

Defining multiple subplex scopes within a sysplex can be useful in scenarios where
multiple networks with different security or functional attributes are attached to
specific systems in the sysplex. For example, consider the scenario where some
systems in the sysplex are connected to an internal enterprise network and other
systems in the sysplex are connected to external networks that have different
security attributes. In this example, you might want to be able to partition the
sysplex into two subplexes from a sysplex network function perspective; one that
includes the systems connected to the internal network and another for the
systems that are connected to the external networks. By defining these separate
subplexes, users can still exploit some of the sysplex network functions while
preserving the isolation of the networks (that is, without automatically enabling
dynamic XCF connectivity across the entire sysplex).

TCP/IP and VTAM subplex concepts and example
To enable partitioning of the TCP/IP stacks and VTAM nodes in a sysplex into
subplexes, the values specified by the following VTAM start option and TCP/IP
profile GLOBALCONFIG parameter are used as suffixes for XCF group names and
coupling facility structure names.
v VTAM

Use the XCFGRPID start option. For a description of sysplex subplexing and
how the XCFGRPID start option modifies VTAM group names and VTAM
structure names, see z/OS Communications Server: SNA Network Implementation
Guide.

v TCP/IP

430 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Use the XCFGRPID parameter on the GLOBALCONFIG statement in the
TCP/IP profile.

For TCP/IP, both the VTAM group ID suffix and the TCP group ID suffix can be
used to modify the group name that a TCP/IP stack uses when it joins the sysplex.
The group name used is in the form EZBTvvtt, where vv is the 2-digit VTAM
group ID suffix specified on the XCFGRPID start option, and tt is the TCP group
ID suffix specified on the GLOBALCONFIG statement in the TCP/IP profile. By
using these suffixes to modify the XCF group name, the sysplex is effectively
partitioned into subsets referred to as subplexes.

Only those TCP/IP stacks joining the unique group name generated using the
specified suffixes are aware of each other in the sysplex; they communicate with
each other through dynamic XCF. If the VTAM node is stopped and restarted with
a new value for its XCFGRPID start option, the TCP/IP stacks using that VTAM
node must be stopped and restarted to access the new VTAM suffix.

Figure 43 shows an example of TCP/IP and VTAM subplexes.

In Figure 43, the following subplexes are defined:
v Two VTAM subplexes (11 and 12) have been defined by starting VTAM1 and

VTAM2 with a start option of XCFGRPID 11, and starting VTAM3 and VTAM4
with a start option of XCFGRPID 12.

v Three TCP/IP subplexes have been defined by starting TCP1A and TCP2A with
the statement GLOBALCONFIG XCFGRPID 21, TCP1B and TCP2B with the
statement GLOBALCONFIG XCFGRPID 22, and TCP3A and TCP4A with the
statement GLOBALCONFIG XCFGRPID 12.

The following conditions exist in the sysplex shown in Figure 43:
v TCP/IP stacks TCP1A and TCP2A join XCF group EZBT1121. TCP1A is aware of

only TCP2A in the sysplex, and TCP2A is aware of only TCP1A in the sysplex.
v TCP/IP stacks TCP1B and TCP2B join XCF group EZBT1122. TCP1B is aware of

only TCP2B in the sysplex, and TCP2B is aware of only TCP1B in the sysplex.

VTAM subplex 11

z/OS Sysplex

z/OS System
MVS1

VTAM1

VTAM subplex 12

TCP1A

TCP1B

z/OS System
MVS2

VTAM2

TCP2A

TCP2B

TCP/IP
subplex 21

TCP/IP
subplex 22

z/OS System
MVS3

VTAM3

TCP3A

z/OS System
MVS4

VTAM4

TCP4A
TCP/IP

subplex 12

CF

Figure 43. An example of TCP/IP and VTAM subplexes

Chapter 8. TCP/IP in a sysplex 431

v TCP/IP stacks TCP3A and TCP4A join XCF group EZBT1212. TCP3A is aware of
only TCP4A in the sysplex, and TCP4A is aware of only TCP3A in the sysplex.

Note: Even if TCP3A and TCP4A had been started with a GLOBALCONFIG 21
value, they would still be in a separate group from TCP1A and TCP2A,
because they are in different VTAM subplexes.

Rule: Because TCP/IP stacks use VTAM XCF support for their dynamic XCF
connectivity, TCP/IP subplexes cannot span multiple VTAM subplexes.

To preserve separation between the subplexes, the TCP and VTAM coupling
facility structures accessed must also be unique for each subplex. For the TCP
structures EZBDVIPA, used for SWSA support, and EZBEPORT, used for
SYSPLEXPORTS support, this is accomplished by appending the VTAM and TCP
XCF group ID suffixes to the end of the structure names, or EZBDVIPAvvtt and
EZBEPORTvvtt respectively. Thus, in the example, TCP1A and TCP2A access
EZBDVIPA1121 and EZBEPORT1121, while TCP1B and TCP2B access
EZBDVIPA1122 and EZBEPORT1122.

To access the TCP structures, the structure names, including the suffixes, must be
defined in the sysplex CFRM policy. In Figure 43 on page 431, the CFRM policy for
the sysplex must have structure definitions for EZBDVIPA1121, EZBDVIPA1122,
EZBDVIPA1212, EZBEPORT1121, EZBEPORT1122, and EZBEPORT1212, if all of the
stacks expect to access these structures.
v If no VTAM suffix is specified, a value of CP is used for vv when creating the

TCP sysplex group name, and a value of 01 is used for vv when creating the
structure names.

v If a VTAM suffix is specified, but no TCP suffix is specified, a value of CS is
used for tt when creating the TCP sysplex group name, and a null value is used
for tt when creating the structure names. Thus, in Figure 43 on page 431, if
TCP1B and TCP2B are started without an XCFGRPID parameter on their
GLOBALCONFIG statements, the sysplex group they join is EZBT11CS, and the
structures they can access are EZBDVIPA11 and EZBEPORT11.

To estimate the coupling facility size requirements for each of these structures, use
the CFSizer Web site at http://www.ibm.com/servers/eserver/zseries/cfsizer/.

To isolate communication between different subplexes within a sysplex, dynamic
XCF connectivity between TCP/IP stacks in different subplexes on separate MVS
images is blocked. In addition, IUTSAMEH connectivity for dynamic XCF between
stacks in different subplexes on the same MVS image is also blocked.

When using HiperSockets to establish dynamic XCF connectivity between TCP/IP
stacks in the same CPC using the same HiperSockets CHPID, to preserve subplex
isolation, specify the IQDVLANID parameter on the GLOBALCONFIG statement
as follows:
v TCP/IP stacks in the same subplex that share the same CPC and specify the

same HiperSockets CHPID must specify the same VLAN ID value on the
IQDVLANID parameter.

v TCP/IP stacks in different subplexes that share the same CPC and specify the
same HiperSockets CHPID must specify different VLAN ID values on the
IQDVLANID parameter.

v If subplexing is not being used within the sysplex, do not specify the
IQDVLANID parameter on the GLOBALCONFIG statement.

432 z/OS V1R12.0 Comm Svr: IP Configuration Guide

http://www.ibm.com/systems/support/z/cfsizer/

Static XCF, user-defined IUTSAMEH, or user-defined HiperSockets connectivity
between TCP stacks in different TCP subplexes within the same VTAM subplex are
not blocked, because you have control over the definition and activation of these
connections.

No steps are explicitly taken to block any other network connectivity available
through LANs and WANs that might be shared by different subplexes, including
scenarios where the same OSA-Express adapter is shared across systems in
different subplexes. If complete network isolation between subplexes is required,
other mechanisms, such as physical network isolation or logical separation through
firewall technologies, should be deployed.

Subplex support applies to TCP/IP and VTAM sysplex functions that make explicit
use of XCF communications and coupling facility structures. For TCP/IP, this
includes functions such as dynamic XCF, dynamic VIPAs, sysplex distributor,
SYSPLEXPORTS, and SWSA. The scope of these functions is typically the entire
sysplex. Automated domain name registration (ADNR) does not have explicit
support for subplexing, but if ADNR is used in a subplexing environment, the
scope of ADNR might be restricted to a subplex when the different subplexes are
used to isolate network connectivity. In this case, an instance of ADNR must be
started for each subplex in the sysplex that will use ADNR functions. ADNR needs
to have affinity to one of the stacks in the subplex when ADNR is started on a
system that is running multiple stacks. See adnrproc.sample for an example of the
JCL.

In the remainder of this information, references to the sysplex or the sysplex group
can refer to the entire sysplex and sysplex group EZBTCPCS, if subplexing is not
being used, or to a specific subplex and a specific instance of the sysplex group
EZBTvvtt, if subplexing is in effect.

Setting up a subplex
Setting up TCP/IP and VTAM subplexes within a sysplex requires some
preparation.

Steps for preparing your sysplex for subplexing: Steps 2 and 3 depend on the
level of isolation you require for your subplexes within the sysplex. You do not
need to perform those two steps if the following are true:
v You do not use HiperSockets in support of dynamic XCF connectivity
v You do not need to isolate the subplexes for HiperSockets connectivity (if, for

example, you only need to restrict sysplex distributor distribution between
subplexes)

v You can configure your systems such that TCP/IP stacks that are in separate
subplexes and reside on the same CPC use a CHPID that is unique to the
subplex

Requirement: A z890 GA2 or z990 GA2 hardware level is required to support
VLAN IDs on HiperSockets.

Perform the following steps to prepare your sysplex for subplexing.

1. Plan how many subplexes are needed and assign a TCP/IP XCF group ID and
a VTAM XCF group ID for each anticipated subplex in the sysplex:
v All TCP/IP stacks in the same TCP/IP subplex must have the same TCP/IP

XCF group ID.

Chapter 8. TCP/IP in a sysplex 433

v All VTAM nodes in the same VTAM subplex must have the same VTAM
XCF group ID.

2. Ensure that all TCP/IP stacks and VTAM nodes in the sysplex are at z/OS
V1R8 or later.

3. If HiperSockets is enabled and there are TCP/IP stacks in the sysplex that
reside on the same CPC and use the same HiperSockets CHPID, assign a
VLAN ID to each anticipated subplex in the sysplex. Also, assign a VLAN ID
to the default subplex (that is, the subset of sysplex TCP/IP stacks that uses
the default sysplex group name, EZBTCPCS). All TCP/IP stacks in the same
subplex must have the same VLAN ID, if they reside on the same CPC and
use the same HiperSockets CHPID.

Steps for partitioning a set of TCP/IP stacks in a sysplex into a subplex:
Perform the following steps to partition a set of TCP/IP stacks in a sysplex into a
subplex that is functionally isolated from the other TCP/IP stacks in the sysplex.

1. If TCP/IP coupling facility structures for SYSPLEXPORTS or sysplex-wide
security associations (SWSA) are to be used, ensure that all the structures are
defined to MVS and are specified in the active CFRM policy using their fully
suffixed names. For example, if SYSPLEXPORTS is to be used with the base
structure name of EZBEPORT, two VTAM subplexes are to be configured (11
and 12), and within each VTAM subplex, two TCP/IP subplexes are defined
(21 and 22), ensure that the EZBEPORT1121, EZBEPORT1122, EZBEPORT1221,
and EZBEPORT1222 structures are defined to MVS and specified in the active
CFRM policy.

2. If the VTAM nodes are to be partitioned into subplexes, reconfigure each
VTAM node in the VTAM subplex that will support the new TCP/IP subplex.
For a description of how to set up VTAM subplexing, see z/OS Communications
Server: SNA Network Implementation Guide.

3. As each VTAM is being reconfigured, for each TCP/IP stack that you want to
place in a new subplex, perform the following steps:
a. Stop the stack.
b. Change the GLOBALCONFIG statement in the TCP/IP profile to include

the XCFGRPID parameter with the group ID for the new subplex.
c. If HiperSockets is enabled and there are TCP/IP stacks that reside on the

same CPC as this stack and that use the same HiperSockets CHPID, change
the GLOBALCONFIG statement in the TCP/IP profile to include the
IQDVLANID parameter with the selected VLAN ID for the new subplex.
Tip: This step depends on the level of isolation you require for your
subplexes within the sysplex. If you do not need to isolate the subplexes
for HiperSockets connectivity (if, for example, you only need to restrict
sysplex distributor distribution between subplexes), you do not need to
perform this step.

d. Start the TCP/IP stack, specifying the updated TCP/IP profile.
e. Continue until all the TCP/IP stacks in the new subplex have been

reconfigured.

Dynamic XCF
For most point-to-point links, a unique pair of IP addresses is needed for each
stack within a sysplex. This requirement tends to use more IP addresses, and IP
addresses can be saved by using dynamic XCF. Dynamic XCF creates a single IP
address by which all other stacks in a sysplex can reach a stack. Dynamic XCF

434 z/OS V1R12.0 Comm Svr: IP Configuration Guide

creates trusted, internal links to other stacks within a sysplex, generating dynamic
definitions for TCP/IP stacks that reside on another z/OS host in a sysplex or for
TCP/IP stacks that reside on the same z/OS host.

Dynamic XCF automatically generates the appropriate DEVICE, LINK, HOME,
INTERFACE, BSDROUTINGPARMS, and BEGINROUTES definitions, and activates
the devices to enable a stack to communicate with other stacks in the sysplex.
Dynamic XCF devices and links, when activated, appear to the stack as though
they had been defined in the TCP/IP profile, and can be displayed using standard
commands.

Dynamic XCF support is available for both IPv4 and IPv6, and is enabled with the
DYNAMICXCF parameter on the IPCONFIG or IPCONFIG6 statement,
respectively. Though not specifically mentioned throughout this topic, unless
otherwise noted, this information applies to IPv6 as well as IPv4.

Notes:

1. Dynamic XCF (non-IUTSAMEH and non-IQDIO) interface definitions to a
particular LPAR are stopped and deleted when the last stack on a given LPAR
is removed from the sysplex.

2. If you are using policy-based routing, by default dynamic XCF does not
generate the corresponding policy-based routing RouteTable definitions.
Determine whether it is appropriate for these routes to be added to each of
your policy-based route tables. Use the DynamicXCFRoutes parameter on the
RouteTable statement that defines a policy-based route table to indicate
whether the routes should be added to that table. For information about the
RouteTable statement and its parameters, see z/OS Communications Server: IP
Configuration Reference.

Getting started with dynamic XCF
The minimum requirements for TCP/IP stacks to use dynamic XCF differ based on
whether same host or inter-host communication is being used. To generate
definitions for two TCP/IP stacks that reside on different MVS hosts:
v Both MVS hosts must belong to the same sysplex.
v VTAM must have XCF communications enabled by specifying the XCFINIT=YES

or XCFINIT=DEFINE start option, or by activating the VTAM XCF local SNA
major node, ISTLSXCF. For details about configuration, see z/OS Communications
Server: SNA Network Implementation Guide.

v DYNAMICXCF must be specified in the TCP/IP profile of each stack.

With this configuration, both same host and inter-host communication can be
performed using dynamic XCF.

To generate definitions for two TCP/IP stacks that reside on the same MVS host,
you must specify DYNAMICXCF in the TCP/IP profile of each stack.

At initialization, each TCP/IP stack configured for XCF joins a well-known XCF
group. When other stacks in the group discover the new stack, the definitions are
created automatically, the links are activated, and the remote IP address for each
link is added to the routing table. After the remote IP address has been added, IP
traffic proceeds as usual.

In VTAM, you must activate the XCF local SNA major node. You can do this using
the start option XCFINIT=YES or XCFINIT=DEFINE. If dynamically defined XCF
definitions have been created for another VTAM in the sysplex that has since

Chapter 8. TCP/IP in a sysplex 435

stopped and restarted with a different CPName, dynamic XCF recognizes this
situation and automatically modifies existing definitions to accommodate the
CPName change. If the XCF local SNA major node is inactive when TCP/IP is
started and is not activated until after TCP/IP has finished initialization, TCP/IP
does not generate any dynamic definitions for other TCP/IP hosts already started
in the sysplex until either:
v A new TCP/IP host is detected
v A profile related operator command is issued (such as the VARY

TCPIP,,OBEYFILE, VARY TCPIP,,START, or VARY TCPIP,,STOP commands)

Dynamic XCF for IPv4 addresses: To request dynamics for XCF or same host
connections, enter the following in the IPCONFIG statement:
DYNAMICXCF IPAddress SubnetMask CostMetric

The internal definitions that are created depend on your configuration.

Scenario number 1:

v TCP/IP detects another instance of TCP/IP on the same z/OS
v No device exists with the name IUTSAMEH
v No link exists with the name EZASAMEMVS

This scenario creates internal definitions equivalent to the following:

DEVICE IUTSAMEH MPCPTP AUTORESTART
Device definition to obtain the most efficient stack-to-stack communications
within the same MVS image.

LINK EZASAMEMVS MPCPTP IUTSAMEH
Link definition for the IUTSAMEH device.

HOME IPAddress EZASAMEMVS
Associates the IP address with the IUTSAMEH link.

BSDROUTINGPARMS EZASAMEMVS 65535 CostMetric SubnetMask
DestIPAddress

Defines the link characteristics for EZASAMEMVS.

Note: The DestIPAddress is always 0.

START IUTSAMEH
Starts the IUTSAMEH device.

Scenario number 2:

v TCP/IP detects another instance of TCP/IP in the sysplex
v No device with the name of the CPName of the remote VTAM exists
v No HiperSockets connectivity between the two images exists
v No link exists with the name EZAXCFnn, where nn is the value of the MVS

system symbol (SYSCLONE) for the MVS hosting the VTAM with the device
name

This scenario creates internal definitions equivalent to the following:

DEVICE CPName MPCPTP AUTORESTART
Device definition to communicate with TCP/IP stacks hosted by the
remote VTAM.

436 z/OS V1R12.0 Comm Svr: IP Configuration Guide

LINK EZAXCFnn MPCPTP CPName
Link definition for the device, where nn is the SYSCLONE value for the
remote VTAM and MVS.

HOME IPAddress EZAXCFnn
Associates the IP address with the dynamic XCF link.

BSDROUTINGPARMS EZAXCFnn 55296 CostMetric SubnetMask DestIPAddress
Defines the link characteristics for EZAXCFnn.

START CPName
Starts the specified device.

Notes:

1. If EZAXCFnn is already defined as a link name, or the CP name is already
defined as a device name, then dynamic XCF definition EZAXCFnn and the CP
name are not generated for discovery of another stack in the same sysplex.

2. The DestIPAddress is always zero.

Scenario number 3:

v TCP/IP detects another instance of TCP/IP in the sysplex
v The images reside on the same CPC
v HiperSockets connectivity between the two images exists
v The host processor supports HiperSockets and z/OS Communications Server is

properly configured
v No link exists with the name IQDIOLNKnnnnnnnn (where nnnnnnnn is the

hexadecimal representation of the IP address specified on the IPCONFIG
DYNAMICXCF statement)

This scenario creates internal definitions equivalent to the following:

DEVICE IUTIQDIO MPCIPA AUTORESTART
Device definition to communicate with TCP/IP stacks hosted by the
remote VTAM.

LINK IQDIOLNKnnnnnnnn IPAQIDIO IUTIQDIO
Link definition for the device, where nnnnnnnn is the hexadecimal
representation of the IP address specified on the IPCONFIG
DYNAMICXCF statement (that is, IPAddress).

HOME IPAddress IQDIOLNKnnnnnnnn
Associates the IP address with the dynamic XCF link.

BSDROUTINGPARMS IQDIOLNKnnnnnnnn 57344 CostMetric SubnetMask
DestIPAddress

Defines the link characteristics for IQDIOLNKnnnnnnnn.

START IUTIQDIO
Starts the specified device.

Notes:

1. If IQDIOLNKnnnnnnnn is already defined as a link name, or IUTIQDxx (where
xx is the CHPID of the HiperSockets LAN that is defined or specified by
default on the VTAM start option IQDCHPID) is already defined as a device
name, dynamic XCF IQDIOLNKnnnnnnnn and IUTIQDIO definitions are not
generated for discovery of another stack in the same CPC.

2. The DestIPAddress is always zero.

Chapter 8. TCP/IP in a sysplex 437

For details about these XCF-related statements, see z/OS Communications Server: IP
Configuration Reference. For information about changes to Netstat displays of
dynamic XCF settings, see z/OS Communications Server: IP System Administrator's
Commands.

Dynamic XCF for IPv6 addresses: To request dynamics for XCF or same host
connections, enter the following in the IPCONFIG6 statement:
DYNAMICXCF IP6Address

The internal definitions that are created depend on your configuration.

Scenario number 1:

v TCP/IP detects another instance of TCP/IP on the same z/OS
v No device exists with the name IUTSAMEH
v No link exists with the name EZ6SAMEMVS

This scenario creates internal definitions equivalent to the following:

INTERFACE EZ6SAMEMVS DEFINE MPCPTP6 TRLENAME IUTSAMEH
IPADDR IP6Address

Interface definition for EZ6SAMEMVS.

START EZ6SAMEMVS
Starts the EZ6SAMEMVS interface.

Scenario number 2:

v TCP/IP detects another instance of TCP/IP in the sysplex
v No device with the name of the CPName of the remote VTAM exists
v No HiperSockets connectivity between the two images exists
v No link exists with the name EZ6XCFnn, where nn is the value of the MVS

system symbol (SYSCLONE) for the MVS hosting the VTAM with the device
name

This scenario creates internal definitions equivalent to the following:

INTERFACE EZ6XCFnn DEFINE MPCPTP6 TRLENAME CPName IPADDR
IP6Address

Interface definition, where nn is the SYSCLONE value for the remote
VTAM and MVS.

START EZ6XCFnn
Starts the specified interface.

Notes:

1. If EZ6XCFnn is already defined as a link name, or the CP name is already
defined as a device name, then dynamic XCF definition EZ6XCFnn and CP
name are not generated for discovery of another stack in the same sysplex.

2. The DestIPAddress is always zero.

For details about these XCF-related statements, see z/OS Communications Server: IP
Configuration Reference. For information about changes to Netstat displays of
dynamic XCF settings, see z/OS Communications Server: IP System Administrator's
Commands.

438 z/OS V1R12.0 Comm Svr: IP Configuration Guide

IUTSAMEH
Communications Server provides internal links between TCP/IP stacks that are
running within the same MVS image. This support is referred to as a Same Host
(IUTSAMEH) link. If DYNAMICXCF is defined, TCP/IP always creates and
activates a same host (IUTSAMEH) device and link (unless a static IUTSAMEH
device is already defined) even if this is the only stack on the MVS image. When
TCP/IP activates the IUTSAMEH device, VTAM dynamically builds the
IUTSAMEH TRLE. The generated device name is IUTSAMEH, the generated link
name is EZASAMEMVS (IPv4), and the generated interface name is
EZ6SAMEMVS (IPv6). As other stacks are brought up within the same MVS image,
a host route is created to each of these stacks across the same host link. It is
recommended that users do not configure a static device for IUTSAMEH (allow
TCP/IP to dynamically create the device and link). Communications Server also
uses the IUTSAMEH link for Enterprise Extender support.

The IUTSAMEH DEVICE and LINK (IPv4) or INTERFACE (IPv6) do not become
active and remain in SENT SETUP status until either another TCP/IP stack or
Enterprise Extender connection is activated on this MVS image.
DEVNAME: IUTSAMEH DEVTYPE: MPCPTP
DEVSTATUS: SENT SETUP
LNKNAME: EZASAMEMVS LNKTYPE: MPCPTP LNKSTATUS: NOT ACTIVE...
INTFNAME: EZ6SAMEMVS INTFTYPE: MPCPTP6 INTFSTATUS: NOT ACTIVE

In the case where IUTSAMEH is active solely because of Enterprise Extender and
the IUTSAMEH is subsequently stopped, to restart the IUTSAMEH for Enterprise
Extender, the XCA major node must be recycled. Otherwise, it might require
manual reactivation of the Enterprise Extender LINEs and PUs, and manual
redials.

XCF
When a subsequent stack within the sysplex is started that is not within the same
MVS image, TCP/IP creates and activates an XCF device and link (unless an XCF
device is already defined). The XCF links connect using the sysplex coupling
facility or CTC links. A new device and link are created for every other VTAM
node in the sysplex with at least one TCP/IP stack active on the same system with
DYNAMICXCF specified. The generated device name is the CP name (for APPN)
or SSCP name (for subarea-only nodes) of the remote VTAM. The generated link
name is EZAXCFnn (IPv4), and the generated interface name is EZ6XCFnn (IPv6),
where nn is the 2-character &SYSCLONE value. A host route across the XCF link is
created when the XCF link is successfully activated.

Examples of definitions generated by dynamic XCF
This topic contains examples of definitions generated by dynamic XCF in both
IPv4 and IPv6 environments. The notes following the examples pertain to both
environments.

IPv4 example 1:

This configuration consists of two MVS systems (MVS1,MVS2) that are members of
the same sysplex. Each MVS host has one TCP/IP stack (TCPIP1 and TCPIP2,
respectively). From the syntax descriptions, the following information is needed to
generate the dynamic definitions:
v MVS sysclone value
v VTAM CPName
v Status of XCF in VTAM

Chapter 8. TCP/IP in a sysplex 439

|
|
|

v The values specified on the IPCONFIG DYNAMICXCF keyword

Using the following user definitions:
MVS1:
Sysclone = A1
VTAM Cpname = VTAM1
VTAM has either specified XCFINIT=YES, XCFINIT=DEFINE, or the major node ISTLSXCF is active
TCPIP1: PROFILE.TCPIP contains IPCONFIG DYNAMICXCF 9.1.1.1 255.255.255.248 3

MVS2:
Sysclone = B2 VTAM
Cpname = VTAM2
VTAM has either specified XCFINIT=YES, XCFINIT=DEFINE, or the major node ISTLSXCF is active
TCPIP2: PROFILE.TCPIP contains IPCONFIG DYNAMICXCF 9.1.1.2 255.255.255.248 2

After both TCPIP1 and TCPIP2 have been started, the following definitions will be
generated.

TCPIP1 will generate the equivalent of these definitions:.
DEVICE VTAM2 MPCPTP AUTORESTART
LINK EZAXCFB2 MPCPTP VTAM2
HOME 9.1.1.1 EZAXCFB2
BSDROUTINGPARMS EZAXCFB2 55296 3 255.255.255.248 0
START VTAM2

TCPIP2 will generate:
DEVICE VTAM1 MPCPTP AUTORESTART
LINK EZAXCFA1 MPCPTP VTAM1
HOME 9.1.1.2 EZAXCFA1
BSDROUTINGPARMS EZAXCFA1 55296 2 255.255.255.248 0
START VTAM1

When an XCF link becomes active, each TCPIP will generate a route to the other
TCPIP over the XCF link. In this example, when the XCF link becomes active,
TCPIP1 will generate a route to TCPIP2 over the XCF link and vice versa.

IPv4 example 2:

The configuration is the same as Example 1 except a second TCP/IP stack
(TCPIP1A) was added to MVS1.

Using the following user definitions:
MVS1:
Sysclone = A1
VTAM Cpname = VTAM1
VTAM has either specified XCFINIT=YES, XCFINIT=DEFINE, or the major node ISTLSXCF is active
TCPIP1: PROFILE.TCPIP contains IPCONFIG DYNAMICXCF 9.1.1.1 255.255.255.248 3
TCPIP1A: PROFILE.TCPIP contains IPCONFIG DYNAMICXCF 9.1.1.3 255.255.255.248 0

MVS2:
Sysclone = B2
VTAM Cpname = VTAM2
VTAM has either specified XCFINIT=YES, XCFINIT=DEFINE, or the major node ISTLSXCF is active
TCPIP2: PROFILE.TCPIP contains IPCONFIG DYNAMICXCF 9.1.1.2 255.255.255.248 2

After both TCPIP1 and TCPIP2 have been started, the following definitions will be
generated, as in Example 1.

TCPIP1 will generate the equivalent of these definitions:

440 z/OS V1R12.0 Comm Svr: IP Configuration Guide

DEVICE VTAM2 MPCPTP AUTORESTART
LINK EZAXCFB2 MPCPTP VTAM2
HOME 9.1.1.1 EZAXCFB2
BSDROUTINGPARMS EZAXCFB2 55296 3 255.255.255.248 0
START VTAM2

TCPIP2 will generate:
DEVICE VTAM1 MPCPTP AUTORESTART
LINK EZAXCFA1 MPCPTP VTAM1
HOME 9.1.1.2 EZAXCFA1
BSDROUTINGPARMS EZAXCFA1 55296 2 255.255.255.248 0
START VTAM1

Now, TCPIP1A is started. TCPIP1 and TCPIP2 recognize that TCPIP1A has started.
TCPIP1A will generate definitions for both TCPIP1 and TCPIP2. TCPIP1 will
generate IUTSAMEH definitions for TCPIP1A. However, TCPIP2 does not need to
generate and will not generate any new definitions except for routing information
for TCPIP1A. New definitions do not need to be created because the DEVICE and
LINK definitions are based on the discovery of a new VTAM node in the sysplex.
(The DEVICE name is the VTAM CPName.)

TCPIP1 will generate the equivalent of these definitions:
DEVICE IUTSAMEH MPCPTP AUTORESTART
LINK EZASAMEMVS MPCPTP IUTSAMEH
HOME 9.1.1.1 EZASAMEMVS
BSDROUTINGPARMS EZASAMEMVS 65535 3 255.255.255.248 0
START IUTSAMEH

When the IUTSAMEH connection becomes active, each TCPIP will generate a route
to the other TCPIP over the IUTSAMEH connection.

TCPIP2 does not generate anything.

TCPIP1A will generate:
DEVICE IUTSAMEH MPCPTP AUTORESTART
LINK EZASAMEMVS MPCPTP IUTSAMEH
DEVICE VTAM2 MPCPTP AUTORESTART
LINK EZAXCFB2 MPCPTP VTAM2
HOME 9.1.1.3 EZAXCFB2
HOME 9.1.1.3 EZASAMEMVS
BSDROUTINGPARMS EZAXCFB2 55296 0 255.255.255.248 0
BSDROUTINGPARMS EZASAMEMVS 65535 0 255.255.255.248 0
START IUTSAMEH
START VTAM2

When the IUTSAMEH connection becomes active, each TCPIP will generate a route
to the other TCPIP over the IUTSAMEH connection.

IPv4 example 3:

To continue Example 2, add another MVS host (MVS3) with a VTAM node
(VTAM3) with one TCP/IP stack (TCPIP3).
MVS3:
Sysclone = C3
VTAM Cpname = VTAM3
VTAM has either specified XCFINIT=YES, XCFINIT=DEFINE, or the major node ISTLSXCF is active
TCPIP3: PROFILE.TCPIP contains IPCONFIG DYNAMICXCF 9.1.1.3 255.255.255.248 0

Chapter 8. TCP/IP in a sysplex 441

In this example, the previously active TCP/IP stacks will generate definitions for
TCPIP3 because a new VTAM stack has become active in the sysplex. TCPIP3 will
generate definitions for definitions for TCPIP1/TCPIP1A and TCPIP2.

TCPIP1 will generate the equivalent of these definitions:
DEVICE VTAM3 MPCPTP AUTORESTART
LINK EZAXCFC3 MPCPTP VTAM3
HOME 9.1.1.1 EZAXCFC3
BSDROUTINGPARMS EZAXCFC3 55296 3 255.255.255.248 0
START VTAM3

TCPIP2 will generate:
DEVICE VTAM3 MPCPTP AUTORESTART
LINK EZAXCFC3 MPCPTP VTAM3
HOME 9.1.1.2 EZAXCFC3
BSDROUTINGPARMS EZAXCFC3 55296 2 255.255.255.248 0
START VTAM3

TCPIP1A will generate:
DEVICE VTAM3 MPCPTP AUTORESTART
LINK EZAXCFC3 MPCPTP VTAM3
HOME 9.1.1.3 EZAXCFC3
BSDROUTINGPARMS EZAXCFC3 55296 0 255.255.255.248 0
START VTAM3

TCPIP3 will generate:
DEVICE VTAM1 MPCPTP AUTORESTART
LINK EZAXCFA1 MPCPTP VTAM1
DEVICE VTAM2 MPCPTP AUTORESTART
LINK EZAXCFB2 MPCPTP VTAM2
HOME 9.1.1.3 EZAXCFA1
HOME 9.1.1.3 EZAXCFB2
BSDROUTINGPARMS EZAXCFA1 55296 0 255.255.255.248 0
BSDROUTINGPARMS EZAXCFB2 55296 0 255.255.255.248 0
START VTAM1
START VTAM2

IPv4 example 4:

This example illustrates how dynamic XCF can generate IUTSAMEH definitions
without VTAM having its XCF enabled.
MVS1:
Sysclone = A1 (not used in this example)
VTAM Cpname = VTAM1 (not used in this example)
VTAM has XCFINIT=NO specified and has not activated the major node ISTLSXCF.
TCPIP1: PROFILE.TCPIP contains IPCONFIG DYNAMICXCF 9.1.1.1 255.255.255.248 3
TCPIP1A: PROFILE.TCPIP contains IPCONFIG DYNAMICXCF 9.1.1.3 255.255.255.248 0

TCPIP1 will generate the equivalent of these definitions:
DEVICE IUTSAMEH MPCPTP AUTORESTART
LINK EZASAMEMVS MPCPTP IUTSAMEH
HOME 9.1.1.1 EZASAMEMVS
BSDROUTINGPARMS EZASAMEMVS 65535 3 255.255.255.248 0
START IUTSAMEH

TCPIP1A will generate:

442 z/OS V1R12.0 Comm Svr: IP Configuration Guide

DEVICE IUTSAMEH MPCPTP AUTORESTART
LINK EZASAMEMVS MPCPTP IUTSAMEH
HOME 9.1.1.3 EZASAMEMVS
BSDROUTINGPARMS EZASAMEMVS 65535 0 255.255.255.248 0
START IUTSAMEH

IPv6 example 1:

This configuration consists of two MVS systems (MVS1,MVS2) that are members of
the same sysplex. Each MVS host has one TCP/IP stack (TCPIP1 and TCPIP2,
respectively). From the syntax descriptions, the following information is needed to
generate the dynamic definitions:
v MVS sysclone value
v VTAM CPName
v Status of XCF in VTAM
v The values specified on the IPCONFIG6 DYNAMICXCF keyword

Using the following user definitions:
MVS1:
Sysclone = A1
VTAM Cpname = VTAM1
VTAM has either specified XCFINIT=YES, XCFINIT=DEFINE, or the major node ISTLSXCF is active
TCPIP1: PROFILE.TCPIP contains IPCONFIG6 DYNAMICXCF 2001:0DB8::111:f001
MVS2:
Sysclone = B2
Cpname = VTAM2
VTAM has either specified XCFINIT=YES, XCFINIT=DEFINE, or the major node ISTLSXCF is active
TCPIP2: PROFILE.TCPIP contains IPCONFIG6 DYNAMICXCF 2001:0DB8::222:f001

After both TCPIP1 and TCPIP2 are started, the following definitions are generated.

TCPIP1 generates the equivalent of these definitions:
INTERFACE EZ6XCFB2 DEFINE MPCPTP6 TRLENAME VTAM2 IPADDR 2001:0DB8::111:f001
START EZ6XCFB2

TCPIP2 generates:
INTERFACE EZ6XCFA1 DEFINE MPCPTP6 TRLENAME VTAM1 IPADDR 2001:0DB8::222:f001
START EZ6XCFA1

The INTERFACE statement combines the definitions of DEVICE, LINK, and
HOME into a single statement for IPv6. When an XCF interface becomes active,
each TCP/IP generates a route to the other TCP/IP over the XCF interface. In this
example, when the XCF interface becomes active, TCPIP1 generates a route to
TCPIP2 over the XCF interface, and TCPIP2 generates a route to TCPIP1 over the
XCF interface.

IPv6 example 2:

The configuration is the same as Example 1 except a second TCP/IP stack
(TCPIP1A) is added to MVS1.

Using the following user definitions:
MVS1:
Sysclone = A1
VTAM Cpname = VTAM1
VTAM has either specified XCFINIT=YES, XCFINIT=DEFINE, or the major node ISTLSXCF is active
TCPIP1: PROFILE.TCPIP contains IPCONFIG6 DYNAMICXCF 2001:0DB8::111:f001
TCPIP1A: PROFILE.TCPIP contains IPCONFIG6 DYNAMICXCF 2001:0DB8::111:f002
MVS2:
Sysclone = B2

Chapter 8. TCP/IP in a sysplex 443

VTAM Cpname = VTAM2
VTAM has either specified XCFINIT=YES, XCFINIT=DEFINE, or the major node ISTLSXCF is active
TCPIP2: PROFILE.TCPIP contains IPCONFIG6 DYNAMICXCF 2001:0DB8::222:f001

After both TCPIP1 and TCPIP2 are started, the following definitions are generated,
as in Example 1.

TCPIP1 generates the equivalent of these definitions:
INTERFACE EZ6XCFB2 DEFINE MPCPTP6 TRLENAME VTAM2 IPADDR 2001:0DB8::111:f001
START EZ6XCFB2

TCPIP2 generates:
INTERFACE EZ6XCFA1 DEFINE MPCPTP6 TRLENAME VTAM1 IPADDR 2001:0DB8::222:f001
START EZ6XCFA1

Now, TCPIP1A is started. TCPIP1 and TCPIP2 recognize that TCPIP1A has started.
TCPIP1A generates definitions for both TCPIP1 and TCPIP2. TCPIP1 generates
IUTSAMEH definitions for TCPIP1A. However, TCPIP2 does not need to generate
and does not generate any new definitions, except for routing information, for
TCPIP1A. New definitions do not need to be created because the INTERFACE
definition is based on the discovery of a new VTAM node in the sysplex. (The
TRLENAME is the VTAM CPName.)

TCPIP1 generates the equivalent of these definitions:
INTERFACE EZ6SAMEMVS DEFINE MPCPTP6 TRLENAME IUTSAMEH IPADDR 2001:0DB8::111:f001
START EZ6SAMEMVS

When the IUTSAMEH connection becomes active, each TCP/IP generates a route
to the other TCP/IP over the IUTSAMEH connection.

TCPIP2 does not generate anything.

TCPIP1A generates:
INTERFACE EZ6XCFB2 DEFINE MPCPTP6 TRLENAME VTAM2 IPADDR 2001:0DB8::111:f002
START EZ6XCFB2
INTERFACE EZ6SAMEMVS DEFINE MPCPTP6 TRLENAME IUTSAMEH IPADDR 2001:0DB8::111:f002
START EZ6SAMEMVS

When an XCF interface becomes active, each TCP/IP generates a route to the other
TCP/IP over the XCF interface. In this example, when the XCF interface becomes
active, TCPIP1A generates a route to TCPIP2 over the XCF interface, and TCPIP2
generates a route to TCPIP1A over the XCF interface. When the IUTSAMEH
connection becomes active, each TCP/IP generates a route to the other TCP/IP
over the IUTSAMEH connection.

IPv6 example 3:

To continue Example 2, add another MVS host (MVS3) with a VTAM node
(VTAM3) with one TCP/IP stack (TCPIP3).
MVS3:
Sysclone = C3
VTAM Cpname = VTAM3
VTAM has either specified XCFINIT=YES, XCFINIT=DEFINE, or the major node ISTLSXCF is active
TCPIP3: PROFILE.TCPIP contains IPCONFIG6 DYNAMICXCF 2001:0DB8::333:f001

In this example, the previously active TCP/IP stacks generate definitions for
TCPIP3 because a new VTAM stack has become active in the sysplex. TCPIP3
generates definitions for TCPIP1, TCPIP1A, and TCPIP2.

444 z/OS V1R12.0 Comm Svr: IP Configuration Guide

TCPIP1 generates the equivalent of these definitions:
INTERFACE EZ6XCFC3 DEFINE MPCPTP6 TRLENAME VTAM3 IPADDR 2001:0DB8::111:f001
START EZ6XCFC3

TCPIP2 generates:
INTERFACE EZ6XCFC3 DEFINE MPCPTP6 TRLENAME VTAM3 IPADDR 2001:0DB8::222:f001
START EZ6XCFC3

TCPIP1A generates:
INTERFACE EZ6XCFC3 DEFINE MPCPTP6 TRLENAME VTAM3 IPADDR 2001:0DB8::111:f002
START EZ6XCFC3

TCPIP3 generates:
INTERFACE EZ6XCFA1 DEFINE MPCPTP6 TRLENAME VTAM1 IPADDR 2001:0DB8::333:f001
START EZ6XCFA1
INTERFACE EZ6XCFB2 DEFINE MPCPTP6 TRLENAME VTAM2 IPADDR 2001:0DB8::333:f001
START EZ6XCFB2

IPv6 example 4:

This example illustrates how dynamic XCF can generate IUTSAMEH definitions
without VTAM having its XCF enabled.
MVS1:
Sysclone = A1 (not used in this example)
VTAM Cpname = VTAM1 (not used in this example)
VTAM has XCFINIT=NO specified and has not activated the major node ISTLSXCF.
TCPIP1: PROFILE.TCPIP contains IPCONFIG6 DYNAMICXCF 2001:0DB8::111:f001
TCPIP1A: PROFILE.TCPIP contains IPCONFIG6 DYNAMICXCF 2001:0DB8::111:f002

TCPIP1 generates the equivalent of these definitions:
INTERFACE EZ6SAMEMVS DEFINE MPCPTP6 TRLENAME IUTSAMEH IPADDR 2001:0DB8::111:f001
START EZ6SAMEMVS

TCPIP1A generates:
INTERFACE EZ6SAMEMVS DEFINE MPCPTP6 TRLENAME IUTSAMEH IPADDR 2001:0DB8::111:f002
START EZ6SAMEMVS

Notes:

1. Because the interfaces generated by dynamic XCF use a single IP address, the
output of the SIOCGIFCONF ioctl() contains multiple entries with the same IP
address. If an application is using the SIOCGIFCONF output to issue bind() to
all the entries returned, the application could receive EADDRINUSE on a bind()
if there are multiple XCF devices defined by dynamic XCF in the list.

2. If you want to define a static route to a link which is generated by dynamic
XCF, you must wait until the dynamic devices are started and then use the
VARY TCPIP,,OBEYFILE command. For IPv4, the GATEWAY or BEGINROUTES
statement that refers to a dynamically defined linkname must be in a separate
data set from the data set used to define the dynamic devices (either the initial
profile data set or the data set referenced by a VARY TCPIP,,OBEYFILE
command). For IPv6, the ROUTE statement that refers to a dynamically defined
interface name must be in a separate data set from the data set used to define
the dynamic interfaces (either the initial profile data set or the data set
referenced by a VARY TCPIP,,OBEYFILE command).

3. Even though the HOME, BSDROUTINGPARMS and BEGINROUTES
definitions are full replacement statements, the definitions generated by
dynamic XCF will not replace any existing definitions. Likewise, user-defined

Chapter 8. TCP/IP in a sysplex 445

HOME, BSDROUTINGPARMS and BEGINROUTES definitions will not affect
existing or future definitions generated by dynamic XCF.

4. A mix of static and dynamic IPv4 and IPv6 definitions for a device is not
allowed. For example, if a static IUTSAMEH IPv4 device and link is defined, an
IPv6 dynamic definition for IUTSAMEH will not be created. If a static
IUTSAMEH IPv6 interface is defined, an IPv4 dynamic definition for
IUTSAMEH will not be created. The same logic also applies for XCF links; a
mix of static and dynamic IPv4 and IPv6 definitions is not allowed for an XCF
link.

5. The address specified on the IPCONFIG6 DYNAMICXCF statement cannot be
an existing, statically defined, interface address. If a profile contains an IPv6
interface statement for an address that is also used in the IPCONFIG6
DYNAMICXCF statement, the IPCONFIG6 DYNAMICXCF statement is
ignored.

Deleting dynamically defined XCF devices: You can delete dynamically defined
XCF devices and links by first stopping the devices to be deleted and then issuing
a VARY TCPIP,,OBEYFILE command that references a data set containing a
DELETE LINK EZAXCFnn and DELETE DEVICE. Because the HOME statement
processing does not affect dynamically defined XCF HOME list entries, the HOME
xx.xx.xx.xx EZAXCFnn entry is automatically deleted by DELETE LINK.

For IPv6, you can delete dynamically defined XCF interfaces by first stopping the
interface previously defined in an INTERFACE statement and then issuing a VARY
TCPIP,,OBEYFILE command that references a data set containing an INTERFACE
interfacename DELETE statement.

HiperSockets
HiperSockets is a System z hardware feature that provides high performance
internal communications between LPARs within the same central processor
complex (CPC) without the use of any additional or external hardware equipment
(for example, channel adapters, LANs, and so on).

If the host processor supports HiperSockets and Communications Server is
properly configured, Communications Server will attempt to create XCF
connectivity between LPARs in the same CPC using a HiperSockets link or
interface. When the HiperSockets link or interface cannot be activated, TCP/IP
creates a normal XCF link or interface. However, if the HiperSockets link or
interface is successfully activated, but is then later stopped, TCP/IP does not create
an XCF link or interface.

The HiperSockets for DYNAMICXCF device and link or interface are dynamically
built and the device or interface is started during TCP/IP DYNAMICXCF stack
initialization. The HiperSockets for DYNAMICXCF device and link and interface
cannot be configured. The generated device name is IUTIQDIO. The generated
IPv4 link name is IQDIOLNKnnnnnnnn, where nnnnnnnn is the character
representation of the hexadecimal version of the DYNAMICXCF IP address. The
generated IPv6 interface name is IQDIOINTF6. In general, where an XCF link or
interface would normally have been used (for intra-CPC), a HiperSockets link or
interface will be used.

Similar to IUTSAMEH, VTAM will dynamically build the TRLE for IUTIQDIO
when the IUTIQDIO device is started. The TRLE statement is not configured
(defined) by the user.

446 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Although HiperSockets for DYNAMICXCF is not configured with TCP/IP DEVICE
and LINK or INTERFACE statements, and the TRLE is not defined by the user, the
following steps must be taken to define the HiperSockets subchannel devices and
IQD CHPID:
1. Using HCD or IOCP, the system administrator must define (create the IOCDS)

the HiperSockets IQD CHPID (channel path ID) and subchannel devices to the
applicable LPARs. To dynamically build the HiperSockets TRLE, VTAM
requires a minimum of 3 subchannel devices configured with each IQD CHPID
within HCD. The maximum number of subchannel devices that VTAM will use
(associate with each TRLE or MPC group) is 10. For additional details
regarding configuring the HiperSockets subchannel devices and IQD CHPID,
see z/OS HCD Planning and Appendix D, “Using HCD,” on page 1493.

2. When more than one IQD CHPID is configured to a specific LPAR, VTAM start
option IQDCHPID must be used to specify which specific IQD CHPID this
LPAR should use. The VTAM start option controls which IQD CHPID (and
related subchannel devices) VTAM selects to include in the HiperSockets MPC
group (IUTIQDIO) when it is dynamically built for HiperSockets for
DYNAMICXCF connectivity. Start option IQDCHPID controls the VTAM IQD
CHPID selection for the HiperSockets for DYNAMICXCF device IUTIQDIO
(MPC group) only. It does not control IQD CHPID selection for a user defined
HiperSockets device (MPCIPA). However, a user defined HiperSockets device
(IQD CHPID) cannot use (conflict with) the same IQD CHPID that the
HiperSockets for DYNAMICXCF device is currently using.
For example, if IQD CHPID 'FE'x is currently in use by DYNAMICXCF due to
one of the following:
a. VTAM start option IQDCHPID=FE is currently specified
b. VTAM start option IQDCHPID=ANY is currently specified, but the

HiperSockets for DYNAMICXCF device IUTIQDIO is currently using the
'FE' CHPID

then an attempt to configure and start a user defined HiperSockets device
IUTIQDFE will not be allowed (IQD CHPIDs conflict). This option can also be
modified with a VTAM modify command. In most cases, the default setting
will be sufficient. For additional details regarding this start option, see z/OS
Communications Server: SNA Resource Definition Reference.

For additional details regarding HiperSockets, see “HiperSockets concepts and
connectivity” on page 81.

Network interfaces monitoring
Sysplex distributor and other dynamic VIPA (DVIPA) functions depend on an
available network path to the TCP/IP stack that owns and advertises a dynamic
VIPA. If connectivity is disrupted, clients might not be able to access the
applications represented by the DVIPA, impacting their operations. Dynamic XCF
interfaces can be configured to provide for a backup network path for DVIPAs. If
the dynamic XCF interfaces fail for a given system, the sysplex autonomics
function might automatically initiate a recovery action, resulting in the local
TCP/IP stack leaving the sysplex and enabling other TCP/IP stacks to assume
ownership of the DVIPAs.

However, there are some configurations in which it is not optimal to configure
dynamic XCF interfaces as eligible backup network paths for TCP/IP stacks that
own and advertise DVIPAs. In these configurations, incoming network traffic for
the DVIPAs is expected to arrive over one or more external network interfaces. If
these external interfaces fail, or the networks they are attached to experience a

Chapter 8. TCP/IP in a sysplex 447

failure, the DVIPAs owned by the local TCP/IP stack can become isolated. Client
traffic destined for these DVIPAs cannot reach the local TCP/IP stack; the DVIPA is
unreachable.

The network interfaces monitoring function enhances the sysplex autonomics
function by enabling you to specify key network interfaces that should be
monitored by TCP/IP stacks. If a failure occurs on all specified interfaces, sysplex
autonomics recovery can be triggered so other TCP/IP stacks in the sysplex can
take over responsibilities for the DVIPAs owned by the local stack.

This level of monitoring is not only useful for TCP/IP stacks that currently own
and advertise distributed and non-distributed DVIPAs, but also for TCP/IP stacks
that are eligible backup stacks for these DVIPAs. This can help ensure that any
backup TCP/IP stacks that are experiencing network connectivity problems do not
attempt to perform DVIPA takeover activities if the primary DVIPA owner is
stopped or fails. By being proactive and detecting these network connectivity
problems, the backup stack can remove itself from the sysplex, enabling other
healthy backup stacks to perform the takeover activities. While this monitoring
function can also be enabled on TCP/IP stacks that act only as targets for
distributed DVIPAs, the benefits for this configuration are minimal, as sysplex
distributor already automatically monitors the ability of target TCP/IP stacks to
communicate with distributed DVIPA clients.

The following functions are provided by the network interfaces monitoring
function:
v You can identify which links and interfaces are critical for inbound network

connectivity for a distributed DVIPA or DVIPA-owning TCP/IP stack. Specify
which links and interfaces are to be monitored by sysplex autonomics using the
MONSYSPLEX parameter on the LINK and INTERFACE statements.

v You have the option of enabling the TCP/IP stack to monitor the status of these
interfaces through the MONINTERFACE keyword on the GLOBALCONFIG
SYSPLEXMONITOR statement. If the MONINTERFACE keyword is specified, by
default the TCP/IP stack also monitors the presence of dynamic routes over
these interfaces. To override monitoring of dynamic routes, specify the
MONINTERFACE NODYNROUTE keyword on the GLOBALCONFIG
SYSPLEXMONITOR statement. The monitoring of dynamic routes enables
TCP/IP to extend its monitoring beyond the status of the actual network
interface, to also include the status of any routers that are connected to the local
area network to which these interfaces are attached. Because a dynamic routing
protocol is usually required for DVIPAs, by checking for the presence of
dynamic routes, TCP/IP can determine whether the local OMPROUTE daemon
is successfully communicating with these routers using dynamic routing
protocols. If these network interfaces and dynamic routes become unavailable or
experience network connectivity failures, the sysplex autonomics function can
automatically initiate a recovery action.

If network interfaces monitoring is enabled, you must be aware of the following
scenarios where the monitoring function can create problems:
v Monitored interfaces are deleted

To delete interfaces, the devices or interfaces must first be stopped. When the
devices or interfaces are stopped, the interface becomes inactive. If the TCP/IP
stack detects that all monitored interfaces are inactive as a result of stopping
devices or interfaces, the TCP/IP stack can issue messages regarding the
problem and possibly trigger a recovery action. You can disable monitoring of
these interfaces before stopping the devices or interfaces, using the VARY

448 z/OS V1R12.0 Comm Svr: IP Configuration Guide

TCPIP,,OBEYFILE command and specifying the NOMONSYSPLEX keyword for
the LINK or INTERFACE statement. For more information about DEVICE and
LINK statements and INTERFACE statements, see z/OS Communications Server:
IP Configuration Reference.

v The first hop routers are brought down for maintenance
If the MONINTERFACE keyword or MONINTERFACE DYNROUTE option is
configured on the SYSPLEXMONITOR parameter of the GLOBALCONFIG
statement, and the first hop routers are brought down for maintenance, an
inadvertent recovery action might be triggered. You can temporarily disable the
monitoring of dynamic routes using the VARY TCPIP,,OBEYFILE command and
specifying MONINTERFACE NODYNROUTE on the SYSPLEXMONITOR
parameter of the GLOBALCONFIG statement.

For more information about sysplex autonomics, see “Sysplex problem detection
and recovery.”

Sysplex problem detection and recovery
Each sysplex member monitors itself and can automatically leave the sysplex if it
determines that it is no longer able to function correctly as a router, target, backup,
or owner of a DVIPA. Through a variety of methods, it monitors:
v Internal resources and conditions, such as timely execution of sysplex functions,

available private storage, and common storage
v External resources, such as availability of VTAM, or OMPROUTE if it is being

used

As long as the TCP/IP stack is a member of a TCP/IP sysplex group, the sysplex
monitor gets control periodically. The time period is determined from the
TIMERSECS value specified on the SYSPLEXMONITOR parameter of the
GLOBALCONFIG statement in PROFILE.TCPIP. The default TIMERSECS value is
60 seconds.

Once a problem is detected, further actions depend on whether RECOVERY or
NORECOVERY was specified on the SYSPLEXMONITOR parameter of the
GLOBALCONFIG statement. NORECOVERY is the default value.

Joining the TCP/IP sysplex group can be delayed until certain network routing
and connectivity availability conditions are met. Those conditions can include any
combination of the following:
v OMPROUTE is active
v Monitored interfaces are active
v Dynamic routes over those monitored interfaces are present

The first condition is activated using the DELAYJOIN option on the
SYSPLEXMONITOR parameter of the GLOBALCONFIG statement. The other two
conditions are activated using the MONINTERFACE or MONINTERFACE
DYNROUTE option on the SYSPLEXMONITOR parameter of the
GLOBALCONFIG statement. No sysplex-related definitions within the TCP/IP
profile (that is, VIPADYNAMIC and DYAMICXCF statements) are processed until
the sysplex group is joined.

Tips:

v To determine whether the stack has joined a sysplex group, issue the DISPLAY
TCPIP,,SYSPLEX,GROUP command.

Chapter 8. TCP/IP in a sysplex 449

v If you have procedures specified on the AUTOLOG profile statement that bind
to a dynamic VIPA, specify the optional DELAYSTART parameter with the
optional DVIPA subparameter for these procedures on the AUTOLOG statement.
With the DELAYSTART DVIPA subparameter, the procedures will not start until
the TCP/IP stack has joined the sysplex group and has processed the dynamic
VIPA configuration.

During a planned or unplanned outage, the DVIPAs and distributed DVIPAs for a
TCP/IP stack are taken over by backup TCP/IP stacks. When the primary TCP/IP
stack is restarted, the DVIPAs and distributed DVIPAs are taken back from the
backup TCP/IP stacks. If dynamic routing is used to advertise routes to these
DVIPAs, and specified network routing and connectivity availability conditions are
not met on the primary TCP/IP stack, existing connections to these DVIPAs might
be reset and new connect requests to these DVIPAs might fail. By using the
GLOBALCONFIG SYSPLEXMONITOR DELAYJOIN and MONINTERFACE
DYNROUTE configuration statements in the TCP/IP profile on the primary
TCP/IP stack, it is possible to delay taking back the DVIPAs and distributed
DVIPAs until specified network routing and connectivity availability conditions are
met. New and existing connections continue to be serviced by the backup TCP/IP
stacks until OMPROUTE is active and monitored interfaces and dynamic routes
over those monitored interfaces are present on the primary TCP/IP stack.

For more information about the GLOBALCONFIG statement and its parameters,
see z/OS Communications Server: IP Configuration Reference.

Problem detection
If this stack is not the only member of the TCP/IP sysplex group and it is
advertising DVIPAs (owns a DVIPA or is the primary routing node for a
Distributed DVIPA), the following resource checks are made by the monitor:
v VTAM address space availability

If the VTAM address space is not currently active and the elapsed time since
VTAM was last detected as active has exceeded the TIMERSECS value, message
EZZ9671E is issued.

v Route availability
If there are no routes available to all partners, given the configured method
chosen for forwarding data (VIPAROUTE statement or dynamic XCF interfaces),
there are at least two other MVS systems in the sysplex, and the elapsed time
since an active route was detected has exceeded the TIMERSECS value, message
EZZ9673E or EZD1172E is issued.

If OMPROUTE was successfully initialized, it periodically sends a heartbeat to the
stack, so the monitor can always make the following resource checks:
v If the elapsed time since a heartbeat was received has exceeded half of the

TIMERSECS value, message EZZ9672E is issued as a warning and no other
actions occur.

v If the stack is not the only member of a TCP/IP sysplex group, is advertising
DVIPAs, and the elapsed time since a heartbeat was received has exceeded the
TIMERSECS value, message EZZ9678E is issued.

If the network monitoring function is enabled, at least one monitored interface is
configured, the TCP/IP stack is not the only member of this sysplex group, and
the TCP/IP stack participates in sysplex distribution (as a distributor or target) or
acts as an owner or a backup for DVIPAs, the following network connectivity
checks are made by the monitor:

450 z/OS V1R12.0 Comm Svr: IP Configuration Guide

v Critical interfaces are active
If the MONINTERFACE option is specified on the SYSPLEXMONITOR
parameter of the GLOBALCONFIG statement, all monitored interfaces become
inactive, and the elapsed time since at least one active monitored interface was
detected has exceeded the TIMERSECS value, message EZD1209E is issued.

v Presence of dynamic routes available over critical interfaces
If the MONINTERFACE or MONINTERFACE DYNROUTE option is specified
on the SYSPLEXMONITOR parameter of the GLOBALCONFIG statement, there
are no available dynamic routes found over any of the monitored interfaces, and
the elapsed time since at least one dynamic route over the monitored interfaces
was detected has exceeded the TIMERSECS value, message EZD1210E is issued.

Ensure that the WLM policy for the OMPROUTE address space receives sufficient
priority in relationship to other work managed by WLM on the system, so that
OMPROUTE receives the CPU cycles necessary for this task. For more information
on this topic, see “Sysplex autonomics” on page 277.

If this stack is advertising DVIPAs or is a sysplex distributor target, the following
checks are made:
v The monitor checks for CSM storage availability. If CSM storage is continuously

critical for greater than the TIMERSECS value, message EZZ9679E is issued.
v If TCP/IP ECSA storage limits are defined on the ECSALIMIT parameter of the

GLOBALCONFIG statement, monitoring of this storage is similar to CSM
monitoring. If TCP/IP ECSA storage is continuously critical for a time greater
than the TIMERSECS value, message EZD1187E is issued. If there are no TCP/IP
ECSA storage limits defined on the GLOBALCONFIG statement and a storage
request cannot be satisfied, message EZD1170E is issued. These messages
indicate that there is a TCP/IP problem with ECSA storage.

v If TCP/IP private storage limits are defined on the POOLLIMIT parameter of the
GLOBALCONFIG statement, monitoring of this storage is similar to CSM
monitoring. If TCP/IP private storage is continuously critical for a time greater
than the TIMERSECS value, message EZD1187E is issued. If there are no TCP/IP
private storage limits defined on the GLOBALCONFIG statement and a storage
request cannot be satisfied, message EZD1170E is issued. These messages
indicate that there is a TCP/IP problem with private storage.

Note, however, that if all DVIPAs on this stack have a status of MOVING and the
stack is not a DVIPA target, these checks are not made.

In addition to the sysplex monitor, when the stack joins the TCP/IP sysplex group
it requests that XCF monitor the TCP/IP sysplex component on the local stack. The
XCF component performs this function by monitoring a status field updated by the
TCP/IP sysplex component. If XCF detects that the sysplex functions have not
been responsive for the TIMERSECS value, it schedules a TCP/IP routine that
issues message EZZ9674E.

If TCP/IP encounters a nonrecoverable sysplex error, it issues the eventual action
message EZZ9670E.

If five TCP/IP abends occur in less than 1 minute, eventual action message
EZD1973E is issued.

All of these messages are eventual action messages. If the detected problem
condition is corrected (for example, VTAM is started), the eventual action message

Chapter 8. TCP/IP in a sysplex 451

|
|

is cleared. For more information about these eventual action messages, see z/OS
Communications Server: IP Messages Volume 2 (EZB, EZD) and z/OS Communications
Server: IP Messages Volume 4 (EZZ, SNM).

Recovery
Recovery actions occur if RECOVERY was specified on the SYSPLEXMONITOR
parameter of the GLOBALCONFIG statement. If the default setting,
SYSPLEXMONITOR NORECOVERY, is active, other than issuing the message, no
further actions occur if the problem is not corrected.

The VARY TCPIP,,SYSPLEX,LEAVEGROUP command can be used to manually
force the sysplex member to leave the TCP/IP sysplex group. As a stack leaves the
TCP/IP sysplex group, message EZZ9670E is cleared, as well as message
EZD1170E. All other outstanding eventual action messages are cleared when the
condition is cleared (for example, starting VTAM). For information on the VARY
TCPIP,,SYSPLEX command, see z/OS Communications Server: IP System
Administrator's Commands.

If RECOVERY was specified on the SYSPLEXMONITOR parameter of the
GLOBALCONFIG statement in the TCP/IP profile, and this stack is not the only
member of the TCP/IP sysplex group, the stack leaves the TCP/IP sysplex group
when one of the messages is issued. The one exception to this is EZZ9672E, which
is only issued as an OMPROUTE warning message. No actions occur unless the
corresponding EZZ9678E OMPROUTE message is subsequently issued.

To determine whether the stack is currently joined to a TCP/IP sysplex group,
issue the DISPLAY TCPIP,,SYSPLEX,GROUP command. If the stack is not currently
joined to a TCP/IP sysplex group, this command displays the following message:
EZZ8269I tcpstackname mvsname NOT A MEMBER OF A SYSPLEX GROUP

If the stack is currently joined, the name of the TCP/IP XCF group is displayed.

From any member of the sysplex, use the D XCF,GROUP,groupname command to
see the systems currently in the sysplex group, where groupname is EZBTCPCS, or
if subplexing is being used, EZBTvvtt, where vv is the VTAM XCF group ID suffix
and tt is the TCP group ID suffix..

If the RECOVERY option is specified and a TCP/IP stack initiates an automated
recovery action by leaving the TCP/IP sysplex group, all local DVIPAs are
inactivated and all the VIPADYNAMIC block definitions are saved. Any
applications bound to dynamically created DVIPAs (VIPARANGE or MODDVIPA)
will receive an asynchronous error, EUNATCH (3448) - the protocol required to
support the address family is unavailable.

If internal problems prevent the removal of these resources, eventual action
message EZZ9675E is issued, and restarting the stack is necessary to be able to
become part of the TCP/IP sysplex group. If all DVIPAs are successfully removed,
eventual action message EZZ9676E is issued, indicating that sysplex problem
detection cleanup has succeeded. There are two ways for the stack to rejoin the
sysplex group and clear this message after a successful cleanup has occurred:
v If AUTOREJOIN was configured on the SYSPLEXMONITOR parameter of the

GLOBALCONFIG statement, the stack automatically rejoins the group and
reprocesses its saved VIPADYNAMIC configuration when all detected problems
have been relieved. The AUTOREJOIN option is the recommended setting when
the RECOVERY option is configured.

452 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|

v Issue the VARY TCPIP,,SYSPLEX,JOINGROUP command to cause the stack to
rejoin the group, and reprocess its VIPADYNAMIC configuration.

Recovery is the preferred method of operation, since this allows other members of
the TCP/IP sysplex to automatically take over the functions of a member with no
actions needed by an operator. IBM Health Checker for z/OS can be used to check
whether the RECOVERY parameter has been specified when the IPCONFIG
DYNAMICXCF or the IPCONFIG6 DYNAMICXCF statement has been specified.
For more details about IBM Health Checker for z/OS, see z/OS Communications
Server: IP Diagnosis Guide.

There are, however, some environments and scenarios where this automated
recovery action might not be desirable and perhaps should not be enabled:
v DVIPAs or Distributed DVIPAs are defined, but no backup TCP/IP stacks are

identified or no provisions are made to move the DVIPAs in cases of failure.
The basic premise of the automated recovery actions is that one or more other
TCP/IP stacks in the system can pick up ownership responsibilities for any
DVIPAs owned by the failing TCP/IP stack. If this is not the case, it is suggested
that you carefully evaluate the benefits of designating backup TCP/IP stacks
and implement a configuration that includes backup capabilities. If this is not
possible or desirable, RECOVERY should not be specified. If RECOVERY is not
specified, automated recovery actions are disabled by default.
For example, one such configuration is if you are only using DVIPAs that are
always bound to a specific TCP/IP stack (that is, in lieu of static VIPAs). In this
scenario, since there is no possibility of having ownership of these DVIPAs
transferred automatically, there is no value in triggering the automated recovery
action and you should consider not enabling the automated recovery function or
using static VIPAs (since static VIPAs are not affected by the automated recovery
actions).

v Test environments where individual system images have very limited resources
(CPU, storage, and so on).
This can include environments where you are running z/OS as a second level
guest under z/VM, or in LPARs with shared processors and very limited
resources. Not enabling the automated recovery actions in these environments
can help prevent unwanted recovery actions that are triggered by false positive
conditions, such as scenarios where artificial severe resource shortages are
detected.

v Environments where VTAM or OMPROUTE are stopped for intervals longer
than the TIMERSECS value specified on the SYSPLEXMONITOR parameter.
If your current operations procedures have provisions for stopping VTAM or
OMPROUTE for extended periods of time, you should consider disabling and
re-enabling the automated recovery processing around the periods of time where
you stop and restart these components. This can be accomplished using the
VARY TCPIP,,OBEYFILE command.
An alternative solution could be to increase the TIMERSECS value to
accommodate the longest period of time you would expect VTAM or
OMPROUTE to be inactive during normal operating procedures. One potential
drawback of this approach is that the monitoring of other conditions and
triggering of automatic recovery functions is less responsive.

Setting TIMERSECS
As discussed, the responsiveness of the self-monitoring and automated recovery
actions is governed by the TIMERSECS value specified on the SYSPLEXMONITOR
parameter of the GLOBALCONFIG statement. The default value is 60 seconds. You

Chapter 8. TCP/IP in a sysplex 453

should evaluate whether this default value is appropriate in your environment
and, if not, specify a value that is better suited to your environment. Following are
some of the considerations that should be evaluated in selecting an appropriate
value:
v Specifying a smaller TIMERSECS value increases the responsiveness of the

self-monitoring functions.
The monitor periodically performs its checks for problem conditions, every 60
seconds or every quarter of the TIMERSECS interval (TIMERSECS/4), whichever
is less. Therefore, when a smaller TIMERSECS value is specified, operator
message alerts are issued sooner if a problem condition is detected. Automated
recovery actions are also triggered sooner if the RECOVERY option is in effect.
While this might be desirable, care should be taken to not specify a timer
interval value that is small enough to trigger recovery actions for conditions that
are transient in nature. For example, the value specified should probably be
larger than the spin loop timeout interval for the system (SPINTIME parameter
in the EXSPATxx parmlib member). Otherwise, a spin loop timeout condition
that might be recoverable could trigger an unnecessary TCP/IP sysplex recovery
action, as a result of the TCP/IP sysplex monitor not being able to be dispatched
temporarily before any spin loop timeout recovery actions can take place. A
good rule of thumb is to specify a TIMERSECS value that is at least two times
larger than the spin loop timeout interval in effect for the system.

v Specifying a longer TIMERSECS value has the opposite effect, and the
self-monitoring and automated recovery actions are less responsive.
In addition, a longer TIMERSECS value can cause disruptions to existing TCP
connections when problem conditions are detected, even if automated recovery
actions are initiated. For example, if the problem condition persists for a long
enough interval and it impacts the delivery of data on existing TCP connections,
the remote TCP/IP hosts might terminate these connections before a recovery
action is initiated.

v Review your current settings for the sysplex failure detection interval
(INTERVAL keyword in COUPLExx) and the ISOLATETIME value specified in
your SFM policy, if defined. These values indicate how responsive the XCF
component should be in removing systems from the sysplex when a status
update missing condition occurs. As a result, these settings can provide a
reasonable reference point for the setting of the TIMERSECS value. For more
information on these intervals, see z/OS MVS Setting Up a Sysplex.

Summary of problems monitored and actions taken
When the sysplex monitor detects a problem, an operator message is issued. If
RECOVERY was specified on the SYSPLEXMONITOR parameter of the
GLOBALCONFIG statement in the TCP/IP profile, the stack leaves the sysplex
group, deletes all its dynamic VIPAs, and inactivates all its VIPADYNAMIC
definitions. When the detected problem is relieved, the operator message is
deleted. If AUTOREJOIN was specified on the SYSPLEXMONITOR parameter of
the GLOBALCONFIG statement, the stack might or might not rejoin the sysplex
group, depending on the severity of the problem.

Table 24 on page 455 summarizes the various problems that are monitored and the
specific actions that are taken for each detected problem.

454 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Table 24. Sysplex problem monitoring

Type of check
When problem is
monitored

Action taken when problem
detected

Action taken if AUTOREJOIN
coded and problem is cleared

VTAM address
space is not active

DVIPAs advertised and
VTAM address space has
been inactive greater than
TIMERSECS interval

1. Issue EZZ9671E, VTAM
inactive for at least
TIMERSECS interval.

2. If RECOVERY was specified
on the SYSPLEXMONITOR
parameter of the
GLOBALCONFIG statement,
and this TCP/IP stack is not
the only member of the
TCP/IP sysplex group, leave
the sysplex group, inactivate
all DVIPAs, and save all
VIPADYNAMIC block
definitions.

3. Delete the operator message
when VTAM is started.

Stack rejoins the sysplex group
and reprocesses the saved
VIPADYNAMIC configuration

Dynamic or static
XCF route, or
VIPAROUTE not
active

DVIPAs advertised, acting
as forwarder for a DVIPA,
two other MVS systems in
the sysplex, and either XCF
routes (when VIPAROUTE
is not specified) or all IP
routes (when VIPAROUTE
is enabled) to all sysplex
partners are not available
for TIMERSECS interval

1. If VIPAROUTE is not
enabled, issue message
EZZ9673E , dynamic XCF
connectivity to all partners
not available for at least
TIMERSECS interval.

2. If VIPAROUTE is enabled,
issue message EZD1172E ,
dynamic XCF connectivity
and IP routes to all partners
are not available for at least
TIMERSECS interval.

3. If RECOVERY was specified
on the SYSPLEXMONITOR
parameter of the
GLOBALCONFIG statement,
leave the sysplex group,
inactivate all DVIPAs, and
save all VIPADYNAMIC
block definitions.

4. Delete the operator message
when any VIPAROUTE or
XCF route becomes active.

Stack rejoins the sysplex group
and reprocesses the saved
VIPADYNAMIC configuration

Chapter 8. TCP/IP in a sysplex 455

Table 24. Sysplex problem monitoring (continued)

Type of check
When problem is
monitored

Action taken when problem
detected

Action taken if AUTOREJOIN
coded and problem is cleared

Network
connectivity –
critical interfaces
are not active

v MONINTERFACE is
specified on the
SYSPLEXMONITOR
parameter of the
GLOBALCONFIG
statement and at least
one interface is
configured with the
MONSYSPLEX keyword.

v The TCP/IP stack
participates in sysplex
distribution (as a
distributor or target) or
acts as an owner or a
backup for DVIPAs.

v Another TCP/IP
member exists in the
sysplex.

v All monitored interfaces
become inactive for the
TIMERSECS interval.

1. Issue message EZD1209E
when all monitored
interfaces become inactive
for at least the TIMERSECS
interval.

2. If RECOVERY was specified
on the SYSPLEXMONITOR
parameter of the
GLOBALCONFIG statement,
leave the sysplex group and
delete all VIPADYNAMIC
block definitions.

3. Delete the operator message
when any monitored
interface becomes active.

Network
connectivity –
dynamic routes are
not present over
critical interfaces

v MONINTERFACE or
MONINTERFACE
DYNROUTE is specified
on the
SYSPLEXMONITOR
parameter of the
GLOBALCONFIG
statement, and at least
one interface is
configured with the
MONSYSPLEX keyword.

v The TCP/IP stack
participates in sysplex
distribution (as a
distributor or target) or
acts as an owner or a
backup for DVIPAs.

v Another TCP/IP
member exists in the
sysplex.

v No dynamic routes are
found over critical
interfaces for the
TIMERSECS interval.

1. Issue message EZD1210E
when no dynamic routes
over critical interfaces are
found for at least the
TIMERSECS interval

2. If RECOVERY was specified
on the SYSPLEXMONITOR
parameter of the
GLOBALCONFIG statement,
leave the sysplex group and
delete all VIPADYNAMIC
block definitions.

3. Delete the operator message
when any dynamic route
over a critical interface is
found.

Stack rejoins the sysplex group
and reprocesses the saved
VIPADYNAMIC configuration

456 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Table 24. Sysplex problem monitoring (continued)

Type of check
When problem is
monitored

Action taken when problem
detected

Action taken if AUTOREJOIN
coded and problem is cleared

OMPROUTE
heartbeats are no
longer being
received

First heartbeat received,
and no heartbeat received
for half of the TIMERSECS
interval

1. Issue message EZZ9672E,
the OMPROUTE not
responsive warning message.

2. Delete the operator message
when heartbeat received, or
when message EZZ9678E is
issued due to OMPROUTE
not responding for at least
TIMERSECS interval.

Not applicable

OMPROUTE
heartbeats are no
longer being
received

First heartbeat received,
DVIPAs advertised, and no
heartbeat received for
TIMERSECS interval

1. Issue message EZZ9678E,
OMPROUTE not responsive
for at least TIMERSECS
interval.

2. If RECOVERY was specified
on the SYSPLEXMONITOR
parameter of the
GLOBALCONFIG statement,
and this TCP/IP stack is not
the only member of the
TCP/IP sysplex group, leave
the sysplex group, inactivate
all DVIPAs, and save all
VIPADYNAMIC block
definitions. If a last
heartbeat was not received
(OMPROUTE did not
terminate properly), abend
and dump the TCP/IP and
OMPROUTE address space.

3. Delete the operator message
when heartbeat received.

Stack rejoins the sysplex group
and reprocesses the saved
VIPADYNAMIC configuration

Chapter 8. TCP/IP in a sysplex 457

Table 24. Sysplex problem monitoring (continued)

Type of check
When problem is
monitored

Action taken when problem
detected

Action taken if AUTOREJOIN
coded and problem is cleared

TCP/IP private
storage allocation
failures, when
POOLLIMIT is not
coded on the
GLOBALCONFIG
statement

DVIPAs advertised or this
is a DVIPA target, and TCP
private storage allocation
fails

1. Issue message EZD1170E,
TCP/IP private storage
allocation failed message.

2. If RECOVERY was specified
on the SYSPLEXMONITOR
parameter of the
GLOBALCONFIG statement,
and this TCP/IP stack is not
the only member of the
TCP/IP sysplex group, leave
the sysplex group, inactivate
all DVIPAs, and save all
VIPADYNAMIC block
definitions.

3. Delete the operator message
when TCP/IP private
allocation requests are
successful for a full monitor
interval (1/4 of the
TIMERSECS interval or 1
minute, whichever is less),
or delete the operator
message when the stack
leaves the TCP/IP sysplex
group.

Stack does not rejoin the
sysplex group. Use of the VARY
TCPIP,,SYSPLEX,JOINGROUP
command is required to rejoin
the sysplex and restore the
saved VIPADYNAMIC
configuration.

TCP/IP private
critical storage
limits reached,
when POOLLIMIT
values are specified
on the
GLOBALCONFIG
statement

DVIPAs advertised or this
is a DVIPA target, and
TCP/IP private pool is
critical for TIMERSECS
interval.

If TCP/IP private storage
allocation request from
MVS fails before the
TCP/IP private pool is
critical for TIMERSECS
interval, the problem is
treated as if no
POOLLIMIT values were
specified.

1. Issue message EZD1187E,
TCP/IP private storage is
critical.

2. If RECOVERY was specified
on the SYSPLEXMONITOR
parameter of the
GLOBALCONFIG statement,
and this TCP/IP stack is not
the only member of the
TCP/IP sysplex group, leave
the sysplex group, inactivate
all DVIPAs, and save all
VIPADYNAMIC block
definitions.

3. Delete the operator message
when TCP/IP private pool
storage exits the critical
state.

Stack rejoins the sysplex group
and reprocesses the saved
VIPADYNAMIC configuration

458 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Table 24. Sysplex problem monitoring (continued)

Type of check
When problem is
monitored

Action taken when problem
detected

Action taken if AUTOREJOIN
coded and problem is cleared

TCP/IP ECSA
critical storage
limits reached,
when TCP/IP
ECSA storage
limits are specified
on the
GLOBALCONFIG
statement

DVIPAs advertised or this
is a DVIPA target, and
TCP/IP ECSA is critical for
TIMERSECS interval.

If TCP/IP ECSA storage
allocation request from
MVS fails before TCP/IP is
critical for TIMERSECS
interval, the problem is
treated as if no TCP/IP
limits were specified.

1. Issue message EZD1187E,
TCP/IP ECSA storage is
critical.

2. If RECOVERY was specified
on the SYSPLEXMONITOR
parameter of the
GLOBALCONFIG statement,
and this TCP/IP stack is not
the only member of the
TCP/IP sysplex group, leave
the sysplex group, inactivate
all DVIPAs, and save all
VIPADYNAMIC block
definitions.

3. Delete the operator message
when TCP/IP ECSA critical
state is exited.

Stack rejoins the sysplex group
and reprocesses the saved
VIPADYNAMIC configuration

TCP/IP ECSA
storage allocation
failures, when no
TCP/IP ECSA
storage limits are
specified on the
GLOBALCONFIG
statement

DVIPAs advertised or this
is a DVIPA target, and
TCP/IP ECSA storage
allocation request fails

1. Issue message EZD1170E,
TCP/IP ECSA storage
allocation failed message.

2. If RECOVERY was specified
on the SYSPLEXMONITOR
parameter of the
GLOBALCONFIG statement,
and this TCP/IP stack is not
the only member of the
TCP/IP sysplex group, leave
the sysplex group, inactivate
all DVIPAs, and save all
VIPADYNAMIC block
definitions.

3. Delete the operator message
when TCP/IP ECSA
allocation requests are
successful for a full monitor
interval (1/4 of the
TIMERSECS interval or 1
minute, whichever is less),
or delete the operator
message when the stack
leaves the TCP/IP sysplex
group.

Stack does not rejoin the
sysplex group. Use of the VARY
TCPIP,,SYSPLEX,JOINGROUP
command is required to rejoin
the sysplex and restore the
saved VIPADYNAMIC
configuration.

Chapter 8. TCP/IP in a sysplex 459

Table 24. Sysplex problem monitoring (continued)

Type of check
When problem is
monitored

Action taken when problem
detected

Action taken if AUTOREJOIN
coded and problem is cleared

CSM storage
critical

DVIPAs advertised or this
is a DVIPA target, and
CSM critical for greater
than TIMERSECS interval

1. Issue message EZZ9679E,
CSM critical message.

2. If RECOVERY was specified
on the SYSPLEXMONITOR
parameter of the
GLOBALCONFIG statement,
and this TCP/IP stack is not
the only member of the
TCP/IP sysplex group, leave
the sysplex group, inactivate
all DVIPAs, and save all
VIPADYNAMIC block
definitions.

3. Delete the operator message
when CSM critical state
exited.

Stack rejoins the sysplex group
and reprocesses the saved
VIPADYNAMIC configuration

XCF status is not
being updated

Status not updated for
TIMERSECS interval

1. Issue message EZZ9674E,
sysplex processing not
responsive message.

2. If RECOVERY was specified
on the SYSPLEXMONITOR
parameter of the
GLOBALCONFIG statement,
and this TCP/IP stack is not
the only member of the
TCP/IP sysplex group, leave
the sysplex group, inactivate
all DVIPAs, and save all
VIPADYNAMIC block
definitions.

3. Delete the operator message
when the monitor is able to
run, or delete the operator
message when the stack
leaves the TCP/IP sysplex
group.

Stack does not rejoin the
sysplex group. Use of the VARY
TCPIP,,SYSPLEX,JOINGROUP
command is required to rejoin
the sysplex and restore the
saved VIPADYNAMIC
configuration.

460 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Table 24. Sysplex problem monitoring (continued)

Type of check
When problem is
monitored

Action taken when problem
detected

Action taken if AUTOREJOIN
coded and problem is cleared

Abend in sysplex
code

1. Issue message EZZ9670E,
sysplex processing
encountered nonrecoverable
error.

2. If RECOVERY was specified
on the SYSPLEXMONITOR
parameter of the
GLOBALCONFIG statement,
and this TCP/IP stack is not
the only member of the
TCP/IP sysplex group, leave
sysplex group, inactivate all
DVIPAs, and save all
VIPADYNAMIC block
definitions.

3. Delete the operator message
when the stack leaves the
TCP/IP sysplex group.

Stack does not rejoin the
sysplex group. Use of the VARY
TCPIP,,SYSPLEX,JOINGROUP
command is required to rejoin
the sysplex and restore the
saved VIPADYNAMIC
configuration.

Five abends in less
than 1 minute

1. Issue message EZD1973E,
multiple nonrecoverable
errors are adversely affecting
sysplex processing.

2. If RECOVERY was specified
on the SYSPLEXMONITOR
parameter of the
GLOBALCONFIG statement,
and this TCP/IP stack is not
the only member of the
TCP/IP sysplex group, leave
sysplex group, inactivate all
DVIPAs, and save all
VIPADYNAMIC block
definitions.

3. Delete the operator message
when the stack leaves the
TCP/IP sysplex group.

Stack does not rejoin the
sysplex group. Use of the VARY
TCPIP,,SYSPLEX,JOINGROUP
command is required to rejoin
the sysplex and restore the
saved VIPADYNAMIC
configuration.

Target server connection setup responsiveness monitoring
Sysplex distributor measures the responsiveness of target servers in accepting new
TCP connection requests at intervals of approximately 1 minute. Target server
responsiveness (TSR) values calculated from these measurements are used to
modify the weight when using WLM system weight distribution, WLM
server-specific weight distribution, or weighted active distribution, to favor those
servers that are more successfully accepting new TCP connection setup requests.

TSR
TSR values are displayed as a percentage. Thus, a value of 100 indicates full
responsiveness and a value of 0 indicates no responsiveness in setting up new TCP
connections. A value of 0 for the TSR causes this target server to be bypassed when
new TCP connection setup requests are distributed to target servers for a DVIPA
and port, even if the distribution method is round-robin. Periodically, the

Chapter 8. TCP/IP in a sysplex 461

|
|
||
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

distributor sends a new connection request to a target with a TSR of 0, to check
whether the responsiveness of that target has improved.

The calculated TSR values are applied to the WLM weights only if there are no
stacks participating in the distribution of connections for this DVIPA that are at a
release level earlier than z/OS V1R7. The TSRs are calculated by combining two
factors, the target connectivity success rate (TCSR) and the Servers' accept
Efficiency Fraction (SEF). These factors are defined as follows:

TCSR The target connectivity success rate is the measure of how many new TCP
connection setup requests (SYNs) sent by the distributing stack to a target
stack are received by the target stack. A low value could indicate a
problem with the connectivity between the distributing stack and the target
stack.

SEF The Servers' accept Efficiency Fraction measures how well a target server is
accepting new TCP connection setup requests and managing its backlog
queue.

CER
The connection establishment rate (CER) measures how many TCP connection
setup requests received by the target stack become established (that is, how many
enter the ESTAB state). The CER value is displayed as a percentage; 100 indicates
that all of the connection setup requests that were received entered the established
state. A lower value could indicate a routing problem in the network. The CER
value is shown only as a diagnostic aid, and its value has no affect on the WLM
weight.

Workload balancing
Load balancing is the ability for a cluster to spread workload evenly (or based on
some policy) to target servers comprising the cluster. Usually, this load balancing is
calculated based on the perceived load on each of the target servers. Various
techniques are available to perform IP load balancing for a System z sysplex. These
techniques typically fall into the following categories:
v Internal load balancing solutions

These solutions typically rely on a component executing within the z/OS sysplex
to perform the load balancing with very few dependencies on the external
network. Because they are executing within the sysplex environment, these
solutions typically have access to information that can be used to optimize load
balancing, such as system capacity and current load information. An example of
this technique is the sysplex distributor.

v Sysplex-aware external load balancing solutions
These solutions are typically comprised of an external load balancer that relies
on components inside the z/OS sysplex for advice on how workload should be
distributed. As a result, these solutions usually provide for load balancing that is
optimized for a z/OS sysplex environment. Examples of these solutions include
the IBM Network Dispatcher and any external load balancing solution that
supports the Server/Application State Protocol (SASP) provided by the z/OS
Load Balancing Advisor (for example, the CISCO Content Switching Module).

v External load balancing solutions
These solutions are usually comprised of load balancing components that
execute outside of the z/OS sysplex, typically on one or more hosts or routers in
the network, with little or no specific awareness of the z/OS sysplex
environment. Several vendors provide such load balancing solutions.

462 z/OS V1R12.0 Comm Svr: IP Configuration Guide

This information describes and compares these three load balancing techniques and
selected associated solutions. Each solution identifies the target System z servers
that can receive client connections based on some specification.

By providing load balancing, clustering techniques must also provide for other
system requirements in addition to the dispatching of connections. These include
the ability to advertise some single systemwide image or identity so that clients
can uniquely and easily identify the service. Additionally, clustering techniques
should also provide for horizontal growth of the system and ease of management.

Single systemwide image
Clients connecting to a cluster should not be aware of the internal makeup of a
cluster. More specifically, clients should not even be aware that the service they are
requesting is actually being serviced by a collection or cluster of servers. Instead,
clients must be provided with some single image identifier to be used when
connecting to the service. For example, most of the load balancing solutions
(internal or external) discussed in this information use a single IP address to
represent a cluster of servers to clients. The clients simply use this IP address to
establish connections and are not aware that the load balancing solution directs
requests to a specific instance of the server.

Horizontal growth
As the clients' demands on the service increase, clusters must provide a way to
expand the cluster of servers to accommodate for such growing demand. Put in
another way, the cluster must provide a mechanism by which to add servers
without disrupting the operation of the cluster. To this end, the service is made
available to clients at all times and can grow horizontally to accommodate for
increased demand placed on the cluster by the clients.

Ease of management
The administrative burden associated with the cluster (sysplex) should not increase
as you add servers to the cluster. You should use the same configurations for many
systems in the cluster. Within a sysplex, servers are homogenous, because a sysplex
is comprised solely of System z servers. As such, many of the configurations can
be shared among the different System z servers, which reduces the administrative
burden associated with the sysplex. Additionally, as the size of the cluster
increases, the administrative overhead in adding systems to the cluster should be
as low as possible.

Administrative activities required to maintain a load balancing solution are highly
dependent on the type of load balancing solution deployed. For example,
administrative tasks associated with the maintenance of internal load balancing
solutions typically consist of administrative tasks within the z/OS sysplex, such as
changing z/OS configuration files. External load balancing solutions typically
require administrative tasks performed on the external load balancing components,
while sysplex-aware external load balancing solutions might require administrative
tasks on both internal and external load balancing components. Depending on
your environment and organizational structure, the administrative scope required
by the various load balancing solutions can play a key role in your selection
process. For example, do you need to deploy a solution that requires only
administrative tasks on z/OS, or can you make required updates to network
components as necessary?

Chapter 8. TCP/IP in a sysplex 463

Internal load balancing solutions
Internal load balancing solutions typically rely on components that reside within
the z/OS sysplex to perform the load balancing. While other components might be
required in the network, after the solution is configured, minimal changes should
be needed from network components outside of the sysplex. An example of an
internal load balancing solution is the sysplex distributor. For information about
the sysplex distributor, see “Sysplex distributor” on page 469.

Sysplex-aware external load balancing solutions
Sysplex-aware external load balancing solutions are typically comprised of an
external load balancing solution that communicates with components within the
z/OS sysplex, to optimize load balancing based on the current conditions and
workloads in the sysplex environment. Examples of these solutions include:
v External load balancers that use the Server/Application State Protocol (SASP) to

obtain recommendations and topology information related to applications and
systems within a sysplex environment.

v The IBM Network Dispatcher can obtain WLM recommendations from z/OS,
and uses these recommendations to determine how workload requests are
routed.

External load balancers can obtain detailed information regarding the state of
target z/OS applications and systems by communicating with the z/OS Load
Balancing Advisor using the SASP protocol. Using SASP, external load balancers
can also obtain detailed recommendations on how workload should be distributed
within the sysplex environment.

A key component of these recommendations is derived from the z/OS Workload
Manager (WLM). The WLM information reflects the current available system
capacity for target systems, and can also reflect how well individual server
applications are performing compared to the WLM policy goals specified for that
application. These recommendations are also influenced by how well the
applications are performing from a TCP/IP perspective. For example, are the
applications processing new requests quickly enough? Or are new requests filling
up the backlog queues that TCP/IP maintains for each application?

Using SASP, external load balancers can perform load balancing that is optimized
for your sysplex environment, based on the current configuration and workload
conditions. SASP supports TLS/SSL for secure authentication, access control, and
encryption of data. For more information on SASP and the z/OS Load Balancing
Advisor, see Chapter 23, “z/OS Load Balancing Advisor,” on page 1219.

External IP workload balancing solutions
IBM's Network Dispatcher (part of WebSphere Edge Server) and Cisco's Content
Switching Module (CSM) are examples of external IP workload balancing
solutions. Such solutions exist outside the sysplex, but can direct work into the
sysplex. External IP workload balancing solutions typically define a single IP
address representing all instances of the server, and then balance new work
requests (for example, new TCP connection requests) among available servers.

External load balancers typically use a cluster IP address to represent the set of
applications being load balanced. Client applications use this cluster IP address as
the destination IP address for all their requests. External load balancers might be
capable of using different methods for forwarding packets to their destinations.

464 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|

Various load balancing solutions might use different terms when describing these
methods. In this discussion, dispatch mode and directed mode are discussed as
two examples of these methods.

When a load balancer uses dispatch mode, the destination IP addresses for
incoming IP packets is not changed. Instead, the load balancer forwards the packet
to a target z/OS system by using the MAC address of a network adapter on that
system. This technique works well when the target systems and the load balancer
are attached to the same network (that is, there are no intervening routers). The
receiving z/OS system inspects the destination IP address of the packet, and if it
matches one of the IP addresses in its HOME list, it accepts the packet. As a result,
with dispatch mode, all target z/OS systems must have the load balancer's cluster
IP address defined in their HOME list. It is important, however, that these
addresses are not advertised externally through dynamic routing protocols. One
way to accomplish this is by defining these IP addresses as loopback addresses on
z/OS.

Dispatch mode also has special considerations when the load balancer is more than
one hop away from the target systems (that is, a packet must be routed to the
target), or when multiple z/OS target systems share the same OSA-Express
adapter. In these scenarios, you can use the following techniques to route packets
to the proper target system:
v VMAC addresses

Causes the OSA to route packets using a MAC address that is exclusively owned
by the target system.

v GRE tunnels
Causes the OSA to route packets using an IP address that is exclusively owned
by the target system.

On the other hand, when a load balancer uses directed mode, the load balancer
converts the destination IP address (that is, the cluster IP address) to an IP address
owned by the target z/OS system, using technologies such as network address
translation (NAT). When IP packets for these connections are sent back to clients,
the load balancer converts the source IP address (that is, the target z/OS system's
IP address) back to the cluster IP address that the application had used on its
request.

Some load balancer configurations might also perform NAT on the client's IP
address. The client's IP address can be replaced with an IP address owned by the
load balancing device. This might be necessary to ensure that all outgoing packets
from a target system traverse the load balancing device, so that NAT can be
performed to change the server's IP address back to the cluster IP address that the
client had originally used. Therefore, it is important to note that with directed
mode solutions, the IP addresses of load balanced connections reaching the sysplex
might not reflect the real IP addresses of the clients making the requests. This can
be an important consideration if any definitions or configuration within the sysplex
rely on the client's IP address being visible on incoming connections.

External load balancing solutions might provide several configuration options that
influence how workload is distributed, such as round-robin, weighted round-robin,
and so on. Some of the solutions might also obtain recommendations from
components inside the z/OS sysplex that might affect their workload balancing
decisions. For more information, see “Sysplex-aware external load balancing
solutions” on page 464.

Chapter 8. TCP/IP in a sysplex 465

Choosing a load balancing solution
Several load balancing solutions are available for a z/OS environment. The
solution that is best for your environment depends on several factors that are
related to your environment and the workload being load balanced, including:
v What type of workload needs to be load balanced, and does a particular load

balancing solution support this type of workload? For example, does the
workload have affinities to specific servers? Can these affinities be determined
only by inspecting data content? If so, an external load balancing solution that
supports content inspection and affinities might be the most appropriate
solution.

v Is it important that the solution is primarily configured and maintained within
the z/OS sysplex, with minimal interactions with network components? In these
scenarios, an internal load balancing solution might be the preferred answer.

v Do you already have an external load balancing solution in the network? If so,
can it be used to load balance z/OS workloads? Does it support SASP, so that it
can perform more optimal load balancing decisions?

v Does the load balancing solution have the needed level of availability? For
example, if the primary load balancer fails, can a secondary load balancer take
over transparently? Can it do so without disrupting existing connections? What
if target applications or systems fail? Does the load balancer recognize these
conditions?

While a single load balancing solution might be desirable for all workloads in
some environments, you can select multiple solutions based on your specific
requirements. For example, you might select an external load balancing solution
for a particular workload, while an internal load balancing solution might be
enabled for another workload. Table 25 lists some of the key attributes of the
various load balancing techniques and specific solutions that were discussed in this
information. It can be used as a quick reference for comparing these solutions.

Table 25. Load balancing solution quick reference

Features or considerations Sysplex distributor
External load balancers
with SASP External load balancers

How is the solution
configured and
administered?

Initial setup might require
some interaction with the
network (dynamic routing
protocols, DNS updates for
dynamic VIPAs, and so on).
Ongoing administration
(adding and removing
target server applications
and systems) typically
confined within z/OS
systems.

Initial setup and
configuration on load
balancer and on z/OS.
Ongoing administration
might need to be
performed on both the load
balancer and the z/OS
systems.

Initial setup and
configuration on load
balancer, some
configuration on z/OS
might be required. Ongoing
administration should be
mostly confined to the load
balancer, although z/OS
configuration might be
necessary, such as when
adding new target systems.

When is the server instance
decision made?

Connection setup (in line
Syn segment)

Connection setup (in line
Syn segment)

Connection setup (in line
Syn segment)

Support for TCP and UDP
applications?

TCP only Depends on the load
balancer implementation;
SASP supports both TCP
and UDP

Depends on the load
balancer implementation

466 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Table 25. Load balancing solution quick reference (continued)

Features or considerations Sysplex distributor
External load balancers
with SASP External load balancers

Extra network flows? No, for outbound traffic.
Yes, for inbound traffic.
Inbound traffic must
traverse the sysplex
distributor node. If sysplex
distributor is configured as
service manager for CISCO
routers, the inbound traffic
can flow directly to the
target application.

Depends on the load
balancer implementation;
can be avoided if the load
balancer is implemented as
part of a router or switch.

Depends on the load
balancer implementation;
can be avoided if the load
balancer is implemented as
part of a router or switch.

Support for affinities
between TCP connection
requests based on data
content?

No, but support does exist
for timer-based affinities

Depends on
implementation; some
support affinities for HTTP
and HTTPS requests by
inspecting data content
(correlating cookies,
jsessionid)

Depends on
implementation; some
support affinities for HTTP
and HTTPS requests by
inspecting data content
(correlating cookies,
jsessionid)

Network address
translation?

Not needed; client and
server IP addresses are not
modified

Might be required by some
implementations; client and
server IP addresses might
be translated

Might be required by some
implementations; client and
server IP addresses might
be translated

Support for IPv6? Yes Depends on the load
balancer implementation;
SASP supports both IPv4
and IPv6

Depends on the load
balancer implementation

z/OS WLM
recommendations?

Yes, system level and server
level

Yes, system level and server
level

Depends on the load
balancer implementation

z/OS network QoS
recommendations?

Yes, based on z/OS QoS
policy

No No

z/OS TCP/IP server health
information?

Yes Yes No

Chapter 8. TCP/IP in a sysplex 467

Table 25. Load balancing solution quick reference (continued)

Features or considerations Sysplex distributor
External load balancers
with SASP External load balancers

Detection of target
application and target
system state changes, active
or inactive?

Yes, application and system
state changes are detected
in near real-time fashion.

Yes, the z/OS Load
Balancing Advisor and
Agents detect application
and system state changes
within a configurable time
period, 60 seconds by
default. How quickly
external load balancers
become aware of these
changes depends on several
factors:

v If the load balancer is
using a push model with
SASP, the Load Balancing
Advisor sends a
notification of a state
change as soon as it is
detected.

v If the load balancer is
using a poll model with
SASP, it depends on the
load balancer's polling
interval.

v The load balancer might
also have additional
mechanisms for detecting
application and system
state changes, which
might provide for faster
detection of these
changes.

Depends on the load
balancer implementation.

High availability solution,
load balancing continues
even if the primary load
balancing component
becomes unavailable?

Yes, one or more backups
can be configured to enable
dynamic takeover in cases
where the TCP/IP stack, or
system that is acting as the
distributor, fails.

For failures to the load
balancer, it depends on the
load balancer
implementation. Some
solutions provide for
backup load balancers that
can dynamically take over
load balancing
responsibilities in cases of
failures. The z/OS Load
Balancing Advisor and
Agents can be configured
for high availability to
minimize the impact of an
Advisor, Agent, or system
failure.

For failures to the load
balancer, it depends on the
load balancer
implementation. Some
solutions provide for
backup load balancers that
can dynamically take over
load balancing
responsibilities in cases of
failures.

Caching issues? No, every new connection
request is eligible for load
balancing.

No, every new connection
request is eligible for load
balancing.

No, every new connection
request is eligible for load
balancing.

468 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Sysplex distributor
Sysplex distributor extends the notion of dynamic VIPA and automatic VIPA
takeover to allow for load distribution among target servers within the sysplex. It
extends the capabilities of dynamic VIPAs to enable distribution of incoming TCP
connections to ensure high availability of a particular service within the sysplex.

Sysplex distributor supports load balancing to non-z/OS targets. For more
information, see “Sysplex distribution with DataPower” on page 491.

The functionality of sysplex distributor is that one IP entity advertises ownership
of an IP address by which a particular service is known. In this fashion, the single
system image of sysplex distributor is that of a special IP address. This IP address
is called a distributed DVIPA. Further, in sysplex distributor, the IP entity
advertising the distributed DVIPA and dispatching connections destined for it is
itself a system image within the sysplex, referred to as the distributing stack.

Sysplex distributor makes use of Workload Manager (WLM) and its ability to
gauge server load and provide a WLM recommendation. In this paradigm, WLM
provides the distributing stack with a WLM recommendation for each target
system (a WLM system weight) , or the target stacks provide the distributing stack
with a WLM recommendation for each target server (a WLM server-specific
weight). The distributing stack uses this information to optimally distribute
incoming connection requests between a set of available servers. Additionally,
sysplex distributor has the ability to specify certain policies within the Policy
Agent so that it can use QoS information from target stacks to further modify the
WLM recommendation. Further, these policies can specify which target stacks are
candidates for clients in particular subnetworks.

Sysplex distributor also measures the responsiveness of target servers in accepting
new TCP connection setup requests, favoring those servers that are more
successfully accepting new requests. For more information, see “Target server
connection setup responsiveness monitoring” on page 461.

The Workload Manager weight is a relative value. The WLM system weight is an
indication of the target system's capacity for additional work, and the WLM
server-specific weight is a more granular indication of the specific target server's
capacity for additional work. Higher numbers indicate a target with comparatively
greater capacity. The Netstat VDPT/-O display shows these values. WLM system
weights are indicated by a B beside the weight, and WLM server-specific weights
are indicated by an S beside the weight.

Distribution using WLM system weights is the default distribution method. This
can be specified by using the BASEWLM parameter on the VIPADISTRIBUTE
statement. Distribution using WLM server-specific weights can be specified by
using the SERVERWLM parameter on the VIPADISTRIBUTE statement. If the
SERVERWLM parameter is used and all stacks are able to provide WLM
server-specific weights for that VIPA/port, WLM server-specific weights are used.
Otherwise, WLM system weights are used.

BASEWLM - Distribution using WLM system weights
When determining a WLM system weight recommendation, WLM assigns a
relative weight to each system in the sysplex, with the highest weight going to the
system with the most available capacity. The available capacity is based on the
system's available general CPU capacity, and optionally (if there are no systems in

Chapter 8. TCP/IP in a sysplex 469

|

the sysplex that are prior to V1R9), available System z Application Assist Processor
(zAAP) capacity and available System z Integrated Information Processor (zIIP)
capacity. When PROCTYPE for BASEWLM is configured on the VIPADISTRIBUTE
statement, a composite WLM weight is determined by the sysplex distributor
based on the WLM weight for each processor type and expected utilization of each
processor type by an application.

If all systems in the sysplex are running at or near 100%, WLM assigns the highest
weights to the systems with the largest amount of lower importance work. In this
way, new connection requests are distributed to the systems with the highest
displaceable capacity. However, this assumes that the new work is of a high enough
importance level to displace this work. A system can be so loaded that only higher
importance work is running on that system, in which case the new work request is
not able to meet the goals specified in the WLM policy for that server. For more
information on how displaceable capacity is calculated and using the Sysplex
Routing Services, see z/OS MVS Programming: Workload Management Services.

Use the Netstat VDPT/-O report option with the DETAIL modifier to determine
the WLM system weight recommendations for each processor type, along with the
modified weight for each processor based on the expected utilization proportion
configured on the VIPADISTRIBUTE statement.

SERVERWLM - Distribution using WLM server-specific
weights

When determining a WLM server-specific recommendation, WLM determines the
service class of the server's address space, and then assigns a weight based on the
following:
v How well that server is actually meeting the goals of its service class.
v The amount of displaceable workload available, given the importance of the

service class.
v If the distributor and target systems are not prior to V1R9, the WLM

recommendation is a composite weight based on the available and displaceable
capacity of each processor type (general, zAAP, and zIIP) and the current
utilization of each processor type by this application.

If the distributor and target systems are not running a release prior to V1R11, you
can use the PROCXCOST and ILWEIGHTING parameters on the
VIPADISTRIBUTE statement to influence the WLM server-specific
recommendation.
v PROCXCOST

For applications that are designed to have a portion of their workload run on a
zAAP or zIIP specialty processor, use the PROCXCOST parameter on the
VIPADISTRIBUTE statement to influence how aggressively WLM favors servers
on systems with available zAAP or zIIP capacity over servers on systems where
work targeted for the specialty processors has instead run on the conventional
processor. The PROCXCOST parameter specifies a crossover cost in the range
1–100 that is applied to the amount of zAAP-targeted or zIIP-targeted workload
that actually ran on the conventional processor. The resulting cost is used to
reduce conventional processor use by the application, which in turn reduces the
WLM recommendation for that server. A crossover cost of 1 means that
zAAP-targeted or zIIP-targeted workload that runs on the conventional
processor should not be penalized; the WLM recommendation is not reduced.
Before specifying a high crossover cost, give careful consideration to the effect
this might have on workload distribution, because servers with less zAAP or

470 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|

zIIP processor capacity might receive a significantly lower percentage of the
overall workload. The RMF Workload Activity Report shows the zAAP and zIIP
processor use, as well as how much crossover took place. Run this report before
and after using the PROCXCOST parameter to better understand how it affects
your overall workload performance.

v ILWEIGHTING
Use the ILWEIGHTING parameter on the VIPADISTRIBUTE statement to
influence how aggressively WLM favors servers on systems with displaceable
capacity at lower importance levels over servers on systems with displaceable
capacity at higher importance levels. Work is categorized into one of seven
importance levels (importance levels 0 through 6). The most important work
runs at importance level 0 and the least important work runs at importance level
6.
The ILWEIGHTING parameter value specifies how WLM should consider
displaceable capacity when determining a server-specific recommendation. The
higher the value specified for ILWEIGHTING, the more a stack with
displaceable capacity at lower importance levels is favored. The possible
ILWEIGHTING parameter values and examples of their effect are as follows:
– ILWEIGHTING 0

Specifies that WLM should ignore importance levels when comparing
displaceable capacity. This is the default value. For example, if system A and
system B are running at 100 percent capacity and new work will be running
at importance level 2, all work at importance level 3 and greater is considered
to be available displaceable capacity.
- If system A has 500 service units of work at importance level 3 that can be

displaced as the new work runs on this system, it initially has a raw WLM
weight of 500.

- If system B has 500 service units of work at importance level 6 that can be
displaced, it also has an initial raw WLM weight of 500.

The WLM weights are initially the same for both systems, but might be
different after the health and performance of the application are considered.
The actual WLM weights returned to the invoker are normalized by WLM so
that they are in the range 0–64.
In this example, as 100 connections are received, 50 connections are
distributed to system A and 50 connections are distributed to system B,
assuming that the health and performance of each application are optimal.

– ILWEIGHTING 1
Specifies that WLM should weigh displaceable capacity at each successively
lower importance level slightly higher than the capacity at the preceding
higher importance level. The weighting grows proportionally to the square
root of the importance level difference plus 1. This provides a moderate bias
when comparing displaceable capacity at different importance levels. Using
the previous example but with ILWEIGHTING 1 specified, system B is
preferred over system A even though 500 service units of work are to be
displaced on either system.
- The raw WLM weight of system A is 707:

500 × SQUAREROOT ((Importance level of displaced work - Importance level of new work) + 1)
= 500 × SQUAREROOT ((3 - 2) + 1)

- The raw WLM weight of system B is 1118:
500 × SQUAREROOT ((Importance level of displaced work - Importance level of new work) + 1)

= 500 × SQUAREROOT ((6 - 2) + 1)

Chapter 8. TCP/IP in a sysplex 471

In this example, as 100 connections are received, roughly 39 are distributed to
system A and 61 are distributed to system B, assuming that the health and
performance of each application are optimal.
Guideline: If you are using an ILWEIGHTING value for the first time other
than the default value 0, use the value 1 initially.

– ILWEIGHTING 2
Specifies that WLM should weigh displaceable capacity at each successively
lower importance level significantly higher than the capacity at the preceding
higher importance level. The weighting grows proportionally to the
importance level difference plus 1. This provides an aggressive bias when
comparing displaceable capacity at different importance levels. Using the
original example but with ILWEIGHTING 2 specified:
- The raw WLM weight of system A is 1000:

500 × ((Importance level of displaced work - Importance level of new work) + 1)
= 500 × ((3 - 2) + 1)

- The raw WLM weight of system B is 2500:
500 × ((Importance level of displaced work - Importance level of new work) + 1)

= 500 × ((6 - 2) + 1)

In this example, as 100 connections are received, roughly 28 are distributed to
system A and 72 are distributed to system B, assuming that the health and
performance of each application are optimal; more than twice as many are
routed to system B than system A.

– ILWEIGHTING 3
Specifies that WLM should weigh displaceable capacity at each successively
lower importance level significantly higher than the capacity at the preceding
higher importance level. The weighting grows proportionally to the square of
the importance level difference plus 1. This provides an exceptionally
aggressive bias when comparing displaceable capacity at different importance
levels. Using our original example but with ILWEIGHTING 3 specified:
- The raw WLM weight of system A is 2000:

500 × SQUARE ((Importance level of displaced work - Importance level of new work) + 1)
= 500 × SQUARE ((3 - 2) + 1)

- The raw WLM weight of system B is 12500:
500 × SQUARE ((Importance level of displaced work - Importance level of new work) + 1)

= 500 × SQUARE ((6 - 2) + 1)

In this example, as 100 connections are received, roughly 14 are distributed to
system A and 86 are distributed to system B, assuming that the health and
performance of each application are optimal; more than six times as many are
routed to system B than system A.

Use the Netstat VDPT/-O report option with the DETAIL modifier to determine
the WLM server-specific weight recommendations for each processor type, along
with the modified weight for each processor based on the current utilization of
each processor type.

Evaluate whether WLM server-specific weight distribution can be used as an
alternative to WLM system weight distribution for an application. In addition to
the reasons mentioned previously, WLM server-specific weight distribution has the
added advantage that processor proportions are automatically determined and
dynamically updated by WLM based on the actual CPU usage by the application.
If you need to determine the processor proportions necessary for WLM system
weight distribution, study the workload usage of assist processors by analyzing
SMF records, use performance monitor reports such as RMF, and so on.

472 z/OS V1R12.0 Comm Svr: IP Configuration Guide

While WLM server-specific recommendations can be very effective in helping load
balancers optimize their routing decisions, there are some scenarios in which
applications that are load balancing targets might experience issues that WLM is
not aware of through its normal monitoring functions. For example, consider a
scenario in which a specific server application instance is executing on a system
with excess CPU capacity, yet it cannot successfully process any transactions
routed to it because the back-end database it requires on that system is not
currently available. From a WLM perspective, this server application instance
appears to be a very good candidate to receive requests, given the current available
capacity of the system, and the fact that transactions routed to this server appear
to be completing very quickly and consuming very little CPU capacity. WLM
would therefore assign a higher server-specific weight to this server instance,
causing more work to be routed to the ailing server. This type of problem is
sometimes referred to as a storm drain problem.

To help alleviate this problem, WLM also considers the health of the server
application in its server-specific recommendations. The health of the server is
directly determined by information that the server application provides to WLM
through programming interfaces. In this way, the WLM perceived health of the
application depends directly on the amount of information that an application
provides to WLM, if any. WLM uses this information to potentially reduce the
weight recommendations for specific server applications that are experiencing
problems. This enables sysplex distributor to direct fewer new TCP connections to
these servers, selecting instead servers that are not experiencing these problems.
WLM considers the following components when determining a server application's
health:
v Rate of abnormal transaction completions reported by the server application

This is applicable to applications, such as the CICS Transaction Server for z/OS,
that act as Subsystem Work Managers, reporting transaction status using
Workload Management Services, such as IWMRPT. For example, if an
application reports to WLM that 90% of all transactions it processed completed
abnormally, this server is probably not a good candidate for receiving many new
TCP connection requests, as these requests will likely also complete abnormally.
As a result, WLM significantly reduces the weight recommendation that is
returned to sysplex distributor for this server.

v General health of the application as reported by the server application
This health indicator is available only for applications that provide this
information to WLM using the IWM4HLTH or IWMSRSRG services. The health
indicator provides a general health indication for an application or subsystem.
Under normal circumstances, the value of this field is 100, meaning the server is
100% healthy. Any value less than 100 indicates that the server is experiencing
problem conditions that are not allowing it to process new work requests
successfully. A value of less than 100 also causes the WLM to reduce the
recommendation provided to sysplex distributor for this server instance.

Choosing between the BASEWLM and SERVERWLM
distribution methods

For most applications, the WLM server-specific recommendations provide a more
accurate way to distribute workload to the servers. However, when a server acts as
an access point to applications that run in other address spaces (and therefore in a
different service class), WLM system weights might be the preferred distribution
method. For example:
v The TN3270E Telnet server (Telnet) is a communication gateway function that

enables clients to access SNA applications over an IP network. As a result, most

Chapter 8. TCP/IP in a sysplex 473

|

|

of the actual work associated with a Telnet workload takes place in the SNA
application, which is typically classified to a different WLM service class than
Telnet and probably at a lower importance level. Therefore, although the WLM
server-specific recommendation can provide an accurate assessment of how well
an individual TN3270E Telnet server is performing, it does not necessarily
provide an accurate assessment of the available capacity required by the
back-end SNA applications that the client is accessing. As a result, WLM system
weight is probably a more appropriate distribution method for this server.

v The INET daemon also provides access to other applications that are probably
associated with service classes of a lower importance level (for example, z/OS
UNIX Telnet, REXECD, and RSHD). As a result, similar considerations apply,
and WLM system weights are the more appropriate distribution method for this
server.

v The FTP daemon address space typically performs very little processing on
behalf of new FTP sessions. After accepting a new connection, it performs a
fork() for an FTP server process that will service the new FTP session. The FTP
server process is classified again by WLM, possibly resulting in a different
service class than that of the FTP daemon.
– If the FTP servers run in a different service class than the FTP daemon, then

WLM system weights should be used.
– If WLM policies are set up so that the FTP servers are classified in the same

service class as the FTP daemon, WLM server-specific weights should be the
distribution method. Although the WLM recommendation will not take into
account how well the actual FTP server is meeting its goal, the
recommendation will more accurately reflect the amount of displaceable
capacity because it is based on the importance of the service class.

BASEWLM and SERVERWLM display example
In the following Netstat VDPT/-O example, the weights represent normalized
weights. That is, the original raw weights received from WLM are proportionally
reduced for use by the distribution algorithm. Connections are distributed to these
servers in a weighted, round-robin fashion using the normalized weights. In this
example, the target server responsiveness (TSR) values are all 100, indicating that
all servers are fully responsive to new connection requests. A value of 100 is also
displayed for stacks that are at a level prior to z/OS V1R7. In that case, no target
server responsiveness calculations are applied to the WLM values.

The SERVERWLM parameter was not coded for DVIPA 201.2.10.11, port 245, so it
is using WLM system weights.
MVS TCP/IP NETSTAT CS VxRx TCPIP NAME: TCPCS 12:19:18
Dynamic VIPA Distribution Port Table:
Dest IPaddr DPort DestXCF Addr Rdy TotalConn WLM TSR Flg
----------- ----- ------------ --- --------- --- --- ---
201.2.10.11 00245 201.1.10.10 001 0000000000 12 100 DB
201.2.10.11 00245 201.1.10.15 001 0000000000 04 100 B
201.2.10.12 04011 201.1.10.10 001 0000000000 04 100 S
201.2.10.12 04011 201.1.10.15 001 0000000000 08 100 S
201.2.10.12 04011 201.1.10.40 001 0000000000 16 100 S

If the BASEWLM parameter or the SERVERWLM parameter is specified and WLM
weights are not available, incoming connections are distributed among all available
servers using round-robin distribution.

474 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

Now consider the same example, as shown in the following Netstat VDPT/-O
display, but with TSR values indicating that some of the servers are not accepting
new connection setup requests productively. The displayed WLM weights have
been modified by the TSR values:
MVS TCP/IP NETSTAT CS VxRx TCPIP NAME: TCPCS 12:19:18
Dynamic VIPA Distribution Port Table:
Dest IPaddr DPort DestXCF Addr Rdy TotalConn WLM TSR Flg
----------- ----- ------------ --- --------- --- --- ---
201.2.10.11 00245 201.1.10.10 001 0000000000 09 075 DB
201.2.10.11 00245 201.1.10.15 001 0000000000 04 100 B
201.2.10.12 04011 201.1.10.10 001 0000000000 03 090 S
201.2.10.12 04011 201.1.10.15 001 0000000000 06 075 S
201.2.10.12 04011 201.1.10.40 001 0000000000 03 020 S

The SERVERWLM parameter was coded for DVIPA 201.2.10.12, port 4011. For the
server on destination 201.1.10.10, a TSR value of 90 indicates that the server is 90%
responsive in accepting new connection requests. For the server on 201.1.10.15, a
TSR value of 75 indicates that this server is 75% responsive in handling new
connection requests. Likewise, for the server on 201.1.10.40, a TSR value of 20
indicates that it is only 20% effective in accepting new connection requests. These
factors are used to modify the WLM server-specific weights, and the modified
weights are normalized. As a result, the server on destination XCF 201.1.10.10 has
a normalized WLM value of 3, the server on XCF 201.1.10.40 has a WLM value of
3, and the server on destination XCF 201.1.10.15 has a WLM value of 6. So, the
server on destination XCF 201.1.10.15 is now favored over the other servers, and
the server at 201.1.10.40 is now equal to the server at 201.1.10.10. Connections are
distributed to these servers in a weighted, round-robin fashion using these
normalized weights.

The SERVERWLM parameter was not coded for DVIPA 201.2.10.11 port 245, so it is
using WLM system weights. The server at 201.1.10.10 has a TSR of 75, so the
normalized weight is 9, three-quarters of what it was in the previous example. The
server at 201.1.10.15 has a TSR of 100, so the normalized weight is the same as it
was in the previous example.

WEIGHTEDACTIVE - Distribution based on active connection
load

In some instances, rather than using WLM recommendations, weighted active
connections (WEIGHTEDActive) can provide a more appropriate solution to
control workload distribution:
v Application scaling concerns

Target systems vary significantly in terms of capacity (small systems and larger
systems). WLM recommendations might favor the larger systems significantly.
However, a target application might not scale well to larger systems; because of
its design, it might not be able to take full advantage of the additional CPU
capacity on the larger systems. This can result in these types of servers getting
inflated WLM recommendations when running on larger systems and getting
overloaded with work.

v Unequal number of SHAREPORT servers
SHAREPORT is being used, but not all systems have the same number of
SHAREPORT server instances (for example, one system has two instances and
the other has three). The current round-robin or WLM recommendations do not
change distribution based on the number of server instances on each target.
Round-robin distribution distributes one connection per target stack regardless

Chapter 8. TCP/IP in a sysplex 475

|

|

of the number of SHAREPORT server instances on that stack. WLM
server-specific weights from a target stack with multiple server instances reflect
the average weight.

v You need to control the amount of capacity that specific workloads can consume
on each system.
For example, you might need to reserve some capacity on certain systems for
batch workloads that are added into selected systems during specific time
periods and have specific time window completion requirements. If those
systems are also a target for long-running distributed DVIPA connections, WLM
recommendations allow that available capacity to be consumed. This can
potentially impact the completion times of the batch jobs when they begin to
run, if they are not able to displace the existing non-batch workloads. Similarly,
the existing connections on that system can experience performance problems if
the batch jobs displace those workloads.

Weighted active connections provide granular control over workload distribution
based on predetermined active connection count proportions for each target (fixed
weights). Distribution of incoming TCP connection requests is balanced across the
targets so that the number of active connections on each target is proportionally
equivalent to a configured active connection weight for each target (specified on
the DESTIP parameter for each target). Control is gained at the expense of losing
the dynamic benefits of WLM recommendations; however, server-specific abnormal
completion information, the general health indicator, and the TSR value are used to
reduce the active connection weight when these indicators are not optimal. If
weighted active connections are used, study and determine the comparative
workload that you want on each system so that you can configure appropriate
connection weights.

To enable the distributing stack to use server-specific abnormal completion and
health information to affect the active connection weight, specify
SYSPLEXROUTING on the IPCONFIG statement for all participating stacks.

You can select this type of distribution for DVIPA and port targets by specifying
the WEIGHTEDActive option on the DISTM parameter of the VIPADISTRIBUTE
statement, and specifying the proportion of active connections that you want on
each target using the WEIGHT option on the DESTIP dynxcfip parameter of the
VIPADISTRIBUTE statement.

Choosing between RoundRobin and WeightedActive
distribution

If weighted active connections are configured with default proportions for each
target, connections are evenly distributed across all target servers; the goal is to
have an equal number of active connections on each server. This is similar to the
round-robin distribution method; the difference is that round-robin distribution
distributes connections evenly to all target servers without consideration for the
active number of connections on each server.

In certain scenarios, a round-robin distribution might be appropriate for specific
server applications. Select this type of distribution for particular targets by
specifying the DISTM ROUNDROBIN parameter on the VIPADISTRIBUTE
statement.

Although both round-robin and weighted active connection distribution do not
consider WLM recommendations in their target selection, weighted active
connection distribution does use the server-specific abnormal completion

476 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|

|
|
|

|
|
|
|
|

|

|

information, the general health indicator, and the TSR value to reduce the weight
when these values are less than optimal. For round-robin distribution, connections
are not distributed to a target if its TSR value is 0. Periodically, the distributor
sends a new connection request to a target with a TSR of 0 to check whether the
responsiveness of that target has improved.

Hot standby distribution
You can use the hot standby distribution method to configure sysplex distributor
to have one preferred target server and one or more backup (hot standby) target
servers. In this configuration, sysplex distributor does not perform load balancing
of new connection requests across multiple targets; rather, a preferred target server
with an active listener receives all new incoming connection requests. The hot
standby target servers, which typically also have a ready listener application, do
not receive any new connections requests; they act as backup target servers should
the designated preferred target server become unavailable. A target is considered
unavailable if any of the following are true:
v The target is not ready.
v The distributor does not have an active route to the target.
v The target is not healthy.

The hot standby distribution method is useful in situations where there is a
trade-off between availability and performance, such as a scenario where data
sharing between multiple server applications and LPARs is required for
availability, but it is more efficient if the work runs on one LPAR instead of
interlocking access to the same data across multiple LPARs. For example, if you
prefer that an application instance on one LPAR, if available, always handle the
workload, and an application instance on another LPAR that is otherwise
performing lower priority work be available for backup, use the hot standby
distribution method.

Steps for configuring hot standby distribution
Before you begin: You need to determine which server should initially receive the
workload (the preferred server), and which server or servers should be a backup
server.

Perform the following steps to configure hot standby distribution on the
VIPADISTRIBUTE statement:

1. Configure HOTSTANDBY on the DISTMETHOD parameter.

2. Configure the AUTOSWITCHBACK parameter or the NOAUTOSWITCHBACK
parameter.
v Configure AUTOSWITCHBACK if you want the distributor to automatically

switch distribution back to the preferred target when it is available. For
example, if the preferred target becomes a standby target because its server
is no longer ready, when the server is again in the listening state, the
distributor automatically switches back to the preferred target as the active
target. This is the default value.

v Configure NOAUTOSWITCHBACK if you want the distributor to continue
to use a backup target when the preferred target is available.
Rule: If NOAUTOSWITCHBACK is configured, then the active server is
initially determined by order of activation; the first ready listener becomes
the active server regardless of the configured server type (PREFERRED or
BACKUP), and remains the active server unless it becomes unavailable.

Chapter 8. TCP/IP in a sysplex 477

|

|
|
|
|
|
|
|
|
|

|

|

|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|

|

|
|

|
|
|
|
|
|

|
|

|
|
|
|

3. Configure the HEALTHSWITCH parameter or the NOHEALTHSWITCH
parameter.
v Configure HEALTHSWITCH if you want the distributor to automatically

switch from the active target when it is not healthy. This is the default. A
target is not healthy when there is a severe problem detected by one of the
following health metrics:
– Target server responsiveness (TSR) value is 0%
– Rate of abnormal transaction completions is 1000
– General health of the application is 0%
For more information, see “Target server connection setup responsiveness
monitoring” on page 461, and the WLM health metric information in
“SERVERWLM - Distribution using WLM server-specific weights” on page
470.
Rule: When a switch occurs because a target is no longer healthy, the target
is not used as a backup target even if its health recovers, unless all available
backup targets have previously had health problems. Health metric
indicators typically recover when a server is no longer receiving any work,
and although a server can appear healthy, the distributor cannot determine
if the server is actually healthy. When the distributor detects that the server
is transitioning back to the ready state, it again uses the target as a backup.
Tip: You can use the VARY TCPIP,,SYSPLEX,QUIESCE command and the
VARY TCPIP,,SYSPLEX,RESUME command to manually bring a server back
to the ready state. You can also use these commands before and after
planned maintenance, or to temporarily divert new workload requests from
a particular target. For more information, see “Manually quiescing DVIPA
sysplex distributor server applications” on page 375.

v Configure NOHEALTHSWITCH if you want the distributor to ignore health
metrics. The distributor switches from the active target only when it is not
ready or when the distributor does not have an active route to the target.

4. Configure the PREFERRED option or the BACKUP option after each XCF
address on the DESTIP parameter to designate the preferred server and the
backup servers, and configure a rank value for each backup server.
v Configure PREFERRED to designate the preferred server. This must be

configured for one, and only one, XCF address.
v Configure BACKUP to designate a backup (hot standby) server. This must

be configured for at least one XCF address. Also configure a rank value on
the BACKUP option for each backup server. The distributor switches to the
highest ranked backup if the preferred server becomes unavailable.

Hot standby configuration example
Following is an example of the configuration for the hot standby distribution
method:
VIPADISTRIBUTE DISTMETHOD HOTSTANDBY AUTOSWITCHBACK HEALTHSWITCH

9.67.240.02 PORT 10000
DESTIP

203.3.10.16 PREFERRED
203.3.10.17 BACKUP 50
203.3.10.18 BACKUP 100

Because server 203.3.10.16 is the preferred server and AUTOSWITCHBACK is
configured, that server becomes the active target when it enters the listening state.

478 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|

|
|
|
|

|

|

|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

|
|

|
|
|
|

|
|
|

|
|
|
|
|
|

|
|

Servers 203.3.10.17 and 203.3.10.18 are the backup servers. The highest ranked
backup server (203.3.10.18) becomes the active server if server 203.3.10.16 becomes
unavailable.

Use the Netstat VIPADCFG/-F command to display the configuration:
Dynamic VIPA Information:...

VIPA Distribute:
Dest: 9.67.240.02..10000

DestXCF: 203.3.10.16
DistMethod: HotStandby SrvType: Preferred
AutoSwitchBack: Yes HealthSwitch: Yes
SysPt: No TimAff: No Flg:
OptLoc: No

Dest: 9.67.240.02..10000
DestXCF: 203.3.10.17
DistMethod: HotStandby SrvType: Backup Rank: 050
AutoSwitchBack: Yes HealthSwitch: Yes
SysPt: No TimAff: No Flg:
OptLoc: No

Dest: 9.67.240.02..10000
DestXCF: 203.3.10.18
DistMethod: HotStandby SrvType: Backup Rank: 100
AutoSwitchBack: Yes HealthSwitch: Yes
SysPt: No TimAff: No Flg:
OptLoc: No

Use the Netstat VDPT/-O command to display the status of the servers:
Dest: 201.2.10.15..5000

DestXCF: 203.3.10.16
TotalConn: 0000000000 Rdy: 001 WLM: 10 TSR: 100
DistMethod: HotStandby SrvType: Preferred
Flg: Active

Dest: 201.2.10.15..5000
DestXCF: 203.3.10.17
TotalConn: 0000000000 Rdy: 001 WLM: 10 TSR: 100
DistMethod: HotStandby SrvType: Backup
Flg: Backup

Dest: 201.2.10.15..5000
DestXCF: 203.3.10.18
TotalConn: 0000000000 Rdy: 001 WLM: 10 TSR: 100
DistMethod: HotStandby SrvType: Backup
Flg: Backup

The Active and Backup flags show the current status of each server. For example,
the preferred server (203.3.10.16) is displayed with the Active flag, indicating that
it is the active server. Each server uses a default WLM weight of 10 for displays
and health calculations.

If the active server becomes unavailable for some reason, the Netstat VDPT/-O
command displays something similar to the following status:
Dest: 201.2.10.15..5000

DestXCF: 203.3.10.16
TotalConn: 0000000000 Rdy: 001 WLM: 00 TSR: 000
DistMethod: HotStandby SrvType: Preferred
Flg: Backup

Dest: 201.2.10.15..5000
DestXCF: 203.3.10.17
TotalConn: 0000000000 Rdy: 001 WLM: 10 TSR: 100
DistMethod: HotStandby SrvType: Backup
Flg: Backup

Dest: 201.2.10.15..5000

Chapter 8. TCP/IP in a sysplex 479

|
|
|

|

||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|

DestXCF: 203.3.10.18
TotalConn: 0000000000 Rdy: 001 WLM: 10 TSR: 100
DistMethod: HotStandby SrvType: Backup
Flg: Active

The target server responsiveness (TSR) value for server 203.3.10.16 dropped to
zero, and the distributor switched to use the highest ranked backup, 203.3.10.18
(configured with a Backup rank of 100). The backup target becomes the active
target, and the preferred target becomes a backup target. However, because the
switch from the preferred target occurred because the TSR value is 0, even when
the TSR begins to recover, automatic switchback to this target does not occur. If
server 203.3.10.16 is quiesced and resumed, the distributor can switch distribution
back to this preferred server.

Timed affinity
The distribution method does not have any effect on incoming connection requests
that have an active affinity established to a specific server instance (through the
TIMEDAFFINITY parameter). When an affinity exists, it has priority over the
distribution method setting.

SHAREPORT
Specifying the SHAREPORT parameter on the PORT statement in the TCP/IP
profile enables a group of servers to listen on the same port, and thereby share the
incoming workload. As new connections are received, the number of active
connections is evenly balanced across the available servers using a weighted,
round-robin distribution based on the Servers' accept Efficiency Fractions (SEFs).
Specifying the SHAREPORTWLM parameter on the PORT statement enables
connections to be distributed in a weighted, round-robin fashion based on the
WLM server-specific recommendations modified by the SEFs. For more
information on SEFs, see “Target server connection setup responsiveness
monitoring” on page 461.

Use the same considerations concerning application type to determine the type of
port sharing distribution to use. If the shared port is a sysplex distributed port and
WLM server-specific weight is the distribution method that is being used by the
distributor, code the SHAREPORTWLM paremeter on each target's PORT
statement to take advantage of the WLM server-specific recommendations when
connections are received at the target. Otherwise, use the SHAREPORT parameter
on the PORT statement.

QDIO Accelerator
You can use QDIO Accelerator to provide accelerated forwarding at the DLC layer
for some sysplex distributor packets. For more information, see “QDIO
Accelerator” on page 91.

QDIO inbound workload queueing
You can use QDIO inbound workload queueing to improve throughput for
inbound sysplex distributor packets. For more information, see “QDIO inbound
workload queueing” on page 79.

Optimizing local connections
You can configure sysplex distributor to optimize connections when both
connection endpoints potentially reside on the same TCP/IP stack within the
sysplex. This feature can be very useful if your environment includes multi-tier

480 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|

|
|
|
|
|
|
|
|

|

|

|

|

|

|

|

server applications within a single sysplex. In this environment, if communication
between the tiers is based on the TCP protocol, sysplex distributor can provide
higher server availability. For example, without sysplex distributor or some other
form of IP load balancing, when an application in tier 1 tries to connect to a tier 2
application on the local system, if the tier 2 server application is not available,
these connections fail and the workload is disrupted. Sysplex distributor
dynamically reroutes these connections to another tier 2 application that is running
elsewhere in the sysplex, which provides a high availability solution. You can use
the OPTLOCAL keyword to further optimize load balancing for this type of
configuration; for more information about the OPTLOCAL keyword, see “Sysplex
distribution optimizations for multi-tier z/OS workloads” on page 485.

Tip: In networks that have CISCO routers, it might be possible to remove the
requirement that all inbound traffic needs to traverse the distributing stack. For
more details, see “Optimized connection load balancing using sysplex distributor
in a network with CISCO routers (IPv4 only)” on page 483.

Sysplex distributor also enhances the dynamic VIPA and automatic VIPA takeover
functions. The enhancements allow a DVIPA to move nondisruptively to another
stack. That is, in the past, a DVIPA was only allowed to be active on one single
stack in the sysplex. This led to potential disruptions in service when connections
existed on one stack, yet the intent was to move the DVIPA to another stack. With
sysplex distributor, the movement of DVIPAs can now occur without disrupting
existing connections on the original DVIPA owning stack.

See “Configuring distributed DVIPAs — sysplex distributor” on page 371 for more
information.

Policy interactions
The Policy Agent interacts with the sysplex distributor to assist with workload
balancing. There will be one Policy Agent running on an LPAR regardless of how
many stacks are configured. First, the Policy Agent can be configured to collect
network performance statistics for applications being distributed on target stacks.
These network performance statistics are then used to modify the overall WLM
weight assigned to a target server. In this way, processor performance, server
performance, and application network performance are taken into account when
distributing work. Second, policies established on the distributing stack can be
configured to restrict the set of target stacks to be considered for any given
inbound connection request. In this way, the total set of target stacks can be
partitioned among different groups of users or applications requesting connections
to distributed applications.

Previously, the QoS performance data was collected by the Policy Agent on the
target for each DVIPA and port or application. After collecting the QoS
information, the Policy Agent on the target stack pushed this information down to
the stack sysplex function which then forwarded it to the stack sysplex function on
the distributing stack. There are two significant additions to Policy Agent and
sysplex interaction:
v The Policy Agent at each target will collect information with an additional level

of granularity; the QoS performance data will be collected for each service level
that a target's DVIPA port or application supports.

v The Policy Agent on the distributing stack drives the collection of this
information by pulling it from the Policy Agents on the target stacks:
– The Policy Agent on the distributor opens up one or two TCP connections to

each of the Policy Agents on the target stacks. The distributor can be

Chapter 8. TCP/IP in a sysplex 481

configured to distribute connections to IPv4 DVIPAs, IPv6 DVIPAs, or both.
The Policy Agent opens an IPv4 connection to a target stack's IPv4 XCF
address if it is configured to distribute to an IPv4 DVIPA on that target, and
likewise opens an IPv6 connection to a target stack's IPv6 XCF address if it is
configured to distribute to an IPv6 DVIPA on that target. As a result, if the
routing stack is distributing connections to both IPv4 and IPv6 DVIPAs on a
given target, then two connections to that target are opened.
For more information on how the sysplex distributor determines its targets,
see “Configuring distributed DVIPAs — sysplex distributor” on page 371.

– The Policy Agent on the distributing stack will send across a list of QoS
service level names to the Policy Agent on each target.

– The Policy Agent on each target will send back a QoS Policy Action weight
fraction for each requested service level that each target DVIPA
port/application supports. A specific Policy Action weight fraction will not be
sent unless the distributing stack's Policy Agent requests it. Only weight
fractions for IPv4 DVIPA ports and applications flow on the IPv4 Policy
Agent connection, and similarly, only IPv6 weight fractions flow on the IPv6
Policy Agent connection.

– Upon receiving the QoS Policy Action weight fraction, the Policy Agent on
the distributing stack will pass this information down to the sysplex
distribution function on the stack. If two connections to a given target Policy
Agent are active, weight fractions for IPv4 DVIPA ports or applications and
IPv6 DVIPA ports or applications are passed to the sysplex distribution
function separately. The stack sysplex distribution function uses this
additional information when it is selecting targets for incoming connections. If
it does not have a QoS Policy Action weight fraction, then it uses the existing
weight fraction to make the load distribution decision instead.

Steps for enabling Policy Agent load distribution functions
Perform the following steps to enable Policy Agent load distribution functions:

1. Define the PolicyPerfMonitorForSDR statement in the PAGENT configuration
file to enable the policy performance monitor function. This function must be
active on the target and distributing stacks.

2. z/OS Communications Server load distribution needs to be specifically
enabled for each service level; a Policy Action with the same service level
name needs to be defined on each of the appropriate target stacks and also on
the distributing stack for these targets. Note that it is reasonable to have a
subset of key service level names defined to the distributing stack. Traffic
mapping to those service level names that are defined to the distributing stack
will receive z/OS Communications Server load distribution by service level.
All other traffic will receive Communications Server V2R10 load distribution.

3. A backup distributing stack must have the same Policy Action configuration
definitions as the active distributing stack for the corresponding DVIPA targets
which it is backing up, if it is desired that the Policy Action behavior stay the
same when the backup distributing stack takes ownership of the DVIPA. It
will also need to have the Policy Agent performance monitor function active.

4. Common PAGENT port numbers will be used by the listener
(pagentQosListener) and the collector (pagentQosCollector) They are part of
the /etc/services install file. If PAGENT is running on an LPAR containing a

482 z/OS V1R12.0 Comm Svr: IP Configuration Guide

target stack, it will open a listening connection using the pagentQosListener
port number. PAGENT running on an LPAR containing a distributing stack
will establish a TCP connection with each PAGENT listener using the
pagentQosCollector as the source port and the pagentQosListener as the
destination port. The listener will fail a connect request if the
source/destination port does not match the defined collector/listener port. The
/etc/services file on all LPARs in the sysplex must be updated to contain these
port numbers.

5. Define these two port numbers as reserved ports for PAGENT using the PORT
statement in the PROFILE.TCPIP data set.

6. Define the DYNAMICXCF parameter on the IPCONFIG or IPCONFIG6
statements in PROFILE.TCPIP. The PAGENT TCP connections use the XCF IP
addresses.

For more information on setting up polices, see “Sysplex distributor policy
performance monitoring configuration” on page 877, “Sysplex distributor policy
example” on page 884, or “Sysplex distributor routing policy example” on page
1539.

Optimized connection load balancing using sysplex
distributor in a network with CISCO routers (IPv4 only)

The IBM sysplex distributor function provides a workload balancing function
within a parallel sysplex. The sysplex distributor consists of a primary distributor
stack (denoted by a dynamic VIPA) and a set of target stacks. An inbound packet
destined for that DVIPA flows through the primary distributor stack which then
forwards the packet over an internal link (XCF, IUTSAMEH, or HiperSockets) to
the selected target stack.

The Cisco Multi-Node Load Balancer (MNLB) provides a workload balancing
function which distributes traffic through Cisco routers across multiple destination
TCP/IP stacks. The MNLB consists of a service manager (the Cisco local director
which is denoted by a cluster IP address) and a set of forwarding agents (Cisco
routers). For a TCP connection to the cluster IP address, the forwarding agent
sends the SYN packet to the service manager, which then selects a target stack and
notifies the forwarding agent of this decision. The forwarding agent then sends all
future packets for that TCP connection directly to the target stack.

A solution is available to enable you to use a combination of the sysplex
distributor and the MNLB to provide workload balancing.

The scope of a cluster IP address managed by sysplex distributor is still a single
sysplex, and integration with Cisco forwarding agents merely allows the sysplex
distributor routing stack to be bypassed for inbound traffic. If workload balancing
for a single cluster IP address across nodes in multiple clusters (sysplexes) is
desired, MNLB using Cisco local director as the service manager will continue to
be used. Sysplex distributor will continue to advertise network ownership of the
cluster IP address with any attached routing daemon so that sysplex distributor
appearance and behavior toward the attached routing network is unchanged
except for its new relationship with Cisco forwarding agents.

Chapter 8. TCP/IP in a sysplex 483

This solution allows the choice of providing the workload distribution inside the
sysplex, outside the sysplex, or a combination of both.

Steps for setting up sysplex distributor to be the service
manager for the Cisco MNLB (IPv4 only)

Perform the following steps to set up sysplex distributor to be the service manager
for the Cisco MNLB:

1. The Cisco router must be configured as a forwarding agent. The IP CASA
control address (which is NOT the interface address to the forwarding agent)
must be advertised by the Cisco routing daemons. This is not automatically
done by Cisco and must be enabled by a Cisco command. For more
information on the commands, see online documentation for Cisco at:
http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/120newft/120t/120t5/ipclus.htm

2. Specify the SERVICEMGR keyword on the VIPADEFine statement in the
TCPIP profile.

3. Specify the VIPASMparms statement in the TCPIP profile. Specify the same
multicast group and UDP port on the VIPASMparms statement in the TCPIP
profile as are configured in the MNLB.

4. Optionally, use MD5 authentication:

Specify the same password (MD5 key) on the VIPASMparms statement in the
TCPIP profile as is configured on the Cisco routers which will communicate
with the sysplex distributor. If a password (SMPASSword) is specified, then
the sysplex distributor will perform MD5 authentication for all
communications with the Cisco forwarding agents. For both the Cisco
forwarding agent and the sysplex distributor, the password is treated simply
as ASCII characters. No translation or conversion is performed. For more
information on MD5 authentication, see RFC 1321.

5. If you are using V1R7 or later, configure all forwarding agents with IP PIM
DENSE-MODE to ensure that MNLB packets are forwarded properly.

6. If using the Cisco MNLB in a configuration where there is an OSA adapter
between a Cisco router and the destination TCP/IP stacks such that multiple
stacks are sharing the OSA, configure Virtual MAC (VMAC) addressing on
each of the destination TCP/IP stacks or configure GRE tunnels on the Cisco
routers. The sysplex distributor stack is the only stack that registers the
dynamic VIPA to OSA. Therefore, if VMACs or GRE tunnels are not
configured, OSA will send all packets destined for the DVIPA to the sysplex
distributor stack (or to the default router stack if the OSA is not shared with
the sysplex distributor stack).
When configuring GRE tunnels, you must configure them on the Cisco router
such that any packets destined for a DVIPA that are routed by the forwarding
agents directly to TCP/IP target stacks are encapsulated to the target stack's
dynamic XCF address or, if specified in the distributor, to the VIPAROUTE
target IP address. If the primary and backup TCP/IP stacks specify different
VIPAROUTE statements for a particular target, you must define GRE tunnels
for each target IP address that might be used.

484 z/OS V1R12.0 Comm Svr: IP Configuration Guide

http://www.cisco.com/en/US/docs/ios/12_0t/12_0t5/feature/guide/ipclus.html

For more detailed information about configuring VMACs, see z/OS
Communications Server: SNA Network Implementation Guide, or see “OSA-Express
virtual MAC routing” on page 68. For more detailed information about
configuring GRE tunnels, see the Cisco router publications located at
http://www.cisco.com/univercd/cc/td/doc/product/core/index.htm.

7. Special consideration must be made for each target stack that will receive data
from an OSA that is not shared with the distributor stack. Connection load
balanced IP packets routed to target stacks that do not use GRE tunnels will
arrive with a destination address of the dynamic VIPA address. Only the OSA
associated with the distributor stack is aware of the dynamic VIPA address. If
the target stack is not the primary router for this OSA, or does not have
Virtual MAC (VMAC) addressing configured for this OSA, the OSA will
discard the IP packet. In this case, you must either configure VMAC
addressing for the OSA, configure GRE tunnels on the Cisco router, or
configure the target stack to be the primary router for the OSA. If configuring
GRE tunnels on the Cisco router, ensure that any packets destined for a DVIPA
that are routed by the forwarding agents directly to TCP/IP target stacks are
encapsulated to the target stack's dynamic XCF address or, if specified in the
distributor, to the VIPAROUTE target IP address.

8. Verification:

The Netstat VIPADCFG/-F report may be used to verify the configuration. See
z/OS Communications Server: IP System Administrator's Commands for more
information on this command.
Cisco's show ip casa commands may be used to display MNLB information.
For more detailed information on these commands, see Cisco's online
documentation at:
http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/120newft/120t/120t5/ipclus.htm

Following is a sample VIPADYNAMIC statement:
VIPADYNAMIC

VIPADEFINE MOVEABLE IMMED SERVICEMGR 255.255.255.0 197.11.221.1
VIPASMPARMS SMMCAST 224.0.1.2 SMPORT 1637 SMPASS ABCD
VIPADIST 197.11.221.1 PORT 80 20 21 23
DESTIP 199.11.87.104

199.11.87.105
199.11.87.106
199.11.87.108
199.11.87.109
199.11.87.110

ENDVIPADYNAMIC

For more information on the VIPADYNAMIC statement, see z/OS Communications
Server: IP Configuration Reference.

Sysplex distribution optimizations for multi-tier z/OS workloads
You can configure sysplex distributor to optimize connections when both
connection endpoints potentially reside on the same TCP/IP stack within the
sysplex. This feature can be very useful in environments in which multi-tier server
applications are located within the same z/OS system images in a single sysplex.
In this environment, if communication between the tiers is based on the TCP
protocol, you can use sysplex distributor to provide higher availability.

Chapter 8. TCP/IP in a sysplex 485

http://www.cisco.com/univercd/cc/td/doc/product/core/index.htm
http://www.cisco.com/en/US/docs/ios/12_0t/12_0t5/feature/guide/ipclus.html

For example, without sysplex distributor or some other form of IP load balancing,
if an application in tier 1 tries to connect to a tier 2 application on the local system,
but the tier 2 server application is not available, then these connections fail and the
workload is disrupted. With sysplex distributor, these connections are dynamically
rerouted to another tier 2 application that is running elsewhere in the sysplex,
which provides a high availability solution.

Examples of tier 1 server applications on z/OS that can be used with tier 2 server
applications on the same z/OS logical partition (LPAR) are the IBM HTTP Server,
the CICS Transaction Gateway, and the WebSphere Application Server. Examples of
applications that can be used as tier 2 servers in the same z/OS system and
sysplex as tier 1 servers are the CICS Transaction Server, IMS Connect, and DB2.

Sysplex distributor optimization with the OPTLOCAL keyword
Figure 44 shows a sample configuration that uses the OPTLOCAL keyword.

In Figure 44, two tiers of servers are configured across four LPARs that reside on
two central processor complexes (CPCs) in a sysplex environment. The tier 1
servers consist of z/OS WebSphere Application Server (WAS) instances that are
listening on port 8080 and that are represented by distributed DVIPA1. Sysplex
distributor is configured on LPAR2 to receive and distribute any incoming
connections for DVIPA1 to any of the active WAS instances in the four LPARs,
based on server-specific WLM recommendations for each WAS instance
(designated by the dynamic XCF address of each target LPAR). After a request is
directed to a tier 1 WAS instance, the request is processed by that server. One or
more secondary TCP connections can be established to a back-end tier 2 server,
which is a cluster of CICS regions (one CICS region per LPAR).

Figure 44. z/OS multi-tier application load balancing using sysplex distributor and the OPTLOCAL keyword

486 z/OS V1R12.0 Comm Svr: IP Configuration Guide

You can use other sysplex distributor functions to distribute the tier 2 connections
in this scenario, but that configuration does add some additional pathlength and
processing, because all connection requests and traffic for those connections are
forwarded through the sysplex distributor routing stack on LPAR4 so that they can
get forwarded to the selected tier 2 server instance. This additional pathlength and
processing occurs even in the case where the selected tier 2 server for a given
connection resides on the same LPAR as the tier 1 server that originated the
connection.

To reduce excess pathlength but still retain high availability, you can specify the
OPTLOCAL keyword for DVIPA2 to optimize processing in several ways:
v As long as local target resources are available and are not constrained, extra

network flows and overhead through the distributor are avoided, because the
local system makes the decision to route the connection to the local instance.

v When the decision is made to make the connection local, TCP/IP enables this
connection for fast local sockets processing. This provides a more efficient path
through the TCP/IP stack for these communications. All traffic for this
connection remains on the local system and is not routed to the distributing
stack.

v Optionally, multi-tier applications can also provide their own optimizations by
using the Sysplex Sockets API (SO_CLUSTERCONNTYPE) or the trusted TCP
connections API (SIOCGPARTNERINFO ioctl). These APIs enable the multi-tier
applications to dynamically determine that they both reside on the same system,
and as a result, to optimize their processing based on their locality (for example,
avoiding encryption of data, sharing memory, and so on). For more information
about trusted TCP connections, see z/OS Communications Server: IP Programmer's
Guide and Reference.

v If local target resources are unavailable or constrained, normal sysplex
distributor processing is performed on the connections as a fallback, enabling the
sysplex distributor to select another application that is available.

The OPTLOCAL feature provides for optimal performance in the most common
scenario in which the local applications and systems are available and healthy, yet
the feature also provides a high availability solution when the local applications or
systems are not available or are overly constrained.

You can implement the OPTLOCAL feature using the OPTLOCAL keyword on the
VIPADISTRIBUTE statement in the VIPADYNAMIC block, which enables a target
stack to keep outbound connections for local resources on the local stack without
having to send the connection request to the distributing stack. The level of
preference that is shown to the local stack can be adjusted using the integer value
specified on the OPTLOCAL keyword.

Value Meaning

0 Specifying 0 means that the connections should remain local as long as the
server is healthy. The relative capacity of the other systems is not
considered in this case.

1 Specifying 1 is the same as specifying 0, except that if the WLM weight for
the server on the local stack is 0, the connection request is forwarded to the
sysplex distributor to find the best available server.

2 - 16 The values 2 through 16 are used as multipliers against the WLM weight
for the server on the local stack, causing its weight to increase and
therefore be favored over servers on other stacks. The larger the value
specified, the more the local stack is favored.

Chapter 8. TCP/IP in a sysplex 487

|
|

|
|
|

If the OPTLOCAL keyword is specified with the value 0 or 1, the distribution
method is not used for connections originating from the specified target stack, as
long as that target application resides on the same stack and is able to handle its
current workload. Regardless of the value specified on the OPTLOCAL keyword,
connections are sent to the distributing stack if any of the following are true:
v No local server is available.
v The server's accept efficiency fraction (SEF) has fallen below 75.
v The abnormal transaction completions value is greater than 250.
v The health indicator is less than 75.

For more information about the OPTLOCAL keyword on the VIPADISTRIBUTE
statement in the VIPADYNAMIC block, see z/OS Communications Server: IP
Configuration Reference.

Sysplex distributor enhanced workload distribution for z/OS
multi-tier, OPTLOCAL configurations

In environments in which OPTLOCAL is used to optimize the load balancing
between tier 1 and tier 2 server applications, more optimization is possible if
sysplex distributor is also used as the load balancer for the tier 1 server
applications. This optimization makes both tiers of z/OS server applications on a
given system visible to sysplex distributor when making a load balancing decision
on an incoming tier 1 connection request. When you are using WLM-based
recommendations such as SERVERWLM, this optimization enables sysplex
distributor to compute a composite WLM weight for each system, which includes
the capacity, performance, and health characteristics of both the tier 1 server
applications and the tier 2 server applications. Figure 45 shows an example
configuration that enables this enhancement.

Figure 45. Enhanced z/OS multi-tier application load balancing using sysplex distributor

488 z/OS V1R12.0 Comm Svr: IP Configuration Guide

As shown in Figure 45 on page 488, two VIPADISTRIBUTE statements are required
in this configuration. The first statement for DVIPA1 represents the distribution to
the tier 1 server applications, a cluster of WebSphere Application Server instances
running on each LPAR. The second statement for DVIPA2 represents the tier 2
server applications, a cluster of CICS regions on the same LPARs as the tier 1
servers.

The VIPADISTRIBUTE statement for each DVIPA includes a tier specification that
indicates the role of each DVIPA (TIER1 or TIER2). The two DVIPAs are linked by
a common group name specification, WASCICS. This association enables sysplex
distributor to compute a single weight for each DVIPA1 target system that reflects
the combination weight of the tier 1 and tier 2 server applications that are running
on that system. Sysplex distributor performs its workload balancing of incoming
connection requests to DVIPA1 based on these combined weights, enabling
distribution of requests to the target z/OS systems to be based on the aggregate
capacity of each system to perform the processing of both server application tiers.

In addition, because the VIPADISTRIBUTE statement for DVIPA2 also includes the
OPTLOCAL specification, incoming tier 1 connection requests are typically directed
to a system that also enables the subsequent tier 2 connection requests to stay
local. This provides an improvement over the base OPTLOCAL configuration,
because new workload is directed toward systems that have more capacity to
process the work while retaining the local optimizations provided by OPTLOCAL.

Rule: To use this feature, the distribution method for the tier 1 and tier 2 servers
must be BASEWLM or SERVERWLM.

Guideline: To take full advantage of this feature, set the distribution method for
both tier 1 and tier 2 servers to SERVERWLM. This enables sysplex distributor to
obtain server-specific WLM recommendations for each application server tier; the
combined weight reflects the composite performance of the servers instead of the
capacity of the system.

For more information about the TIER1 and TIER2 keywords on the
VIPADISTRIBUTE statement in the VIPADYNAMIC block, see z/OS
Communications Server: IP Configuration Reference.

Sysplex distributor enhanced workload distribution for z/OS
multi-tier, OPTLOCAL configurations with CPC affinity

In addition to multi-tier application awareness and optimizing distribution when
these applications are local, you can use the CPCSCOPE keyword to further
optimize sysplex distributor load balancing decisions. This configuration option
helps to avoid workload distribution to tier 1 servers that cannot perform the tier 2
processing on the same CPC, which requires distribution of those tier 2
connections to systems that reside on a different CPC. Figure 46 on page 490 shows
an example configuration in which this option might be useful.

Chapter 8. TCP/IP in a sysplex 489

In Figure 46, connection requests for tier 1 server applications are distributed to
systems based on the aggregate WLM recommendations of the tier 1 and tier 2
server applications running on each system. When connections are directed to a
tier 1 server instance, any subsequent tier 2 connections that are originated by that
server instance are likely to be directed to the local tier 2 server as a result of the
OPTLOCAL keyword, assuming that the tier 2 server application is active on the
local system.

If the tier 1 server cannot access a tier 2 server on the same system, the connection
requests and their associated data flows are sent to the sysplex distributor for the
tier 2 DVIPA; this distributor might be on another system in the sysplex. That
system might be on the same CPC as the tier 1 server, or it might be on another
CPC at the same site or potentially at a remote site. The sysplex distributor then
selects a target tier 2 server instance that resides on the same CPC or in another
CPC. In either case, inbound traffic from the tier 1 server to the tier 2 server might
need to traverse one or more CPCs or external network links before it reaches the
tier 2 server.

You can optimize these flows by using the CPCSCOPE keyword and confining the
activation and movement of a DVIPA to a specific CPC, which in turn enables any
connection using the backup path to a tier 2 server to also remain within an LPAR
on the same CPC. This optimization enables these backup data flows to leverage
secure, high speed, virtual network links inside the CPC, such as HiperSockets.
This configuration also helps to ensure that these data flows are optimized by
avoiding the need to traverse external links, which might result in additional
network latency and encryption requirements.

Three DVIPAs are defined in Figure 46:

Figure 46. z/OS multi-tier application configuration using CPCSCOPE DVIPAs

490 z/OS V1R12.0 Comm Svr: IP Configuration Guide

v DVIPA1 represents the tier 1 servers that reside on LPAR1 - LPAR4. DVIPA1 is
defined as a tier 1 DVIPA, and is associated with the group name WASCICS.

v DVIPA2 represents the tier 2 servers that reside on LPAR3 and LPAR4 on CPC2.
DVIPA2 is defined as a tier 2 DVIPA, and is associated with the group name
WASCICS. DVIPA2 also specifies the CPCSCOPE keyword, which ensures that
DVIPA2 remains within LPARs on CPC2, even in recovery scenarios where
DVIPA takeover is required.

v DVIPA3 represents the tier 2 servers that reside on LPAR1 and LPAR2 on CPC1.
DVIPA3 is similar to DVIPA2; it is also a tier 2 DVIPA, is associated with the
same group name (WASCICS), and also specifies the CPCSCOPE keyword. If a
takeover is required for this DVIPA, it remains within any backup LPARs
residing on CPC1.

Requirement: Configure the tier 1 application servers on each CPC to use a
unique, CPC-specific DVIPA for their tier 2 connections. The tier 1 application
server configurations need to be unique based on the CPC on which they reside.

Guideline: Before activating this feature, consider the benefits that the feature
provides versus the additional configuration requirements that this type of
configuration requires. You must carefully define the tier 2 DVIPAs to ensure that
the correct VIPADEFINE and VIPBACKUP definitions are maintained on each of
the LPARs based on the CPC on which the LPARs are defined. These definitions
can have implications on your recovery plans and procedures that might allow
z/OS systems or tier 1 server applications to be restarted on LPARs in different
CPCs, rather than in the CPC in which they were originally activated.

For more information about the CPCSCOPE keyword on the VIPADISTRIBUTE
statement in the VIPADYNAMIC block, see z/OS Communications Server: IP
Configuration Reference.

Sysplex distribution with DataPower
You can use sysplex distributor to balance workload across a cluster of non-z/OS
target hosts that are explicitly enabled for sysplex distributor load balancing. An
IBM WebSphere DataPower appliance is an example of a non-z/OS target that
supports sysplex distributor load balancing.

IBM WebSphere DataPower appliances are often used as a front-end processing tier
to z/OS, enabling and enhancing the participation of z/OS applications in a
service-oriented architecture (SOA). DataPower can provide for the transparent
Web services enablement of z/OS applications, and can enhance distribution of
workloads that are already enabled for Web services on z/OS by providing
acceleration and more efficient handling of Web services security protocols, XML
schema validation, and numerous other functions.

Tips:

v Although a Web services workload is described here, you can apply the concepts
in this information to other protocols that DataPower supports, as long as those
protocols are TCP-connection oriented.

v Sysplex distribution with DataPower is available for both IPv4 and IPv6. The
following examples describe IPv4 distribution with DataPower, but this function
applies to IPv6 as well.

In many environments, multiple DataPower instances are placed in a cluster to
provide higher availability and scalability. This requires a load balancing

Chapter 8. TCP/IP in a sysplex 491

|

|
|
|

component that distributes incoming Web services connection requests to the
DataPower appliance cluster, as shown by the first tier of load balancing in
Figure 47. After DataPower has performed its portion of the processing for the
incoming request, it typically routes the request to the z/OS application tier, which
includes applications such as CICS, IMS, WebSphere, and DB2. In a high
availability sysplex configuration, the z/OS application tier probably requires a
second tier of load balancing that balances requests across the z/OS application
tier.

Figure 47 shows two options for load balancing of z/OS workloads with
DataPower.

In configuration A, an external network-based load balancer is used to balance
incoming Web services connection requests to DataPower. The external load
balancer is configured to receive TCP connection requests for a specific port and an
IP address that represents the cluster of DataPower appliances that can handle the
connection request. The external load balancer selects a target DataPower appliance
to route the request to based on the distribution method configured for the load
balancer (round robin, weighted round-robin, and so on). When the request is
processed by the DataPower appliance, a secondary TCP connection might be
initiated to route a subsequent request to the z/OS application tier, which requires

DataPower

DataPower

DataPower

DataPower

DataPower

DataPower

z/OS Sysplex

System z CPC1

2

Sysplex Distributor or
DataPower LB

Configuration A

System z CPC2

z/OS Sysplex

System z CPC1

Configuration B

System z CPC2

LPAR1 LPAR2 LPAR3 LPAR4 LPAR1 LPAR2 LPAR3 LPAR4

CICS

WAS

IMS

DB2

CICS

WAS

IMS

DB2

CICS

WAS

IMS

DB2

CICS

WAS

IMS

DB2

CICS

WAS

IMS

DB2

CICS

WAS

IMS

DB2

CICS

WAS

IMS

DB2

CICS

WAS

IMS

DB2

2

Sysplex Distributor

1

External Network-based
Load Balancer

1

Sysplex Distributor

Web
Service
request

Web
Service
request

Dynamic
Load Balancing

Feedback

Figure 47. DataPower load balancing overview

492 z/OS V1R12.0 Comm Svr: IP Configuration Guide

a second load balancing tier. You can implement this second load balancing tier
using load balancing support that is built into DataPower, which by default uses a
round-robin distribution, or you can use the z/OS sysplex distributor for this load
balancing tier. Because sysplex distributor is an integral part of the sysplex
environment, it has in-depth, real-time knowledge of the z/OS environment,
including z/OS Workload Manager recommendations about current capacity and
performance of each application and LPAR instance, and in-depth information
about the current state and health of the z/OS application tier. This information
enables sysplex distributor to make optimal load balancing decisions based on the
current state of the z/OS application tier and other sysplex resources.

Configuration B is a variation of configuration A, with the main difference being
that sysplex distributor is used as the load balancing component for both
distribution tiers. This enables you to use a single load balancing solution for the
composite z/OS workload, including both the DataPower and z/OS application
processing tiers, which simplifies load balancing administration. Using sysplex
distributor as the tier 1 load balancer for DataPower takes advantage of DataPower
support to communicate with sysplex distributor over an out-of-band TCP
connection to provide dynamic load balancing feedback and enable the following
optimizations:
v Routing is optimized so that outbound traffic (from the tier 1 DataPower target

server towards the client) does not need to traverse the sysplex distributor.
Sysplex distributor uses generic routing encapsulation (GRE) to forward inbound
distributed packets to DataPower, without performing network address
translation (NAT) to map the destination IP address of the connection request to
the IP address of the target DataPower appliance. Outbound tier 1 traffic does
not need to traverse the sysplex distributor node and can flow directly to the
client, because no reverse NAT processing is necessary.

v If a planned or unplanned outage of a primary sysplex distributor instance
occurs, connection information provided by the DataPower appliances enables
nondisruptive tier 1 takeover of existing connections between clients and
DataPower targets.
If a sysplex distributor takeover occurs, sysplex distributor dynamically
discovers the state of any existing tier 1 connections from each DataPower
appliance. The connection state information also enables sysplex distributor to
maintain its active, distributed connection-routing entries without needing to
inspect packets to determine when connections are terminated.

v CPU usage information provided by the DataPower appliance enables sysplex
distributor to optimize its load balancing decisions, which avoids overloaded
DataPower appliances by directing new requests to DataPower instances with
less usage.

For a more detailed explanation of using sysplex distributor to perform load
balancing for composite z/OS and DataPower workloads, see the following:
v “Scenario 1 overview - sysplex distributor load balancing to DataPower” on

page 494
v “Steps for configuring scenario 1 - sysplex distributor load balancing to

DataPower” on page 495
v “Scenario 2 overview - sysplex distributor load balancing to DataPower in a

multi-tier and multisite environment” on page 498
v “Steps for configuring scenario 2 - sysplex distributor load balancing to

DataPower in a multi-tier and multisite environment” on page 500

Chapter 8. TCP/IP in a sysplex 493

Scenario 1 overview - sysplex distributor load balancing to
DataPower

In Figure 48, a set of DataPower appliance instances (DATAP) are configured to
handle a specific Web service request and to invoke a backend z/OS application
(CICS) to complete the processing, prior to sending a response to the Web services
client. Sysplex distributor is used for load balancing of both processing tiers, the
DataPower tier and the z/OS application tier, both of which are clustered for high
availability and scalability.

This configuration consists of two main components:
v A tier 1 distributed DVIPA is defined to represent the cluster of DataPower

appliances that can process a client Web service request to TCP port 8080.
For each TCP connection request sent to the tier 1 DVIPA and port, the tier 1
sysplex distributor makes a load-balancing decision and routes the request to
one of the eligible DataPower target instances. These targets support a TCP
control connection with the tier 1 distributor that enables dynamic load
balancing feedback to and from the DataPower appliances and sysplex
distributor.
Periodically, the DataPower appliances send weights that are based on the
overall CPU usage of the appliance. The weights enable a type of
target-controlled distribution, and the distributor makes optimized

Figure 48. Sysplex distributor load balancing for DataPower

494 z/OS V1R12.0 Comm Svr: IP Configuration Guide

load-balancing decisions based on the target appliance's overall capacity and
available capacity as compared to other target DataPower appliances.
Connection state information is passed over the control connection. The
connection state information is used to determine whether a target server is
available, and also to determine the states of the connections (established or
terminated) that are distributed to the target DataPower appliances. The
distributor uses GRE to send packets to the targets. Because GRE is used, the
packets from the DataPower target back to the client do not need to traverse the
tier 1 distributor. The connection state information enables sysplex distributor to
maintain its active connection-routing entries and is also used to enable
nondisruptive takeover of existing connections by a backup tier 1 distributor.
A DataPower distributed DVIPA can specify any of the following types of
distribution methods:
– Target controlled (configured as TARGCONTROLLED)
– Round-robin (configured as ROUNDROBIN)
– Weighted active (configured as WEIGHTEDACTIVE)
Guideline: Target controlled is the preferred tier 1 distribution method, because
the distributor can make optimized load-balancing decisions based on the
current processing availability of the targets.

v A z/OS application tier completes the processing for the request.
After the DataPower targets complete their processing of the inbound Web
service request, they establish a connection and send the work request to a z/OS
application tier.
You can configure the DataPower targets to use one of their own distribution
methods and to establish connections directly to the z/OS servers, or to use
sysplex distributor for a more optimized load-balancing decision. In Figure 48 on
page 494, sysplex distributor is shown. The distributed DVIPA that represents
the z/OS application tier does not require any special configuration, and you
can select any distribution method that is supported for z/OS distributed
DVIPAs; however, SERVERWLM provides the most granular WLM
recommendations, along with visibility into the health of the z/OS application
tier.
After sysplex distributor routes the request to the target CICS application, it is
processed and the results of the request are sent to the DataPower instance that
originated the request. DataPower can then perform any necessary outbound
processing and send a response back to the client that originated the Web service
request.

Steps for configuring scenario 1 - sysplex distributor load
balancing to DataPower

Before you begin:

v All z/OS systems within the sysplex that can act as the tier 1 sysplex distributor
for DataPower (active or backup) must be z/OS V1R11 or later.

v Evaluate workloads to be routed to DataPower, and understand the distribution
tiers and routing options. See “Scenario 1 overview - sysplex distributor load
balancing to DataPower” on page 494.

Perform the following steps to configure sysplex distributor and the DataPower
appliances:

1. “Configure sysplex distributor tier 1 distributed DVIPAs and ports” on page
496.

Chapter 8. TCP/IP in a sysplex 495

2. “Configure the DataPower appliances to work with a tier 1 sysplex distributor
and act as targets of the tier 1 DVIPAs and ports” on page 497.

3. “Configure a distributed DVIPA for the target z/OS application servers used
by the group of DataPower appliances (optional)” on page 498.

Configure sysplex distributor tier 1 distributed DVIPAs and ports
To define the characteristics of tier 1 DVIPAs for use with target DataPower
appliances, code the VIPADEFINE, VIPABACKUP, and VIPADISTRIBUTE
statements with the following parameters in the VIPADYNAMIC block of the
TCP/IP profile:

Parameter Description

TIER1 Appears on the VIPADEFINE or VIPABACKUP
statement, and on the VIPADISTRIBUTE statement,
and indicates that the DVIPA specified as an IP
address on this statement is to be used in a
multi-tiered distribution configuration.

groupname Appears on the VIPADISTRIBUTE statement, and
specifies the name of a cluster of equivalent server
applications in the sysplex. This name is a required
value on the TIER1 parameter of the
VIPADISTRIBUTE statement; however, the name is
used only when there is a corresponding
VIPADISTRIBUTE statement with the TIER2
parameter. The name correlates a
VIPADISTRIBUTE TIER1 statement with the
corresponding VIPADISTRIBUTE TIER2 statements
with the same name.

GRE Appears on the VIPADISTRIBUTE statement. GRE
indicates that the tier 1 target is a non-z/OS target
(a DataPower target), and that GRE is used in
distributing requests to the DataPower appliances.
GRE is the only routing type supported for
DataPower load balancing.

CONTROLPORT port_number Optionally appears on the VIPADISTRIBUTE
statement, and enables configuration of a control
port other than the default for the DataPower
sysplex distributor agent. The control port must be
the same on all VIPADISTRIBUTE TIER1
statements. If a control port is not specified, the
default control port is 1702.

DISTMETHOD TARGCONTROLLED
Appears on the VIPADISTRIBUTE statement.
TARGCONTROLLED indicates that connection
requests are distributed using weights provided by
the DataPower sysplex distributor agent, and by
availability and capacity of the z/OS server
applications in the application group.

DESTIP target_IP_list Appears on the VIPADISTRIBUTE statement; the
target IP address list includes the IP addresses of
the DataPower appliances.

496 z/OS V1R12.0 Comm Svr: IP Configuration Guide

For more information about these statements and parameters, see z/OS
Communications Server: IP Configuration Reference.

In the following example, clients in the network send requests to IP address
10.91.1.1, port 8080, and the DESTIP list consists of the IP addresses of the
DataPower appliances:
VIPADEFINE TIER1 255.255.255.0 10.91.1.1
VIPADISTRIBUTE

TIER1
GRE CONTROLPORT 5601
10.91.1.1 Port 8080
DISTM TARGCONTROLLED
DESTIP 201.81.10.1 201.81.10.2

201.81.10.3 201.81.10.4

The DataPower appliances have been configured with control port 5601. If the
CONTROLPORT parameter is not specified on the VIPADISTRIBUTE statement,
then the control port is 1702 by default.

DISTMETHOD TARGCONTROLLED indicates that sysplex distributor and the
DataPower appliances exchange information about the availability and capacity of
the DataPower appliances, and sysplex distributor uses this information to make
load-balancing decisions.

These VIPADEFINE and VIPADISTRIBUTE statements are placed in the TCP/IP
profile of one sysplex stack, and another sysplex stack on any LPAR in the sysplex
might have the following VIPABACKUP statement to enable nondisruptive VIPA
takeover:
VIPABACKUP 10 TIER1 10.91.1.1

Configure the DataPower appliances to work with a tier 1 sysplex
distributor and act as targets of the tier 1 DVIPAs and ports
From the DataPower control panel, under Objects and then ZOS Configurations,
start the Sysplex Distributor Agent services. The port number should match the
control port that is configured on the tier 1 VIPADISTRIBUTE statement, as shown
in the following example:
Admin State enabled
Local IP Address 0.0.0.0
Port Number 5601
SSL Proxy (none)

As with the sysplex distributor, the default port is 1702.

Requirement: The control port must be the same for all participating DataPower
appliances, because a tier 1 distributor must use the same control port on all of its
VIPADISTRIBUTE statements.

Sysplex distributor automatically registers the tier 1 DVIPA ports to the DataPower
appliance over this connection, and DataPower starts servers listening on those
ports.

During initial registration, the DataPower appliance sends the current availability
of each DVIPA port listener to the distributor, along with all connections that are
currently using each listener. This enables a backup distributor to take over a tier 1
DVIPA and its connections without disruption.

Chapter 8. TCP/IP in a sysplex 497

After initial registration, DataPower sends connection state information to the
distributor whenever the state of a listener or of a connection using a DVIPA port
changes.

DataPower sends its weight to the distributor during each polling interval. A new
weight is sent by the DataPower appliance during each interval based on its
available CPU service appliances.

Sysplex distributor provides updates to DataPower if an operator makes any
changes to the tier 1 DVIPA configuration.

For more information about configuring DataPower appliances as tier 1 targets, see
the DataPower documentation.

Configure a distributed DVIPA for the target z/OS application
servers used by the group of DataPower appliances (optional)
The configuration of this distributed DVIPA has no special requirements; it is a
normal distributed DVIPA that represents a cluster of z/OS applications in the
sysplex environment. Code VIPADEFINE, VIPABACKUP, and VIPADISTRIBUTE
statements within the VIPADYNAMIC block of the TCP/IP profile using the
normal options for z/OS applications.

Rule: Do not specify the CPCSCOPE, TIER2, and groupname parameters on these
statements. These parameters are supported for DataPower workloads; however,
they have very specific configuration requirements and do not apply in this
scenario.

In the following example, the DataPower appliances are all configured to send
requests to IP address 10.81.1.1 and port 9001:
VIPADEFINE 10.81.1.1
VIPADISTRIBUTE

10.81.1.1 Port 9001
DISTMETHOD SERVERWLM
DESTIP ALL

These VIPADEFINE and VIPADISTRIBUTE statements are placed in the TCP/IP
profile of one sysplex stack.

To configure the DataPower appliances to use the tier 2 distributed DVIPA and
port when connecting to the z/OS application tier, see the DataPower
documentation.

Scenario 2 overview - sysplex distributor load balancing to
DataPower in a multi-tier and multisite environment

When you use sysplex distributor to provide load balancing of tier 1 work requests
to DataPower, and DataPower connects to tier 2 servers on z/OS in a multisite
environment, you can enhance the load balancing configuration by using the
multi-tier support of sysplex distributor in combination with load balancing to
DataPower.

In figure Figure 49 on page 499, DataPower is the tier 1 server layer and z/OS
applications are the tier 2 servers.

498 z/OS V1R12.0 Comm Svr: IP Configuration Guide

In a multisite environment, each tier 2 sysplex distributor is configured to balance
and route service requests to z/OS server application instances in its CPC. The tier
2 distributors send the combined WLM weight of the group of target application
instances in their CPC to the tier 1 distributor. The tier 1 distributor makes its load
balancing decision using composite weights that are based on the weight received
from each tier 1 DataPower target along with the combined WLM weights of the
corresponding tier 2 distribution targets.

For example, in figure Figure 49, for DataPower DATAP1 and DATAP2, the
weights of CICS1 and CICS2 are included in the tier 1 sysplex distributor decision.
For DataPower DATAP3 and DATAP4, the weights of CICS3 and CICS4 are
included in the tier 1 sysplex distributor decision.

The tier 1 distribution method that is being used is target controlled
(DISTMETHOD TARGCONTROLLED), so each DataPower target sends a weight
to the tier 1 distributor that represents its overall health. Because the tier 2 DVIPAs
are configured with the CPCSCOPE keyword, their targets must reside in the same
CPC; the tier 2 distributors aggregate the WLM weights for their GROUP1 target
application instances and send the result to the tier 1 distributor. The tier 1
distributor then determines a composite weight for each target based on the
DataPower weight and the corresponding tier 2 combined weight.

Figure 49. Sysplex distributor load balancing to DataPower in a multi-tier and multisite environment

Chapter 8. TCP/IP in a sysplex 499

A CPC is associated with a specific set of DataPower appliances through the use of
a shared IPv4 subnet. In figure Figure 49 on page 499, the DataPower appliances in
site 1 are attached to subnet 201.81.10.0/24, and the DataPower appliances in site 2
are attached to subnet 201.81.20.0/24. The CPC in site 1 (CPC1) uses a CPCSCOPE
DVIPA that belongs to the site 1 DataPower subnet, 201.81.10.7, and the CPC in
site 2 (CPC2) uses another CPCSCOPE DVIPA that belongs to the site 2 DataPower
subnet, 201.81.20.7. When the tier 1 sysplex distributor matches DataPower
destination IP addresses to tier 2 targets, it uses these CPCSCOPE DVIPAs to
determine which z/OS LPARs are associated with which DataPower appliances.
OMPROUTE should be set up to advertise host routes for only these CPCSCOPE
DVIPA addresses.

The main connection flows in this scenario are the following:
v The remote client sends a connection request to the tier 1 sysplex distributor.

The tier 1 sysplex distributor collects weights from the available tier 1
DataPower appliances and WLM weights from the available tier 2 servers,
creates a composite weight, and determines which DataPower appliance is the
best choice for this connection. Sysplex distributor connection routing forwards
the inbound packets using GRE to the chosen DataPower appliance.

v DataPower processes the requests and initiates a tier 2 connection. DataPower
appliances in site 1 are set up to connect to address 10.81.1.1, while DataPower
appliances in site 2 are set up to connect to address 10.81.2.2. The connection
request arrives at the appropriate site-local tier 2 sysplex distributor, and a
suitable tier 2 server instance is chosen. Responses from the chosen CICS server
instance are routed directly back to the initiating DataPower appliance. When
DataPower has finished processing the response from CICS, its response back to
the remote client is routed directly back to that client.

Steps for configuring scenario 2 - sysplex distributor load
balancing to DataPower in a multi-tier and multisite
environment

Before you begin:

v All z/OS systems within the sysplex that participate in workload distribution
processing must be z/OS V1R11 or later.

v Evaluate workloads to be routed to DataPower, and understand the distribution
tiers and routing options. See “Scenario 2 overview - sysplex distributor load
balancing to DataPower in a multi-tier and multisite environment” on page 498.

v The tier 1 and tier 2 sysplex distributor instances must reside within the same
z/OS sysplex environment.

v Each tier 2 sysplex distributor instance and its targets must reside within the
same CPC.

Perform the following steps to configure sysplex distributor and the DataPower
appliances:

1. “Configure sysplex distributor tier 1 distributed DVIPAs and ports” on page
501.

2. “Configure the DataPower appliances to work with a tier 1 sysplex distributor
and act as targets of the tier 1 DVIPAs and ports” on page 501.

3. “Configure tier 2 distributed DVIPAs for each CPC containing target servers
used by a group of DataPower appliances” on page 501.

500 z/OS V1R12.0 Comm Svr: IP Configuration Guide

4. “Configure a CPCSCOPE dynamic VIPA for each CPC for use by a group of
DataPower target applications” on page 502.

Configure sysplex distributor tier 1 distributed DVIPAs and ports
Configuring sysplex distributor tier 1 distributed DVIPAs and ports in this scenario
is similar to scenario 1. To review that information, see “Configure sysplex
distributor tier 1 distributed DVIPAs and ports” on page 496.

In scenario 2, the group name GROUP1 is added, and the IP addresses of the
DataPower appliances in the DESTIP list are at two sites instead of one, as shown
in the following example:
VIPADEFINE TIER1 255.255.255.0 10.91.1.1
VIPADISTRIBUTE

TIER1
GROUP1
GRE CONTROLPORT 5601
10.91.1.1 Port 8080
DISTM TARGCONTROLLED
DESTIP 201.81.10.1 201.81.10.2

201.81.20.1 201.81.20.2

DISTMETHOD TARGCONTROLLED indicates that sysplex distributor and the
DataPower appliances exchange information about the availability and capacity of
the DataPower appliances. Sysplex distributor makes a load-balancing decision
based on this information and, in this scenario, on the availability and capacity of
the z/OS server applications in application group GROUP1 on the CPC of each
DataPower appliance. The group name is used when the tier 1 sysplex distributor
gathers information from the tier 2 distributors about availability and capacity of
z/OS server applications for a specific server group on that CPC.

Configure the DataPower appliances to work with a tier 1 sysplex
distributor and act as targets of the tier 1 DVIPAs and ports
Configuring the DataPower appliances to work with a tier 1 sysplex distributor
and act as targets of the tier 1 DVIPAs and ports in this scenario is similar to
scenario 1. See “Configure sysplex distributor tier 1 distributed DVIPAs and ports”
on page 496.

Configure tier 2 distributed DVIPAs for each CPC containing
target servers used by a group of DataPower appliances
Code VIPADEFINE, VIPABACKUP, and VIPADISTRIBUTE statements within the
VIPADYNAMIC block of the TCP/IP profile, using the following parameters to
define the characteristics of the tier 2 DVIPAs that are to receive connections from
DataPower appliances:

Parameter Description

CPCSCOPE Appears on the VIPADEFINE or VIPABACKUP statement, and
indicates that distribution targets must be on the same CPC as the
distributor.

TIER2 Appears on the VIPADEFINE or VIPABACKUP statement, and the
VIPADISTRIBUTE statement, and indicates that this dynamic VIPA
is used to distribute incoming requests from a TIER1 target to a
named group of server instances.

groupname Appears on the VIPADISTRIBUTE statement, and specifies the
name of a cluster of equivalent server applications in the sysplex.
The group name correlates VIPADISTRIBUTE TIER2 statements
with a corresponding VIPADISTRIBUTE TIER1 statement.

Chapter 8. TCP/IP in a sysplex 501

In the following example, the DataPower appliances in site 2 are configured to
send requests to IP address 10.81.2.2 and port 9001:
VIPADEFINE TIER2 CPCSCOPE 255.255.255.0 10.81.2.2
VIPADISTRIBUTE

TIER2 GROUP1
10.81.2.2 Port 9001
DISTMETHOD SERVERWLM
DESTIP ALL

The TIER2 parameter, in conjunction with the group name (GROUP1), indicates
that the tier 2 sysplex distributor gathers information about availability and
capacity of the target servers of that group. This information is forwarded to the
corresponding tier 1 distributor for that group as a combined CPC weight for use
in making the tier 1 load-balancing decision.

The tier 2 weight information cannot be used until the next step in the
configuration process (configure a CPCSCOPE DVIPA for each CPC for use by a
group of DataPower target appliances) is completed and the tier 1 distributor is
able to determine which CPC is used by a DataPower appliance.

Similar to the tier 2 configuration for site 2, the DataPower appliances using site 1
send requests to IP address 10.81.1.1 and port 9001:
VIPADEFINE TIER2 CPCSCOPE 255.255.255.0 10.81.1.1
VIPADISTRIBUTE

TIER2 GROUP1
10.81.1.1 Port 9001
DISTMETHOD SERVERWLM
DESTIP ALL

Configure a CPCSCOPE dynamic VIPA for each CPC for use by a
group of DataPower target applications
A CPCSCOPE DVIPA is specific to the CPC on which it is defined, and cannot be
moved to or taken over by another TCP/IP stack that is in a different CPC.

Code a VIPADEFINE or VIPABACKUP statement within the VIPADYNAMIC block
of the TCP/IP profile, and include the CPCSCOPE parameter to indicate that the
DVIPA specified by an IP address on this statement is specific to the CPC on which
it is defined.

Requirements:

v The CPCSCOPE DVIPA must be in the same subnet as the DataPower
appliances that are using that site.

v The address and subnet mask combination must define a unique subnet for each
CPC.

v The CPCSCOPE DVIPA and the tier 2 DVIPA must be on stacks that are in the
same CPC.

Using the CPCSCOPE subnet mask, the tier 1 distributor determines the
DataPower appliances that are in its subnet. The distributor associates these
DataPower appliances with a tier 2 distributor in the CPC of the stack where the
CPCSCOPE DVIPA was defined. When determining the composite weights for
these DataPower appliances, the distributor uses the tier 2 combined CPC weights
received from the tier 2 distributor on that CPC.

The following example shows the definition on an LPAR on site 1:
VIPADEFINE CPCSCOPE 255.255.255.0 201.81.10.7

502 z/OS V1R12.0 Comm Svr: IP Configuration Guide

As shown in Figure 49 on page 499, the tier 1 distributor uses the CPCSCOPE
subnet mask (201.81.10.0/24) to determine that DATAP1 and DATAP2 are in that
subnet. The distributor associates these DataPower appliances with the tier 2
distributor for address 10.81.1.1, because it is defined on a stack in CPC1 and this
CPCSCOPE DVIPA is also defined on a stack in CPC1. As the distributor receives a
tier 2 weight for GROUP1 (combined CPC weights for CICS1 and CICS2) from this
distributor, it finds the matching tier 1 GROUP1 DataPower targets and uses this
weight when determining the composite weights for DATAP1 and DATAP2.

LPAR3 in CPC2 contains the tier 2 distributor for that site, so a CPCSCOPE DVIPA
for CPC2 is defined on one of the LPARs in CPC2:
VIPADEFINE CPCSCOPE 255.255.255.240 201.81.20.7

The VIPABACKUP statements for the tier 2 DVIPA and CPCSCOPE DVIPA defined
in CPC1 are defined in one or more other stacks in that CPC:
VIPABACKUP TIER2 CPCSCOPE 201.81.1.1
VIPABACKUP CPCSCOPE 255.255.255.240 201.81.10.7

Similarly, the VIPABACKUP statements for the tier 2 DVIPA and CPCSCOPE
DVIPA defined in CPC2 are defined in one or more other stacks in that CPC:
VIPABACKUP TIER2 CPCSCOPE 201.81.2.2
VIPABACKUP CPCSCOPE 255.255.255.240 201.81.20.7

Chapter 8. TCP/IP in a sysplex 503

504 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Chapter 9. TCP/IP in an ensemble

OSA-Express Ethernet features in QDIO mode can access the external data network
when configured with the OSD channel path ID (CHPID) type. This is the default
CHPID type on the IPAQENET and IPAQENET6 INTERFACE statements in the
TCP/IP profile.

IBM zEnterprise System (zEnterprise) provides communications access to two
internal networks through OSA-Express3 adapters that are configured with the
OSM or OSX CHPID types. Communications Server supports OSA-Express3
adapters configured with these CHPID types, thus allowing TCP/IP connectivity to
the following internal networks.
v Intraensemble data network (CHPID type OSX)

The intraensemble data network provides access to other images connected to
the intraensemble data network, and to applications and appliances running in
an IBM zEnterprise BladeCenter® Extension (zBX). The intraensemble data
network can be accessed through 10 gigabit OSA-Express3 adapters configured
with CHPID type OSX. OSX interfaces can be IPv4 or IPv6, and must be on a
VLAN. To configure OSX interfaces, see “Steps for configuring an interface for
the intraensemble data network (CHPID type OSX)” on page 506.

v Intranode management network (CHPID type OSM)
The intranode management network is an IPv6 network that provides
connectivity between network management applications within a zEnterprise
node, and can be accessed through 1000BASE-T Ethernet OSA-Express3 adapters
configured with CHPID type OSM. OSM interfaces are not configured in the
TCP/IP profile, but are generated by the stack and have only link-local IP
addresses. The stack does not report OSM interfaces to OMPROUTE, and
OMPROUTE is unaware of these interfaces; there are no OMPROUTE
configuration considerations for OSM interfaces. To use the intranode
management network, see “Steps for using the intranode management network
(CHPID type OSM)” on page 507.

Requirement: For access to the intraensemble data network or the intranode
management network, the IBM zEnterprise 196 (z196) central processor complex
(CPC) and the LPAR must be configured as members of an ensemble. For
information about using the ENSEMBLE start option to specify that an LPAR is a
member of an ensemble, see z/OS Communications Server: SNA Resource Definition
Reference.

For more information about zEnterprise and ensembles, see the following:
v zEnterprise BladeCenter Extension Installation Manual

v zEnterprise System Introduction to Ensembles

v zEnterprise System Ensemble Planning and Configuring Guide

v zEnterprise System Ensemble Performance Management Guide

v zEnterprise System Hardware Management Console and Support Element Operations
Guide for Ensembles

© Copyright IBM Corp. 2000, 2011 505

|

|

|
|
|
|

|
|
|
|
|

|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|

|

|

|

|

|
|

Steps for configuring an interface for the intraensemble data network
(CHPID type OSX)

Before you begin:

v For access to the intraensemble data network, the IBM zEnterprise 196 (z196)
central processor complex (CPC) and the LPAR must be configured as members
of an ensemble.
For information about using the ENSEMBLE start option to specify that an
LPAR is a member of an ensemble (ENSEMBLE=YES), see z/OS Communications
Server: SNA Resource Definition Reference.

v Before the OSX device can become active, the Hardware Management Console
(HMC) must be configured in the following way:
– The VLAN ID specified at the HMC must match the ID specified on the

VLANID parameter of the IPAQENET or IPAQENET6 statement.
– The HMC must have added the LPAR and CHPID combination to the

definition for that VLAN.
See the information about creating and managing virtual server networks in
zEnterprise System Ensemble Planning and Configuring Guide.

v To use an IBM zEnterprise BladeCenter Extension (zBX) with OSX, you must
configure the zBX from the HMC to use addresses on the same network
specified on the IPAQENET or IPAQENET6 statements.
See the information about obtaining the pairing code for accelerator
authentication in the IBM Smart Analytics Optimizer for DB2 for z/OS.

Perform the following steps to configure an interface for the intraensemble data
network:

1. Specify CHPIDTYPE OSX on the INTERFACE statement for the IPAQENET or
IPAQENET6 interface.

2. Include the CHPID parameter to have VTAM dynamically create the
associated TRLE definition, and include the VLANID parameter.
Unlike OSD interfaces, OSX interfaces must be associated with a specific
VLAN, and can communicate only with other applications and images that
have access to the same VLAN on the intraensemble data network.
The following example is a sample INTERFACE definition; adjust values as
needed:
INTERFACE QDIOOSX1 DEFINE IPAQENET
CHPIDTYPE OSX CHPID F1 VLANID 10

MTU 8992 IPADDR 172.16.1.1/24

3. For IPv6, if you connect an external router on this network, then you can use
stateless address autoconfiguration. Otherwise, you need to configure IPv6
addresses and prefixes manually.

Guideline: For more information about configuring CHPID type OSX for
IPAQENET and IPAQENET6 interfaces, see z/OS Communications Server: IP
Configuration Reference. Some INTERFACE statement defaults are different for OSX
interfaces than for OSD interfaces, and some INTERFACE statement parameters
that apply to OSD interfaces do not apply to OSX interfaces.

506 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|

|

|

|
|
|

|
|
|

|
|

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|

|
|

|
|
|

|
|

|
|
|

|
|
|

|
|
|
|
|

Steps for enabling IPv6 on a stack for access to the intranode
management network

Perform the following steps to enable IPv6 on a stack so that the stack can access
the intranode management network:

1. Test and migrate any scripts that you use to format Netstat output in long
format.
After you enable a z/OS TCP/IP stack for IPv6, Netstat output for the stack is
available in the long format only. While you are still using IPv4 for your data
networks, you can test the Netstat reports in the long format using one of the
following methods:
v Use the FORMAT/-M LONG option on the Netstat command.
v Specify the FORMAT LONG parameter on the IPCONFIG statement in your

TCP/IP profile.
For more information about the Netstat command, see z/OS Communications
Server: IP System Administrator's Commands. For more information about the
IPCONFIG statement, see z/OS Communications Server: IP Configuration
Reference.

2. Update the BPXPRMxx parmlib member to include an additional NETWORK
statement for IPv6.
FILESYSTYPE TYPE(INET) ENTRYPOINT(EZBPFINI)

NETWORK DOMAINNAME(AF_INET)
DOMAINNUMBER(2)
MAXSOCKETS(nnnnn)
TYPE(INET)

NETWORK DOMAINNAME(AF_INET6)
DOMAINNUMBER(19)
MAXSOCKETS(nnnnn)
TYPE(INET)

For more information about updating BPXPRMxx, see “Defining TCP/IP as a
UNIX System Services physical file system” on page 45.

Steps for using the intranode management network (CHPID type OSM)
Before you begin: The stack must be enabled for IPv6. For information about
enabling a stack for IPv6, see “Steps for enabling IPv6 on a stack for access to the
intranode management network”.

For access to the intranode management network, the IBM zEnterprise 196 (z196)
central processor complex (CPC) and the LPAR must be configured as members of
an ensemble. For information about using the ENSEMBLE start option to specify
that an LPAR is a member of an ensemble, see z/OS Communications Server: SNA
Resource Definition Reference.

If the stack is enabled for IPv6 and the LPAR is configured as a member of an
ensemble, Communications Server automatically configures, locates, and activates
up to two interfaces (named EZ6OSM01 and EZ6OSM02) onto the intranode
management network. Each of these interfaces is an IPv6 interface that has only a
link-local IP address. You cannot configure static or dynamic routes over OSM
interfaces.

Chapter 9. TCP/IP in an ensemble 507

|
|

|

|
|

|
|

|
|
|
|

|

|
|

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|

|
|

|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|

The intranode management network is intended for only authorized applications,
such as those performing platform performance management functions. For more
information about these applications, see zEnterprise System Ensemble Planning and
Configuring Guide..

Perform the following steps to use the intranode management network:

1. Authorize the application to the EZB.OSM.sysname.tcpname resource.

To send or receive data over an OSM interface, an application must have
READ authorization to the EZB.OSM.sysname.tcpname resource. If used on this
image, authorize the application to this resource.

2. Reserve the UDP port that the platform management application is to use to
listen for multicast traffic over the intranode management network.

3. Authorize any user IDs to this resource that might issue diagnostic commands,
such as Ping and Traceroute, over OSM interfaces to verify connectivity.

4. If you enable IP security for IPv6, you can configure a security class for IP
filtering that applies to all OSM interfaces.
Use the OSMSECCLASS parameter on the IPCONFIG6 statement. This enables
you to configure filter rules for traffic over the EZ6OSM01 and EZ6OSM02
interfaces.

5. If the multicast address that is used by the platform management application
is configured into a network access zone, then give the user ID for this
application read permission to the resource profile for that zone.

Routing considerations for the intraensemble data network
If there is an external router attached to the intraensemble data network, dynamic
and static routing considerations for OSX interfaces are the same as those for OSD
interfaces connected to an external router. However, if no external router is present
on that network, see the following guidelines.

Guidelines:

v Implement the intraensemble data network as a flat network, meaning that all
addresses that are reachable through the intraensemble data network are in the
same subnet (or IPv6 prefix) as that of the intraensemble data network. In this
configuration, a single route (static or dynamic) to this subnet enables all
addresses on the intraensemble data network to be reached.

v Static routing might be appropriate in the following cases:
– The intraensemble data network is implemented as a flat network, in which

case a single static route over the OSX interface to the subnet of the
intraensemble data network can reach all destinations in the intraensemble
data network.

– A z/OS host will not be routing traffic between external networks and the
intraensemble data network, so you do not want to advertise the
intraensemble subnet addresses to the external network.
Tip: If you are using static routing over the intraensemble data network and
there are destination IP addresses on the IBM zEnterprise BladeCenter
Extension (zBX) that are not part of the intraensemble subnet, you need to
define static routes to those destination IP addresses on the intraensemble
network using OSX interfaces.

v Dynamic routing might be appropriate in the following cases:

508 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|

|

|

|
|
|

|
|

|
|

|
|

|
|
|

|
|
|

|
|

|
|
|
|

|

|
|
|
|
|

|

|
|
|
|

|
|
|

|
|
|
|
|

|

– You want destinations on the intraensemble subnet to be reachable from
outside the ensemble, and therefore want to advertise the intraensemble data
network addresses to the external network.

– There are destination IP addresses on the zBX that are not part of the
intraensemble subnet, and you do not want to have to code individual static
routes to reach them (for example, if other hosts on the intraensemble data
network have VIPA addresses that are not in the intraensemble subnet).

OMPROUTE considerations for the intraensemble data network
In an ensemble environment with dynamic routing where a z/OS stack is the
router for the ensemble, you can control whether the subnet of the intraensemble
data network is advertised.
v If you want to prevent external traffic from being routed to this VLAN, then do

one of the following so that OMPROUTE does not advertise the intraensemble
subnet:
– Define the OSX interface to OMPROUTE using an INTERFACE statement or

IPV6_INTERFACE statement, and do not enable the
IMPORT_DIRECT_ROUTES function of AS boundary routing. This function is
disabled by default, so ensure that the IMPORT_DIRECT_ROUTES parameter
of the AS_BOUNDARY_ROUTING statement or the
IPV6_AS_BOUNDARY_ROUTING statement is not set to YES.

– Do not define the OSX interface to OMPROUTE, and ensure that
GLOBAL_OPTIONS IGNORE_UNDEFINED_INTERFACES is configured to
OMPROUTE.

You might also want to install IPSec filter rules to restrict which traffic can flow
on this network.

v If you want to allow external traffic to be routed to this VLAN, then define the
OSX interface to OMPROUTE as an OSPF_INTERFACE or
IPV6_OSPF_INTERFACE, and code a nonzero value for the ROUTER_PRIORITY
parameter on the interface. As long as no other hosts on that OSX VLAN have
coded their interfaces as OSPF interfaces, then OMPROUTE advertises the
subnet (or IPv6 prefixes) of the intraensemble data network into the OSPF
network. This advertisement makes all addresses that fall into the intraensemble
subnet (or IPv6 prefixes) reachable using OSPF. In addition, if you have a subset
of hosts on the intraensemble data network with VIPAs that are not in the
intraensemble subnet, which you want to be able to reach over the
intraensemble data network, you can define the OSX interfaces on those hosts as
OSPF interfaces; OMPROUTE communicates with them (and only them) and can
route to their VIPAs, while still preserving the ability to route to the other hosts
by subnet only.

Tip: These definitions apply per interface, so you could implement advertising on
one VLAN while not advertising on a different VLAN attached to the same z/OS
router.

Sysplex distributor considerations for the intraensemble data network
In a sysplex distributor configuration, if the client, sysplex distributor, and at least
one sysplex distributor target are all connected over the intraensemble data
network, then the client, sysplex distributor, and all potential sysplex distributor
targets must be connected to the same VLAN on the intraensemble data network.

Chapter 9. TCP/IP in an ensemble 509

|
|
|

|
|
|
|

|
|

|
|
|

|
|
|

|
|
|
|
|
|

|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|

|
|
|
|

Multilevel security and network access control considerations
In a multilevel secure environment, you should treat the intraensemble data
network and the OSX interfaces as any other data network with OSA-Express
access. However, the intranode management network and the OSM interfaces
require special considerations. For information about these additional
considerations, see Chapter 4, “Preparing for TCP/IP networking in a multilevel
secure environment,” on page 153.

If you are using network access control, the intraensemble data network and the
OSX interfaces are subject to the same network access control as any other data
network with OSA-Express access. However, all traffic to and from the intranode
management network over OSM interfaces is exempt from network access control,
and is instead subject to OSM access control. Only multicast addresses to which a
platform management application binds are subject to network access control.

510 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|

|
|
|
|
|
|

|
|
|
|
|
|

Part 2. Server applications

© Copyright IBM Corp. 2000, 2011 511

512 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Chapter 10. Network connectivity with an SNA network

The objective of this topic is to guide you through the steps required to implement:
v SNALINK LU0
v SNALINK LU6.2
v X.25 NPSI
v NCPROUTE

Before you configure:

Read and understand Chapter 2, “IP configuration overview,” on page 11. It covers
important information about data set naming and search sequences.

SNALINK LU0 environment
SNALINK allows TCP/IP to send and receive packets using SNA sessions instead
of dedicating physical network hardware (such as a channel-to-channel adapter or
channel connection to a 3745/46 Communication Controller).

Prior to NCP V7R3, NCP did not support cross-channel native IP transmission of
the transport PDUs associated with RIP traffic. NCP expects these PDUs to be
carried in SNA frames. SNALINK is therefore still required for installations where
dynamic routing is performed with the NCP (via NCPROUTE). See z/OS
Communications Server: IP Configuration Reference for more information.

SNALINK allows an installation to multiplex SNA and IP traffic over the same I/O
subchannels, rather than requiring separate subchannels dedicated to VTAM and
TCP/IP. While such multiplexing capability may be desirable at some installations,
the native TCP/IP CTC and 3745/46 device drivers will likely outperform
SNALINK connections. Interaction with the SNALINK address space is very
CPU-intensive, and is not required with the native TCP/IP CTC and 3745/46
device drivers. (See the z/OS Communications Server: IP Configuration Reference for
configuration information.) It is therefore important to weigh the multiplexing
capability that SNALINK provides against its performance cost, in determining
whether to use SNALINK or the native TCP/IP CTC or 3745/46 device drivers.

Understanding the SNALINK environment
The SNALINK environment interfaces between the TCP/IP environment’s
SNAIUCV driver and the customer’s SNA network. SNALINK communicates with
one or more instances of SNALINK at remote nodes, using the SNA LU type 0
protocol. See Figure 50 on page 514 for a description of the SNALINK environment
interfaces.

© Copyright IBM Corp. 2000, 2011 513

Each SNALINK environment can communicate with up to 9999 SNALINKs
simultaneously. The number of connections is determined by the parameters you
pass to the SNALINK cataloged procedure. The default is 6 sessions running in
dual mode for a total of 3 SNALINKs.
v When operating in single mode, SNALINK opens one full duplex session.
v When operating in dual mode, SNALINK opens two System Network

Architecture (SNA) sessions for each remote logical unit (LU) with which it
communicates, one for sending and one for receiving.

Configuring SNALINK LU0
Steps to configure SNALINK LU0:

1. Specify configuration statements in hlq.PROFILE.TCPIP.
2. Update the SNALINK cataloged procedure.
3. Define the SNALINK application to VTAM.
4. Configure the program properties table (PPT) for SNALINK LU0.

Step 1: Specify configuration statements in hlq.PROFILE.TCPIP
The following topics describe the changes you must make to your TCPIP address
space configuration data set (hlq.PROFILE.TCPIP).

Defining SNA DLC links: SNA DLC links are point-to-point and require
DEVICE and LINK statements in the configuration data set. The DLC link
constitutes a separate network, even though it includes only two hosts. To define a
link, each host to which the DLC link is attached requires:
v A pair of SNA LU0 DEVICE and LINK statements
v A HOME statement
v A BSDROUTINGPARMS or GATEWAY or BEGINROUTES statement

SNA DLC links are defined in one of two ways:

SNA LU0

SNA LU0

MVS MVS

VM

TCPIP #1 TCPIP #2

IUCV IUCV

IUCV

SNALINK #1 SNALINK #2

SNALINK #3

TCPIP #3

Figure 50. SNALINK environment interfaces

514 z/OS V1R12.0 Comm Svr: IP Configuration Guide

v By unique network or subnetwork numbers, if the hosts to which they connect
are not attached to other networks.

v By the IP address of the hosts to which they connect, if the hosts are attached to
other networks.

You usually have to assign a unique network or subnetwork number to the
SNALINK. If the link connects 2 hosts that also have other networks attached to
them, the DLC link does not need its own subnetwork number. Figure 51
illustrates how to define an SNA DLC link if the 2 hosts are connected to other
networks in the following way:
v Host A and Host B are connected by SNA DLC
v Host A is also connected to a token ring, 193.1.1
v Host B is also connected to a token ring, 193.1.2
v Host A’s home address on its token ring is 193.1.1.1
v Host B’s home address on its token ring is 193.1.2.1

Host A’s hlq.PROFILE.TCPIP could contain:
DEVICE LCS1 LCS BA0
LINK TR1 IBMTR 0 LCS1
DEVICE SNALU0 SNAIUCV SNALINK LU000000 SNALINKA
LINK SNAIUCV1 SAMEHOST 1 SNALU0
HOME

193.1.1.1 TR1
193.1.1.2 SNAIUCV1

GATEWAY
; Network First hop Link Packet size Subnet mask

193.1.1.0 = TR1 2000 0
193.1.2.0 = SNAIUCV1 2000 0

Host B’s hlq.PROFILE.TCPIP could contain:
DEVICE LCS2 LCS BE0
LINK TR1 IBMTR 0 LCS2
DEVICE SNALU0 SNAIUCV SNALINK LU000001 SNALINKA
LINK SNAIUCV1 SAMEHOST 1 SNALU0
HOME

193.1.2.1 TR1
193.1.2.2 SNAIUCV1

GATEWAY

SNA
Host A

193.1.2.1

193.1.2193.1.1

193.1.1.1

Host BHost A

Figure 51. SNA DLC link

Chapter 10. Network connectivity with an SNA network 515

; Network First hop Link Packet size Subnet mask
193.1.2.0 = TR1 2000 0
193.1.1.0 = SNAIUCV1 2000 0

Notes:

1. The lu_name must be different on each host. In the example, the lu_name for
Host A is LU000000. The lu_name for Host B is LU000001.

2. In the example, the lu_name is the remote or partner LU.

Hosts A and B are addressed by their token-ring home addresses, even if the
packets reach them through the SNA DLC link.

If Host B had no other network attached to it, you would have to assign a separate
subnetwork number to the SNA DLC link. Even in this case, Host A does not need
a separate home address for its SNA link, because it can be addressed by its
token-ring home address. Host B’s only home address is the home address for the
SNA link.

Note: If you plan to run a network-monitoring protocol that requires each subnet
to have its own subnet number, you can assign a separate subnet network
number to the DLC link.

Defining NCPROUTE and 3745 LAN attachments: If your TCP/IP configuration
supports NCPROUTE or 3745 Communications Controller Ethernet or token-ring
links, you must do the following:
v Match the lu_name on the DEVICE statement to the LU statement in NCST

section of your NCP generation.
The following example shows the LU name A04TOLU1 defined in the
hlq.PROFILE.TCPIP DEVICE statements and in the NCP generation.

DEVICE SNA1LINK SNAIUCV SNALINK A04TOLU1 SNAL1STC
LINK SNALINK SAMEHOST 1 SNA1LINK

HOME
9.67.116.66 SNALINK

GATEWAY
; Network First hop Link Packet size Subnet mask

9.67.116.65 = SNALINK 2000 HOST

START SNA1LINK

* NCST IP INTERFACES**

A04NCSTG GROUP NCST=IP,LNCTL=SDLC,VIRTUAL=YES
A04NCSTL LINE LINEFVT=CXSXFVT,PUFVT=CXSXFVT,LUFVT=(CXSXFVT,CXSXFVT),LIN*

ECB=CXSXLNK
A04NCSTP PU VPACING=0,PUTYPE=2,PUCB=CXSP0000S
*
A04TOLU1 LU INTFACE=(NCSTALU1,1492),REMLU=SNALKLU1,LUCB=(CXSXL0000,CXSS0*

000),LOCADDR=1

v Match the remote LU name SNALKLU1 in the NCP generation to the APPLID in
the SNALINK cataloged procedure parameters and in the VTAM APPL
definition.
//SNALINK PROC MODULE=SNALINK,TCPID=’TCPV3’,APPLID=’SNALKLU1’
//SNALINK EXEC PGM=&MODULE<REGION=$4096K,TIME=1440,

PARM=’&TCPID &APPLID C7 6 0003 SINGLE’

516 z/OS V1R12.0 Comm Svr: IP Configuration Guide

For additional information on configuring these links, see z/OS Communications
Server: IP Configuration Reference.

Step 2: Update the SNALINK cataloged procedure
Update the SNALINK cataloged procedure by copying the sample in
SEZAINST(SNALPROC) to your system or recognized PROCLIB and modifying it
to suit your local conditions. Specify SNALINK parameters and change the DD
statements, as required. See z/OS Communications Server: IP Configuration Reference
for more information about the SNALINK cataloged procedure.

Step 3: Define the SNALINK application to VTAM
In dual mode, SNALINK opens 2 SNA sessions for each remote logical unit with
which it communicates: one for sending and one for receiving. In single mode,
SNALINK opens one full-duplex session.

Figure 52 is an example of a typical VTAM APPL statement for SNALINK. The
application identifier (SNALKB03 in this example) must match the APPLID
specified in the SNALINK cataloged procedure parameters.

Note: SRBEXIT must be YES.

See z/OS Communications Server: SNA Resource Definition Reference more information
about defining VTAM applications.

VTAM considerations:

v Each connection requires 100KB of virtual storage.
v SNALINK provides its own BIND parameters, so it does not assume or require

any particular LOGMODE entries.
v The EAS value should be two times the number of maximum sessions passed to

the SNALINK cataloged procedure.
v SRBEXIT=YES.
v You might have to specify pacing values (VPACING). Consult your VTAM

network administrator for further details.
v For max_ru_size, be sure to consider the size of the TH, RH, and RU portions. If

the maximum size PIU exceeds MAXRU, the NCP issues a negative response
with sense 800A0000 (PIU too long). The definition used in NCP and SNALINK
must be such that MAXRU is at least 29 bytes less than MAXDATA. See z/OS
Communications Server: SNA Network Implementation Guide for more information
on defining the MAXDATA, MAXBFRU, and UNITSZ operands.

Step 4: Configure PPT for SNALINK LU0
To avoid startup problems, ensure that the PPT entry for SNALINK LU0
(PGM=SNALINK) is configured with the required program properties. For more
information, see z/OS MVS Initialization and Tuning Reference.

SNALKB03 APPL ACBNAME=SNALKB03, X
AUTH=(ACQ,VPACE), X
SRBEXIT=YES, X
EAS=12, X
PARSESS=YES, X
SONSCIP=YES, X
VPACING=0

Figure 52. APPL statement for SNALINK

Chapter 10. Network connectivity with an SNA network 517

Stopping and starting SNALINK
If necessary, you can immediately retry a session that is waiting for the retry delay
to expire by stopping and starting the SNALINK LU0 interface.

To stop SNALINK and close all connections, use the STOP command on the
operator’s console. For example, if SNALPROC was the name of the cataloged
procedure used to start SNALINK, you enter:
STOP SNALPROC

You can also stop SNALINK with the HALT parameter on the MODIFY command.
See “Controlling the SNALINK LU0 interface with the MODIFY command” on
page 520.

SNALINK can be started by:
v Restarting the TCPIP address space if you have included the SNALINK

procedure in the AUTOLOG statement in the hlq.PROFILE.TCPIP data set.
v Issuing START procname at the command console (where procname is the name of

the cataloged procedure used to start the SNALINK LU0 interface).

For example, to restart SNALPROC, enter
START SNALPROC

Sample console
The example in Figure 53 on page 519 and the accompanying information illustrate
SNALINK operation.

The line number notations in the example have been added for clarity. They do not
appear in the console output.

518 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Line number Description

Lines 1 and 2 SNALINK displays its startup information from its
command line parameters, which are customized
as described in z/OS Communications Server: IP
Configuration Reference. The maximum RU size and
all other values are displayed in hexadecimal.

Lines 3 and 4 The TCPIP address space, TCPIPB, issues a DLC
CONNECT to establish a session with the remote
LU SNALKC04. SNALKC04 is higher in the
collating sequence than the local LU name
SNALKB03. Consequently, SNALKB03 takes the
passive role in connecting to SNALKC04, and waits
for SNALKC04 to establish a session.

Lines 5 and 6 TCP/IP issues another DLC CONNECT to
establish a session with SNALKA04. In this case,
SNALKA04 is lower in the collating sequence.
Consequently, SNALKB03 takes an active role in
connecting to SNALKA04.

Lines 7 and 8 The session establishment attempt to SNALKA04
has failed, as indicated by the (nonzero) return
code and the sense information printed.

Lines 9 through 12 Thirty seconds later, TCP/IP again tries to connect
to SNALKA04.

Lines 13 and 14 SNALINK receives a BIND request from
SNALKC04. SNALINK calls the resulting session

Line 1 | Init complete, APPLID SNALKB03, TCPIP id TCPIPB
Line 2 | Maximum RU size is 00000600
Line 3 SNALKC04 | DLC path 00000001 pending
Line 4 SNALKC04 | Ready to accept bind from remote LU
Line 5 SNALKA04 | DLC path 00000002 pending
Line 6 SNALKA04 | Sending BIND request for SNA send session
Line 7 SNALKA04 | OPNDST CHECK err. R15 00000004 R0 00000010 RTNCD 00000010 FDBK2 00000000
Line 8 SNALKA04 | OPNDST sense: SSENSEI,SSENSMI,USENSEI: 00000000
Line 9 SNALKA04 | DLC path 00000002 pending
Line 10 SNALKA04 | Sending BIND request for SNA send session
Line 11 SNALKA04 | OPNDST CHECK err. R15 00000004 R0 00000010 RTNCD 00000010 FDBK2 00000000
Line 12 SNALKA04 | OPNDST sense: SSENSEI,SSENSMI,USENSEI: 00000000
Line 13 SNALKC04 | Received BIND request for SNA receive session
Line 14 SNALKC04 | Sending BIND request for SNA send session
Line 15 SNALKC04 | SNA receive session established
Line 16 SNALKC04 | SNA send session established
Line 17 SNALKC04 | Accepting DLC path 00000001
Line 18 SNALKA04 | DLC path 00000002 pending
Line 19 SNALKA04 | Sending BIND request for SNA send session
Line 20 SNALKA04 | SNA send session established
Line 21 SNALKA04 | Accepting DLC path 00000002
Line 22 SNALKA04 | Received BIND request for SNA receive session
Line 23 SNALKA04 | SNA receive session established
Line 24 SNALKC04 | NSEXIT CLEANUP request for receive session
Line 25 SNALKC04 | RECEIVE CHECK err. R15 00000004 R0 0000000C RTNCD 0000000C FDBK2 0000000B
Line 26 SNALKC04 | RECEIVE sense: SSENSEI,SSENSMI,USENSEI: 00000000
Line 27 SNALKC04 | DLC path 00000001 pending
Line 28 SNALKC04 | Ready to accept bind from remote LU
Line 29 STOP SNALINK
Line 30 | Received STOP command, shutting down

Figure 53. SNALINK console example

Chapter 10. Network connectivity with an SNA network 519

the receive session, because it is used only to send
data from SNALKC04. Now that the active end has
initiated communication, SNALKB03 as the passive
end, sends a BIND request to establish a send
session.

Lines 15 through 17 The send and receive sessions are fully established.
Establishment of the send session causes SNALINK
to accept the corresponding DLC path.

Lines 18 through 23 TCP/IP again tries to connect to SNALKA04. This
time it is successful (success is indicated by no
nonzero return codes).

Lines 24 through 26 SNALKC04 terminates its sessions, and various
error messages result.

Lines 27 and 28 Thirty seconds later, TCP/IP again tries to establish
communication with SNALKC04. As in lines 13
and 14, SNALKB03 is the passive partner.

Lines 29 and 30 The operator issues a STOP SNALINK command,
which causes SNALINK to stop. All DLC paths
and SNA sessions are ended.

Verifying connection status using Netstat DEVLINKS/-d
The DLC connect protocol between TCP/IP and SNALINK causes the status of the
SNAIUCV device, reported by Netstat DEVLINKS/-d, to reflect the status of the
SNA sessions to the remote LU. See z/OS Communications Server: IP System
Administrator's Commands for more information on the Netstat command.

Controlling the SNALINK LU0 interface with the MODIFY
command

The following command would pass parameters to a SNALINK LU0 address space
started with a procedure named SNLK12.TCPSETUP.
MODIFY SNLK12.TCPSETUP,HALT

SNALINK LU6.2
The SNALINK LU6.2 cataloged procedure runs a VTAM application program
called SNALNK62, which is an interface between the TCPIP address space and the
SNA network. SNALNK62 uses SNA LU type 6.2 sessions to pass the TCP/IP data
to or from SNALNK62 devices running on other hosts. Examples of SNALNK62
devices include an OS/2 workstation running TCP/IP for OS/2 or a host running
TCP/IP for MVS.

Configuring SNALINK LU6.2
Steps to configure SNALINK LU6.2:

1. Specify DEVICE and LINK statements in hlq.PROFILE.TCPIP.
2. Update the SNALINK LU6.2 cataloged procedure.
3. Define the SNALINK LU6.2 application to VTAM.
4. Update the SNALINK LU6.2 configuration data set.

520 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|

|

Step 1: Specify DEVICE and LINK statements in
hlq.PROFILE.TCPIP
You must update the hlq.PROFILE.TCPIP data set to include a DEVICE and LINK
statement for each DLC connection to be established between the main TCPIP
address space and the SNALINK LU6.2 address space.

Step 2: Update the SNALINK LU6.2 cataloged procedure
Update the SNALINK LU6.2 cataloged procedure by copying the sample in
SEZAINST(LU62PROC) to your system or recognized PROCLIB and modifying it
to suit your local conditions. No system parameters are required for the SNALINK
LU6.2 address space.

The DD statements in the cataloged procedure should be defined as follows:

DD Name Description
SYSTCPD TCPIP.DATA configuration data set
LU62CFG SNALINK LU6.2 configuration data set
SYSPRINT Runtime diagnostic or trace output
SYSUDUMP User abend dump output (optional)

See “Resolver configuration files” on page 759 for information on data set search
sequences.

Step 3: Define the SNALINK LU6.2 application to VTAM
SNALINK LU6.2 opens two SNA LU type 6.2 sessions with each destination node;
one for sending and one for receiving. If a destination node supports parallel SNA
LU type 6.2 sessions (PARSESS=YES), the two sessions use the same remote logical
unit; otherwise, two remote logical units are used. In either case, SNALINK LU6.2
uses a single local logical unit that must support parallel sessions.

The SNALINK LU6.2 address space must be defined to VTAM as an SNA LU type
6.2 application program. The following APPL statement defines a SNALINK LU6.2
application to VTAM.

Note: SRBEXIT must be NO.

See z/OS Communications Server: SNA Resource Definition Reference for further
information about defining VTAM applications.

The LOGMODE table entry specified by the APPL DLOGMOD parameter should
have the following form:
LU62MODE MODEENT LOGMODE=LU62MODE,FMPROF=X’13’,TSPROF=X’07’, *

PRIPROT=X’B0’,SECPROT=X’B0’,COMPROT=X’D0B1’, *
RUSIZES=X’8585’,ENCR=B’0000’, *
PSERVIC=X’060200000000000000000300’

LU62APPL APPL ACBNAME=LU62APPL, *
PRTCT=QWERTY, *
AUTH=(ACQ,VPACE), *
SRBEXIT=NO, *
EAS=12, *
PARSESS=YES, *
SONSCIP=YES, *
APPC=YES, *
DLOGMOD=LU62MODE, *
VPACING=0

Figure 54. APPL statement for SNALINK LU6.2

Chapter 10. Network connectivity with an SNA network 521

See z/OS Communications Server: SNA Customization for more information about
defining log mode tables and z/OS Communications Server: SNA Programming for
information on PSERVIC values.

Step 4: Update the SNALINK LU6.2 configuration data set
Customize the SNALINK LU6.2 configuration data set by copying the sample
provided in SEZAINST(LU62CFG) to your system or recognized PROCLIB and
modifying it to suit your local conditions. Add or change the configuration
statements as required. Be sure the //LU62CFG statement in the cataloged
procedure points to this data set. See z/OS Communications Server: IP Configuration
Reference for more information about parameters.

Sample console
The example in Figure 55 shows the messages that are expected when the
SNALINK LU6.2 address space is started and a network connection is established.

The following list explains the MVS system console messages on SNALINK LU6.2
address space startup as shown in Figure 55.

�1� The SNAL621A address space has been started.

�2� The SNALINK LU6.2 configuration data set for the SNAL621A address
space has been successfully parsed.

�3� The SNAL621A address space displays its local VTAM application LU and
the TCP/IP address space name to which it will connect.

�4� The SNAL621A address space establishes a network connection through
the VTAM API.

�5� The SNAL621A address space establishes a DLC connection with its
TCP/IP address space.

X.25 NCP Packet Switching Interface
The X.25 NCP Packet Switching Interface (NPSI) server runs a VTAM application
program called XNX25IPI, which is the interface between the TCPIP address
space’s DLC driver and your X.25 network. XNX25IPI communicates with the X.25
NCP Packet Switching Interface in a front-end IBM 37xx Communications
Controller.

Large scale X.25 network applications often require multiple physical lines to the
network switch for increased capacity and reliability. You can configure the X.25
NPSI server to support multiple lines as a group, rather than individually. In this
configuration, the collection of lines is assigned a single address called a hunt group

S SNAL621A
$HASP100 SNAL621A ON STCINRDR
$HASP373 SNAL621A STARTED
�1�IEF403I SNAL621A - STARTED - TIME=15.26.03
�2�EZA5927I LU62CFG : NO ERRORS DETECTED - INITIALIZATION WILL CONTINUE
�3�EZA5932I INITIALIZATION COMPLETE - APPLID: SNAL621A TCP/IP: TCPCS
�4�EZA5935I SEND CONVERSATION ALLOCATED FOR 9.67.22.2
�5�EZA5933I LINK SNALU62L OPENED
EZZ4313I INITIALIZATION COMPLETE FOR DEVICE SNALU621
�4�EZA5936I RECEIVE CONVERSATION ALLOCATED FOR 9.67.22.2

Figure 55. Sample MVS system console messages on SNALINK LU6.2 address space
startup

522 z/OS V1R12.0 Comm Svr: IP Configuration Guide

address. Incoming X.25 calls are distributed among the lines in either rotary or
traffic balancing fashion, depending on the services offered by the X.25 network
provider.

For information about improving the performance of the X.25 NPSI network, see
the options on the PORT statement and GATEWAY statement in the
hlq.PROFILE.TCPIP and the explanation provided in the TCP/IP: Performance Tuning
Guide.

Configuring X.25 NPSI
This topic describes how to configure the X.25 NPSI server.

Steps to configure the X.25 NPSI server:

1. Specify X.25 configuration statements in hlq.PROFILE.TCPIP.
2. Update the X.25 NPSI cataloged procedure.
3. Update the X.25 NPSI server configuration data set.
4. Define the X.25 NPSI configuration.
5. Define the X.25 NPSI application to VTAM.
6. Define VTAM Switched Circuits.

If you want to run the X.25 NPSI cataloged procedure in a different domain than
the X.25 NPSI communication controller, see z/OS Communications Server: IP
Configuration Reference.

For information about operating the X.25 NPSI server with the MODIFY command,
see z/OS Communications Server: IP Configuration Reference.

Step 1: Specify X.25 configuration statements in
hlq.PROFILE.TCPIP
To configure the hlq.PROFILE.TCPIP data set for X.25 NPSI, include appropriate
DEVICE, LINK, HOME, GATEWAY, and START statements. The following example
shows the statements that would correspond with the other X.25 samples.
;
DEVICE X25DEV X25NPSI TCPIPX25
LINK X25LINK SAMEHOST 1 X25DEV
;
HOME

199.005.058.23 X25LINK
;
GATEWAY
;
; Network First hop Link name Packet size Subnet mask Subnet value

192.005 = X25LINK 2000 0.0.255.0 0.0.58.0
;
START X25DEV
;

Note: Only one DEVICE and LINK statement per TCPIPX25 address space is
allowed.

Step 2: Update the X.25 NPSI cataloged procedure
Update the X.25 NPSI cataloged procedure by copying the sample provided in
SEZAINST(X25PROC) to your system or recognized PROCLIB and modifying it to
suit your local conditions.

Change the data set names as needed:

Chapter 10. Network connectivity with an SNA network 523

v See “Resolver configuration files” on page 759 for data set search sequence
information.

v Modify the //X25IPI DD statement to point to your X.25 configuration data set.

Step 3: Update the X.25 NPSI server configuration data set
A sample configuration data set provided in SEZAINST(X25CONF) gives examples
of how to define a public network connection, a Defense Data Network connection,
and private point-to-point connection to a router. Copy this sample to the data set
pointed to by the //X25IPI DD statement in your X.25 NPSI cataloged procedure.
Update this sample to define your X.25 connections using the statements listed in
the z/OS Communications Server: IP Configuration Reference.

Each connection must have a LINK and at least one DEST statement. You can
optionally define hunt groups, fast connects, and call handling options for each
link, and global options such as trace levels, when to clear inactive connections,
and the buffer size to use for IP datagrams. You can find complete syntax for each
of these statements in z/OS Communications Server: IP Configuration Reference.

Step 4: Define the X.25 NPSI configuration
Define the X.25 NPSI configuration according to the information in X.25 NPSI
Planning and Installation. The X.25 NPSI server supports use of the LOGAPPL
operand on the X25.MCH definition in the X.25 NPSI configuration to allow
automatic recovery. You can use either the Generalized Access to X.25 Transport
Extension (GATE) or Dedicated Access to X.25 Transport Extension (DATE).

IBM recommends using the X.25 NPSI GATE configuration which allows sharing
of an X.25 physical link and provides better error recovery. A sample is provided in
SEZAINST(NPSIGATE). NPSI GATE requires that you include the OPTIONS GATE
statement in the X.25 NPSI configuration data set after the LINK statement, as
shown in this portion of the X25CONF sample:
*
* NPSI MCH DTE Window Packet Logical
* LU Name DNIC Address Size Size Channels
* -------- ---- --------------- - ---- ---
Link XU024 PRIV 1 2 1024 2
Options GATE
*
* IP address X.25 DTE addr C.U.D.
* --------------- --------------- --------
Dest 192.5.57.2 2

Sites that need to use the X.25 NPSI DATE configuration can find a sample in PV
SEZAINST(NPSIDATE). See X.25 NPSI Host Programming for information about the
definitions and parameters used in these configurations.

The following example shows portions of the sample NPSI GATE configuration
(NPSIGATE). Ellipses (....) indicate code that has been omitted.
**

OPTIONS NEWDEFN=YES,USERGEN=X25NPSI
**
....
....
NPSIV32 BUILD ADDSESS=400, +

AUXADDR=800, +
ERLIMIT=16, +
NAMTAB=120, +
MAXSESS=250, +
USGTIER=5, +
BRANCH=8000, +

524 z/OS V1R12.0 Comm Svr: IP Configuration Guide

BFRS=104, BUFFER SIZE TO BE GENED +
CATRACE=(YES,255), CHAN.ADAPTER TRACE OPTION +
CSMSG=C3D9C9E340E2C9E340D4C5E2E2C1C7C540C6D6D940E2E24040+
40C2C340E3C5D9D4C9D5C1D3, +
CWALL=26, +
ENABLTO=30.0, +
ERASE=YES, +
LOADLIB=NCPLOAD, TARGET OF FINAL LINKEDIT +
LTRACE=8, LINES TRACED SIMULTANEOUSLY +
MAXSSCP=8, NUMBER OF CONCURRENT SSCP’S +
MODEL=3745, +
VERSION=V5R2.1, +
NEWNAME=NPSITCP, NAME OF NCP LOAD MODULE +
NUMHSAS=8, HOST SA IN CONCURRENT COMMUNICATION +
OLT=YES, ONLINE TERMINAL TEST +
PWROFF=YES, +
BACKUP=500, +
SALIMIT=511, +
SLODOWN=12, BUFFER SLOWDOWN THRESHOLD (PERCENT) +
SUBAREA=03, +
TRACE=(YES,100), ADDRESS TRACE OPTION IN CORE TABLE +
TYPGEN=NCP, +
TYPSYS=MVS, NCP TO BE GENERATED ON MVS +
TWXID=(E8D6E4C3C1D3D311,C2C9C7D5C3D7C3C1D3D325), +
VRPOOL=30, +
TRANSFR=32, +
NETID=NETA, +
X25.USGTIER=5, +
X25.IDNUMH=01, +
X25.MCHCNT=4, +
X25.MAXPIU=64K

....

....

*
* NPSI DEFINITIONS
*

X25XXX X25.NET CPHINDX=1, +

NETTYPE=1, +
DM=YES, +
OUHINDX=1

X25.VCCPT INDEX=1, +
MAXPKTL=128, +
VWINDOW=2

X25.OUFT INDEX=1

* Hunt group primary line 021 with fast connect *

HGRP01A X25.MCH ADDRESS=21, +

FRMLGTH=131, 128 byte packet + 3 byte header +
PKTMODL=8, +
ANS=CONT, +
LCGDEF=(0,16), 16 logical channels in group 0 +
MWINDOW=2, +
STATION=DTE, +
SPEED=9600, +
LCN0=NOTUSED, +
GATE=GENERAL, GATE +
LLCLIST=(LLC4), +
CONNECT=YES, Fast connect +
LOGAPPL=TCPIPX25, +
DBIT=NO, +
DIRECT=NO, +
SUBADDR=NO

X25.LCG LCGN=0
X25.VC LCN=(1,16), +

Chapter 10. Network connectivity with an SNA network 525

MAXDATA=1034, MAXDATA only with Fast connect! +
TYPE=SWITCHED, +
CALL=INOUT, +
OUFINDX=1, +
VCCINDX=1

* Hunt group secondary line 022 with fast connect *

HGRP01B X25.MCH ADDRESS=22, +

FRMLGTH=131, 128 byte packet + 3 byte header +
PKTMODL=8, +
ANS=CONT, +
LCGDEF=(0,16), 16 logical channels in group 0 +
MWINDOW=2, +
STATION=DTE, +
SPEED=9600, +
LCN0=NOTUSED, +
GATE=GENERAL, GATE +
LLCLIST=(LLC4), +
CONNECT=YES, Fast connect +
LOGAPPL=TCPIPX25, +
DBIT=NO, +
DIRECT=NO, +
SUBADDR=NO

X25.LCG LCGN=0
X25.VC LCN=(1,16), +

MAXDATA=1034, MAXDATA only with Fast connect! +
TYPE=SWITCHED, +
CALL=INOUT, +
OUFINDX=1, +
VCCINDX=1

* DDN line 023 *

DTE01 X25.MCH ADDRESS=23, +

FRMLGTH=131, 128 byte packet + 3 byte header +
PKTMODL=8, +
ANS=CONT, +
LCGDEF=(0,16), 16 logical channels in group 0 +
MWINDOW=2, +
STATION=DTE, +
SPEED=9600, +
LCN0=NOTUSED, +
GATE=GENERAL, GATE +
LLCLIST=(LLC4), +
LOGAPPL=TCPIPX25, +
CTCP=(00), paired with CUD list +
CUD0=(CC), incoming CUD selects CTCP +
DBIT=NO, +
DIRECT=NO, +
SUBADDR=NO

X25.LCG LCGN=0
X25.VC LCN=(1,16), +

TYPE=SWITCHED, +
CALL=INOUT, +
OUFINDX=1, +
VCCINDX=1

* Private line 024: DCE station to router *

DCE01 X25.MCH ADDRESS=24, 1024 byte packet + 3 byte header +

FRMLGTH=1027, +
PKTMODL=8, +
ANS=CONT, +
LCGDEF=(0,2), +
MWINDOW=2, +
STATION=DCE, +

526 z/OS V1R12.0 Comm Svr: IP Configuration Guide

SPEED=9600, +
LCN0=NOTUSED, +
GATE=GENERAL, +
LLCLIST=(LLC4), +
CTCP=(00), paired with CUD list +
CUD0=(CC), incoming CUD selects CTCP +
DBIT=NO, +
DIRECT=NO, +
SUBADDR=NO

X25.LCG LCGN=0
X25.VC LCN=(1,2), +

TYPE=SWITCHED, +
CALL=INOUT, +
OUFINDX=1, +
VCCINDX=1

X25.END

....
....
GENEND GENEND

Step 5: Define the X.25 NPSI application to VTAM
Define the X.25 NPSI VTAM application with an APPL statement in VTAMLST.
Following is an example of a VTAM APPL statement for X.25 NPSI.

VBUILD TYPE=APPL +
TCPIPX25 APPL ACBNAME=TCPIPX25, +

PRTCT=TCPX25, +
AUTH=(ACQ), +
PARSESS=YES, +
EAS=20

Step 6: Define VTAM switched circuits
X.25 NPSI switched virtual circuits (SVCs) appear to VTAM as switched links, 1

requiring a switched circuit definition of a physical unit (PU) and logical unit (LU)
for each SVC. The sample provided in SEZAINST(X25VSVC) shows the definitions
of a VTAM switched circuit corresponding to the sample X.25 NPSI GATE
configuration.

The definitions are associated with the SVCs by identifying numbers (IDNUMs)
created automatically during X.25 NPSI generation. The entries, in hexadecimal,
run in steps of 2, by default, in the opposite order of the MCH and SVC definitions
in the X.25 NPSI configuration.

Notes:

1. Permanent virtual circuits (PVCs) are not supported.
2. If you specify a local version of the z/OS UNIX table with the SSCPFM

operand, the table must not have an entry for message 10 (the welcome
message); otherwise, the X.25 NPSI server does not operate correctly.

Following is a sample SVC configuration data set (X25VSVC):
VBUILD TYPE=SWNET,MAXGRP=1,MAXNO=1

* Switched circuits for DDN line 023 (16 VCs, IDNUMS 006-024) *
* *
* COPYRIGHT = NONE. *

VP023001 PU ADDR=23,IDBLK=003,IDNUM=01024, +

1. Except when using fast connect, where they appear as leased lines to VTAM. For more information, see z/OS Communications
Server: IP Configuration Reference.

Chapter 10. Network connectivity with an SNA network 527

DISCNT=(YES,F),MAXDATA=1034,MAXPATH=1,PUTYPE=1, +
SSCPFM=USSNTO

VL023001 LU LOCADDR=0
VP023002 PU ADDR=23,IDBLK=003,IDNUM=01022, +

DISCNT=(YES,F),MAXDATA=1034,MAXPATH=1,PUTYPE=1, +
SSCPFM=USSNTO

VL023002 LU LOCADDR=0
VP023003 PU ADDR=23,IDBLK=003,IDNUM=01020, +

DISCNT=(YES,F),MAXDATA=1034,MAXPATH=1,PUTYPE=1, +
SSCPFM=USSNTO

VL023003 LU LOCADDR=0
VP023004 PU ADDR=23,IDBLK=003,IDNUM=0101E, +

DISCNT=(YES,F),MAXDATA=1034,MAXPATH=1,PUTYPE=1, +
SSCPFM=USSNTO

VL023004 LU LOCADDR=0
VP023005 PU ADDR=23,IDBLK=003,IDNUM=0101C, +

DISCNT=(YES,F),MAXDATA=1034,MAXPATH=1,PUTYPE=1, +
SSCPFM=USSNTO

VL023005 LU LOCADDR=0
VP023006 PU ADDR=23,IDBLK=003,IDNUM=0101A, +

DISCNT=(YES,F),MAXDATA=1034,MAXPATH=1,PUTYPE=1, +
SSCPFM=USSNTO

VL023006 LU LOCADDR=0
VP023007 PU ADDR=23,IDBLK=003,IDNUM=01018, +

DISCNT=(YES,F),MAXDATA=1034,MAXPATH=1,PUTYPE=1, +
SSCPFM=USSNTO

VL023007 LU LOCADDR=0
VP023008 PU ADDR=23,IDBLK=003,IDNUM=01016, +

DISCNT=(YES,F),MAXDATA=1034,MAXPATH=1,PUTYPE=1, +
SSCPFM=USSNTO

VL023008 LU LOCADDR=0
VP023009 PU ADDR=23,IDBLK=003,IDNUM=01014, +

DISCNT=(YES,F),MAXDATA=1034,MAXPATH=1,PUTYPE=1, +
SSCPFM=USSNTO

VL023009 LU LOCADDR=0
VP023010 PU ADDR=23,IDBLK=003,IDNUM=01012, +

DISCNT=(YES,F),MAXDATA=1034,MAXPATH=1,PUTYPE=1, +
SSCPFM=USSNTO

VL023010 LU LOCADDR=0
VP023011 PU ADDR=23,IDBLK=003,IDNUM=01010, +

DISCNT=(YES,F),MAXDATA=1034,MAXPATH=1,PUTYPE=1, +
SSCPFM=USSNTO

VL023011 LU LOCADDR=0
VP023012 PU ADDR=23,IDBLK=003,IDNUM=0100E, +

DISCNT=(YES,F),MAXDATA=1034,MAXPATH=1,PUTYPE=1, +
SSCPFM=USSNTO

VL023012 LU LOCADDR=0
VP023013 PU ADDR=23,IDBLK=003,IDNUM=0100C, +

DISCNT=(YES,F),MAXDATA=1034,MAXPATH=1,PUTYPE=1, +
SSCPFM=USSNTO

VL023013 LU LOCADDR=0
VP023014 PU ADDR=23,IDBLK=003,IDNUM=0100A, +

DISCNT=(YES,F),MAXDATA=1034,MAXPATH=1,PUTYPE=1, +
SSCPFM=USSNTO

VL023014 LU LOCADDR=0
VP023015 PU ADDR=23,IDBLK=003,IDNUM=01008, +

DISCNT=(YES,F),MAXDATA=1034,MAXPATH=1,PUTYPE=1, +
SSCPFM=USSNTO

VL023015 LU LOCADDR=0
VP023016 PU ADDR=23,IDBLK=003,IDNUM=01006, +

528 z/OS V1R12.0 Comm Svr: IP Configuration Guide

DISCNT=(YES,F),MAXDATA=1034,MAXPATH=1,PUTYPE=1, +
SSCPFM=USSNTO

VL023016 LU LOCADDR=0

* Switched circuits for private line 024 (2 VCs, IDNUMS 002-004) *

VP024001 PU ADDR=24,IDBLK=003,IDNUM=01004, +

DISCNT=(YES,F),MAXDATA=1034,MAXPATH=1,PUTYPE=1, +
SSCPFM=USSNTO

VL024001 LU LOCADDR=0
VP024002 PU ADDR=24,IDBLK=003,IDNUM=01002, +

DISCNT=(YES,F),MAXDATA=1034,MAXPATH=1,PUTYPE=1, +
SSCPFM=USSNTO

VL024002 LU LOCADDR=0

NCPROUTE
NCPROUTE is a server that provides an alternative to using the Network Control
Program (NCP) as a static host-independent IP router. NCPROUTE has the
following effects:
v NCP becomes an active RIP router on a TCP/IP network.
v NCP becomes responsive to SNMP route table queries.

Notes:

1. NCPROUTE requires NCP V7R1, or later.
2. NCPROUTE requires SNALINK LU0 when using NCP V7R3 or previous.
3. SNALINK and IP over CDLC is supported for ESCON, BCCA, and CADS

channels.
4. IP over CDLC can be used instead of SNALINK when using NCP V7R4, or

later.
5. If using RIP Version 2, NCPROUTE requires NCP V7R6, or later. Also, the NCP

generation definition must have VSUBNETS=YES specified on the BUILD
statement.

6. NCP versions V6R1 and V6R2 support static IP routing only. NCP uses these
static route tables to deliver datagrams over connected TCP/IP networks. NCP
V7R1 can be specified only as a host-dependent router and it requires the
NCPROUTE server to function as a RIP router.

7. If using NCPROUTE with SNALINK, IP over CDLC channels, and
OMPROUTE, you should customize the NCST interface metric on the NCP
client side for the SNALINK NCST connection so the routes will be less
preferred. This causes OMPROUTE to prefer routes from the IP over CDLC
interface over the ones from the SNALINK interface. To customize the interface
metric, see the interface metric option in “Step 8: Configure the NCPROUTE
gateways data set (Optional)” on page 544. Do the same for the SNALINK
interface on the MVS host side by customizing the metric in the
BSDROUTINGPARMS statement. RIP traffic will be carried over the IP over
CDLC interface, while transport PDUs (for example, Hello, Add Route Request,
Delete Route Request) will be carried over the SNALINK interface.

8. NCPROUTE does not support zero subnets.

NCPROUTE provides dynamic route table updates for one or more NCP clients
that have been generated as IP routers and have NCPROUTE specified as the
NCPROUTE server. NCPROUTE tables are updated periodically in the NCP client
based on updates sent by the NCPROUTE server. These updates reflect dynamic
changes in route states.

Chapter 10. Network connectivity with an SNA network 529

An NCPROUTE server at the host uses the Routing Information Protocol (RIP),
described in RFC 1058 (RIP version 1) and in RFC 1723 (RIP version 2). The same
routing protocols are used by OMPROUTE. NCPROUTE is implemented as a RIP
server operating on an MVS host connected to a RIP client in the NCP. Together
they provide the appearance to the TCP/IP network of an IP router using the RIP
protocol. The same client/server pair also provides SNMP agent support for
network management route table queries. RIP Versions 1 and 2 are currently
supported by NCPROUTE. For a brief description of RIP (Versions 1 and 2), see
Chapter 6, “Routing,” on page 255.

Understanding the NCPROUTE environment
The NCPROUTE server:
v Supports multiple host-attached, link-attached, and remote link-attached NCP

clients as illustrated in Figure 56
v Generates RIP datagrams for the NCP to send
v Maintains separate routing tables for each NCP client
v Generates SNMP route table responses for each NCP SNMP agent

The client NCP unit appears as an active router to other RIP routers on the
network. Multiple NCP clients can connect to the same NCPROUTE server. Each
NCP appears as an IP router to the rest of the network. Each NCP client must have
one or more LU0 sessions established with SNALINK. One LU0 session per client
is used as the primary session, with the remaining sessions serving as backups.

Figure 56 illustrates the different ways the NCPROUTE server can support NCP
clients. NCP3 and NCP4 are host-attached NCP clients, NCP5 and NCP6 are
link-attached NCP clients, and NCP1 and NCP2 are remote link-attached NCP
clients.

MVS

3172

NCP3NCP2NCP1 NCP4

NCP6

NCP5

NCPROUTE

Figure 56. NCPROUTE environment

530 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Server requirements
NCPROUTE processes RIP and SNMP datagrams addressed to all attached NCP
units, generates datagrams for the NCP units, and maintains the state of each NCP
unit's routing tables.

SNMP support is limited to route table queries. Queries are made to the NCP,
which sends the request to the NCPROUTE server for processing.

NCPROUTE operation
An NCP's IPOWNER statement defines the controlling host and the interface this
NCP client must use to reach the host. The NCP client initiates contact with
NCPROUTE by sending a datagram, known as a “Hello” message, to the
controlling host. It transmits this datagram on UDP port 580.

Note: The port number is generated in the NCP (using the UDPPORT keyword on
the IPOWNER statement) and configured in NCPROUTE.

The “Hello” message identifies the client NCP and determines which member from
the hlq.NCPROUTE.GATEWAYS partitioned data set to use for this NCP's route
table. Any valid MVS data set name can be used for the gateways data set.

The NCP client then sends a list of its inactive links to NCPROUTE. NCPROUTE
uses additional routes defined for this NCP in the NCPROUTE gateways data set,
as defined in the NCPROUTE profile. It also uses the inactive links provided
dynamically by the NCP to build the current route table for this NCP. The
following process is repeated for each NCP that has been generated to act as a RIP
router:
1. A RIP packet arrives at the NCP client from a foreign router.
2. The NCP client sends this datagram to the NCPROUTE server.
3. The NCPROUTE server processes the RIP packet.
4. The NCPROUTE server creates a RIP update for an NCP client.
5. This update is sent to the NCP client.
6. The NCP client transmits the datagram to the network.

NCPROUTE sends route table updates to each NCP client every 30 seconds. After
a client has been activated, updates must be supplied over each of its interfaces
every 30 seconds. The NCPROUTE server creates these updates and sends them to
the NCP client along with the IP addresses of other RIP routers that the NCP client
should send them to.

At the same time, adjacent RIP routers are providing periodic updates every 30
seconds to NCPROUTE. These updates are sent by the NCP client to the
NCPROUTE server, where they are processed, and the results are reflected in
future updates back to the NCP client.

The NCP client sends all SNMP and RIP datagrams to the NCPROUTE server for
processing. The NCPROUTE server provides RIP packets and SNMP replies to the
NCP client to send to their final destination.

NCPROUTE gateways:

Passive RIP route: Information about passive routes is put in NCP’s and
NCPROUTE’s routing tables. A passive entry in NCPROUTE’s routing table is
used as a placeholder to prevent a route from being propagated and from being

Chapter 10. Network connectivity with an SNA network 531

overwritten by a competing RIP route. With the exception of directly-connected
passive routes, passive routes are not propagated; they are known only by this
router.

Using passive routes can create routing loops, so care must be taken when creating
them.

Do not define passive routes such as these:
v A to C is via B.
v B to C is via A.

Passive routes should be used when adding routes where the host or network is
not running RIP. Passive routes should also be used when adding a default route,
because this is the only way to prevent a route from timing out.

External RIP route: External routes are managed by other protocols, for example,
the External Gateway Protocol (EGP). NCPROUTE needs to know not to interfere
with these routes and not to delete them.

An external entry exists in the NCPROUTE routing table as a place holder to
prevent a route from being overwritten by a competing RIP route. External routes
are not propagated. NCPROUTE does not manage an external route. Therefore,
NCPROUTE only knows that there is an existing route to the host or network and
that is the route known by NCP.

External routes should be used when the local machine is running a non-RIP
routing protocol that dynamically changes the TCP/IP routing tables. The remote
machine does not need to run any routing protocol, since the only concerns are
how to route traffic from the local machine to the remote machine, and how to
prevent multiple routing protocols from interfering with each other.

RIP route advertising rules:

Note: RIPv1 and RIPv2 protocols are mutually exclusive; you cannot run RIPv1
and RIPv2 simultaneously.

Table 26 illustrates the differences between routing rules on the basis of RIP
version.

Table 26. RIP route advertising rules

Version2 Advertised
destination
route1

Same
subnet as
interface

Different
network
from
interface
with
same
subnet
mask

Same
network as
interface
regardless
of subnet
mask

Different
network
from
interface

Same
supernet
as
interface

Different
supernet
from
interface

RIPv1 Host Yes3 Yes3 Yes3 Yes3

Subnet No Yes No No

Network No Yes

Supernet

Default Yes3

532 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Table 26. RIP route advertising rules (continued)

Version2 Advertised
destination
route1

Same
subnet as
interface

Different
network
from
interface
with
same
subnet
mask

Same
network as
interface
regardless
of subnet
mask

Different
network
from
interface

Same
supernet
as
interface

Different
supernet
from
interface

RIPv2 Host Yes3 Yes3 Yes3 Yes3 Yes3 Yes3

Subnet No Yes Yes Yes Yes Yes

Network No Yes No Yes

Supernet No Yes No Yes

Default Yes5

Notes:

1. According to RIP design, route advertising relies on network-specific routes
because they are the lowest common denominator. The network-specific routes
consist of supernet, network, and subnet routes. The advertising of host specific
routes is optional.

2. RIPv1 is the default setting for the RIP version. To set to RIPv2, specify the
RIP2 parameter in NCPROUTE Profile and/or on interface options in the
NCPROUTE Gateways data set.

3. The optional host specific routes are allowed to be advertised outside networks,
and they are advertised in addition to the network specific routes. The option is
enabled when the system -h parameter (or SUPPLY HOSTS option in
NCPROUTE Gateways data set) is specified.

4. Although it is possible to advertise only the host specific routes using the RIP
filters, doing so creates network unreachable problems when some routers in
the network do not support the host specific routes. These routers rely on
network-specific routes.

5. A default route has a network number of zero and is usually advertised over
all network interfaces.

6. It does not matter whether the advertised route is VIPA or not. VIPA routes
follow the same advertising rules as the non-VIPA routes.

7. Routes that are subjected to RIP filters may not be advertised at all over certain
network interfaces.

NCPROUTE active gateways: Active gateways are treated as remote network
interfaces. Active gateways are routers that are running RIP, but are reached
through a medium that does not allow broadcasting or multicasting and is not
point-to-point, for example, Hyperchannel. NCPROUTE normally requires that
routers be reachable by broadcast or multicast for non-point-to-point links or by
unicast addresses for point-to-point links. If the interface is neither, then an active
gateway entry can add the gateway to NCPROUTE's interface list. NCPROUTE
will treat the active gateway as a remote network interface. Note that the active
gateway must be directly connected.

Active gateways should be used when the foreign router is reachable over a
non-broadcast-capable, non-multicast-capable, and non-point-to-point network, and
is directly connected to the local host.

Chapter 10. Network connectivity with an SNA network 533

NCPROUTE communicates with active routes by unicast transmissions to the
gateway address. Routes are not added immediately to either NCPROUTE or the
NCP routing table. They are added and propagated normally when route
advertisements arrive from an active gateway. The sole effect of an active gateway
statement is to bypass the requirement for broadcast communication on
non-point-to-point links. Interfaces that are not broadcast, non-point-to-point, and
are not active gateways are assumed to be loopback interfaces to the local machine.
Also, while a route to an active gateway might timeout, the interface entry is never
removed. If transmissions resume, then the new routes will still be available to the
active gateways.

NCPROUTE gateways summary
Table 27 provides a list of NCPROUTE gateways and their characteristics.

Table 27. NCPROUTE gateways summary

Propagate Kernel NCPROUTE Timeout

Dynamic (1) Yes Yes Yes Yes

Passive No (2) Yes Yes No

External No No Yes No

Active Yes Yes Yes Yes

1 Dynamic routing is provided by NCPROUTE.

2 Except directly-connected passive routes. Directly-connected passive routes are
propagated to other network interfaces for network reachability. A directly-connected
passive route is one where the gateway address is one of the local interfaces in an NCP
client.

RIP input/output filters
The RIP input/output filters provide routing table manipulation and routing
control. The filters are provided by NCPROUTE and consist of:
v Route receiving (unconditional and conditional)
v Route noreceiving
v Route forwarding (unconditional and conditional)
v Route noforwarding
v Interface Supply switch
v Interface RIP On/Off switch
v Gateway noreceiving

For more information on these filters, see “Step 8: Configure the NCPROUTE
gateways data set (Optional)” on page 544.

Configuring NCPROUTE
Steps to configure NCPROUTE:

1. Specify configuration statements in hlq.PROFILE.TCPIP.
2. If using SNALINK, configure VTAM and SNALINK applications.
3. If using IP over CDLC, configure IP over CDLC DEVICE and LINK statements.
4. Update the NCPROUTE cataloged procedure.
5. Update hlq.ETC.SERVICES.
6. Configure the host-dependent NCP clients.
7. Configure the NCPROUTE profile data set for SNMP support and specification

of an NCPROUTE gateways data set (optional).

534 z/OS V1R12.0 Comm Svr: IP Configuration Guide

8. Configure the NCPROUTE gateways data set for each NCP client (optional).
9. If OMPROUTE is not used, define a directly connected host route to each NCP

client.

Figure 57 shows the network addresses used in the configuration examples:

Step 1: Specify configuration statements in hlq.PROFILE.TCPIP
1. To have the NCPROUTE server started automatically when the TCPIP address

space is started, include the name of the member containing the NCPROUTE
cataloged procedure in the AUTOLOG statement in hlq.PROFILE.TCPIP:

AUTOLOG
NCPROUT

ENDAUTOLOG

2. To ensure that UDP port 580 is reserved for the NCPROUTE server, also add
the name of the member containing the NCPROUTE cataloged procedure to the
PORT statement in hlq.PROFILE.TCPIP:

PORT
580 UDP NCPROUT

MVS1 Host

Network Router

10.68.0.1

10.68.0.88

9.67.116.65

9.67.116.66

OMPROUTE

(optional)

RIP support

NCPROUTE

SNALINK

NCST

NCP1

Token

Ring

Ethernet

192.1.2.1

192.1.2.99

SOCPU1 SOCPU2

NCP2

12.1.1.98

12.1.1.99

13.1.1.99

MVS2 Host

12.1.1.1

OMPROUTE

(optional)

NCPROUTE

IPC1

MVS3 Host

13.1.1.1

OMPROUTE

(optional)

IPC3IPC2

12.1.1.2

ESCON

Director

Figure 57. NCPROUTE example configuration

Chapter 10. Network connectivity with an SNA network 535

Note: This port number must match the one defined in the NCP generation
definition (using the UDPPORT keyword on the IPOWNER statement)
and assigned in hlq.ETC.SERVICES.

3. NCPROUTE also requires HOME and BSDROUTINGPARMS statements for the
SNALINK type LU0 and IP over CDLC connections. For example, you would
use this HOME and BSDROUTINGPARMS statement and, optionally, the
BEGINROUTES or GATEWAY statement for the configuration shown in
Figure 57 on page 535:

MVS1: HOME
9.67.116.66 SNALINK
BSDROUTINGPARMS false

SNALINK 2000 0 255.255.240.0 9.67.116.65
ENDBSDROUTINGPARMS

MVS2: HOME
12.1.1.1 IPC1
12.1.1.2 IPC2
BSDROUTINGPARMS false

IPC1 1000 0 255.255.255.0 12.1.1.98
IPC2 1000 0 255.255.255.0 12.1.1.99

ENDBSDROUTINGPARMS
MVS3: HOME

13.1.1.1 IPC3
BSDROUTINGPARMS false

IPC3 1000 0 255.255.255.128 13.1.1.99
ENDBSDROUTINGPARMS

Notes:

a. If you are not using OMPROUTE to manage the host routes, configure static
routes to the NCP client or clients in the BEGINROUTES or GATEWAY
statement in hlq.PROFILE.TCPIP. The BSDROUTINGPARMS statement is
required to route transport PDUs over static routes. See “Step 9: Define a
directly connected host route for the NCST session” on page 548 for sample
definition. For more information on the BEGINROUTES or GATEWAY
statement, see z/OS Communications Server: IP Configuration Reference for each
NCP client.

b. If using NCPROUTE with OMPROUTE, the BSDROUTINGPARMS
statement is required to route transport PDUs prior to OMPROUTE
activation. Because the BSDROUTINGPARMS parameters are overridden by
the interface parameters defined in the OMPROUTE configuration, ensure
that the interface parameters for the SNALINK or IP/CDLC channel
connections are identical in both the BSDROUTINGPARMS statement and
the OMPROUTE configuration file.

You can find a complete explanation of these configuration statements in z/OS
Communications Server: IP Configuration Reference.

Step 2: Configure VTAM and SNALINK applications
If you are using NCP V7R3 or previous, NCPROUTE requires SNALINK type LU0
to run. To use SNALINK LU0, verify that you have configured the SNALINK LU0
interface, defined it to VTAM with a VTAM APPL definition, and included the
correct DEVICE and LINK statements in hlq.PROFILE.TCPIP. For NCP V7R4, or
later, IP over CDLC can be used instead of SNALINK.

If you are using the Cross Domain Resource (CDRSC), verify that the cross-domain
resource managers are configured in VTAM.

Following is an example of an appropriate VTAM APPL definition:

536 z/OS V1R12.0 Comm Svr: IP Configuration Guide

* SNALINK VTAM APPL DEFINITION *

SNALKLU1 APPL AUTH=(ACQ,VPACE),ACBNAME=SNALKLU1,EAS=12,PARSESS=YES, *

SONSCIP=YES,VPACING=0,SRBEXIT=YES

Note: The application name (the ACBNAME value, SNALKLU1, in this example)
must match the REMLU interface definition in the NCP clients generation
program. See the example in “Step 6: Configure the host-dependent NCP
clients” on page 538 for more information.

Following is an example of corresponding DEVICE and LINK statements:
;
; DEVICE AND LINK DEFINITIONS FOR SNALINK LU0
;
DEVICE SNA1LINK SNAIUCV SNALINK A04TOLU1 SNALPROC
LINK SNALINK SAMEHOST 1 SNA1LINK
;

Note: The LU name on the DEVICE statement (A04TOLU1 in this example) must
match the LU name of the NCST interface definition in the NCP clients
generation program. See the example in “Step 6: Configure the
host-dependent NCP clients” on page 538 for more information.

If you want the SNALINK device to start automatically, verify that you have a
START statement for this device in hlq.PROFILE.TCPIP. For example,
START SNA1LINK. Otherwise, you will have to start the device manually.

Step 3: Configure the IP over CDLC DEVICE and LINK
statements
For NCPROUTE, IP over CDLC can be configured along with SNALINK for NCP
V7R3, or later, or it can be used to replace SNALINK for NCP V7R4, or later.

Following is an example of corresponding DEVICE and LINK statements for the
configuration shown in Figure 57 on page 535 for the MVS2 host:
;
; DEVICE AND LINK DEFINITIONS FOR IP OVER CDLC
;
DEVICE IPC1NCP CDLC 013 40 40 1024 1024
LINK IPC1 CDLC 0 IPC1NCP
;
DEVICE IPC2NCP CDLC 014 40 40 1024 1024
LINK IPC2 CDLC 0 IPC2NCP

Note: If you want a CDLC device to start automatically, verify that you have a
START statement for this device in hlq.PROFILE.TCPIP, for example, START
IPC1NCP. Otherwise, you will have to start the device manually.

Step 4: Update the NCPROUTE cataloged procedure
Update the NCPROUTE cataloged procedure by copying the sample in
SEZAINST(NCPROUT) to your system or recognized PROCLIB. Specify
NCPROUTE parameters and change the data set names to suit your local
configuration. See Figure 58 on page 544 for an illustration of NCPROUTE data set
relationships.

Chapter 10. Network connectivity with an SNA network 537

Step 5: Update hlq.ETC.SERVICES
NCPROUTE uses the hlq.ETC.SERVICES data set to determine the port number on
which to run. This data set can be used to define a port number other than the
reserved well-known port for NCPROUTE. This data set must exist for
NCPROUTE to run.

The ETC.SERVICES data set is dynamically allocated using the standard search
sequence for data set names. This data set also can be explicitly allocated in the
NCPROUTE cataloged procedure using the //SERVICES DD statement.

The entries in hlq.ETC.SERVICES are case and column sensitive. They must be in
lowercase and begin in column 1.

Add the following lines to the hlq.ETC.SERVICES data set:
ncproute 580/udp
router 520/udp

Note: Verify that the NCPROUTE service port number is the port being used by
the NCP clients. This number should match the port number defined in the
NCP generation definition using the UDPPORT keyword on the IPOWNER
statement. This port number does not necessarily have to match the reserved
port number for NCPROUTE on the PORT statement in hlq.PROFILE.TCPIP.

The reserved router service port number is 520. It is required for the NCPROUTE
transport of RIP packets to NCP clients which are responsible for broadcasting the
packets to other RIP routers. It cannot be overridden.

If you want to use name aliases, see INFO APAR II08205 for information.

Step 6: Configure the host-dependent NCP clients
You should see the appropriate NCP documentation for more information about
defining and generating the NCP and creating route information tables.
v For more information about defining IP, see NCP, SSP, and EP Resource Definition

Guide.
v For more information about the IP Dynamics function, see NCP and EP Reference.
v For more information about NCP generation definitions for IP, see NCP, SSP, and

EP Resource Definition Reference.
v For more information about generating NCP as an IP router, see NCP, SSP, and

EP Generation and Loading Guide.

Note: See NCPROUTE notes in on page 529.

Generating the routing information tables: To support IP dynamics, NCP's
Network Definition Facility (NDF) builds a routing information table (RIT) for
networks and subnetworks for use by TCP/IP at NCP generation time.

The RIT consists of routing tables that are generated from the NCP IPROUTE and
IPLOCAL statements. During NCP generation, the RIT is added as a member of
the NCP load library partitioned data set ncp.v7r1.ncpload. You identify the
member name of ncp.v7r1.ncpload that NCPROUTE uses at execution time with
the NEWNAME parameter of the BUILD statement for each NCP client generation.

Determining the gateway route table name: There is one RIT in the
ncp.v7r1.ncpload data set for each NCP client this server supports. The
NCPROUTE server receives the NCP name from an NCP client in the “Hello”

538 z/OS V1R12.0 Comm Svr: IP Configuration Guide

message. This name is used as the base to determine the member name in the
ncp.v7r1.ncpload partitioned data set to use for the initial RIT for this NCP client.
The RIT member name in the ncp.v7r1.ncpload data set is the NEWNAME
parameter of the BUILD statement for the NCP generation with a suffix of P
added. Specify a unique name on the NEWNAME parameter of the BUILD
statement for each NCP client. This name is also used as the member name if the
optional gateways data set (GATEWAYS_PDS) is specified in the NCPROUTE
profile. The RIT is accessed by NCPROUTE from a //STEPLIB DD statement in
the NCPROUTE cataloged procedure, LINKLST, or authorized library.

NCST session interface definition: The NCP Connectionless SNA Transport
(NCST) interface is used to establish a session that can provide a connection to
another IP node (NCP or z/OS) over a SNA network. Use this definition when
using NCST PU interfaces to communicate with NCPROUTE using SNALINK
devices with the MVS host. The NCST interface must be defined to match the
SNALINK LU0 interface in VTAM so that an NCP client can establish a connection
with NCPROUTE. The LU statement in the NCST interface definition tells VTAM
which interface to use for the SNALINK application. The following are important
keywords in this definition:

NCST
Specifies the protocol type. Must be coded as IP for internet protocol.

INTFACE
Specifies the name of the interface and the maximum transfer unit (MTU) size
for the NCST session to the VTAM owner (IPOWNER).

REMLU
Specifies the name of the remote LU for the SNALINK LU0 VTAM connection.
This name must match:
v The APPLID in the PROC statement of the SNALINK cataloged procedure
v The application name in the VTAM APPL definition

Note: If you define a backup NCST SNALINK session, the REMLU can specify the
primary logical name for the remote LU or a different remote LU. Ensure
that the MTU sizes are the same for the backup NCST sessions.

Following is an example of an NCST session interface definition:
**
* NCST IP INTERFACES *
**
A04NCSTG GROUP NCST=IP,LNCTL=SDLC,VIRTUAL=YES
A04NCSTL LINE LINEFVT=CXSXFVT,PUFVT=CXSXFVT,LUFVT=(CXSXFVT,CXSXFVT), *

LINECB=CXSXLNK
A04NCSTP PU VPACING=0,PUTYPE=2,PUCB=CXSP0000
*
A04TOLU1 LU INTFACE=(NCSTALU1,1492),REMLU=SNALKLU1,LUCB=(CXSL0000,CXSS0*

000),LOCADDR=1
*

Note: The NCST LU name (A04TOLU1 in this example) must match the LU name
on the SNALINK LU0 DEVICE statement in hlq.PROFILE.TCPIP. See the
example in “Step 2: Configure VTAM and SNALINK applications” on page
536 for more information.

Channel PU interface definition: Use this definition with channel PU interfaces
(ESCON, BCCA, or CADS) to communicate with NCPROUTE using IP over CDLC
devices with the MVS host.

Chapter 10. Network connectivity with an SNA network 539

Following is an example of channel PU interface definition using the ESCON
channel type:
**
* PHYSICAL ESCON CHANNEL DEFINITIONS *
**
*
A04PSOC1 GROUP LNCTL=CA,MONLINK=NO,NPACOLL=NO,XMONLNK=YES

SPEED=144000000,SRT=(32768,32768)
*
A04S2240 LINE ADDRESS=2240
A04P2240 PU ANS=CONTINUE,PUTYPE=1
*
**
* LOGICAL ESCON CHANNEL DEFINITIONS *
**
*
A04PSOCB GROUP LNCTL=CA,PHYSRSC=A04P2240,NPACOLL=NO,

DELAY=0.2,MAXPU=16,MODETAB=AMODETAB,
DLOGMOD=INTERACT,SPEED=144000000,
SRT=(21000,20000),PUDR=YES,
TIMEOUT=150.0,CASDL=0.0

*
A04LSOC2 LINE ADDRESS=NONE,HOSTLINK=1
A04L2S1 PU ADDR=01,PUTYPE=1,ARPTAB=(10,,NOTCANON),

INTFACE=SOCPU1
A04L2S2 PU ADDR=02,PUTYPE=1,ARPTAB=(10,,NOTCANON),

INTFACE=SOCPU2

NCP host interface definition: The IPOWNER statement in the NCP generation
definition contains the TCP/IP host information and tells NCP which interface to
use for NCPROUTE. The following are important keywords on the IPOWNER
statement:

INTFACE
Specifies the name of the interface to the owning TCP/IP host that is running
NCPROUTE.

HOSTADDR
Specifies the IP address of the owning TCP/IP. This address must match the IP
address in the HOME statement in hlq.PROFILE.TCPIP data set for a
SNALINK or IP over CDLC interface.

UDPPORT
Specifies the UDP port number for NCPROUTE. The default is 580. This port
number must match the NCPROUTE service port number defined in the
hlq.ETC.SERVICES data set. See “Step 5: Update hlq.ETC.SERVICES” on page
538 for more information.

The IPLOCAL statement in the NCP generation definition contains the NCP
routing information for the local attached routes. During NCP generation, this
information gets included in the Routing Information Table (RIT) which
NCPROUTE uses to build the interface and routing tables. IPLOCAL routes are
predefined as permanent or static to prevent modification by NCPROUTE. The
following are important keywords on the IPLOCAL:

INTFACE
Specifies the name of the locally attached interface.

LADDR
Specifies the IP address of the locally attached interface.

540 z/OS V1R12.0 Comm Svr: IP Configuration Guide

P2PDEST
For point-to-point interfaces only. Specifies the IP address of the remote end of
the point-to-point link.

PROTOCOL
Specifies the type of protocol to be used for the interface. The default is RIP
which indicates that the interface is RIP-managed by NCPROUTE.

SNETMASK
Specifies the subnetwork mask for a route to a network that is subnetted.
Because RIP does not support variable subnetwork masking, this value must
be equal to the subnetwork mask of the route's destination.

The IPROUTE statement in the NCP generation definition contains the NCP
routing information for optional predefined routes. During NCP generation, this
information gets included in RIT which NCPROUTE uses to add the routes to its
routing tables. IPROUTE routes can be predefined as permanent or non-permanent
for route management control by NCPROUTE. The following are important
keywords on the IPROUTE statement:

INTFACE
Specifies the name of the locally attached interface for the route.

DESTADDR
Specifies the route's destination IP address.

DISP
Specifies the disposition for the route. A disposition of PERM indicates that
this route is a permanent route and will not be modified by NCPROUTE. The
default is NONPERM.

HOSTRT
Indicates whether this is a host route. The default is NO.

NEXTADDR
Specifies the IP address of the gateway through which the route can reach its
destination. A value of 0 indicates that there is no gateway.

The following example shows typical NCP RIP router generation source
statements.

* IP ROUTING DEFINITIONS *

*

IPOWNER INTFACE=NCSTALU1,HOSTADDR=9.67.116.66, *
NUMROUTE=(100,100,100),MAXHELLO=25,UDPPORT=580

*
IPLOCAL LADDR=9.67.116.65,INTFACE=NCSTALU1,METRIC=1, *

P2PDEST=9.67.116.66,PROTOCOL=RIP,SNETMASK=FFFFF000
IPLOCAL LADDR=10.68.0.88,INTFACE=TR88,METRIC=1, *

SNETMASK=FFFFF000
IPLOCAL LADDR=10.68.0.92,INTFACE=TR92,METRIC=1, *

SNETMASK=FFFFF000
*

IPROUTE DESTADDR=11.0.0.1,NEXTADDR=0,INTFACE=TR88,METRIC=2, *
DISP=PERM,HOSTRT=YES

IPROUTE DESTADDR=12.0.0.0,NEXTADDR=13.0.0.1,INTFACE=TR92, *
METRIC=2,DISP=NONPERM

The following example shows IPOWNER and IPLOCAL statements for the ESCON
channel PU interfaces in the configuration for NCP2 as shown in Figure 57 on page
535.

Chapter 10. Network connectivity with an SNA network 541

* IP ROUTING DEFINITIONS USING ESCON CHANNEL INTERFACES *

*
IPOWNER INTFACE=SOCPU1,UDPPORT=580,NUMROUTE=(110,120,130),

HOSTADDR=12.1.1.1
*
IPLOCAL LADDR=12.1.1.98,INTFACE=SOCPU1,METRIC=1,

P2PDEST=12.1.1.1,PROTOCOL=RIP,SUBNETMASK=FFFFFF00
*
IPLOCAL LADDR=12.1.1.99,INTFACE=SOCPU1,METRIC=1,

P2PDEST=12.1.1.2,PROTOCOL=RIP,SUBNETMASK=FFFFFF00
*
IPLOCAL LADDR=13.1.1.99,INTFACE=SOCPU2,METRIC=1,

P2PDEST=13.1.1.1,PROTOCOL=RIP,SUBNETMASK=FFFFFF80

Step 7: Configure the NCPROUTE profile data set (Optional)
To build the NCPROUTE profile, create a data set and specify its name in the
//NCPRPROF DD statement in the NCPROUTE cataloged procedure. You can find
a sample in SEZAINST(EZBNRPRF). Include configuration statements in this data
set to define SNMP functions and to identify the NCPROUTE gateways data set.
For more information, see z/OS Communications Server: IP Configuration Reference.

RIP_SUPPLY_CONTROL supply_control
Specifies one of the following options on a server-wide basis:
v RIP1—Unicast/Broadcast RIP Version 1 packets (Default)
v RIP2B—Unicast/Broadcast RIP Version 2 packets (Not Recommended)
v RIP2M—Unicast/Multicast/Broadcast RIP packets (Migration)
v RIP2—Unicast/Multicast RIP Version 2 packets
v NONE—Disables sending RIP packets

Note: If RIP2 is specified, the RIP Version 2 packets are multicast over
multicast-capable interfaces only. No RIP packets are sent over
multicast-incapable interfaces. For RIP2M, the RIP Version 2 packets are
multicast over multicast-capable interfaces and RIP Version 1 packets
over multicast-incapable interfaces. For RIP2B, the RIP Version 2 packets
are unicast or broadcast; this option is not recommended since host
route misinterpretations by adjacent routers running RIP Version 1 can
occur. For this reason, RIP2B may become obsolete in a future release.
For point-to-point interfaces that are non-broadcast and
multicast-incapable, the RIP Version 2 packets are unicast.

RIP_RECEIVE_CONTROL receive_control
Specifies one of the following options on a server-wide basis:
v RIP1—Receive RIP Version 1 packets only
v RIP2—Receive RIP Version 2 packets only
v ANY—Receive any RIP Version 1 and 2 packets (Default)
v NONE—Disables receiving RIP packets

Note: If the client NCP does not support variable subnetting, the default of
ANY is changed to RIP1.

RIP2_AUTHENTICATION_KEY authentication_key
Specifies a plain text password authentication_key containing up to 16
characters. The key is used on a router-wide basis and can contain mixed case
and blank characters. Single quotes (') can be included as delimiters to include
leading and trailing blanks. The key will be used to authenticate RIP Version 2
packets and be included in the RIP updates for authentication by adjacent

542 z/OS V1R12.0 Comm Svr: IP Configuration Guide

routers running RIP Version 2. For maximum security, set
RIP_SUPPLY_CONTROL and RIP_RECEIVE_CONTROL to RIP2. This will
discard RIP1 and unauthenticated RIP2 packets. A blank key indicates that
authentication is disabled. Following are examples of authentication
passwords:
my password (no leading or trailing blanks)
’ my password ’ (leading and trailing blanks)
’’abc’’ (single quotes part of password)
’ ’ (5-character blanks)

SNMP_AGENT host_name
Specifies the host name or IP address of the host running an SNMP daemon.
Only one NCPROUTE server can use a particular SNMP agent at a time.

SNMP_COMMUNITY community_name
Specifies a community name that SNMP applications must use to access data
that the agent manages. Protect this information accordingly.

GATEWAY_PDS dsname
Specifies the optional partitioned data set that contains GATEWAY information
for each client NCP. Quotation marks are not needed when specifying dsname.
One member for each NCP client of this data set must be configured to match
the NCP NEWNAME parameter with the P suffix which is the same as the
NCP’s RIT member name. See “Step 8: Configure the NCPROUTE gateways
data set (Optional)” on page 544 for information on defining the statements
necessary for the members of this data set.

Note: You can use a semicolon in column 1 to permit comments in the profile.
Blank lines are also permitted.

Figure 58 on page 544 shows the relationship between the data set names specified
in the NCPROUTE cataloged procedure and the NCPROUTE profile, as well as the
relationship between the members of the gateways PDS and the ncpload PDS.

Chapter 10. Network connectivity with an SNA network 543

Step 8: Configure the NCPROUTE gateways data set (Optional)
The gateways data set is used to identify routes not defined in the NCP routing
information table.

The NCPROUTE gateways data set is optional. However, if you use it, you must
include the GATEWAY_PDS statement in the NCPROUTE profile to specify the
gateway data set name. The NCPROUTE server queries the gateways data set for
static routing information. It also dynamically receives routing information from
the NCP client portion of this RIP router.

Allocate the gateways data set with partitioned organization (PO), a fixed block
format (FB), a logical record length of 80 (LRECL), and any valid block size value
for a fixed block, such as 3120.

A passive entry in the gateways data set is used to add a route to a part of the
network that does not support RIP. An external entry in the gateways data set
indicates a route that should never be added to the routing tables. If another RIP
server offers this route to your host, the route is discarded and not added to the
routing tables. An active entry indicates a gateway that can only be reached
through a network that does not allow or support link-level broadcasting or
multicasting.

ncprte.profile

SNMP AGENT xyzhost

SNMP COMMUNITY xyz=comm

GAREWAYS PDS ncpgate

ncpload

ncpgate

(members of ncpgate)

(RIT members of ncpload)

route1p

route1p

NCPROUTE catalogued procedure

//STEPLIB DD DSN=ncp.v7r1.ncpload//NCPRPROF DD DSN=ncprte.profile

route2p

route2p

route3p

route3p

Figure 58. NCPROUTE data sets relationship

544 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Note: The gateways data set is not related to the GATEWAY statement used in
hlq.PROFILE.TCPIP data set.

To configure NCPROUTE, add an entry to the gateways data set for each route not
defined in the NCP RIT. Use the options statement to define the characteristics of
the routes in this member of the PDS.

Configuring a passive route: Figure 59 illustrates an NCPROUTE configuration
using NCP as the destination hosts. In other configurations, destination hosts
might not necessarily be NCPs.

Using Figure 59, assume that your NCP client ncp1 is channel-attached to an MVS
host running an NCPROUTE server. The other two NCP clients, ncp2 and ncp3, are
not running a RIP server. Also assume that permanent routes to ncp2 and ncp3 are
not defined with the IPROUTE definitions in the NCP generation definition for
ncp1. Your NCPROUTE server cannot learn a route to ncp3, because ncp2 is not
running a RIP server. Your NCPROUTE server sends routing updates to ncp3 over
the link to ncp2, but never receives a routing update from ncp2. After 180 seconds,
your NCPROUTE server deletes the route to ncp2. This problem is inherent to the
RIP protocol and cannot be prevented. Therefore, you need to add a passive route
to ncp3 in the NCPROUTE gateways data set for the NCP client ncp1. This is the
data set defined by the GATEWAYS_PDS statement in the NCPROUTE profile.

You can use either of the following gateway statements:
host ncp3 gateway ncp2 metric 2 passive

host 192.10.10.2 gateway 192.10.20.2 metric 2 passive

Similarly, because ncp2 is not running an RIP server supported by NCPROUTE,
you need to add a directly-connected passive route as follows:

host ncp2 gateway ncp1 metric 1 passive

A directly-connected passive route is one where the gateway address or name is
one of the local interfaces in the NCP generation.

Assume that your NCP client is now ncp2 and is running an NCPROUTE server.
ncp1 is also running a RIP server, but ncp3 is not. Your NCPROUTE server sends
routing information updates to ncp3 over the link to ncp3 but never receives a
routing update from ncp3. After 180 seconds, your NCPROUTE server deletes the
route to ncp3.

.1

.1 .2

.2

192.10.20

192.10.10

ncp1 ncp3ncp2

Figure 59. NCPROUTE configuration example of a passive route

Chapter 10. Network connectivity with an SNA network 545

You should add a passive route to ncp3 as follows:
host ncp3 gateway ncp2 metric 1 passive

ncp1 cannot reach ncp3 unless a passive routing entry is added to ncp1. For
example:
host ncp3 gateway ncp2 metric 2 passive

or
host 192.10.10.2 gateway 192.10.20.2 metric 2 passive

Configuring an external route: Using Figure 59, assume that your NCP client
ncp1 is channel-attached to an MVS host running an NCPROUTE server. The other
two NCP clients, ncp2 and ncp3, are also running a RIP server. Your NCPROUTE
server normally learns a route to ncp3 from ncp2, because ncp2 is running a RIP
server. You might not want ncp1 to route to ncp3 for security reasons. For example,
a university might want to prevent student hosts from routing to administrative
hosts.

To prevent your NCPROUTE server from adding a route to ncp3, add an external
route to the NCPROUTE gateways data set. This is the data set defined by the
GATEWAYS_PDS statement in the NCPROUTE profile. You can use either of the
following gateway statements:

host ncp3 gateway ncp2 metric 2 external

host 192.10.10.2 gateway 192.10.20.2 metric 2 external

Configuring an active gateway:

As shown in Figure 60, assume that your NCP client is ncp1, which is
channel-attached to an MVS host running an NCPROUTE server and that it has a
network attachment adapter that does not support link-level broadcasting or one
that does not support ARP processing. Also, assume that there are routers Router1
and Router2 on the local area network. Because the IP addresses Router1 and
Router2 are unknown by ncp1, they have to be manually configured in
NCPROUTE for NCPROUTE to communicate with them. Configuring active
gateways for Router1 and Router2 as remote network interfaces enables
NCPROUTE to send RIP responses to the target addresses.
1. Specify IP addresses for each network adapter (without link-level broadcasting

or ARP support) attached to the local network in the NCP client according to
the NCP generation definition. For example, 155.80.20.1 is the IP address for the
local network adapter attachment in ncp1.

155.80.20

155.80.10

LAN

NCP 1

Host 1

Router 1
.2

.1.1 .2

.3 Router 2

Figure 60. Configuring an active gateway

546 z/OS V1R12.0 Comm Svr: IP Configuration Guide

2. Define active gateways for the remote routers in the NCPROUTE gateways
data set specified on the GATEWAYS_PDS statement in the NCPROUTE profile:
active active gateway 155.80.20.2 metric 1 active
active active gateway 155.80.20.3 metric 1 active

NCPROUTE will use these active gateway addresses as the destination addresses
to send RIP responses to the remote routers. In addition, NCPROUTE will continue
to receive RIP responses from the active gateways over the NCP client.

Configuring a default route: A default route is typically used on a gateway or
router to an internet, or on a gateway or router that uses another routing protocol,
whose routes are not reported to other local gateways or routers.

To configure a route to a default destination, add a default route using the
IPROUTE statement in the NCP generation definition. For example, if the default
destination router has a gateway address 9.67.112.1, an IPROUTE statement might
look like:

IPROUTE DESTADDR=0.0.0.0,NEXTADDR=9.67.112.1,INTFACE=TR88,
METRIC=1,DISP=PERM

An easier way would be to use the passive route definition specified in the
NCPROUTE gateways data set for the NCP client. For example, the gateways entry
would look like:

net 0.0.0.0 gateway 9.67.112.1 metric 1 passive

Only one default route to a destination gateway or router can be specified. For an
NCP client, NCPROUTE currently does not support multiple default routes.

Configuration examples: The following example shows the contents of an
NCPROUTE gateways data set containing multiple entries:

options default.router no trace.level 4 supply on
net testnet gateway 9.0.0.100 metric 1 passive
net 2.0.0.2 gateway 9.0.0.101 metric 2 external
host 2.0.0.3 gateway 9.0.0.102 metric 3 passive
host 2.0.0.4 gateway 9.0.0.103 metric 2 external
active active gateway 2.0.1.1 metric 1 active

In the second entry, the route indicates that NCPROUTE can reach network
testnet through the gateway 9.0.0.100, and that it is one hop away. This passive
route is not broadcast to other RIP routers.

In the third entry, the route indicates that NCPROUTE can reach network 2.0.0.2
through the gateway 9.0.0.101, and that it is two hops away. Because this route is
external, NCPROUTE should not add routes for this network to the routing tables
and routes received from other RIP routers for this network should not be
accepted.

In the fourth entry, the route indicates that NCPROUTE can reach host 2.0.0.3
through gateway 9.0.0.102, and that it is one hop away. This passive route is not
broadcast to other RIP routers.

In the fifth entry, the route indicates that NCPROUTE can reach host 2.0.0.4
through gateway 9.0.0.103, and that it is two hops away. Because this route is
external, NCPROUTE should not add routes for this network to the routing tables,
and routes received from other RIP routers for this network should not be
accepted.

Chapter 10. Network connectivity with an SNA network 547

The sixth entry shows an active gateway. Note that it is specified as the last entry
in the data set.

Note: If a default route is to be defined to a destination gateway or router,
configure a default route in this gateways data set (if the default route is not
defined in a NCP client's generation definition).

Step 9: Define a directly connected host route for the NCST
session
If you are not using OMPROUTE, you need to configure a directly connected static
host route using the BEGINROUTES or GATEWAY statement in
hlq.PROFILE.TCPIP. For example, if you are using SNALINK as the host route and
have the IP addresses shown in Figure 57 on page 535, the GATEWAY statement
might look like this:

GATEWAY
; net_number first_hop link_name packet_size subnet_mask subnet_value

9.67.116.65 = SNALINK 32758 HOST

See z/OS Communications Server: IP Configuration Reference and the GATEWAY
syntax information in “Step 8: Configure the NCPROUTE gateways data set
(Optional)” on page 544 for more information about configuring GATEWAYS
statements.

Note: The host routes on the MVS host are managed by TCP/IP, as defined on the
BEGINROUTES or GATEWAY statement or as added dynamically by
OMPROUTE. NCPROUTE does not manage the host routes on the MVS
host. It only manages the routes on the NCP clients.

Controlling the NCPROUTE address space with the MODIFY
command
You can control most of the functions of the NCPROUTE address space from the
operator's console using the MODIFY command.

For information about modifying the NCPROUTE address space with the MODIFY
command, see z/OS Communications Server: IP System Administrator's Commands.

548 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Chapter 11. Accessing remote hosts using Telnet

Telnet is a terminal emulation protocol. With Telnet, end users can log on to
remote host applications as though they were directly attached to that host. Telnet
protocol requires that the end user have a Telnet client that emulates a type of
terminal that the host application can understand. The client connects to a Telnet
server, which communicates with the host application. The Telnet server acts as an
interface between the client and host application. A PC can support several clients
simultaneously, each with its own connection to any Telnet server. This topic
describes how to set up and use the following kinds of Telnet servers:
v TN3270E Telnet server

Provides access to z/OS VTAM SNA applications on the MVS host using Telnet
TN3270E, TN3270, or linemode protocol

v z/OS UNIX Telnet server
Provides access to z/OS UNIX shell applications on the MVS host using Telnet
linemode protocol

You can use the same port for both Telnet servers. For an overview of port
management, see “Port management overview” on page 50. For more specific
information about the PORT BIND statement, see “Setting up reserved port
number definitions in PROFILE.TCPIP” on page 234.

The TN3270E Telnet server
The TN3270E Telnet server (Telnet) provides access to z/OS VTAM SNA
applications on the MVS host using Telnet TN3270E, TN3270, or linemode
protocol. Telnet acts as an interface between IP and SNA networks. End users in an
IP network connect to Telnet, which is also a VTAM application. Telnet activates
one SNA application minor node logical unit (LU) to represent each Telnet IP
client. The Telnet application LU establishes a session with a VTAM host
application (for example, CICS or TSO), simulating a terminal (LU0 or LU2) or a
printer (LU1 or LU3). To enable connections, you must modify the VTAM and
Telnet configuration data sets with Telnet statements. These statements describe
Telnet server characteristics, the Telnet LUs, a listening port, and the characteristics
of that port. After Telnet is started, you can use VARY and DISPLAY commands
that are specifically related to Telnet to alter the state of Telnet or to display
information about Telnet. For more information about these command sets, see
z/OS Communications Server: IP System Administrator's Commands.

Figure 61. Telnet connectivity

© Copyright IBM Corp. 2000, 2011 549

Steps for starting the TN3270E Telnet server
This topic provides the minimum information that you need to start the TN3270E
Telnet server, and refers to more specific information about customizing your
server.

Before you begin: You need to know how to create VTAM definition data sets;
specifically, you need to know how to define VTAM application LUs. You need to
set up and know how to use a TN3270E client emulator.

Perform the following steps to start the TN3270E Telnet server:

1. Create a new data set member in your procedure library for the TN3270E
Telnet server JCL.
A sample procedure is in SEZAINST(EZBTNPRC). The only valid parameter
that can be passed in from the JCL (using the PARM= keyword on the EXEC
JCL statement) is the component trace options parmlib member name.

2. Define security for a user ID and associate the user ID with the Telnet
procedure name; see “Steps for defining security for a user ID and associating
the user ID with the Telnet procedure name” on page 551.

3. Customize the VTAM configuration data set to define VTAM application LUs
for Telnet to use; see “Steps for customizing the VTAM configuration data set
for Telnet” on page 553.

4. Customize the TCP/IP configuration data set.

Reserve your Telnet ports by using the PORT num tnproc statement in the
TCP/IP startup profile. If you do not code the PORT num tnproc statement,
another application might use the port before the Telnet application can claim
it.

5. Customize the TN3270E Telnet server configuration data set; see “The
TN3270E Telnet server configuration data set” on page 554 and “Steps for
customizing the TN3270E Telnet server configuration data set” on page 556.

6. Set the component trace options (CTRACE).

Component trace options are set in a separate parmlib data set member. The
sample procedure JCL points to a sample parmlib member, CTIEZBTN, in
SYS1.PARMLIB, which starts a minimum trace. Use this member unless you
need to turn on other options to debug a Telnet problem.
To change the component trace options, specify a new parmlib member in the
JCL. The member has the form CTIEZBxx. For more information about setting
up trace options, see “Telnet CTRACE” on page 557.

7. Set up the resolver input file.

Use the default search order unless there are special circumstances that require
you to use unique parameters. For example, if there are parameters that are to
be used only when the resolver is called by Telnet, you need to define those
unique parameters. Define the unique parameters in a data set that is specified
on the SYSTCPD DD statement in the Telnet procedure JCL. For more
information about resolvers and resolver configuration files, see Chapter 14,
“The resolver,” on page 731.

8. Start Telnet by issuing START tnproc, where tnproc is the Telnet procedure
member name.

You should now see message EZZ6003I tnproc LISTENING ON PORT nnnnn. To verify
your configuration, connect to the Telnet port from your Telnet client emulator;

550 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

Telnet uses the first Telnet LU that is available. A solicitor panel or USSMSG10
screen prompts you to enter an application. Enter the name of any valid SNA
application to log on to that SNA application. If an error occurs during session
initiation, the MSG07 statement causes an error message to be sent to the client. If
you do not code the MSG07 statement, then the connection is dropped.

Tips:

v To help avoid any unnecessary IPL, specify REUSASID=YES on the START
command to ensure that the address space identifier (ASID) associated with the
Telnet address space can be reused. The Telnet address space provides
PC-entered services that must be accessible to all address spaces, so a system
linkage index (LX) is obtained. Unless you specify REUSASID=YES on the
START command, the ASID associated with the Telnet address space will be
nonreusable when the address space is stopped or restarted. If the Telnet address
space is stopped enough times and REUSASID=YES is not specified when
started, all available ASIDs could be exhausted, preventing the creation of a new
address space on the system. In this case, an IPL is required. For more
information about tuning parameters for the maximum number of ASIDs on a
system, see the MAXUSER parameter in z/OS MVS Initialization and Tuning
Reference.

v The default MVS program properties table (PPT) entry sets Telnet to be a
non-cancelable application. As a non-cancelable application, a TCP/IP stack
should not automatically start Telnet using the AUTOLOG function. If the
TCP/IP stack is recycled, the stack tries to cancel and restart all AUTOLOG
applications. A non-cancelable application does not end and the following
messages are issued repeatedly:
N 0140000 SA6I 2005147 04:59:27.69 STC07087 00000084 EZZ0621I AUTOLOG FORCING IBMTNSI0, REASON: TCP/IP HAS BEEN RESTARTED
NR0000000 SA6I 2005147 04:59:27.71 STC07087 00000080 IEE838I IBMTNSI0 NON-CANCELABLE - ISSUE FORCE ARM

If you want to set the priority for Telnet in the PPT, change the priorities by
assigning the job name to another service class in the STC subsystem.
The default settings are: Privileged, non-swappable, non-cancelable, running in
key 6, and system task. With these settings, Telnet and the TCP/IP stack have
the same priority. The privileged or system task setting causes the started job to
be assigned to the SYSSTC service class.

v To change the IPv6 or INET environments, you must recycle the Telnet
procedure. Telnet checks for changes in the environment each time a port is
activated. If Telnet detects a change in the environment, then the port is not
activated. If you change from an IPv4 environment to an IPv6 environment,
from an IPv6 environment to an IPv4 environment, from an INET environment
to a CINET environment, or from a CINET environment to an INET
environment, then results are unpredictable on existing ports.

Steps for defining security for a user ID and associating the user
ID with the Telnet procedure name
Before you can start Telnet, you must define security for a user ID and associate it
with the Telnet procedure name. The following steps use RACF as the example
security subsystem. If you are using another security product, see the
documentation for that product to determine the procedure that you should use.

Before you begin:

v You need to know the name of the Telnet procedure that you are using.
v Ensure that the MAXSOCKETS value is large enough to support the anticipated

number of sockets that will be used by the system. If your system is IPv6
enabled, Telnet listening sockets are IPv6; set the IPv6 MAXSOCKETS value
appropriately.

Chapter 11. Accessing remote hosts using Telnet 551

v If the user ID is permitted to the BPX.SUPERUSER resource or is a superuser ID,
Telnet issues setrlimit() on each port to automatically set the maximum number
of connections allowed to the maximum allowed by z/OS UNIX System
Services, currently 524 287. Each Telnet port will support that number of
connections if the system total does not exceed the MAXSOCKETS value.

Perform the following steps to define security for a user ID and to associate it with
the procedure name.

1. Use an existing user ID or create a new user ID:

v Permit a user ID with a nonzero UID value to the BPX.SUPERUSER
resource in the FACILITY class:
a. Add the user to RACF:

ADDUSER TN3270E

b. Permit the user ID:
1) Create a BPX.SUPERUSER FACILITY class profile:

RDEFINE FACILITY BPX.SUPERUSER

2) If this is the first class profile, activate the FACILITY class:
SETROPTS CLASSACT(FACILITY)
SETROPTS RACLIST(FACILITY)

3) Permit the user to the class:
ALTUSER TN3270E DFLTGRP(OMVSGRP) NOPASSWORD OMVS(UID(23) HOME(’/’))
PERMIT BPX.SUPERUSER CLASS(FACILITY) ID(TN3270E) ACCESS(READ)

In this example, the user ID is TN3270E and the UID is 23. The UID
can be any nonzero number. UID 23 was used to match the
well-known Telnet port number.

4) Refresh the FACILITY class:
SETROPTS RACLIST(FACILITY) REFRESH

This example uses TN3270E for the user ID, but you can use any name.
Tip: You can combine the ADDUSER and ALTUSER commands into one
command by putting the OMVS parameter on the ADDUSER command
line. The ADDUSER and ALTUSER commands are performed separately in
case the user ID already exists. Even if the ADDUSER command fails, the
ALTUSER command is successful.

v Define a user ID with a nonzero UID value and do not permit it to the
BPX.SUPERUSER resource. You will see message EZZ6049I tnproc NON-ZERO
OMVS UID IN EFFECT, indicating that you associated Telnet to a user ID that
does not have superuser authority. The number of connections allowed on a
single port will be the MAXFILEPROC value. The number of connections
can be overridden on the ALTUSER command with the FILEPROCMAX
option. For example, you can allow 150 000 connections using the following
command:
ALTUSER TN3270E DFLTGRP(OMVSGRP) NOPASSWORD OMVS(UID(23) FILEPROCMAX(150000) HOME(’/’))

If connection failures occur (EZZ6012I tnproc BPX1AIO ACCEPT FAILED, RC =
0000007C RSN = 050B0146) followed by a port quiesce (EZZ6003I tnproc
QUIESCED ON PORT 23), the MAXFILEPROC value has been reached.
Tip: If your MAXFILEPROC value is less than your expected number of
Telnet connections on a single port, you should use superuser authority or
the FILEPROCMAX option on the RACF ALTUSER command. The
FILEPROCMAX value will override the MAXFILEPROC value for processes
associated with the user ID. If you do not use the FILEPROCMAX option
and you do not give the associated user ID superuser authority by

552 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|
|

permitting the user ID to the BPX.SUPERUSER resource, Telnet is not able to
increase the MAXFILEPROC value on the listener socket and will support
the number of connections specified by the MAXFILEPROC value instead of
the OMVS maximum.

v Use an existing superuser ID to associate with the job name.
v Define a superuser ID to associate with the job name.

To define a superuser ID, add a user ID to RACF and alter it to superuser
status:
ADDUSER TN3270E
ALTUSER TN3270E DFLTGRP(OMVSGRP) NOPASSWORD OMVS(UID(0) HOME(’/’))

Sample statements for defining a superuser ID are in
SEZAINST(EZARACF). For more information, see z/OS UNIX System
Services Planning, z/OS Security Server RACF Security Administrator's Guide,
and z/OS Security Server RACF Command Language Reference.

2. Add the procedure name to the RACF STARTED class and associate the user
ID from step 1 with the name.
For example, code the following:
RDEFINE STARTED TELNET*.* STDATA(USER(TN3270E))
SETROPTS RACLIST(STARTED) REFRESH

Sample statements for adding the procedure to the STARTED class are in
SEZAINST(EZARACF). For more information, see z/OS UNIX System Services
Planning, z/OS Security Server RACF Security Administrator's Guide, and z/OS
Security Server RACF Command Language Reference.

3. If you are using secure Telnet connections, make sure that the user ID that
runs Telnet has access to the SSL key ring and certificates.
Do one of the following:
v Create a new key ring and certificate that is owned by the user ID that runs

Telnet.
v Share the existing key ring and certificates with Telnet. For more

information about implementation scenarios, see z/OS Security Server RACF
Security Administrator's Guide.

4. If you are using hardware encryption, ensure that the Telnet user ID has read
access to the RACF CSFSERV class resources. For details, see “Encryption
algorithms” on page 1464.

You know you are done when you can start Telnet without receiving errors.

If your job ends abnormally with system completion code EC6 and a register 15
value of 0F01C008, you did not associate a valid user ID with the started job name.

Steps for customizing the VTAM configuration data set for Telnet
Telnet uses application LUs that are defined in VTAM application (APPL) major
nodes to represent clients. You can code these definitions in the data set members
of your choice. You must include the data set that contains your member updates
in the list of data sets that is specified on the VTAMLST DD statement in the
procedure that is used to start VTAM. Including this data set in the list ensures
that the LUs are available for activation after VTAM is started.

Perform the following steps to customize the VTAM configuration data set:

1. Automatically activate the application definition deck by including it in
ATCCONxx.

Chapter 11. Accessing remote hosts using Telnet 553

2. Define the LUs in a VTAM data set member.

A sample VTAM configuration data set is in SEZAINST(IVPLU).
Tip: In the VTAM configuration data set, you can define Telnet LUs that
represent either terminal or printer emulators with a wildcard character
instead of coding individual Telnet application LU statements. The Model
Application Names function enables you to code a model APPL name with an
asterisk (*) or a question mark (?) (see z/OS Communications Server: SNA
Resource Definition Reference for more information). Use * as a wildcard
character to replace a character string. For example, if you need Telnet LUs in
the range TCPABC01 - TCPABC99, then you can add a single VTAM
application definition statement to the sample configuration data set. The
definition statement has the Telnet application minor node (Telnet LU) name
TCPABC*, which supports all 99 LUs.

3. Use the default value YES for the SESSLIM parameter.

Telnet server LUs do not support multiple concurrent sessions.

4. Code LOSTERM=IMMED on all target (PLU) applications that will have a
SNA session with Telnet.
If you do not code this value, CLOSEACB might stop while it is waiting for
UNBIND RESPONSE if the target (PLU) application does not issue CLSDST
when the LOSTERM exit is processed.

5. Code EAS=1 to minimize Common Service Area (CSA) storage use.

If you use the default value for EAS, excessive CSA storage will be used.

6. Use the default VTAM value NO for PARSESS.

You should not use parallel sessions with Telnet LUs.

When you are done, start VTAM. Put the LUs in a connectable state by activating
the APPL major node that represents the Telnet LUs. Issue the D NET,MAJNODES
command or the D NET,ID=appl_major_node_name command to verify that your
APPL major node is active.

The TN3270E Telnet server configuration data set
Telnet configuration statements are processed during the initialization of the
TN3270E Telnet server or when you issue the VARY TCPIP,tnproc,OBEYFILE
command to update the Telnet configuration data set. (For information about using
the VARY TCPIP,tnproc,OBEYFILE command to update the Telnet configuration
data set, see “Using the VARY TCPIP,tnproc,OBEYFILE command to update Telnet
configuration” on page 559). The Telnet configuration statements do the following:
v Define Telnet server characteristics
v Define connection characteristics
v Define LU names to represent Telnet clients
v Facilitate session setup with MVS host VTAM applications

Requirement: When configuration data sets are processed, the TELNETPARMS
and BEGINVTAM blocks are required for each port that you start or modify.

You use the following statement blocks to configure Telnet:

TELNETGLOBALS and ENDTELNETGLOBALS
An optional statement block that contains Telnet parameter statements. The
parameters define connection characteristics for all ports.

554 z/OS V1R12.0 Comm Svr: IP Configuration Guide

TELNETPARMS and ENDTELNETPARMS
A required statement block that contains Telnet parameter statements. You
must create a unique TELNETPARMS block for each port and for each
qualified port. The parameters define connection characteristics for the
specified port. A TELNETPARMS block is required for each port that you
start or modify using the VARY TCPIP,tnproc,OBEYFILE command.

BEGINVTAM and ENDVTAM
A required statement block that contains Telnet mapping statements. The
mapping statements define how applications and LU names are mapped
(assigned) to clients. Each port that you start or modify using the VARY
TCPIP,tnproc,OBEYFILE command must have a BEGINVTAM block. You
can use one BEGINVTAM block for all ports, you can use one
BEGINVTAM block for some of your ports and another BEGINVTAM
block for the remaining ports, or you can use a unique BEGINVTAM block
for each of your ports.

PARMSGROUP and ENDPARMSGROUP
An optional parameter group statement in the BEGINVTAM block that
contains Telnet parameter statements. The parameters define connection
characteristics for the mapped clients.

See z/OS Communications Server: IP Configuration Reference for the exact syntax rules
for these statement blocks. See “Using the VARY TCPIP,tnproc,OBEYFILE command
to update Telnet configuration” on page 559 for information about profile
processing.

Telnet initially sets all connection parameters to default values. These connection
parameter values are arranged hierarchically, as shown in Figure 62.

You can change these parameter values at any of the levels in the hierarchy,
depending on how you want the changes to be applied to successive connection
levels. Parameters that you code in the TELNETGLOBALS block are applied to all
connections on all ports, unless these values are overridden by parameters in either
the TELNETPARMS block or the PARMSGROUP block. Parameters that you code
in the TELNETPARMS block are applied to all connections on the specified port,
unless these values are overridden by parameters in the PARMSGROUP block.
Parameters that you code in the PARMSGROUP block are applied to connections

Figure 62. Telnet parameter placement

Chapter 11. Accessing remote hosts using Telnet 555

with clients that are mapped to that PARMSGROUP block. For a complete list of
Telnet parameters, see z/OS Communications Server: IP Configuration Reference.

Eleven mapping statements are available in the BEGINVTAM block. These
mapping statements map objects to client identifiers that are specified on the port.
Five statements are related to application setup, four are related to LU name
assignment, one maps connection parameters, and one maps monitoring rules.
After a connection request is accepted, Telnet uses the mapping statements to map,
or assign, as many of the eleven objects to the client as possible. This set of objects
is used for the duration of the connection. For more information, see “Mapping
Objects to Client Identifiers” on page 595.

The sample profile in SEZAINST(TNPROF) contains additional statements that are
included as comments. These statements provide examples of advanced functions.
Many of these statements are installation-specific; you need to modify these
statements to suit your installation.

Steps for customizing the TN3270E Telnet server configuration
data set
Before you begin: You need to create the data set in which you will put the
configuration information. You must also specify the profile data set name on the
PROFILE DD statement in the procedure JCL that is used to start Telnet. The data
set must be defined with format fixed block, and must have a record length of
56 - 256. The block size must be evenly divisible by the record length.

If you are using multiple TN3270E Telnet servers, ensure that each server uses
unique LU names, or define shared LU name groups. If you do not use unique LU
names or create shared LU name groups, then the second server that uses the same
LU name will not be able to establish a session; either the OPEN ACB request will
fail or the cross-domain session request will fail.

For information about updating Telnet configuration, see “Using the VARY
TCPIP,tnproc,OBEYFILE command to update Telnet configuration” on page 559.

Perform the following steps to customize the TN3270E Telnet server configuration
data set. A sample configuration is in SEZAINST(EZBTNPRF).

1. Define Telnet server characteristics.

The minimum required definition is the TELNETPARMS block with the PORT
statement. The following functions are optional:
v To associate Telnet with one TCP/IP stack, see “Associating Telnet with one

TCP/IP stack” on page 567.
v To set up Telnet in a sysplex to share LU names, see “Shared LU name

groups for Telnet servers” on page 568.
v To qualify a port with the destination IP address or link name to

differentiate between Telnet services, see “Qualified ports” on page 572.
v To use multiple Telnet ports, see “Multiple ports” on page 574.
v To reduce ECSA storage use when supporting a large number of

connections, see “Reducing demand for ECSA storage” on page 649.

2. Define connection characteristics at the server or port level.

v To determine the connection type, see “Connection mode choices” on page
575.

v For security, see “Connection security” on page 581.
v For persistence, see “Connection persistence” on page 592.

556 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|

3. Understand the concept of mapping Objects to Client Identifiers.

To understand the concept of mapping Objects to Client Identifiers, see
“Mapping Objects to Client Identifiers” on page 595.

4. After you identify all the clients in your network, determine which clients
have unique characteristics (for example, a particular client should use a
certain LU name) and need to remain exact Client Identifiers, and which
clients can be combined into Client Identifier groups using wildcard values.

5. Use LU name mapping statements to assign LU names to connections based
on the Client Identifier. This step is required. See “LU name mapping
statements” on page 606.

6. Use application mapping statements to facilitate session setup based on the
Client Identifier. See “Application mapping statements” on page 610.

7. Use the connection parameters mapping statement to change connection
parameters based on specific Client Identifiers. To extend connection mode,
security, and persistence choices to Client Identifiers, see “Connection
parameters mapping statement” on page 613.

8. Consider advanced topic features for additional Telnet functions.

v “Advanced LU name mapping topics” on page 613
v “Advanced application topics” on page 625
v “Device types and logmode considerations” on page 636
v “Using the Telnet Solicitor or USS logon panel” on page 637
v “SMF” on page 642
v “Connection monitoring mapping statement” on page 642

You know you are done when you do not receive errors after you apply the
profile.

Telnet CTRACE
Telnet uses the TCP/IP stack component name SYSTCPIP. Telnet CTRACE with
only the Telnet option specified provides complete information about Telnet
processes. You do not need other CTRACE options for debugging most Telnet
problems.

A sample Telnet component trace is supplied. The member name is CTIEZBTN in
SYS1.PARMLIB. You set up tracing for Telnet in the same way that you set up
tracing for the TCP/IP stack; however, there are fewer trace options needed for
Telnet. You can change the component trace in the JCL by specifying a new
parmlib member in the form CTIEZBxx. For a complete description of the trace
options and for information about how to set up tracing, see the TCP/IP services
traces and IPCS support information in z/OS Communications Server: IP Diagnosis
Guide.

The following subset of trace options is available in the SYSTCPIP component
when it is set up for Telnet:
v ALL (excludes SERIAL, STORAGE, and TIMER)
v INIT (includes OPCMDS and OPMSGS)
v MESSAGE
v MIN or MINIMUM (includes INIT, OPCMDS, and OPMSGS)
v MISC
v NONE (or OFF)

Chapter 11. Accessing remote hosts using Telnet 557

v OPCMDS (includes INIT and OPMSGS)
v OPMSGS (includes INIT and OPCMDS)
v SERIAL
v STORAGE
v TELNET
v TIMER
v WORKUNIT

Managing Telnet
This topic describes information needed to manage Telnet, such as command and
port information.

Telnet commands
Telnet commands are TCP/IP commands. You must specify the procedure name on
all commands; otherwise, the command is processed by the default TCP/IP stack
instead of by the Telnet procedure. For example, assuming that the Telnet
procedure name is TN3270E, the profile display command is as follows:
D TCPIP,TN3270E,PROFILE

If the procedure does not exist or if you incorrectly type the TCPIP keyword, then
the command is assumed to be a TCP/IP command and a TCP/IP error message is
displayed.

You use the following VARY and DISPLAY commands to change and monitor
Telnet functions and to debug problems. Telnet VARY and DISPLAY commands are
described in z/OS Communications Server: IP System Administrator's Commands.
v Use Telnet VARY commands to change the state of Telnet ports, enable or

disable the use of certain Telnet LU names, and manage diagnostic tools.
– VARY TCPIP,tnproc,QUIESCE,PORT blocks any new connection requests but

allows existing connections to continue activity.
– VARY TCPIP,tnproc,RESUME,PORT ends the quiesce state and allows new

connection requests.
– VARY TCPIP,tnproc,STOP,PORT ends connections on the port and closes the

port.
– VARY TCPIP,tnproc,OBEYFILE starts, restarts, or changes a port by updating

the Telnet profile. Use the VARY TCPIP,tnproc,STOP and VARY
TCPIP,tnproc,OBEYFILE commands to stop a Telnet port and then restart that
port or start a new port without stopping the TCP/IP stack. You can also use
these commands to increase the level of participation in the Telnet XCF group.
A Telnet server that has joined the group becomes a standby LUNS, even if
you used an OBEYFILE command to specify it to be a primary LUNS.
Tip: When you issue a VARY TCPIP,tnproc,OBEYFILE command, the
TELNETPARMS and BEGINVTAM blocks are required for each port that you
start or modify.

– VARY TCPIP,tnproc,ACT,luname activates LUs for use by the Telnet server.
Specify ALL for luname to activate all inactive LUs with one command. This
command has no effect on the VTAM state of the LU.

– VARY TCPIP,tnproc,INACT,luname inactivates LUs for use by the Telnet server.
If an LU is already in use, the command fails. This command has no effect on
the VTAM state of the LU.

– VARY TCPIP,tnproc,DEBUG,OFF turns off all debug activity that might have
been turned on to debug a problem.

558 z/OS V1R12.0 Comm Svr: IP Configuration Guide

– VARY TCPIP,tnproc,ABENDTRAP sets an abend trap based on unique Telnet
return codes set in Telnet modules.

v Use Telnet VARY commands to change the state of a LUNS, and to enable or
disable the use of certain LU names by a LUNS.
– VARY TCPIP,tnproc,LUNS,START starts the takeover process by which a

standby LUNS becomes the active LUNS.
– VARY TCPIP,tnproc,LUNS,QUIESCE instructs a standby LUNS to stop

monitoring the active LUNS. In case of a LUNS failure, this Telnet server will
not be a takeover candidate. The Telnet server must be a takeover candidate
for you to make changes to the LUNS using the OBEYFILE command.

– VARY TCPIP,tnproc,LUNS,RESUME ends the quiesce state and instructs a
LUNS to resume monitoring the active LUNS. In case of a LUNS failure, this
Telnet will be a takeover candidate.

– VARY TCPIP,tnproc,LUNS,ACT,luname activates LUs for use by the LUNS.
Specify ALL for luname to activate all inactive LUs with one command. This
command has no effect on the VTAM state of the LU.

– VARY TCPIP,tnproc,LUNS,INACT,luname inactivates LUs for use by the LUNS.
If an LU is already in use, the command fails. This command has no effect on
the VTAM state of the LU.

v Use Telnet DISPLAY commands to review classic Telnet information.
– D TCPIP,tnproc,PROFile displays summary or detail information about

parameter statements from the TELNETGLOBALS or TELNETPARMS blocks.
– D TCPIP,tnproc,OBJect displays summary or detail information about mapping

statements from the Object perspective.
– D TCPIP,tnproc,CLientID displays summary or detail information about

mapping statements from the Client Identifier perspective.
– D TCPIP,tnproc,CONN displays summary or detail information about client

connections.
– D TCPIP,tnproc,INACTLUS displays all LUs that have been inactivated by the

operator or by Telnet as a result of OPEN ACB or multilevel security
problems.

– D TCPIP,tnproc,STOR displays the maintenance level of a module or the
amount of storage used by Telnet.

v Use Telnet DISPLAY commands to review information about Telnet in an XCF
group.
– D TCPIP,tnproc,XCF<,GRoup> displays the status of all members of the Telnet

XCF group.
– D TCPIP,tnproc,XCF,STats displays the performance status of the XCF Telnet

server. If the Telnet server is a LUNS, the performance statistics between it
and all LUNRs are reported.

v Use Telnet DISPLAY commands to review information about Telnet performing
as a LUNS.
– D TCPIP,tnproc,LUNS,OBJect displays summary or detail information about

shared LUNR Objects on the LUNS.
– D TCPIP,tnproc,LUNS,INACTLUS displays all the LUs that are inactive on the

LUNS.

Using the VARY TCPIP,tnproc,OBEYFILE command to update
Telnet configuration
When you use the VARY TCPIP,tnproc,OBEYFILE command to update Telnet
configuration, new profile statements create a new configuration that is used by all

Chapter 11. Accessing remote hosts using Telnet 559

connections that are accepted after you updated the file. Existing connections
continue to use the configuration that was in effect when those connections were
accepted. The TELNETPARMS and BEGINVTAM blocks are required for each port
that you start or modify. The new configuration that you create is not a cumulative
update from the previous profile. If you need to make only one change in the new
profile, change the old profile or copy the profile to another data set member and
make the change.

After you have updated the Telnet configuration file and the VARY
TCPIP,tnproc,OBEYFILE command processing completes, the new profile is labeled
as the current profile, and the replaced profile becomes profile 0001. If you make
another update, the new update becomes the current profile and the replaced
profile becomes profile 0002. If you updated the profile for a subset of the active
ports, the ports that you did not update remain unchanged. You can suppress
profile debug messages by coding DEBUG OFF or DEBUG SUMMARY in the
TELNETGLOBALS block and then placing the TELNETGLOBALS block in front of
all other Telnet statement blocks.

New connections are associated with the current profile and use the mappings and
parameters that are defined by that profile for the life of the connection. Even if
you issue a VARY TCPIP,tnproc,OBEYFILE command to update the port, existing
connections remain associated with the same profile. The statements of profiles
that are not the current profile remain in effect and continue to support all
connections that were established when that profile was the current profile. When
all connections that are associated with a non-current profile have ended, the
storage for the non-current profile mapping rules is freed and the profile is
considered inactive.

The structural layout of the profiles and how connections are associated with
profiles are shown in Figure 63 on page 561.

560 z/OS V1R12.0 Comm Svr: IP Configuration Guide

OMVS shutdown
The TN3270E Telnet server application uses UNIX System Services; when OMVS is
shut down, Telnet services are no longer available. To prevent Telnet from
abnormally ending, Telnet is automatically stopped prior to OMVS shutdown, and
can be restarted after OMVS is restarted.

Telnet automatically registers with OMVS; because of this registration, OMVS
notifies Telnet when OMVS shutdown is requested, and OMVS waits for Telnet to
stop. When Telnet is notified of the OMVS shutdown, it immediately begins to
stop, as if the MVS STOP command had been issued. Once Telnet is stopped,
OMVS shutdown is no longer blocked by the Telnet server.

If you plan to shut down OMVS, be sure your Telnet users are logged off before
you shut down OMVS.

Telnet diagnostic tools
In addition to general diagnostic tools such as CTRACE and dumps which are
described in z/OS Communications Server: IP Diagnosis Guide, there are several
Telnet-specific diagnostic tools available.

DEBUG messages
Telnet-specific debug messages can be turned on or off to diagnose Telnet problems
related to client connections, Telnet tasks, or configuration processing. Several
types of debug messages are available.

CURR
(0003)

CURR
(0002)

CURR
(0004)

active

0003

active

0001

active

0002

inact

Port Qualifiers Profiles

Port
23

QUAL1

QUAL2

Conn6

Conn5

Conn4

Conn3

Conn2

Connections

Conn1

NOT
QUAL

0002

0001

0001

Port
2023

...

Figure 63. Telnet profiles and connections

Chapter 11. Accessing remote hosts using Telnet 561

|
|
|
|
|

|
|
|
|
|

|
|

v Exception messages indicate that a problem was detected and are issued for
connection, task, and configuration processing. Exception level debug is the
default level.

v Summary messages indicate important status changes and are available for
connection processing.

v Detail messages are issued when an important event occurs other than an error
and are available for connection and task processing.

v Trace messages show detail data that is coming into and out of Telnet and are
available for connection and configuration processing.

Message generation is controlled with the DEBUG statement. For information
about the DEBUG statement, see z/OS Communications Server: IP Configuration
Reference.

Connection processing debug options are as follows:
v Exception

The DEBUG CONN EXCEPTION statement issues a message at the time of
failure that displays the client IP address and port, connection ID, Telnet LU
name, detecting module name, unique return code and brief explanation, and
additional parameters if relevant. Some messages will be helpful to you and
others will be helpful to IBM service. For message EZZ6035I return code details,
see z/OS Communications Server: IP Messages Volume 4 (EZZ, SNM).
The DEBUG CONN EXCEPTION statement causes the CONN DROP message to
be issued only for error conditions and inactivity reasons. DEBUG CONN
EXCEPTION is the default. If more than one connection is dropped for the same
reason within 15 seconds, a single message with LU name MULTIPLE will be
issued. For example, if MSG07 is not coded in the DEBUG CONN DETAIL
example, the connection will be dropped after the lookup failure. The CONN
DROP message will include the return code and indicate that an error caused
the connection drop. The following message will be produced whether or not
DEBUG was coded because of the error condition.
EZZ6034I TNSERV11 CONN 00000011 LU TCPM1001 CONN DROP ERR 3012

IP..PORT: 1.12.13.14..456 EZBTPGLU

v Summary
The DEBUG CONN SUMMARY statement provides tracking for the status of a
connection. A summary message is written when:
– A connection request is accepted by Telnet.
– Connection negotiation is complete.
– A session is established with the host application.
– A session is dropped.
– A connection is dropped.
LU name, Connection ID, and client IP address and port are included in each
message. In the example below an end user connects to port 23. The connection
is negotiated as a TN3270E connection and a session with TSO is established.
The session is dropped because of client disconnect (CLNTDISC) and then the
connection is dropped because of client disconnect.
EZZ6034I TNSERV11 CONN 00000011 LU **N/A** ACCEPTED 23

IP..PORT: 1.12.13.14..456
EZZ6034I TNSERV11 CONN 00000011 LU TCPM1001 NEGOTIATED TN3270E

IP..PORT: 1.12.13.14..456
EZZ6034I TNSERV11 CONN 00000011 LU TCPM1001 IN SESSION TSO0001

IP..PORT: 1.12.13.14..456

562 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|

|

|

EZZ6034I TNSERV11 CONN 00000011 LU TCPM1001 SESS DROP CLNTDISC
IP..PORT: 1.12.13.14..456

EZZ6034I TNSERV11 CONN 00000011 LU TCPM1001 CONN DROP CLNTDISC
IP..PORT: 1.12.13.14..456

In addition to tracking major state changes and providing key information, the
statements can be used for diagnostic purposes. For example, an end user might
be attempting a connection and something is not working. The ACCEPTED,
NEGOTIATED, and IN SESSION messages are major connection milestones.
Using the information provided and knowing whether or not these messages are
displayed can provide many clues about the connection request. The SESS DROP
and CONN DROP messages give a variety of reasons about why the drop
occurred.

v Detail
You can use the DEBUG CONN DETAIL statement if the DEBUG CONN
SUMMARY messages do not provide enough information to solve a problem. In
addition to the summary messages, the DEBUG CONN DETAIL statement issues
a message at the time of failure that displays the client IP address and port,
connection ID, Telnet LU name, detecting module name, unique return code and
brief explanation, and additional parameters if relevant. Some messages will be
helpful to the system administrator and others will be helpful to IBM service.
For message EZZ6035I return code details, see z/OS Communications Server: IP
Messages Volume 4 (EZZ, SNM).
In the example below the end user specified an application not in the Telnet
profile and then disconnected at the client emulator.
EZZ6035I TNSERV11 DEBUG DETAIL CONN DETAIL

IP..PORT: 1.12.13.14..456
CONN: 00000011 LU: TCPM1001 MOD: EZBTPGLU
RCODE: 3012-00 Application name is invalid.
PARM1: 00000000 PARM2: 00000000 PARM3: 00000000

EZZ6035I TNSERV11 DEBUG DETAIL CONN DETAIL
IP..PORT: 1.12.13.14..456
CONN: 00000011 LU: TCPM1001 MOD: EZBTTRCV
RCODE: 1001-02 Client disconnected from the connection.
PARM1: FFFFFFFF PARM2: 00000461 PARM3: 00000000

v Trace
The DEBUG CONN TRACE statement generates messages that contain data that
was sent to and from the client, sent to and from VTAM, and sent to and from
an LU name exit for a single connection. The TRACE option allows you to
quickly see why a client is not connecting or why a session hangs. Be careful
where you specify DEBUG CONN TRACE. Every connection that maps to the
statement generates many messages. DEBUG CONN TRACE should be specified
in a PARMSGROUP block that is mapped to only a few connections. Even when
DEBUG CONN TRACE is specified in a PARMSGROUP block, it could flood the
message console quickly if the connection is very active.
EZZ6034I TNSERV11 CONN 00000080 LU **N/A** ACCEPTED

IP..PORT: 9.14.6.42..36484
EZZ6035I TNSERV11 DEBUG CONN TRACE

IP..PORT: 9.14.6.42..36484
CONN: 00000080 LU: MOD: TO CLNT
<-C- FFFD28
PARM1: 00000003 PARM2: 00000000 PARM3: 00000000

EZZ6035I TNSERV11 DEBUG CONN TRACE
IP..PORT: 9.14.6.42..36484
CONN: 00000080 LU: MOD: FRM CLNT
-C-> FFFB28
PARM1: 00000003 PARM2: 00000000 PARM3: 00000000

EZZ6035I TNSERV11 DEBUG CONN TRACE
IP..PORT: 9.14.6.42..36484

Chapter 11. Accessing remote hosts using Telnet 563

|

|

|

|

|

|

|

|

CONN: 00000080 LU: MOD: TO CLNT
<-C- FFFA2808 02FFF0
PARM1: 00000007 PARM2: 00000000 PARM3: 00000000

Task processing debug options are as follows:
v Exception

The DEBUG TASK EXCEPTION statement issues a message at the time of a
failure that displays the task, detecting module name, unique return code and
brief explanation, and additional parameters if relevant. Some messages will be
helpful to you and others will be helpful to IBM service. For message EZZ6035I
return code details, see z/OS Communications Server: IP Messages Volume 4 (EZZ,
SNM). DEBUG TASK EXCEPTION is the default for task processing debug.
The following exception message indicates that Telnet failed to join the XCF
group because the group already contains the maximum number of members
allowed.
EZZ6035I TLUNR1 DEBUG TASK EXCEPTION
TASK: XCF MOD: EZBTXXCF
RCODE: A006-01 Telnet failed to join the XCF group.
PARM1: 0000000C PARM2: 00000004 PARM3: MAX GROUPS OR MEMBERS

v Detail
The DEBUG TASK DETAIL statement issues a diagnostic message at certain
event points that displays the task, detecting module name, unique return code
and brief explanation, and additional parameters if relevant. The Detail option
shows event milestones for different scenarios, enabling you to see some events
of interest other than errors. Some messages will be helpful to the system
administrator and others will be helpful to IBM service. For message EZZ6035I
return code details, see z/OS Communications Server: IP Messages Volume 4 (EZZ,
SNM).
The following detail message indicates that an outstanding receive failed for job
TLUNR1 on MVS023.
EZZ6035I TLUNR1 DEBUG TASK DETAIL
TASK: XCFRECV MOD: EZBTXRCV
RCODE: A014-01 LUNS/LUNR receive failed.
PARM1: 00000000 PARM2: 00000000 PARM3: MVS023 TLUNR1

Configuration processing debug options are as follows:
v Exception

The DEBUG CONFIG EXCEPTION statement issues a message at the time of a
failure that displays the line number, detecting module name, unique return
code and brief explanation, and additional parameters if relevant. Some
messages will be helpful to you and others will be helpful to IBM service. For
message EZZ6035I return code details, see z/OS Communications Server: IP
Messages Volume 4 (EZZ, SNM). DEBUG CONFIG EXCEPTION is the default for
configuration processing debug.
The following message indicates that the value for scaninterval on line 35 is
outside of the acceptable range.
EZZ6035I TLUNS1 DEBUG CONFIG EXCEPTION
LINE: 35 MOD: EZBTMPRP
RCODE: 805B-00 Value outside acceptable range for statement.
PARM1: PARM2: SCANINTE PARM3:

v Trace
The DEBUG CONFIG TRACE statement generates a statement message listing
all words associated with the statement and a formatted control block message
for each Telnet statement. This option can flood the message console if you have
a very large configuration file. The CONFIG messages can be limited to a

564 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|

|

smaller, specified set of statements. If you specify a subset of statements, DEBUG
CONFIG messages are issued only from those statements. If a large amount of
CONFIG data is required, you can suppress the DEBUG messages by specifying
the CTRACE option on the DEBUG statement. With the CTRACE option, the
messages will be in the CTRACE but will not flood the console or joblog.
CTRACE is the default option.
The sample below shows data sent to the console for profile statement
LUGROUP:
DEBUG CONFIG TRACE,LUGROUP CONSOLE

EZZ6035I TNSERV11 DEBUG CONFIG TRACE
LINE: 82 MOD: EZBTMPRF

LUGRP1 TCPM1094 TCPM1102
PARM1: 00000003 PARM2: 00000052 PARM3: LUGROUP

EZZ6035I TNSERV11 TNSERV11 DEBUG CONFIG TRACE
LINE: 82 MOD: EZBTMPRF

E3C5D3C3 00000000 00000058 00005502 |TELC............|
00000036 00000000 00000052 00000000 |................|
00000000 00000000 00000000 00000000 |................|
D3E4C7D9 D7F14040 00000000 00000000 |LUGRP1|
00000002 00000000 E3C3D7D4 F1F0F9F4 |........TCPM1094|
E3C3D7D4 F1F1F0F2 |TCPM1102 |

PARM1: 00000058 PARM2: 00000036 PARM3: LUGROUP

The DEBUG OFF statement ensures that all debug messages are suppressed,
including the exception CONN DROP messages.

The DEBUG CONN parameter can cause flooding of the operator's console.
Console flooding concerns can be dealt with in several ways.
v Most DEBUG messages are, by default, assigned to routing code 11, the

JOBLOG. The DEBUG option JOBLOG can be used for the same effect. However,
the master console also receives routing code 11 messages by default. To stop the
messages from going to the master console, issue VARY CN(01),DROUT=(11),
which drops routing code 11 from the console. Another DEBUG option,
CONSOLE, will direct the messages to the master console, routing code 2, and
the teleprocessing console, routing code 8. The CTRACE option suppresses
messages completely while continuing tracing at the debug level.

v If DEBUG messages are being used primarily for problem diagnosis, the VARY
TCPIP,tnproc,OBEYFILE command can be used to keep the number of messages
low. Bring up Telnet initially without DEBUG coded. When a problem appears,
issue a VARY TCPIP,tnproc,OBEYFILE command for a Telnet profile that includes
the DEBUG statement. Only new connections to the new profile will produce
messages. Once data is obtained, issue another VARY TCPIP,tnproc,OBEYFILE
command for a Telnet profile that omits the DEBUG statement.

v If the Client Identifier of the client having the problem is known, include
DEBUG in a PARMSGROUP statement. Using PARMSMAP, map that group to
the client. Debug messages for only that client will be issued.

The VARY TCPIP,tnproc,TELNET,DEBUG,OFF command can be issued to turn off
DEBUG for all connections associated with all profiles, including the current
profile. It will also turn off TASK and CONFIG DEBUG messages. To turn on
DEBUG again, issue a VARY TCPIP,tnproc,OBEYFILE command with the Debug
option specified in the Telnet profile. Summary messages for CONN DROP due to
errors or time-outs will also be suppressed. Use DEBUG EXCEPTION to retain
these messages.

Chapter 11. Accessing remote hosts using Telnet 565

|

|

MSG07
The MSG07 parameter is very helpful when diagnosing problems. It allows Telnet
to send a message to the client indicating an error occurred and what the error
was. Something simple like a mistyped application name can be corrected by the
end user without additional help. Even for more difficult problems, MSG07
provides a good starting point. It is recommended that MSG07 always be coded
unless there are reasons not to send error messages to the client.

Abend trap
The VARY TCPIP,tnproc,TELNET,ABENDTRAP,module,rcode,instance command can
be used to set up an abend based on the variables specified. Abendtrap has three
variables:

module Is required. It is the module detecting the error. It can have a wildcard
value by using asterisk (*) at the end. If a single * is used, any module reporting
the specified return code will cause an abend. The module name "OFF" turns off
an active trap.

rcode Is optional. It is the return code reported and cannot have a wildcard value.

instance Is optional. It is the instance of the return code and cannot have a wildcard
value.

Below is an example setting the abend trap and then issuing a profile display to
verify the trap is set. In the example, when EZBTTRCV reports an error code of
1001, Telnet will issue an abend with reason code '3133'x. The state of the trap
changes from "ACTIVE" to "TRIPPED". No more abends will be issued. Once
tripped, the abendtrap command must be issued again to activate the trap. While
the trap is active, the abend trap can be turned off by specifying "OFF" as the
module name. An active trap cannot be changed directly. The current trap must be
tripped or turned off before a new command is accepted.
V TCPIP,TCPCS6,T,ABENDTRAP,EZBTTRCV,1001
EZZ6038I TCPCS6 COMMAND ABENDTRAP EZBTTRCV COMPLETE

D TCPIP,TCPCS6,T,PROF
EZZ6060I TCPCS6 PROFILE DISPLAY

PERSIS FUNCTION DIA SECURITY TIMERS MISC
(LMTGQAK)(OATSKQSWHT)(DRF)(PCKLECXN)(IKPSTS)(SMLT)
------- ---------- --- -------- ------ ----
LM*R*P* **TSBQ*WHT TJ* SSH*ESX* ***STS SDD*

----- PORT: 23 ACTIVE PROF: CURR CONNS: 1
--

ABENDTRAP : EZBTTRCV 1001 FF ACTIVE
4 OF 4 RECORDS DISPLAYED

TESTMODE
The TESTMODE parameter in TELNETPARMS allows a profile to be processed by
Telnet but then dropped before it becomes an active profile. Using TESTMODE
ensures that LU assignments, security levels, and other Telnet parameters are not
compromised due to profile syntax errors.

Displays
Use the DISPLAY commands to verify that the configuration is what you thought
it was, that connections are mapping to the correct parameters and Objects, and to
check XCF Telnet LUNS and LUNR status and performance. For details about the
commands available, see “Managing Telnet” on page 558 and z/OS Communications
Server: IP System Administrator's Commands.

566 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|

|

Tracing
If you cannot resolve a problem using the available tools, IBM service will likely
need a CTRACE with option Telnet. For details, see “Telnet CTRACE” on page 557.
You might also need to activate one of the following additional traces:
v Full data trace

If the problem is data related, use the FULLDATATRACE statement to trace all
the data coming into and leaving Telnet rather than tracing only the first 64
bytes of data. FULLDATATRACE will cause a trace-wrap condition more quickly
so it should be set only if needed. It should be set in PARMSGROUP instead of
TELNETPARMS if a subset of clients can be identified.

v Telnet subagent trace
For Telnet SNMP subagent problems, use the TNSATRACE keyword on the
TNSACONFIG statement in PROFILE.TCPIP at startup. This will generate trace
points throughout Telnet subagent processing, in addition to tracing data passed
between the Telnet subagent, Telnet, and the TCP/IP stack. Subagent tracing can
also be enabled after Telnet has been started by using the VARY
TCPIP,tnproc,OBEYFILE command. To enable tracing using the VARY
TCPIP,tnproc,OBEYFILE command, the subagent must first be disabled and then
re-enabled with the TNSATRACE keyword. Trace data is written to the syslog
daemon. Subagent tracing can be disabled using the NOTNSATRACE keyword.

v DBCS trace
If the problem is with a DBCS connection, use the DBCSTRACE statement in the
TELNETPARMS block or in the PARMSGROUP block to produce DBCS-specific
trace entries in the SYSPRINT and TNDBCSER data sets.

Telnet configuration data set customization details
This topic includes details for “Steps for customizing the TN3270E Telnet server
configuration data set” on page 556.

Associating Telnet with one TCP/IP stack
In an INET environment where only a single TCP/IP stack can be running, Telnet
client connections are automatically associated with the active stack, and you do
not need to explicitly associate the Telnet server to the stack.

In a common INET (CINET) environment, Telnet is associated with all stacks that
are running. When multiple stacks are supporting a single Telnet server, Netstat
displays might not display all Telnet connections. The only connections that are
displayed are connections that are supported by the stack from which the
command is issued. If another stack is started while Telnet is active, the current
LISTEN for the port is cancelled and is reissued automatically to include the new
stack. If you explicitly associate Telnet to one TCP/IP stack, all Telnet clients must
connect through that stack.

If you want to explicitly associate Telnet with one stack for control purposes or for
functionality support, use the TCPIPJOBNAME statement in the
TELNETGLOBALS block when you start Telnet. If you use the TCPIPJOBNAME
statement, you must continue to use it on all future profile updates to set affinity
to the same stack.

The Telnet SNMP subagent requires that you explicitly associate Telnet with a
single TCP/IP stack. Telnet SNMP subagent activation requires that you register
the stack name with the agent. If you do not specify the TCPIPJOBNAME
statement, then Telnet blocks the subagent activation request. The Telnet SNMP
subagent can register with only one agent, and each agent can support only one

Chapter 11. Accessing remote hosts using Telnet 567

|
|
|
|
|

Telnet subagent. If you are going to use the Telnet SNMP subagent, plan for one
agent per Telnet subagent. If multiple Telnet SNMP subagents initialize to the same
agent, the agent forwards all data requests to the first subagent that connected, and
all other initialization attempts are queued. If the first subagent ends, then the next
subagent in the queue receives all data requests.

Shared LU name groups for Telnet servers
SNA architecture requires every LU in a VTAM network to have a unique name.
Multiple Telnet servers create added administrative effort to ensure that LU names
are unique among the servers. However, if your environment uses multiple Telnet
servers running on a single system or in a sysplex, then you can designate one
Telnet server to be the LU name server (LUNS). The LUNS manages LU name
assignments from LU groups among the group of Telnet servers, each known as an
LU name requester (LUNR).

Shared LU groups are defined at each LUNR and sent to the LUNS. Shared LU
group definitions can be the same or different at each LUNR. The LUNS allocates
an LU name to a particular LUNR only if that LUNR defined the LU in a shared
LU group. The LUNS manages LU names by ensuring that only one LUNR at a
time is using a particular LU name. You can use load balancing to distribute Telnet
client connections across several LUNR Telnet servers that have identical shared
LU name configurations.

A single Telnet server can support both shared and unshared LU groups. Existing
unshared LU group definitions continue to be managed at the local Telnet level.

You can configure a Telnet server to be only a LUNS, or a Telnet server can be a
LUNS and also function as a regular Telnet server. Running Telnet as only a LUNS
in its own address space has the following advantages:
v Telnet port server functions will not compete with the LUNS for resources

within the address space.
v You can separate Telnet roles, which makes problem diagnosis easier.
v You can stop and restart the Telnet LUNS without stopping the Telnet ports, and

you can stop and restart the Telnet port servers without stopping the Telnet
LUNS.

v You can set the Telnet LUNS priority to a different priority than that of Telnet
port servers.

Telnet uses XCF local group services to define the set of Telnet servers that
participate in a shared LU name management group. You specify the level of
participation of a particular Telnet server with shared LU name management by
specifying or omitting the XCFGROUP block. For configuration details, see “Steps
for defining a LUNS and a LUNR” on page 570.
v Classic Telnet server

If you do not specify the XCFGROUP block for a server or you specify NOJOIN
in the XCFGROUP block, the server does not join the XCFGROUP and cannot
participate in shared LU name management.
– The server does not join an XCF group
– The server is not included in the Telnet XCF,GROUP display
– Shared LU group Objects cannot be defined on the server

This is the default behavior of a Telnet server.
v XCF Telnet server

568 z/OS V1R12.0 Comm Svr: IP Configuration Guide

If you do specify the XCFGROUP block for a server and you specify JOIN in the
XCFGROUP block, the server joins the Telnet XCF group and is able to
participate in shared LU name management.
– The server is included in the Telnet XCF,GROUP display that can be issued

for any XCF Telnet server that is in the same sysplex group
– The health of the Telnet server is monitored by XCF
– The server supports shared LU group Objects
– The server can be an LU name requester (LUNR)

The LUNR is in standby state; it becomes active when shared LU group
Objects are found while processing a profile. If you issue a VARY OBEYFILE
command and there is no active profile that has shared LU group Objects,
then the LUNR reverts to standby state.

v XCF LUNS Telnet server
If you specify the XCFGROUP block for a server and include the appropriate
statements, you can configure the server to have LUNS capability.
– The server has all the characteristics of an XCF Telnet server
– The server is an LU name server (LUNS)

After you have configured the level of participation, you can use the VARY
OBEYFILE command to move the Telnet server to a higher level; however, you
cannot use the VARY OBEYFILE command to move the server to a lower level.

There can be only one active LUNS in a sysplex; that LUNS manages requests for
shared LU names so that the names are used by only one Telnet server at a time.
The remaining Telnet servers are LU name requesters (LUNRs) that request LU
names from the LUNS. The LUNR Telnet server connects to an administration
listener socket that is created by the LUNS Telnet server. This TCP connection
transmits all LU name requests and responses; this connection is not used for
status signalling between the XCF Telnet servers. XCF services including XCF user
state field updates, XCF status monitoring, and XCF group events are used to
communicate LUNS and LUNR state changes and health.

You can configure a LUNS as a primary or a backup LUNS. When the Telnet
server is started, a primary LUNS checks to determine whether there is already an
active LUNS in the XCF group. If there is not, that primary LUNS attempts to
become the active LUNS. If there is already an active LUNS, the primary LUNS
becomes a standby LUNS. If several Telnet servers that are designated as a
primary LUNS are started concurrently, then the race winner becomes the active
LUNS and the others become standby. A backup LUNS always becomes a standby
LUNS.

When an active LUNS fails, the following sequence of events automatically occurs:
1. All the LU name servers that are in standby mode examine the list of LU name

servers that are in standby mode.
2. The standby LUNS that has the highest configured rank, regardless of whether

that LUNS was started as a primary or backup LUNS, automatically becomes
the active LUNS.
If several standby LU name servers have the same rank, then all those servers
attempt to take over. The race winner becomes the new active LUNS and the
others return to standby.

Chapter 11. Accessing remote hosts using Telnet 569

You can initiate manual takeover of a Telnet LUNS at any time. You can direct an
operator command to any LUNS that is in standby or joined mode and tell it to
start and become the active LUNS. The current LUNS will change to standby
mode.

You can define all the Telnet servers in a sysplex that participate in shared LU
name management to join the same XCF group. However, if your environment has
one or more of the following characteristics, then you should partition the sysplex
into Telnet subplexes:
v All Telnet servers in a Telnet XCF group must have IP connectivity to each other.

If your sysplex is partitioned into TCP/IP subplexes that do not have connected
routes to each other, then you should partition the sysplex into Telnet subplexes
along the same TCP/IP boundaries.

v All Telnet servers in a Telnet XCF group should run on VTAMs in the same
network. If your sysplex is partitioned into VTAM subplexes and the VTAMs are
in different networks, then you should partition the sysplex into Telnet
subplexes along the same VTAM network boundaries.

v If you use several Telnet ports, each with a large set of shared LU names that do
not overlap, and you load balance these ports across several Telnet servers, you
might want to partition the sysplex into Telnet subplexes along the Telnet port
boundaries. Subplexes reduce the shared LU name management workload on
the LUNS and provide operational independence of the LUNS. All Telnet servers
that are DVIPA targets of the same distributed port should be members of the
same Telnet subplex.

A static VIPA is the best type of IP address to use for the LUNS administrative
listener socket. Dynamic VIPA can work for the LUNS administrative listener, but
there are cases in which dynamic VIPA can cause confusion.
v If VIPADEFINE moves the IP address away from the LUNS, LUNRs already

connected to the LUNS will continue to be able to send requests and receive
replies. However, a new LUNR attempting to connect will be directed to the
new TCP/IP stack, and the LUNS will not be there.

v VIPARANGE will work if you can guarantee that each LUNS is supported by a
different TCP/IP stack, and that the LUNS is the application that creates the IP
address. If not, and the creating application ends, the LUNS socket will be
closed. A standby LUNS on the same stack would be a problem. The standby
LUNS sets up its listener before the original LUNS finishes cleanup. When the
original LUNS finishes, the new LUNS listener socket will be closed.

For information about the XCFGROUP block, see z/OS Communications Server: IP
Configuration Reference. For information about Telnet LUNS display, XCF display,
and LUNS VARY commands, see z/OS Communications Server: IP System
Administrator's Commands.

Steps for defining a LUNS and a LUNR:

Before you begin: Determine which LU names are going to be shared and
determine the setup of the LU groups. If you are running the Telnet server on
multiple systems, ensure that all systems can function in a sysplex. The systems
must have at least an XCF group connection. You do not need a coupling facility.

Perform the following steps to configure an LU name server (LUNS) or an LU
name requester (LUNR):

570 z/OS V1R12.0 Comm Svr: IP Configuration Guide

1. On the XCFGROUP statement block on the TELNETGLOBALS statement
block, define the level of participation in the Telnet XCF group and in shared
LU name management. Specify the following:
v Specify the NOJOIN parameter (or do not include the XCFGROUP block) if

this Telnet server should not join the Telnet XCF group. If you specify
NOJOIN (or omit the XCFGROUP block), the server is not included in the
XCF,GROUP display and does not allow the definition of shared LU group
objects.

v Specify the JOIN parameter if this Telnet server should join the Telnet XCF
group. JOIN is the default if you code XCFGROUP. If you specify JOIN or it
is in effect by default, the server is included in the XCF,GROUP display that
is issued by any other XCF Telnet server; the server has LUNR capability
and supports shared LU group objects. With additional XCFGROUP
statements, the server can have LUNS capability.

2. Determine whether you need to partition your Telnet server sysplex into Telnet
subplexes.
Do one of the following:
v If you are not partitioning your sysplex into subplexes, do not code the

SUBPLEX parameter on the XCFGROUP statement. All Telnet servers in the
sysplex that participate in shared LU name management join the default
Telnet XCF group EZZTLUNS.

v If you are partitioning your sysplex, configure the SUBPLEX parameter with
a suffix that is 1 - 4 characters in length. The specified suffix is right-justified
and overlays the end of the string EZZTLUNS to form a unique subplex
string. For example, if the suffix value is 23, Telnet joins XCF group
EZZTLU23.

3. Determine the frequency with which you want to monitor the health of the
Telnet LUNS and LUNR.
Use the XCFMONITOR parameter to set the frequency. At the specified time
interval, Telnet checks the health of the LUNS, LUNR, and XCF Telnet tasks,
and checks the health of the connection between the LUNS and LUNR. If any
of these tasks or the connection appear to be unresponsive, message EZZ6099I
is issued and the X indicator is set under the PDMON column in the
XCFGROUP display. No action is taken by Telnet to correct the issue. A short
time value can lead to false indications in a busy system. A long time value
might not provide feedback quickly enough so that you can take appropriate
action. The default value is a good compromise between these two
possibilities.

4. To configure a LUNR, perform the following steps:

a. Configure the following parameters on the XCFGROUP statement:
v CONNECTTIMEOUT: You can use this parameter for a LUNR only.

Specify the length of time that a LUNR attempts to establish a
connection to the LUNS before quiescing its LUNR capabilities. If the
CONNECTTIMEOUT time elapses and the LUNR has not been able to
connect with the LUNS, then the LUNR drops all connections that are
waiting in negotiation for an LU name and quiesces all ports that have
shared groups. Dropping connections that are in negotiation state
enables the client to retry connecting to Telnet. Quiescing the port alerts
a distributor that it should send requests to other working Telnet
LUNRs. When the client connection is dropped and the client reconnects
to the distributor, the connection is directed to a working LUNR. When
the LUNS-LUNR connection is established, the port is automatically

Chapter 11. Accessing remote hosts using Telnet 571

resumed and new client connections are again routed to this LUNR.
Setting the CONNECTTIMEOUT time to 0 causes client connections to
remain in LU name negotiation until LUNS-LUNR communication is
established.

v RECOVERYTIMEOUT: You can use this parameter for a LUNR only.
Specify the length of time that the LUNR attempts to establish a
connection when the LUNS is in RECOVER state before dropping active
client connections that have shared LU names assigned to them. A new
LUNS in RECOVER state cannot become active until it has received
updates from all LUNRs that have shared LUs that are in use. If a LUNR
cannot communicate with the LUNS during recovery time and the
LUNR has shared LUs assigned, then the LUNS cannot become active
and none of the LUNRs are able to receive LU name assignments. If the
LUNR drops all active client connections with shared LUs, then the
LUNS is alerted through XCF that the LUNR no longer owns shared
LUs, and the LUNS can then become active.

b. Define the shared LU groups for the LUNR.
Use the SLUGROUP and SPRTGROUP statements to define the shared
LUs.

5. To configure a LUNS, specify LUNS on the XCFGROUP statement and
configure the following parameters on the LUNS statement:
v ipaddr port: Specify the IP address and port on which the LUNS will listen

for its administrative connection to communicate with LUNRs.
v PRIMARY or BACKUP: Specify whether this Telnet server is a primary

LUNS or a backup LUNS.
v RANK nnn: Specify the start rank of this LUNS, relative to others, when this

LUNS is in standby mode and the active LUNS fails.

You have configured your Telnet servers correctly when you can issue a D
TCPIP,tnproc,XCF,GROUP command and see the appropriate LUNS or LUNR
status for each server. You should be able to connect a client to the LUNR and at
the LUNS you should be able to issue a D TCPIP,tnproc,LUNS,OBJ command to
verify that an LU was allocated from the LUNS.

Qualified ports
In some cases all clients need to use the same port number, but the Telnet
parameters need to be differentiated by destination IP address or destination
linkname. The destination IP address can be either an IPv4 or IPv6 IP address.

For example, two TN3270E Telnet servers are going to be merged into one server.
Currently, server 1 is bound to IP address 1.1.1.1 and is running with a set of
definitions for port 23. Server 2 is bound to IP address 2.2.2.2 and is running with
a different set of definitions for port 23. Before the servers are merged into one,
end users connect to either 1.1.1.1,port 23 or 2.2.2.2,port 23, depending on which
Telnet services the users want. The sample definition statements are:
Server 1

TelnetParms
Port 23
Inactive 600 ; Drop after 10 minutes of no activity
EndTelnetParms

BeginVTAM
Port 23
DefaultLus TCPABC01..TCPABC49 EndDefaultLus

572 z/OS V1R12.0 Comm Svr: IP Configuration Guide

DefaultAppl TSO
EndVTAM

Server 2

TelnetParms
Port 23
Inactive 0 ; Never drop
EndTelnetParms

BeginVTAM
Port 23
DefaultLus TCPABC50..TCPABC99 EndDefaultLus
DefaultAppl CICS
EndVTAM

After the servers are merged, both home addresses are supported by a single
server. One way to keep the Telnet definitions separate is to change the port
number in one of the definition sets. For instance, the port 23 definitions associated
with the old server 2 could be changed to be port 2023. The end result is one
TN3270E Telnet server with port 23 and port 2023, where port 23 has the
definitions used in the old server 1 and port 2023 has the definitions used in the
old server 2. The definitions are still separate. However, all the end users who
were connecting to 2.2.2.2 port 23 now have to change their clients to port 2023.
The sample definition statements are changed as follows:
Merged Server

TelnetParms
Port 23
Inactive 600 ; Drop after 10 minutes of no activity
EndTelnetParms

BeginVTAM
Port 23
DefaultLus TCPABC01..TCPABC49 EndDefaultLus
DefaultAppl TSO
EndVTAM

TelnetParms
Port 2023
Inactive 0 ; Never drop
EndTelnetParms

BeginVTAM
Port 2023
DefaultLus TCPABC50..TCPABC99 EndDefaultLus
DefaultAppl CICS
EndVTAM

With port qualification, the system administrator can qualify the port number with
the destination IP address or linkname to keep the Telnet services separate. In this
case, the destination IP address is used. The qualified port allows the users of
either old stack to connect without making any changes to their client. The sample
definition statements would be changed to:
Merged Server

TelnetParms
Port 23,1.1.1.1
Inactive 600 ; Drop after 10 minutes of no activity
EndTelnetParms

BeginVTAM
Port 23,1.1.1.1

Chapter 11. Accessing remote hosts using Telnet 573

DefaultLus TCPABC01..TCPABC49 EndDefaultLus
DefaultAppl TSO
EndVTAM

TelnetParms
Port 23,2.2.2.2
Inactive 0 ; Never drop
EndTelnetParms

BeginVTAM
Port 23,2.2.2.2
DefaultLus TCPABC50..TCPABC99 EndDefaultLus
DefaultAppl CICS
EndVTAM

You cannot QUIESCE, RESUME, or STOP a qualified portion of a port. If the port
has several qualified port profiles, the VARY TCPIP,tnproc,QUIESCE, the VARY
TCPIP,tnproc,RESUME, and the VARY TCPIP,tnproc,STOP commands affect all
qualified port profiles associated with the port being quiesced, resumed, or
stopped. In the example above, V TCPIP,tnproc,T,STOP,PORT=23 will stop port
23,1.1.1.1 and port 23,2.2.2.2. It is not possible to stop port 23,1.1.1.1 or port
23,2.2.2.2 individually. All display commands that allow port specification allow
you to specify a qualified port. If just the port number is specified, only the
unqualified port, if it exists, is displayed. The qualified port profiles are not
displayed. DBCSTRANSFORM can be active on only one port, but can be active on
one, some, or all of the qualified profiles of that port.

Multiple ports
Telnet supports up to 255 ports on one server. A unique TELNETPARMS block
must be created for each port or qualified port. Telnet allows the use of the same
BEGINVTAM block for all ports, some ports, or a unique BEGINVTAM block for
each port. Both TELNETPARMS and BEGINVTAM blocks are required for each
port started or modified by a VARY TCPIP,tnproc,OBEYFILE command. There are
several reasons that more than one Telnet port or qualified port might be needed.
The most common reasons are to simplify the setup of clients on the workstation
and the logon process, and to differentiate client security needs.

Assigning a single application to a port simplifies the setup of clients on the
workstation and the logon process. Workstation clients can be labeled with the
associated application name and then be set up to connect to the appropriate port
or qualified port. With a client per application on the workstation, the end user can
select the needed client, connect, and be immediately in session with the
application defined on the DEFAULTAPPL statement in BEGINVTAM. This
implementation requires a unique BEGINVTAM block for each port due to the
unique DEFAULTAPPL statements. The example below shows how to set up TSO,
IMS, and CICS on ports 23, 2023, and 4023, respectively. The same LU names are
used in each BEGINVTAM block. Telnet maintains a master LU "in-use" registry
across all ports so that the same LU name will not be used by two different ports.
TELNETPARMS

PORT 23
ENDTELNETPARMS
TELNETPARMS

PORT 2023
ENDTELNETPARMS
TELNETPARMS

PORT 4023
ENDTELNETPARMS

BEGINVTAM
PORT 23

574 z/OS V1R12.0 Comm Svr: IP Configuration Guide

DEFAULTLUS TCPABC01..TCPABC99 ENDDEFAULTLUS
DEFAULTAPPL TSO

ENDVTAM
BEGINVTAM

PORT 2023
DEFAULTLUS TCPABC01..TCPABC99 ENDDEFAULTLUS
DEFAULTAPPL IMS

ENDVTAM
BEGINVTAM

PORT 4023
DEFAULTLUS TCPABC01..TCPABC99 ENDDEFAULTLUS
DEFAULTAPPL CICS

ENDVTAM

Assigning different security levels to different ports is an easy way to differentiate
client security needs. External connections might require SSL security, while
internal connections do not. Other than that difference, all other aspects of the
Telnet profile can be the same. For example, external clients can connect to port 23
of a firewall that converts the request to the Telnet secure port 992. Internal clients
would connect directly to the Telnet basic port 23. The statements below show how
two ports allow implementation of different security levels. Note the same
BEGINVTAM block is used for both ports, which can significantly reduce profile
maintenance complexity. The PORT statement in BEGINVTAM links the
BEGINVTAM block to the multiple TELNETPARMS blocks defined.
TELNETPARMS

PORT 23
ENDTELNETPARMS
TELNETPARMS

TTLSPORT 992
ENDTELNETPARMS
BEGINVTAM

PORT 23 992
DEFAULTLUS TCPABC01..TCPABC99 ENDDEFAULTLUS
ALLOWAPPL *

ENDVTAM

If a profile that contains a new port number is processed, it is treated as an
additional port, and the VARY TCPIP,tnproc,OBEYFILE command request will
succeed if all parameters for the new port are correctly specified. Existing,
non-referenced ports remain active and unchanged. You can use the VARY
TCPIP,tnproc,TELNET,STOP command to stop a port.

Connection mode choices
Telnet supports several connection types. The negotiation process is hierarchical in
the order listed below:
v TN3270 Enhanced (TN3270E)
v TN3270
v Linemode

– Standard
– Binary
– Transform

TN3270E is the default connection mode for Telnet. If the client refuses TN3270E
mode, Telnet tries TN3270 mode. If the client refuses TN3270 mode, Telnet tries
Linemode. Telnet does not support Network Virtual Terminal (NVT) mode, except
to allow the negotiation of TN3270E, TN3270, or linemode connections.

Chapter 11. Accessing remote hosts using Telnet 575

Note: The Type of Service (ToS) byte, also known as the Differentiated Services
field, is not managed directly by Telnet. If you want to use Differentiated
Services for Telnet, use the Quality of Service (QoS) support discussed in
Chapter 17, “Quality of service,” on page 873.

TN3270E and TN3270 are very similar. If the TN3270E functions are not needed,
the end user does not notice any difference between TN3270E and TN3270
connections. In some cases, older clients do not properly refuse the server request
for a TN3270E connection, and the connection is dropped. In these unusual cases,
use the NOTN3270E parameter to disable the TN3270E function for those clients.
Similarly, use the NOSNAEXT parameter for any client that does not properly
negotiate the extension functions (Contention Resolution and SNA Sense).
TN3270E/NOTN3270E and SNAEXT/NOSNAEXT parameters can be coded at all
three parameter block levels for different levels of granularity.

TN3270E and TN3270 clients can receive a Telnet solicitor panel to submit an
application name, User ID, and password to Telnet. The cursor is positioned on the
application line unless the OLDSOLICITOR parameter is specified which causes
the cursor to be positioned on the user line. See “Using the Telnet Solicitor or USS
logon panel” on page 637 for detailed information.

The ATTN key function is supported over TN3270, TN3270E, and Transform
Linemode connections. It is not supported over Standard or Binary Linemode.
Default LOGMODEs for TN3270E connections are SNA, and default LOGMODEs
for TN3270 and Transform connections are non-SNA. Telnet processes the ATTN
key differently for SNA and non-SNA LOGMODEs. In addition, Telnet can be
configured to handle double ATTNs sent by some clients by specifying
SINGLEATTN. See “Device types and logmode considerations” on page 636 for
more information.

For TN3270E, LU assignment is done during connection negotiation. For TN3270,
LU assignment is done at application selection time. To delay LU assignment until
application selection time for TN3270E, specify the SIMCLIENTLU parameter. See
“LU mapping by application name” on page 620 and “LU mapping selection
rules” on page 622 for details.

You might experience unexpected results if you start a Telnet session from within
an application that is already connected using Telnet. For example, if you start a
new Telnet session from within a TSO session that was established on a TN3270E
connection, the keyboard will unlock when it seems it should not. This happens
when an unlock keyboard intended for only the original, first session is sent from
Telnet. The second session should remain locked but does not. An unlock keyboard
intended for only the first session has the affect of unlocking the keyboard for both
the first and second session since both are represented by the same client.

Some host applications send 3270 read commands (for example, X'F2' read buffer)
to the client during the course of a session. Telnet sends an unlock keyboard
sequence (that is, X'F1C2') before the read command is sent to the client. This is the
default behavior or can be specified by coding UNLOCKKEYBOARD
BEFOREREAD. In some cases, a problem can arise if the keyboard is unlocked
prior to the read command being forwarded to the client. The unlock keyboard
sequence allows transmission of buffered keyboard data to the host application.
The buffered keyboard data is not expected in response to a read command. The
UNLOCKKEYBOARD AFTERREAD parameter can be used to send the unlock
keyboard sequence after the read command rather than before. In most cases, the
default value will suffice and there is no need to code or change the setting of this

576 z/OS V1R12.0 Comm Svr: IP Configuration Guide

parameter. Certain applications, however, will issue error messages when buffered
keyboard data is unexpectedly received from the client. In these cases,
UNLOCKKEYBOARD AFTERREAD can be coded to resolve the application error.

Some applications expect the end user to initiate session data traffic. If a
USSMSG10 screen or solicitor panel was used to initiate the session, the keyboard
is locked. A BIND flows to the client on a TN3270E connection alerting the client
to unlock the keyboard. A non-TN3270E connection does not support sending a
BIND to the client. Therefore, when a BIND is received from the application, Telnet
sends an unlock keyboard to the client on a non-TN3270E connection to ensure the
end user can initiate data traffic if necessary. This behavior is the default or can be
specified by coding UNLOCKKEYBOARD TN3270BIND. In some cases, the unlock
keyboard might not be correctly interpreted by an older client. If this is the case,
UNLOCKKEYBOARD NOTN3270BIND can be coded to stop Telnet from sending
an unlock keyboard when a BIND is received.

The two unlock keyboard functions must be specified on a single
UNLOCKKEYBOARD statement. If only one is specified, it is assumed the other is
the default value. The UNLOCKKEYBOARD parameter can be coded at all three
parameter block levels for different levels of granularity.

TN3270 Enhanced: TN3270 Enhanced (TN3270E) connections support full-screen
3270 emulation that is sometimes referred to as TN3270 Extended. Do not confuse
TN3270E function with the IBM 327x device types that end in -E (for example,
3278-2-E). In these cases, the E indicates that the terminal supports Extended field
attributes such as color and highlighting and is not related to Telnet functions.

Telnet is often used as the primary method of connection between client
workstations and the SNA mainframe environment. To make this form of remote
connection as seamless as possible, Telnet terminal emulation simulates actual SNA
terminals as closely as possible. To accomplish this, RFC1647 and RFC2355 (both
known as TN3270E) add the ability to specify device names at connection time,
add support for printer devices, and add additional SNA functions. An Internet
draft, RFC 2355 Extensions, adds Contention Resolution and SNA Sense code
support.

Device name specification
Telnet assigns LUs based on the LU mapping statements supplied. Clients
are assigned a device name (Telnet LU name) based on those statements.
However, a TN3270E client can optionally specify that a particular device
name be assigned, or it can specify that a device name from a pool of LUs
be assigned. If the specified device name is allowed for this client based on
the LU mapping statements and the LU is available, Telnet assigns the
specified device name. If the specified device pool is allowed for this client
based on the LU mapping statements and an LU within the pool is
available, Telnet assigns a device name from the specified pool. Otherwise,
the request is rejected with an appropriate reason code, and the connection
is dropped. See “Mapping Objects to Client Identifiers” on page 595 for
additional LU mapping information.

328x printer support
Many Telnet clients emulate 328x class printers (device type IBM-3287-1).
Most support both SNA Character Stream (SCS) as an LU1 and 3270 data
stream as an LU3. The support of each is negotiated at connection time.
When connected in TN3270E mode, Telnet supports these emulators in a
manner similar to terminal LUs. Telnet can be configured to initiate a
session at connection time or simply open an ACB to let the application

Chapter 11. Accessing remote hosts using Telnet 577

initiate the session. The bind initiating each session is sent to the client,
and the bind informs the emulator which data stream to expect. The
VTAM application perceives the Telnet LU to be an an actual 3287-class
printer and sends the SCS or 3270 data to the Telnet LU. Telnet passes the
data on to the client, which prints the data. Telnet printer support allows
you to use a single product, Telnet, to control both SNA terminals and
SNA printers.

Some Telnet client printer emulators can request to be associated with a
terminal device name by specifying the terminal device name during
connection negotiation. Using printer association, end users can connect
their Telnet terminals to an application and then have Telnet assign an
associated printer device name based on the terminal name. To associate
printers with terminals, Telnet must have a printer device pool of LUs
defined and a terminal device pool of LUs defined with each having the
same number of device names. For more information, see “Associated
printer function” on page 617.

Additional negotiated TN3270E support
Responses and SysReq functions are supported by most clients that
support TN3270E connections. Contention Resolution and SNA Sense
support are newer and less prevalent.
v Responses - The client or host VTAM application can request that it

receive definite, exception, or no response. Client responses to
application requests provide more accurate response information for
application-based monitoring tools compared to TN3270 connections. For
TN3270 connections, Telnet must intercept response requests from the
host and respond on behalf of the client, incorrectly reducing measured
response time. Telnet monitoring will provide accurate response time
information for either TN3270E or TN3270 connections.

v SysReq function - The end user can request that a current session be
dropped by entering LOGOFF (in upper, lower, or mixed case) after
pressing the SysReq key. If LUSESSIONPEND is not mapped to the
client, the connection will be dropped. Otherwise, a USSMSG10 screen is
sent to the client. If, instead of entering LOGOFF, the SysReq key is
pressed a second time and if the application supports LUSTAT 082B
(presentation screen is lost), the previous screen is resent to the client
emulator.

v Contention Resolution - Improves communication between the client and
host VTAM application regarding which owns the send state. Contention
Resolution includes the following:
– Keyboard Restore Indicator (KRI) - Whenever the host VTAM

application sends End Bracket (EB), Telnet sends a KRI to the client.
This directly notifies the client that the keyboard can be unlocked.
Without the KRI indicator, Telnet would have to make sure a WCC
with the unlock keyboard flag set is sent to the client. The KRI flag is
set whether or not the keyboard restore flag in the WCC byte is set.

– Start Data Indicator (SDI) - When the host VTAM application sends
change direction or end bracket, Telnet sends the SDI to the client.
This allows the client to know exactly when data can be sent to
Telnet.

– BID - A BID sent from the host VTAM application is forwarded to the
client instead of being intercepted and handled by Telnet. This allows
the client to manage the BID process itself.

578 z/OS V1R12.0 Comm Svr: IP Configuration Guide

– Signal Indicator - A signal received from the host VTAM application
is forwarded to the client. When the client responds to the signal,
Telnet sends a change direction indicator to the host VTAM
application.

v SNA Sense Support - Allows the client to include SNA sense codes in a
response message. The client retains the option of letting Telnet map the
errors to an appropriate sense code by not turning on the
SNA-Sense-Code indicator in the response message.

TN3270: TN3270 connections support full-screen 3270 emulation. TN3270
connections do not support:
v Device name or pool name specification
v Printers
v Client involvement with responses, SysReq, Start Data Indicator, BID, Signal or

SNA Sense data.

RFC1646 defines device name specification and printer support for TN3270
connections. However, this RFC is not supported on the TN3270 Telnet server. If
either of these requests is received on a TN3270 connection, the server will drop
the connection.

Linemode: In some cases, the client or the application does not support
full-screen presentation, or the end user needs to work in a linemode environment.
For these reasons, most emulators support linemode. Linemode supports a go-ahead
function to simulate a half-duplex format. With go-ahead negotiated, the partner
cannot send data until it receives a go-ahead from the current sender of data. In
most cases, sessions are naturally half-duplex and the go-ahead adds unneeded
transmissions. Therefore, the Telnet default is to Suppress Go Ahead (SGA). If
go-ahead is needed to maintain a half-duplex format, use the NOSGA parameter.
SGA or NOSGA can be coded at all three parameter block levels for different levels
of granularity.

Telnet supports the following types of Linemode connections:
v Standard
v Binary
v Transform

Standard Linemode is assumed if neither DBCS transform nor BINARY linemode
parameters are specified, or if the device type is not supported by transform.
Standard Linemode is the only connection mode that requires translation by Telnet.
Telnet provides multicultural support for standard Linemode connections. ASCII
and EBCDIC code pages are the basis for translation. Telnet uses the ICONV
services available in the C runtime library. For custom code page information, see
the ICONV services in z/OS XL C/C++ Programming Guide. When ASCII and
EBCDIC code pages are specified, a conversion descriptor will be given to Telnet.
Telnet creates ASCII-EBCDIC and EBCDIC-ASCII translation tables based on the
conversion descriptor. The CODEPAGE parameter is used to specify the code page
names. For example:
CODEPAGE ISO8859-1 IBM1047

The possible results from CODEPAGE processing are:

Chapter 11. Accessing remote hosts using Telnet 579

v If a conversion descriptor is not returned, CODEPAGE is not coded, or there is
an error in the syntax, a default code page of ISO8859-1 will be used for ASCII,
and the language environment code page taken from locale information will be
used as the EBCDIC code page.

v If a conversion descriptor is not returned again, a default code page of IBM-1047
will be used for EBCDIC.

v If a conversion descriptor is not returned again, predefined translation tables
within Telnet will be used. These tables are similar, but not exactly the same as
the tables which would have been generated if ISO8859-1 and IBM-1047 had
worked. Some of the differences are noted below:
EBCDIC ASCII
x’0D25’ -----> x’0D0085’ using ISO8859-1/IBM-1047
x’0D25’ -----> x’0D0A’ using internal tables
x’15’ <---- x’0A’ using ISO8859-1/IBM-1047
x’25’ <---- x’0A’ using internal tables

No message is issued to the console if the first conversion succeeds. If there is any
conversion failure a message is issued. If one of the later conversions succeeds, a
message is issued indicating success.

If your Linemode connection does not perform correctly, the default translation
tables may be causing the problem. Try the internal Telnet translation tables by
specifying TNSTD for both ASCII and EBCDIC choices. For example:
CodePage TNSTD TNSTD

The internal code pages must be used together. If only one of the two internal
tables is specified, then the other internal table will also be used.

CODEPAGE can be coded at all three parameter block levels for different levels of
granularity.

Binary Linemode is set using the BINARYLINEMODE parameter. It indicates that
Telnet should not do translation. The ASCII data from the client should be passed
as-is to the VTAM application. BINARYLINEMODE or NOBINARYLINEMODE
can be coded at all three parameter block levels for different levels of granularity.

Transform Linemode is set using the DBCSTRANSFORM parameter. When coded,
all data that passes through Telnet will be transformed from DBCS or SBCS ASCII
full screen to 3270 full screen for all supported device types. If the device type is
not supported, Standard or Binary Linemode is used. DBCSTRANSFORM can be
coded in TELNETPARMS or PARMSGROUP for different levels of granularity. It
cannot be coded in TELNETGLOBALS. A unique logmode for transform can be set
using TELNETDEVICE with a device type of TRANSFORM. Any logmode used
must not support extended graphics.

Note: Transform can be used by only one port when multiple ports are active on
one TCP/IP stack. DBCSTRANSFORM supports a maximum of 250
concurrent connections.

DBCSTRANSFORM can be used for either the VT100 single-byte character set
(SBCS) or VT282 double-byte character set (DBCS) transform mode. When
DBCSTRANSFORM is specified and the TCP/IP procedure JCL has been modified
as shown below, ASCII-based terminal emulators (VT100 or VT282) will appear as
full-screen 3270 terminals. Telnet receives ASCII data from the client and
transforms it into SBCS or DBCS EBCDIC data, depending on the terminal type.
Telnet adds appropriate SNA control bytes to give the appearance that the data is

580 z/OS V1R12.0 Comm Svr: IP Configuration Guide

coming from a 3270 terminal. Telnet receives EBCDIC data from the host
application and transforms the SNA control bytes and data into appropriate ASCII
control bytes and data. The data is sent to the ASCII-based terminal where it is
displayed in 3270 full-screen emulation. DBCSTRANSFORM requires additional
special Data Definition (DD) statements in the TCP/IP procedure.

You must add the following three DD statements to the TCP/IP procedure JCL to
support Transform:
//TNDBCSCN DD DSN=TCPIP.SEZAINST(TNDBCSCN),DISP=SHR
//TNDBCSXL DD DSN=TCPIP.SEZAXLD2,DISP=SHR
//TNDBCSER DD SYSOUT=*

v The TNDBCSCN DD statement must point to the configuration data set for 3270
DBCS transform mode. This configuration data set specifies the default DBCS
conversion mode that will take effect at initialization time. Specify the
CODEKIND and CHARMODE parameters according to the required DBCS code
page. If CODEKIND and CHARMODE are not specified, or if the TNDBCSCN
DD statement is not added, by default, CODEKIND is SJISKANJI and
CHARMODE is ALPHABET. A sample can be found in
SEZAINST(TNDBCSCN).

v The TNDBCSXL DD statement must point to the data set containing binary
translation table code files for 3270 DBCS transform mode. The installation data
set, SEZAXLD2, contains the default binary translation table code files. The
binary translation table code files for 3270 Transform can be customized by
using the CONVXLAT command. See z/OS Communications Server: IP
Configuration Reference for more information about customizing translation table
code files. If the TNDBCSXL DD statement is not added, the following message
will appear and an abend will occur:
IEC130I PASCAL01 DD STATEMENT MISSING

v The TNDBCSER DD statement defines where Transform-specific error messages
are recorded. This DD statement can specify an output data set or SYSOUT=*. If
the TNDBCSER DD statement is not added, transform initialization will fail.

Specifying the DBCSTRACE parameter sends detailed trace output from 3270
Transform to the location specified in the SYSPRINT output DD statement.
Additional detailed trace output is also sent to TNDBCSER. Both data sets will
contain detailed trace data. DBCSTRACE or NODBCSTRACE can be coded in
TELNETPARMS or PARMSGROUP for different levels of granularity. They cannot
be coded in TELNETGLOBALS.

Connection security
This topic describes data overrun security, Transport Layer Security (TLS), and
Network Access Control.

Data overrun security: Use the following parameters to protect against data
overrun.

MAXRECEIVE: This parameter limits the number of bytes received from a client
without an End Of Record (EOR) being received. If the data received exceeds the
limit, the connection is dropped. This parameter protects against a client stuck in a
send-data loop. In general, large file transfers will not be affected because the
sending client typically divides the file into smaller records that are sent. The
receiving application rebuilds the file as the smaller records are received.

MAXVTAMSENDQ: This parameter limits the number of data segments (RPLs)
queued to be sent to VTAM. If the queue size exceeds the limit, the connection is

Chapter 11. Accessing remote hosts using Telnet 581

dropped. This parameter protects against using up large amounts of storage to
hold data destined for a host application that is not receiving data.

MAXREQSESS: This parameter limits the number of session requests received by
Telnet in a 10-second period. For this parameter, a BIND received by Telnet defines
a session request. If the number of BINDs received in a 10-second period exceeds
the limit, an error is reported. This parameter protects against session logon loops
that are possibly created by an automatic CLSDST-PASS to an inactive session. This
parameter cannot protect against logon loops caused by an inactive default
application and a client using auto-reconnect.

MAXRUCHAIN: This parameter limits the number of chained RUs that can be
received over a given session from a host application without a corresponding end
chain RU. If the number of RUs exceeds the limit, the session is dropped. This
parameter protects against using up large amounts of storage to hold data destined
for a client in session with the host application.

The MAXRECEIVE, MAXVTAMSENDQ, MAXREQSESS, and MAXRUCHAIN
parameters can be coded at all three parameter block levels for different levels of
granularity.

Auto-reconnect loop: Without MSG07 coded a client connection error causes Telnet
to drop the connection. The error may be an inactive DEFAULTAPPL or an LU
assignment error. If the client has AUTO-RECONNECT specified, a continuous
loop of retries occurs. The best protection against this is to code the MSG07
parameter which keeps the client from being disconnected. However, other
applications can be chosen from the error screen returned to the end user. To block
end users from other applications, use the DEFONLY parameter.

Transport Layer Security: The TN3270E Telnet server (Telnet) provides the ability
to secure Telnet connections with Transport Layer Security (TLS) or the Secure
Sockets Layer (SSL) protocol. Telnet supports the TLSv1.1, TLSv1.0, SSLv3, and
SSLv2 protocols, which, collectively, are referred to as the TLS protocol. References
to RACF apply to any SAF-compliant security product that contains the required
support. Telnet can be set up to use Application Transparent Transport Layer
Security (AT-TLS) in TCP/IP, or a subset of the functions available in AT-TLS can
be configured in the Telnet profile. A port using AT-TLS security configuration is
referred to as a TTLSPORT port, and a port using Telnet profile security
configuration is referred to as a SECUREPORT port. A secure port is either a
TTLSPORT port or a SECUREPORT port. A basic port is one that does not use the
TLS protocol. Connections are either secure or basic. The flows between Telnet and
VTAM are unchanged.

The expired Internet Engineering Task Force (IETF) TLS-based Telnet security draft is
supported in Telnet. This draft allows a Telnet negotiation to determine whether
the client wants or supports TLS protocol prior to beginning the secure handshake.
The default action that Telnet takes for a secure port is to first attempt a TLS
handshake. If the client does not start the handshake within the specified
handshake timeout time, an attempt is made to negotiate TLS as defined by the
expired TLS-based Telnet security draft. If the client responds that it wants a secure
connection, the handshake is started; if the client rejects the TLS negotiation
request, the connection is closed. In this way, installations can support both types
of secure clients without knowing which protocol the client is using. The default
action can be changed by specifying the CONNTYPE statement described later in
this topic. You can also use the CONNTYPE statement to support secure and basic
connections on the same port.

582 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Telnet server authentication and client authentication are described in Appendix B,
“TLS/SSL security,” on page 1461. The Telnet server supports level 1, level 2 and
level 3 client authentication. Client authentication is done with the CLIENTAUTH
parameter. Level 2 and level 3 client authentication use RACF services to translate
the client certificate to an associated user ID. That user ID can also be used as a
client identifier.

TTLSPORT utilizes AT-TLS, which supports many System SSL functions that are
not supported by the Telnet profile configuration. For example, the following
functions are supported by AT-TLS and not by Telnet profile configuration:
v Dynamic refresh of a key ring
v Support new or multiple key rings
v Specify the label of the certificate to be used for authentication, instead of using

the default certificate
v Support SSL Session Key Refresh
v Support SSL Session Reuse
v Support SSL Sysplex Session ID Caching
v Trace decrypted SSL data for Telnet in a data trace
v More granular error messages in syslog for easier debugging

When using SECUREPORT ports, the Telnet profile security configuration supports
the following subset of System SSL functions:
v Key ring specification using the KEYRING statement
v Cipher specification using the ENCRYPTION statement
v Client authentication level using the CLIENTAUTH statement
v CRL LDAP server specification using the CRLLDAPSERVER statement
v Control SSLv2 protocol usage with the SSLV2 or NOSSLV2 statement
v Set the handshake timeout using the SSLTIMEOUT statement

TTLSPORT ports and SECUREPORT ports can coexist in the same Telnet server.

AT-TLS has one limitation when compared to Telnet profile configuration. AT-TLS
policy does not support mapping security parameters to connections based on
client hostname. You can do this with Telnet profile configuration by coding
security parameter statements in a PARMSGROUP statement and using the
PARMSMAP statement to map the group to a hostname or a hostname group. If
you currently have this configuration, you must continue to use Telnet profile
configuration.

Telnet Transport Layer Security setup: The TTLSPORT statement or the
SECUREPORT statement in the TELNETPARMS block is required to define a port
as a secure port that is using AT-TLS or Telnet profile statements to configure the
secure connections.

The CONNTYPE statement is an optional statement on secure ports that provides
more control over how connections initiate the TLS handshake, whether or not the
connection is secure, and whether the connection is available for use. Valid
CONNTYPE statement options are as follows:
v SECURE

Indicates that the TLS handshake is used to start the connection. If the client
does not start the handshake within the time specified by the handshake timeout

Chapter 11. Accessing remote hosts using Telnet 583

time, an attempt is made to perform a negotiated TLS handshake (as defined by
the expired IETF TLS-based Telnet security draft). If the client rejects TLS, the
connection is closed.

v NEGTSECURE
Indicates that the client supports the expired IETF TLS-based Telnet security
draft. A Telnet negotiation with the client determines whether the client is
willing to enter into a secure connection. If the client agrees, a TLS handshake is
started and secure protocols are used for all subsequent communication. If the
client rejects TLS, the connection is closed. You should consider using this option
only if you know that the Telnet secure clients connecting into the port are all
using the protocol defined by the expired TLS-based Telnet security draft. With
this option, the TLS handshake is not attempted until a positive response to the
Telnet DO_StartTLS IAC is received. This avoids the timeout delay that can
occur when a TLS handshake is immediately started (as occurs with the
CONNTYPE SECURE option), but the client is expecting the protocol used by
the expired TLS-based Telnet security draft. Use the SECURE option instead of
the NEGTSECURE option in case some clients in your network do not support
the expired TLS-based Telnet security draft.

v BASIC
Indicates that a basic connection is established.

v ANY
Indicates that the connection can be either secure or basic. Telnet first tries a
standard TLS handshake. If the handshake times out, a negotiated TLS
connection (see the CONNTYPE NEGTSECURE option description) is attempted:
– If the client is willing to enter into a secure connection, secure protocols are

used for all subsequent communication.
– If the client is not willing to enter into a secure connection, a basic connection

is established.
v NONE

Indicates that no connection is allowed and the connection will be closed. If this
option is specified in the TELNETPARMS block, a PARMSMAP statement must
cover every allowable connection, and the related PARMSGROUP statement
must specify the connection type on the CONNTYPE statement.

If the CONNTYPE statement is not specified, by default, secure ports are
CONNTYPE SECURE and basic ports are CONNTYPE BASIC.

Using one port for both basic and secure connections: You can use the CONNTYPE
statement to modify connection types on a single port. Allowing a port to support
both basic and secure connections assumes that either of the following are true:
v The installation allows the client to determine the connection type.
v A subset of the connections that should use a particular connection security type

can be identified by Client Identifier.

In the first case, specify CONNTYPE ANY. If the port was defined as a secure port
but the client wants a basic connection, there is a slight delay before connection
negotiation begins. This is because when CONNTYPE ANY is coded, Telnet first
attempts a TLS handshake to ensure that the client is not requesting TLS support.
It is only after the handshake times out and negotiated security is rejected that the
basic connection negotiation begins.

584 z/OS V1R12.0 Comm Svr: IP Configuration Guide

In the second case, the TELNETPARMS block should specify the default connection
security type (see the CONNTYPE statement). For connections with different
connection security requirements, do the following:
v Identify the clients by Client Identifier.
v Create a group using the PARMSGROUP statement with the alternate

CONNTYPE definitions.
v Map the group created with the PARMSGROUP statement to the clients using

the PARMSMAP statement.

Configuring Telnet security using AT-TLS: The TTLSPORT statement in the
TELNETPARMS block indicates that the port uses AT-TLS to manage System SSL.
All TTLSPORT ports must be defined by specifying a TELNETPARMS block for
each port.

Other than the CONNTYPE statement, all security configuration is done in AT-TLS
policy. For details about AT-TLS setup, see Chapter 22, “Application Transparent
Transport Layer Security data protection,” on page 1193. For Policy Agent setup
and AT-TLS policy statements, see z/OS Communications Server: IP Configuration
Reference. A sample list of tasks to perform for AT-TLS policy includes the
following:
1. Be sure that the TCP/IP stack profile includes the TCPCONFIG statement with

the TTLS parameter.
2. Permit Policy Agent and any other required administrative application to the

RACF resource EZB.INITSTACK.sysname.tcpname in the SERVAUTH class.
3. Define the pagent environment file on the STDENV DD statement in Policy

Agent JCL. For example:
//STDENV DD PATH=’/etc/pagent/pagent.env’,PATHOPTS=(ORDONLY)

4. In the pagent environment file, point to a configuration file. For example:
PAGENT_CONFIG_FILE=//’SYS1.TCPPARMS(PAGENT)’

5. In the configuration file, set up policy files for each TCP/IP stack image. For
example:
TcpImage TCP1 /etc/pagent/TCP1.policy FLUSH
TcpImage TCP2 /etc/pagent/TCP2.policy FLUSH

6. In the TcpImage file, point to the TTLS configuration file. For example:
TTLSConfig /etc/pagent/pagttls1.ttls

7. In the TTLS configuration file, code the TTLSRule, TTLSGroupAction,
TTLSEnvironment, and TTLSConnectionAction statements.
Be sure to set the ApplicationControlled parameter to the value On in the
TTLSEnvironmentAdvancedParms statement. For example:
TTLSRule tn_serv1
{

LocalPortRange 23
Direction Inbound
Jobname TCP1
TTLSGroupActionRef tn_grp_act
TTLSEnvironmentActionRef tn_env_act

}

TTLSGroupAction tn_grp_act
{
TTLSEnabled On
Trace 7
GroupUserInstance 1
}

Chapter 11. Accessing remote hosts using Telnet 585

TTLSEnvironmentAction tn_env_act
{

HandshakeRole Server
TTLSKeyringParms
{

Keyring TNsafkeyring
}
TTLSEnvironmentAdvancedParms
{
ApplicationControlled On
}
EnvironmentUserInstance 1
}

8. Verify that the policy is correctly entered by using the z/OS UNIX pasearch
command to query information from the z/OS UNIX Policy Agent.
Issue the pasearch -t command from the z/OS UNIX System Services shell. If
you have multiple TCP/IP stacks that are active, issue the pasearch -t -p
procname command to query a specific TCP/IP stack. The pasearch command is
a Policy API (PAPI) application. If you have never run a PAPI application, you
might receive a message indicating that the papi.dll file was not found. For
more information about PAPI and running PAPI applications, see z/OS
Communications Server: IP Programmer's Guide and Reference.

Converting Telnet profile statements to equivalent AT-TLS policy statements: If you are
currently using the SECUREPORT statement in your Telnet profile, Table 28
describes how to convert Telnet profile statements to equivalent AT-TLS policy
statements.

Table 28. Converting Telnet profile statements to AT-TLS policy statements

Telnet statement AT-TLS equivalent statement AT-TLS policy statement

CLIENTAUTH NONE HandshakeRole Server TTLSConnectionAction or
TTLSEnvironmentAction

CLIENTAUTH
SSLCERT

HandshakeRole ServerWithClientAuth and
ClientAuthType Required

TTLSConnectionAction or
TTLSEnvironmentAction /
TTLSEnvironmentAdvancedParms within
TTLSEnvironmentAction

CLIENTAUTH
SAFCERT

HandshakeRole ServerWithClientAuth and
ClientAuthType SAFCHECK

TTLSConnectionAction or
TTLSEnvironmentAction /
TTLSEnvironmentAdvancedParms within
TTLSEnvironmentAction

CRLLDAPSERVER GSK_LDAP_Server and
GSK_LDAP_Server_Port

TTLSGskLdapParms within
TTLSEnvironmentAction

ENCRYPTION TTLSCipherParms TTLSConnectionAction or
TTLSEnvironmentAction

KEYRING Keyring TTLSKeyRingParms within
TTLSEnvironmentAction

SSLV2 SSLv2 TTLSEnvironmentAdvancedParms within
TTLSEnvironmentAction or
TTLSConnectionAdvancedParms within
TTLSConnectionAction

SSLTIMEOUT HandshakeTimeout TTLSEnvironmentAdvancedParms within
TTLSEnvironmentAction or
TTLSConnectionAdvancedParms within
TTLSConnectionAction

586 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Tip: There are many variations possible with the Telnet profile statement
CLIENTAUTH. In AT-TLS, whether or not client authentication is done is
controlled by the HandshakeRole parameter on either the TTLSEnvironmentAction
or TTLSConnectionAction statements. If the connection needs client authentication,
the level of authentication is controlled with the ClientAuthType parameter on the
TTLSEnvironmentAdvancedParms statement.
v If you have both CLIENTAUTH SSLCERT and CLIENTAUTH SAFCERT in

different ParmsGroup statements in your Telnet configuration, you need two
TTLSEnvironmentAction statements; one TTLSEnvironmentAction statement for
ClientAuthType Required and one TTLSEnvironmentAction statement for
ClientAuthType SAFCheck. Two TTLSRule statements, each referencing a
different TTLSEnvironmentAction statement in AT-TLS, replace the two
PARMSMAP statements in the Telnet profile.

v If you have a mixture of CLIENTAUTH NONE and CLIENTAUTH SAFCERT,
you need a TTLSEnvironmentAction statement with HandshakeRole
ServerWithClientAuth, and a TTLSConnectionAction statement with
HandshakeRole Server. Two TTLSRule statements in AT-TLS (one with the
TTLSConnectionAction statement and one without) replace the two PARMSMAP
statements in the Telnet profile. You could instead create a second
TTLSEnvironmentAction statement with HandshakeRole Server, but many more
resources are associated with a TTLSEnvironmentAction statement compared to
a TTLSConnectionAction statement.

Configuring Telnet security using Telnet profile statements: System SSL environment
initialization based on the Telnet profile configuration occurs when the first
SECUREPORT port is activated; initialization does not occur again unless all
SECUREPORT ports are stopped (V TCPIP,tnproc,T,STOP,PORT=SECURE). Whether
or not hardware encryption is used is based on its availability at the time of Telnet
initialization. For ICSF to be used by Telnet, ICSF must be available to System SSL.
A crypto assist status message is issued to sysout when the first Telnet secure port
is activated. For more information about hardware encryption, see Appendix B,
“TLS/SSL security,” on page 1461.

To implement secure connections, Telnet must have APF-authorized access to the
System SSL DLLs. The System SSL DLLs are located in SYS1.SIEALNKE by
default. System SSL uses the C runtime library (SCEERUN) and the C/C++
standard library, which must also be accessible to Telnet. To access these libraries,
either add them to the linklist or specify them in the Telnet procedure's STEPLIB. If
accessed through the linklist, the linklist must be authorized (LNKAUTH=LNKLST
specified in the IEASYSxx parmlib member) or the libraries must be explicitly APF
authorized. If accessed through a STEPLIB, the libraries must be APF authorized
and DISP=SHR must be specified. The Telnet profile must also be updated. An
overview of the SSL-related profile parameters follows. For a detailed description
of the parameters, see z/OS Communications Server: IP Configuration Reference.

Two statements are required to define a SECUREPORT port:
v SECUREPORT

The SECUREPORT port designation statement in the TELNETPARMS block
indicates that the port uses Telnet profile configuration to manage System SSL.
All SECUREPORT ports must be defined by specifying a TELNETPARMS block
for each port.

v KEYRING

Chapter 11. Accessing remote hosts using Telnet 587

|

A server certificate is required for the server authentication process defined by
the SSL protocol. This certificate is stored in a key ring. The key ring type and
location is specified in the KEYRING statement. Only one key ring can be used
by Telnet.

The key ring can be defined in the TELNETGLOBALS or TELNETPARMS block.
Using the TELNETGLOBALS block is the preferred definition method because it
ensures that the same key ring has been defined for all SECUREPORT ports. If
specified in the TELNETPARMS block, the same key ring type and file must be
specified for each SECUREPORT port. The first key ring file name read is
considered the correct key ring file name. The TELNETGLOBALS key ring is read
first, and then the TELNETPARMS key rings are read in reverse order. Any key
ring that does not match the first is rejected and the port update fails. You can
verify that your port is secure by issuing a D TCPIP,tnproc,T,PROFILE command.
The first column under the security heading indicates the port type. You see an S
for a SECUREPORT port, a T for a TTLSPORT port, or a B for a basic port. Near
the bottom of the display, you see the key ring name that Telnet is using.

The following steps are required to enable TLS support for Telnet, with server
authentication:
1. Generate the Telnet private key and server certificate.
2. Configure Telnet to include one or more SECUREPORT ports; in the

TELNETGLOBALS block or the TELNETPARMS block, specify the name of the
key ring that you created in the previous step. For example, specify one of the
following:
v KEYRING HFS /usr/ssl/server.kdb

In this example, two files, server.kdb and server.sth, were created using the
gskkyman utility. The server's certificate is contained in the server.kdb file
and designated as the default certificate.
The key database and the password stash file must reside in the same
directory.

v KEYRING SAF serverkeyring
In this example, RACF is used to manage keys and certificates. The server
certificate is connected to a key ring called SERVERKEYRING and
designated as the default certificate.

3. Restart Telnet or issue the VARY TCPIP,tnproc,OBEYFILE command with the
updated configuration files.

Optional security statements: You can specify optional security statements only for
SECUREPORT ports in the TELNETGLOBALS, TELNETPARMS, or PARMSGROUP
blocks. The statements specified in the PARMSGROUP block apply to only the
clients mapped to the PARMSGROUP block by the PARMSMAP statement, and
override the statements specified in the TELNETPARMS or TELNETGLOBALS
block. The statements specified in the TELNETPARMS block apply to any
connection for that port, if not overridden by a PARMSGROUP statement. The
statements specified in the TELNETGLOBALS block apply to any connection for
any port, if not overridden by a TELNETPARMS or PARMSGROUP statement.

The CONNTYPE statement is described in “Telnet Transport Layer Security setup”
on page 583.

The ENCRYPTION statement is used to limit the encryption algorithms to only
those included in the statement. If this statement is not specified, all encryption
algorithms that can be specified are used by Telnet. For the encryption ciphers that

588 z/OS V1R12.0 Comm Svr: IP Configuration Guide

can be specified and for the default order used by Telnet if the ENCRYPTION
statement is not used, see z/OS Communications Server: IP Configuration Reference.
The following are some reasons for using the ENCRYPTION statement:
v The applications supported on this port require a high level of security and the

installation wants all data encrypted using a particular encryption cipher.
v Certain connections are local and the installation does not require encryption for

local clients. NULL encryption can be specified for this subset of connections.

The SSLV2 statement enables the use of the SSLv2 protocol. The default value is
NOSSLV2, which prohibits the use of the SSLv2 protocol. The SSLv2 protocol
might be necessary if SSLv3, TLSv1.0, or TLSv1.1 is not supported by the client.

The CLIENTAUTH statement indicates that the client must send a client certificate
to the server. If this statement is not specified, a client certificate is not requested
during the SSL handshake, and no certificate-based client authentication is
performed. The level of validation performed depends on the option specified.

Valid CLIENTAUTH options are:
v SSLCERT (Level 1)

To pass authentication, the Certificate Authority (CA) that signed the client
certificate must be considered trusted by the server (that is, a certificate for the
CA that issued the client certificate is listed as trusted in the server's key ring).

v SAFCERT (Level 2 and 3)
The level 1 checking provided by SSLCERT is performed, and level 2 checking is
performed to verify that the certificate has been registered with RACF (or
another SAF-compliant security product that supports certificate registration).
Additionally, if the RACF SERVAUTH class is active and a RACF resource has
been defined for the port, level 3 client authentication is in effect and the
connection is allowed only if the user ID associated with the client certificate has
READ access to the RACF resource.

v NONE
No client certificate is requested.

The CRLLDAPSERVER statement is specified in the TELNETGLOBALS block, and
defines the name or IP address and port of the certificate revocation list (CRL)
LDAP server. The CRL LDAP server is used only if client certificates are received
(CLIENTAUTH is specified). If CLIENTAUTH and the CRLLDAPSERVER
statement have been specified, the certificate revocation list is checked during
client authentication. If the client's certificate is found on the certificate revocation
list, the connection is closed. Up to five CRL LDAP servers can be defined to
Telnet.

You cannot change the key ring (name, type, or contents) or the CRL LDAP server
(name or location) using the VARY TCPIP,tnproc,OBEYFILE command while
SECUREPORT ports are active. To change the key ring or the CRL LDAP server,
first stop all SECUREPORT ports (V TCPIP,tnproc,T,STOP,PORT=S). Then issue the
VARY TCPIP,tnproc,OBEYFILE command to restart the SECUREPORT ports with a
new key ring or CRL LDAP server. If the CRL LDAP server is stopped or
connectivity is lost, System SSL might not recognize a subsequent reconnection.
This situation must be handled like the CRL LDAP server change.

Telnet profile example: This example defines three ports with the following
characteristics:
v Port 23 allows only basic connections.

Chapter 11. Accessing remote hosts using Telnet 589

v Ports 992 is enabled for secure connections defined by Telnet profile statements.
v Port 1023 is enabled for secure connections defined by AT-TLS policy.
v Port 992 allows only secure connections. No client authentication is requested.
v Port 1023 allows both basic and secure connections. The installation wants the

following characteristics for port 1023:
– The system administrator is at IP address 10.1.3.3 and wants the capability to

choose to connect with secure or basic connections.
– Buildings A and B are local and do not need connection security. The clients

in these buildings have identifiable subnetworks. The installation wants these
clients to use basic connections to avoid the encryption overhead.

– Connection security (SSLCERT or Required) is used on all other connections.
– All secure connections require client authentication and use the DES or triple

DES encryption algorithms.

Note: Definitions that are applicable to TLS connection security are the only
definitions shown; additional parameters might be needed. Assume that all
connections go through TCP/IP stack with job name TCP1.

TCP/IP configuration statements:
...
TCPCONFIG TTLS...

Telnet profile statements:
TELNETPARMS ; basic port does not support secure connections
Port 23
ENDTELNETPARMS

TELNETPARMS ; port that allows only secure connections
SECUREPORT 992 ; no client authentication requested
KEYRING hfs /usr/keyring/tcp1.kdb ; keyring used by all SECUREPORTs
ENDTELNETPARMS ; any supported encryption algorithm

TELNETPARMS ; port that allows secure and BASIC connections.
TTLSPORT 1023 ; note: BEGINVTAM block has PARMSGROUP that may override CONNTYPE
CONNTYPE SECURE ; SECURE is default
ENDTELNETPARMS

will use parmsgroup
Adminpg

user
determined

Telnet server

will use parmsgroup
BasicPG

IPGroup is LocalIP

SSL

basic

1023

10.1.3.3

10.1.1.0/24
10.1.2.0/24

Figure 64. Port 1023 connection characteristics

590 z/OS V1R12.0 Comm Svr: IP Configuration Guide

BEGINVTAM
Port 1023
... ; Mapping statements
IPGROUP LocalIP
255.255.255.0:10.1.1.0
255.255.255.0:10.1.2.0

ENDIPGROUP

PARMSGROUP BasicPG ; override default ConnType
CONNTYPE BASIC ; support basic connections mapped to this group

ENDPARMSGROUP
PARMSGROUP AdminPG
CONNTYPE ANY ; connections mapped to this group allow any type of connection

ENDPARMSGROUP

PARMSMAP AdminPG 10.1.3.3 ; this ip address can use secure or basic connections
PARMSMAP BasicPG localIP ; hosts defined in IPGROUP localIP,

; will use basic connections as defined in PARMSGROUP BasicPG
ENDVTAM

BEGINVTAM
Port 992 23
... ;Mapping statements

;no PARMSGROUP defined for these ports
;TELNETPARMS definitions used for all connections

ENDVTAM

AT-TLS policy statements:
TTLSRule tn_serv
{

LocalPortRange 1023
Direction Inbound
Jobname TCP1
TTLSGroupActionRef tn_grp_act
TTLSEnvironmentActionRef tn_env_act

}

TTLSGroupAction tn_grp_act
{
TTLSEnabled On
Trace 7
GroupUserInstance 1
}

TTLSEnvironmentAction tn_env_act
{

HandshakeRole ServerWithClientAuth
TTLSKeyringParms
{

Keyring TNsafkeyring
}
TTLSEnvironmentAdvancedParms
{
ClientAuthType Required
ApplicationControlled On
}
EnvironmentUserInstance 1

}

Network Access Control: Network Access Control (NAC) limits user access to
certain IP security zones defined by the NETACCESS statement. A security
product, such as RACF, is used to check the permission of user IDs to send data to
or receive data from these security zones. The NAC user ID is based on the Telnet
address space user ID information.

The NACUSERID parameter provides more control over Network Access Control
checking for Telnet. This parameter is used to associate Telnet ports with a

Chapter 11. Accessing remote hosts using Telnet 591

specified user ID that is defined to the security server. The user ID specified on the
NACUSERID parameter must be a valid user ID defined to the security server. If
not, the Telnet port will fail initialization. NACUSERID can be coded in
TELNETGLOBALS to affect all ports or TELNETPARMS to affect a single port.
NACUSERID cannot be coded in PARMSGROUP. Specify NONACUSERID to
disable a higher level specification. For example, a TN3270E Telnet server with an
address space user ID of user1 can specify in TELNETGLOBALS the statement
NACUSERID user2. If one port should instead be controlled by user1, the
TELNETPARMS statement for that port should be NONACUSERID to disable the
user2 specification in TELNETGLOBALS.

When Telnet is modified with a VARY TCPIP,tnproc,OBEYFILE command, the
NACUSERIDs are reverified for the Telnet ports defined in the data set referenced
by the command. If a Telnet port has NACUSERID NAC_name_1, you cannot use
the VARY TCPIP,tnproc,OBEYFILE command to change that port's NACUSERID to
NAC_name_2. The port must first be stopped, and then started with the new
NAC_name_2 value using the VARY TCPIP,tnproc,OBEYFILE command.

The NETACCESS statement in the TCP/IP profile is used to configure portions of
your IP network into named security zones. Each defined security zone must have
a SERVAUTH profile for the resource named
EZB.NETACCESS.sysname.tcpname.zonename. The user ID associated with the Telnet
port must have READ access to the security zone that maps its bind address
(0.0.0.0/32 for INADDR_ANY or ::/128 for the IPv6 unspecified address,
in6addr_any, unless overridden by the PORT statement in the TCP/IP profile) and
to every security zone that maps client IP addresses that Telnet is to accept
connections from on this port.

For more information, see “Network access control” on page 120.

Connection persistence
Several timers are available in Telnet to control how long connections stay up. The
list includes:
v INACTIVE - How long a terminal connection can be idle with no SNA data

traffic before the connection is dropped.
v PRTINACTIVE - How long a printer connection can be idle with no SNA data

traffic before the connection is dropped.
v PROFILEINACTIVE - How long a Telnet connection can be active with no active

SNA session, while it is associated with a Telnet profile that is not the current
profile.

v KEEPINACTIVE - How long a KEEPOPEN connection can be idle with no SNA
session before the connection is dropped. When a KEEPOPEN connection is in
session with a SNA application the INACTIVE timer is used instead of the
KEEPINACTIVE timer.

v SCANINTERVAL - How often Telnet runs the list of connections looking for
potentially lost connections. Because of the methodology, it also determines how
long Telnet will wait for a TIMEMARK response before assuming the connection
is lost.

v TIMEMARK - How long a connection is active without receiving any data before
Telnet sends a TIMEMARK command which acts as an "are you there".

v SSLTIMEOUT - How long Telnet will wait for an SSL handshake initiation from
the client before the request is dropped.

592 z/OS V1R12.0 Comm Svr: IP Configuration Guide

To facilitate these timers, Telnet records the time at which data is received from the
client, received from VTAM, or sent to VTAM. Data received from the client is
used by SCANINTERVAL/TIMEMARK to measure idle time on the connection.
Data received from or sent to VTAM is used by the INACTIVE family of timers to
measure idle time without SNA data traffic.

SSLTIMEOUT is different than the other timers. Telnet does not run this timer. The
time value is passed to the SSL handshake process. If SSL does not get a response
from the client within SSLTIMEOUT period of time, the handshake request fails.
Telnet will then proceed to the next available connection negotiation method or
drop the connection.

The INACTIVE family of timers: INACTIVE, PRTINACTIVE,
PROFILEINACTIVE, and KEEPINACTIVE all share one timer associated with a
port profile to reduce system overhead. The timer with the smallest value defined
in TELNETGLOBALS, TELNETPARMS, or PARMSGROUP for that port profile is
used to define how often the connections are checked.

For example, assume KEEPINACTIVE is defined as 1800, PROFILEINACTIVE is
1800 by default, INACTIVE is defined as 3000, and PRTINACTIVE is defined as
5400 in a profile. The Telnet timer will run every 1800 seconds. Therefore, every
time the timer expires, Telnet will check each KEEPOPEN connection not in session
to see if there has been a SNA session created in the prior 1800 seconds. If not, the
connection is dropped with DEBUG SUMMARY message CONN DROP reason
INACT-K. For PROFILEINACTIVE, Telnet checks each connection associated with
a profile that is not current to determine whether a SNA session existed in the
previous 1800 seconds. If not, the connection is dropped with DEBUG SUMMARY
message CONN DROP reason INACT-PF. Telnet will also check each terminal
connection to see if there has been any SNA data traffic in the prior 3000 seconds.
If not, the connection is dropped with DEBUG SUMMARY message CONN DROP
reason INACT-S. Telnet also will check each printer connection to see if there has
been any SNA data traffic in the prior 5400 seconds. If not, the connection is
dropped with DEBUG SUMMARY message CONN DROP reason INACT-P.

Setting KEEPOPEN to the smallest time was done as an example. Any of the four
timers could be the smallest. Also, since all inactivity checks are done by one timer,
a connection check could occur just before the connection would be considered
timed out. The connection will remain active until the next check is made.

Using the example above, if a terminal connection has had no SNA activity in the
past 2999 seconds when a check is made, the connection is not dropped. Another
check is done 1800 seconds later and the connection is dropped, but the connection
will have remained active for 4799 seconds instead of the specified 3000 seconds.

SCANINTERVAL and TIMEMARK: SCANINTERVAL and TIMEMARK are used
together to determine if a connection has been lost. These parameters can be
specified in TELNETGLOBALS, TELNETPARMS, and PARMSGROUP. The smallest
SCANINTERVAL value is used to define how often the connections are checked. If
TIMEMARK is smaller than SCANINTERVAL, TIMEMARK is set equal to
SCANINTERVAL. Whenever data is received from the client, Telnet records the
time. Telnet checks all connections at regular intervals defined by the
SCANINTERVAL value. Each connection is checked to see if any data has been
received from the client in the past TIMEMARK period of time. If not, a
TIMEMARK command is sent to the client which acts as an "are you there" and
Telnet remembers a TIMEMARK was sent to this client. During the next check at
SCANINTERVAL time later, each connection is again checked to see if any data

Chapter 11. Accessing remote hosts using Telnet 593

has been received from the client. If not, and a TIMEMARK was sent on the
previous check, the connection is dropped with DEBUG SUMMARY message
CONN DROP reason TIMEMARK.

For example, assume the values for SCANINTERVAL and TIMEMARK are 1800
and 10800, respectively. That means every 30 minutes all connections are checked
to see if any data has been received in the last 3 hours. If not, a TIMEMARK is
sent to the client. 30 minutes later Telnet checks the connections again. If the client
responded to the TIMEMARK or sent in actual data of some type Telnet leaves the
connection active. If nothing has been received Telnet drops the connection.

A SCANINTERVAL check could occur just before the last data received is old
enough to trigger sending a TIMEMARK. The connection remains active until the
next SCANINTERVAL is made. Then a TIMEMARK is sent, and at the next
SCANINTERVAL the connection is dropped.

Using the example above, SCANINTERVAL checks a connection that received data
2 hours, 59 minutes ago. No TIMEMARK is sent. The next SCANINTERVAL runs
30 minutes later. Now the data received time is greater than 3 hours and a
TIMEMARK is sent. At the next SCANINTERVAL, the connection is dropped. The
connection's last activity was 3 hours 59 minutes ago.

Tip: Use Scaninterval and Timemark to find abandoned connections that do not
require quick reset. Scaninterval and Timemark are intended to eventually clean up
abandoned connections. They should not be used as an immediate reset function. If
immediate reset of lost connections is needed, use the CheckClientConn parameter.

Setting the timers: Caution must be used in setting these timers. Setting the
INACTIVE family of timers or SCANINTERVAL timer too low could cause
excessive CPU usage. Setting the TIMEMARK value too low could also cause
excessive flooding of the network with TIMEMARK commands or high storage
usage. For example, these timers should take into account extended breaks such as
lunch. If TIMEMARK is smaller than the lunch break time, the network may be
flooded with TIMEMARK commands around the lunch hour. Be aware of the
default values and be sure to set appropriate values for the situation.

MSG07 and LUSESSIONPEND: MSG07 and LUSESSIONPEND are Telnet
parameter statements that define what Telnet should do in case of a session setup
error and after normal logoff when the client is emulating a terminal. These
parameters do not affect a printer connection.
v Connection negotiation error - If any problems occur during negotiation nothing

can be done to keep the connection. If appropriate, Telnet will send the client an
error code to help inform the client why the connection was dropped and issue
a CONN DROP DEBUG message at the console.

v Session setup error - If a problem occurs during session setup such as an
application name that is not valid, session request failure, or a BIND error,
Telnet will drop the connection and issue a CONN DROP DEBUG message. The
end user cannot get to any application other than the default. No error messages
are sent to the end user and auto-reconnect loops are possible. For these reasons
it is recommended that MSG07 always be used. If the MSG07 parameter is
coded, the connection will not be dropped and an error message will be sent to
the end user. MSG07 function applies to any connection mode whether or not
USS tables are mapped to the client. If a USS table is used, the end user can
press the CLEAR key to return to the USSMSG10 screen. If the

594 z/OS V1R12.0 Comm Svr: IP Configuration Guide

LUMAP-DEFAPPL or PRTMAP-DEFAPPL statement is coded and the default
application is not available, an error screen will be sent to the client whether or
not MSG07 is coded.

v Normal Session Logoff - When the end user logs off a session using a normal
logoff, Telnet drops the connection. If the end user typically logs on to another
application after logging off the first application, it might be more efficient if the
user were presented another solicitor (or USSMSG10) panel or if Telnet initiated
a new session with the default application after logoff. This can be accomplished
by coding the LUSESSIONPEND parameter. Code LUSESSIONPEND to go
through the initial database lookup again after session logoff. Later results will
be identical to the first lookup. If a default application for the client exists, Telnet
will immediately initiate another session request. Otherwise, a USSMSG10 screen
or solicitor panel will be sent to the end user. When LUSESSIONPEND is coded,
the connection remains active but terminal LU ACBs are closed.

v SYSREQ LOGOFF - When the end user logs off a session using a "SYSREQ
LOGOFF" sequence (TN3270E connection supported) and LUSESSIONPEND is
coded, Telnet does not drop the connection. Instead, the user is presented with a
solicitor (or USSMSG10) panel. If DEFAULTAPPL is in effect, Telnet again
requests a session with the default application.

v USS LOGOFF - When the end user issues a LOGOFF command from the
USSMSG10 panel, the connection is dropped whether or not the
LUSESSIONPEND parameter is coded.

Mapping Objects to Client Identifiers
Telnet provides flexibility for mapping Objects to clients based on Client
Identifiers. This topic provides definitions, rules, and examples of many mapping
methods. Examples start with simple concepts, then progress to more complicated
concepts showing interaction between mapping statements. All mapping
statements are specified in the BEGINVTAM block. See z/OS Communications Server:
IP Configuration Reference for statement rules not discussed here.

The general relationship of mapping statements is:

MAP OBJECTS to clients based on CLIENT IDENTIFIER

Telnet tries to assign all 11 Objects to a client based on the mapping statements
when the connection is accepted. The search for Objects continues until all Objects
are found or until all mapping statements are checked.

Figure 65. Mapping model

Chapter 11. Accessing remote hosts using Telnet 595

Objects: When a client connection request is made, Telnet must assign an LU
name to represent the client. Optionally, a USS table, default application, unique
parameters defined in the PARMSGROUP statement, or network monitoring can be
assigned to the connection. See “Mapping Objects to Client Identifiers” on page
595 for details about how these objects are mapped to clients. The complete list of
objects follows:
v TN3270(E) terminal application name – The DEFAULTAPPL mapping statement

maps the TN3270(E) terminal application Object to a terminal client. When a
TN3270 or TN3270E connection is negotiated, Telnet immediately initiates a
session request to the VTAM application.

v TN3270E printer application name – The PRTDEFAULTAPPL mapping statement
maps the TN3270E printer application Object to a printer client. When a
TN3270E printer connection is negotiated, Telnet immediately initiates a session
request to the VTAM application.

v Line Mode application name – The LINEMODEAPPL mapping statement maps
the linemode application Object to a client. When a linemode connection is
negotiated, Telnet will immediately initiate a session request to the VTAM
application.

v USS table name – The USSTCP mapping statement maps the USS table Object to
a client. When a TN3270 or a TN3270E connection is negotiated, Telnet will send
a USSMSG10 screen to the client. A special case condition exists when an
application name and a USS table are both mapped to the client by the exact
same Client Identifier. In this case, Telnet will immediately initiate a session
request to the VTAM application and use the USS table for error messages.

v Interpret table name – The INTERPTCP mapping statement maps the Interpret
table Object to a client. When a TN3270 or a TN3270E connection is negotiated,
Telnet uses the Interpret table to modify USS commands. The client must have a
USS table mapped to it for the Interpret table to be used.

v Terminal LU, local LU group (LUGROUP), or shared LU group (SLUGROUP)
(Generic) - The Generic LUMAP mapping statement maps a single LU,
LUGROUP, or SLUGROUP Object to a client.
– For single LU mappings, Telnet assigns the LU name to the connection if the

LU is available.
– For LUGROUP mappings, Telnet assigns an available LU from the group to

the connection.
– For SLUGROUP mappings, Telnet requests that the LUNS allocate an

available LU from the group and then assigns it to the connection.

An LU is required to represent the client when a VTAM session is initiated.
DEFAULTLUS is a default local terminal LUGROUP Object mapped Generically
to the NULL Client Identifier. SDEFAULTLUS is a default shared terminal
SLUGROUP Object mapped Generically to the NULL Client Identifier.

v Terminal LU, LUGROUP, or SLUGROUP (Specific) - The Specific LUMAP
mapping statement maps a single LU, LUGROUP, or SLUGROUP Object to a
client.
Unlike the Generic mapping in which Telnet assigns the LU, the Specific
mapping requires the client to specify the LU name that it wants. Telnet verifies
that the LU is mapped and available. The specified LU name can be either a
mapped single LU, an LU within a mapped LUGROUP or SLUGROUP, or the
group name of the mapped LUGROUP or SLUGROUP.
– If the client specifies an LU name within a SLUGROUP, Telnet requests the

LUNS to verify that the LU is available and allocate the LU to this Telnet.

596 z/OS V1R12.0 Comm Svr: IP Configuration Guide

– If the client specifies an LUGROUP name, Telnet assigns an available LU from
within the group.

– If the client specifies an SLUGROUP name, Telnet requests the LUNS to
allocate an available LU from the group and then assigns the LU.

DEFAULTLUSSPEC is a default local terminal LUGROUP Object mapped
Specifically to the NULL Client Identifier. SDEFAULTLUSSPEC is a default
shared terminal SLUGROUP Object mapped Specifically to the NULL Client
Identifier.

v Printer LU, local printer group (PRTGROUP), or shared printer group
(SPRTGROUP) (Generic) - The Generic PRTMAP mapping statement maps a
single LU, PRTGROUP, or SPRTGROUP Object to a client.
– For single LU mappings, Telnet assigns the LU name to the connection if the

LU is available.
– For PRTGROUP mappings, Telnet assigns an available LU from the group to

the connection.
– For SPRTGROUP mappings, Telnet requests the LUNS to allocate an available

LU from the group and then assigns it to the connection.

An LU is required to represent the client when a VTAM session is initiated.
DEFAULTPRT is a default local printer PRTGROUP Object mapped Generically
to the NULL Client Identifier. SDEFAULTPRT is a default shared printer
SPRTGROUP Object mapped Generically to the NULL Client Identifier.

v Printer LU, PRTGROUP, or SPRTGROUP (Specific) - The Specific PRTMAP
mapping statement maps a single LU, PRTGROUP, or SPRTGROUP Object to a
client.
Unlike the Generic mapping in which Telnet assigns the LU, the Specific
mapping requires the client to specify the LU name that it wants. Telnet verifies
that the LU is mapped and available. The specified LU name can be either a
mapped single LU, an LU within a mapped PRTGROUP or SPRTGROUP, or the
group name of the mapped PRTGROUP or SPRTGROUP.
– If the client specifies an LU name within a SPRTGROUP, Telnet requests that

the LUNS verify that the LU is available and allocate the LU to this Telnet.
– If the client specifies a PRTGROUP name, Telnet assigns an available LU from

within the group.
– If the client specifies a SPRTGROUP name, Telnet requests that the LUNS

allocate an available LU from the group and then assigns the LU.

DEFAULTPRTSPEC is a default local printer PRTGROUP Object mapped
Specifically to the NULL Client Identifier. SDEFAULTPRTSPEC is a default
shared printer SPRTGROUP Object mapped Specifically to the NULL Client
Identifier.

v Telnet PARMSGROUP – The PARMSMAP mapping statement maps the
PARMSGROUP Object to a client. The parameters in the group override
parameter values specified in either TELNETGLOBALS or TELNETPARMS.

v Telnet MONITORGROUP – The MONITORMAP mapping statement maps the
MONITORGROUP Object to a client. The parameters in the group define what
monitoring measurements will be done for a mapped client. For details, see
“Connection monitoring mapping statement” on page 642.

Rule: All LUGROUPs and all PRTGROUPs, whether local or shared, that are used
on a given profile must have unique names.

Chapter 11. Accessing remote hosts using Telnet 597

The two following statements are not Objects but can affect application and LU
Object usage:
v ALLOWAPPL – This statement allows client access to applications and

optionally maps or confirms the mapping of an LU name to the client based on
the application name chosen. DEFAULTAPPL application names are presumed
allowed and do not require the ALLOWAPPL statement for Telnet acceptance.
However, ALLOWAPPL may be used by default applications for LU assignment
and other advanced functions.

v RESTRICTAPPL – This statement restricts Telnet acceptance of application names
to only users that specify an acceptable User ID and password. It also optionally
maps or confirms the mapping of an LU name to the client based on the
application name and User ID chosen.

Client Identifiers: One client can be represented by many different Client
Identifiers. For example, Telnet might assign an LU based on client host name,
assign an application based on a client IP address, and assign a USS table based on
connection link or interface name. See “Mapping Objects to Client Identifiers” on
page 595 for details about how these Client Identifiers are used to map Objects. In
some cases, two different Client Identifiers that represent the same client are used
on mapping statements to map the same type of Object. In these cases, Telnet must
determine which Client Identifier to use when assigning the Object. See “Client
Identifier selection rules” on page 601 for more details. The complete list of Client
Identifiers and mapping examples follow:
v User ID or USERGROUP name - If the CLIENTAUTH SAFCERT parameter is

used with a secure connection, the client is required to send its client certificate
to Telnet for client authentication. The SAFCERT option indicates that the client
certificate can be translated to a User ID by a security product such as RACF.
Telnet translates the certificate as soon as the SSL handshake is done. The
resulting User ID is associated with the connection. Objects can be mapped to
the connection based on an exact User ID, or Objects can be mapped to a
USERGROUP name containing exact User IDs and wildcarded User IDs. For
example, mobile employees need to be assigned a unique set of LU names and
the manager must always be assigned LU name LUMOBL01. These employees
are not within a secure network and always use client authenticated secure
connections. Their certificates are translated to User IDs by Telnet.
USERGROUP USGMOBL1

MOBL0002 MOBL0003
MOBL1%%C

ENDUSERGROUP
LUGROUP LUGMOBL1

LUMOBL02..LUMOBL20
ENDLUGROUP
LUMAP LUMOBL01 USERID,MOBL0001 ; mgr mapping
LUMAP LUGMOBL1 USERGRP,USGMOBL1 ; employee mapping

Rule: The specification of the Client Identifier type USERID is required on the
mapping statement. If you do not specify this type, Telnet assumes that the
name is a link or interface name.
Tip: The specification of the Client Identifier type USERGRP is optional. The
following statement is equivalent to the last LUMAP statement in the previous
example:
LUMAP LUGMOBL1 USGMOBL1

v Host name or HNGROUP name - If the network dynamically assigns IP
addresses, the same client will not have the same IP address from one
connection to the next. With static host names, Objects can be mapped to clients
based on their host name, or Objects can be mapped to HNGROUP names
containing exact host names and wildcarded host names. For example,

598 z/OS V1R12.0 Comm Svr: IP Configuration Guide

LUADMNM is mapped to exact host name ADMIN.DEPT1.GROUP1.COM, and
application INVENTRY is mapped to HNGROUP name HNGINV.
HNGROUP HNGINV

INV1.DEPT1.GROUP1.COM
*.DEPT3.GROUP1.COM
**.GROUP3.COM

ENDHNGROUP
LUMAP LUADMNM HOSTNAME,ADMIN.DEPT1.GROUP1.COM
DEFAULTAPPL INVENTRY HNGRP,HNGINV

Tip: The specification of the Client Identifier types HOSTNAME and HNGRP is
optional. The following two mapping statements are equivalent to the last two
statements in the previous example:
LUMAP LUADMNM ADMIN.DEPT1.GROUP1.COM
DEFAULTAPPL INVENTRY HNGINV

v Client (source) IP address or IPGROUP name - Client IP address is the most
common method used to map Objects to the client. In a static network, Objects
can be mapped to clients based on the exact IP address, or Objects can be
mapped to IPGROUP names containing exact IP addresses and subnets. For
example, LUADMN is mapped to exact IP address 1.1.1.1, and application
PAYROLL is mapped to IPGROUP name IPGPAY.
IPGROUP IPGPAY

1.1.2.2 1.1.2.3 ;IPv4 addresses
255.255.0.0:2.2.0.0 ;IPv4 subnet
2001:0DB8:9:11:15:4 ;IPv6 address
6C11:10::0/96 ;IPv6 subnet
6.1.3.4..6.1.3.8 ;IPv4 range
2AB0::12:5:1321..2AB0::12:5:1410 ;IPv6 range

ENDIPGROUP
LUMAP LUADMN IPADDR,1.1.1.1
DEFAULTAPPL PAYROLL IPGRP,IPGPAY

Tips:

– The specification of the Client Identifier types IPADDR and IPGRP is
optional. The following two mapping statements are equivalent to the last
two statements in the previous example:
LUMAP LUADMN 1.1.1.1
DEFAULTAPPL PAYROLL IPGPAY

– The IP/subnet combinations of 0.0.0.0:0.0.0.0 (IPv4 only) and 0::0/0 (IPv4 and
IPv6) are special cases that include all connections. This might be useful if
you want to have a default mapping with a higher priority than the NULL
client identifier.

– The client IP address can be either an IPv4 or IPv6 IP address. IP address
ranges can also be specified and are treated as if individual IP addresses were
coded. An IPv4 range can vary in the last octet only. An IPv6 range can vary
in the last two hexadecimal bytes only.

v Destination IP address or DESTIPGROUP name - A destination IP address is the
host address that is the destination for a Telnet connection. Linkname can be
used as a Client Identifier to map Objects to destination IP addresses when the
linkname is static and defined in the profile. However, if the destination IP
address is a dynamic Virtual IP Address (VIPA) , the linkname is not known
before the VIPA is created. In this case, destination IP address is the ideal
solution. In other cases, specifying the destination IP address in the Telnet
profile may be more clear than specifying the linkname. For example, two
TCP/IP stacks are backups for each other. Telnet connections to stack 1 (VIPA
5.5.5.1) use logon manager application APPL1 by default, and connections to
stack 2 (VIPA 51CB:C3E4::9:4) use logon manager application APPL2 by default.
If one of the stacks becomes unavailable, the other will take over and

Chapter 11. Accessing remote hosts using Telnet 599

dynamically add the failing stack's VIPA. The dynamic linkname created is not
easily predicted. Use the following statements in the profile of each stack to
ensure users connecting to 5.5.5.1 always get APPL1 and users connecting to
51CB:C3E4::9:4 always get APPL2 regardless of which stack is used.
DEFAULTAPPL APPL1 DESTIP,5.5.5.1
DEFAULTAPPL APPL2 DESTIP,51CB:C3E4::9:4

Rule: The specification of the Client Identifier type DESTIP is required on the
mapping statement. If you do not specify this type, Telnet assumes that the IP
addresses are client (source) IP addresses.
Tip: When the destination IP address is the IP address of a dynamic XCF
address, multiple linkname values can be associated with the IP address. Telnet
will use the first linkname associated with the IP address in the home list. If a
dynamic XCF destination is used as a Client Identifier, it is recommended that
DESTIP be used instead of linkname. Results can vary using linkname.

v Linkname or LINKGROUP name - A linkname is defined by the TCP/IP LINK
or INTERFACE statement. The linkname defines a host IP address that is a
destination address for clients connecting to Telnet. Linkname can be useful in
cases where Object assignment is dependent on the client destination IP address
instead of the client source IP address. Several linknames may be defined and
the same LU mapping or other Object mapping may be desired for several
linknames. In this case, a LINKGROUP can be defined and used on a single
mapping statement. For example, based on the statements below, a client
connecting to LINK1 IP address will be assigned an LU from the LUGROUP
name LUGLNKS and will establish a session with TPX1. A client connecting to
LINK2 IP address will be assigned an LU from the LUGROUP name LUGLNKS
and will establish a session with TPX2. Because LINK1 and LINK2 are not group
names, host names, or IP addresses, they are assumed to be linknames. The
Client Identifier type, LINKNAME, can be used for clarity but is not required.
LINKGROUP LNKGRP1

LINK1 LINK2
ENDLINKGROUP
LUMAP LUGLNKS LINKGRP,LNKGRP1
DEFAULTAPPL TPX1 LINKNAME,LINK1
DEFAULTAPPL TPX2 LINKNAME,LINK2

Tips:

– The specification of the Client Identifier types LINKNAME and LINKGRP is
optional. The following three mapping statements are equivalent to the last
three statements in the previous example:
LUMAP LUGLNKS LNKGRP1
DEFAULTAPPL TPX1 LINK1
DEFAULTAPPL TPX2 LINK2

– When the destination IP address is the IP address of a dynamic XCF address,
multiple linkname values can be associated with the IP address. Telnet will
use the first linkname associated with the IP address in the home list. If a
dynamic XCF destination is used as a Client Identifier, it is recommended that
DESTIP be used instead of linkname. Results can vary using linkname.

v NULL (no Client Identifier) - The NULL Client Identifier type indicates that no
Client Identifier was specified. The NULL Client Identifier is valid on the
DEFAULTAPPL, LINEMODEAPPL, USSTCP, and INTERPTCP mapping
statements. It is the implied Client Identifier for the DEFAULTLUS,
DEFAULTLUSSPEC, DEFAULTPRT, and DEFAULTPRTSPEC Objects.
ParmsGroup and MonitorGroup are the only Objects that cannot be mapped to
the NULL Client Identifier. The NULL Client Identifier mapped Objects are the
last Objects checked when assigning Objects to a client. For example, assume a
client does not match any Client Identifier in the profile for DEFAULTAPPL or

600 z/OS V1R12.0 Comm Svr: IP Configuration Guide

USSTCP. You can put the end user into session with a security application,
named SecAppl, that can verify the end user is authorized to use the company's
system. The Client Identifier field is blank.
DEFAULTAPPL SECAPPL

Client Identifier selection rules: When Client Identifiers are used together,
conflicts might occur. For example, host name NAME1.HOST1.COM may also be
IP address 1.2.3.4. If the following DEFAULTAPPL statements exist, only one of the
applications can be chosen.
DEFAULTAPPL TSO NAME1.HOST1.COM
DEFAULTAPPL CICS 1.2.3.4

If USSTCP and DEFAULTAPPL have the same Client Identifier, DEFAULTAPPL
will be used. For detailed information, see “Resolving DEFAULTAPPL and USS
table conflicts” on page 611.

Telnet uses a very specific Client Identifier hierarchy when assigning Objects, as
shown in “The mapping rule search order”

The mapping rule search order:

v Exact client identifier:

– 1) User ID, 2) hostname, 3) IP address
v Exact client identifier in a group definition:

– 4) User group, 5) hostname group, 6) IP address group
v Wildcard match for client identifier in a group definition:

– 7) User group, 8) hostname group, 9) IP address group
v Exact destination:

– 10) destination IP address, 11) link or interface name
v Exact destination in a group definition:

– 12) destination IP address group, 13) link or interface name group
v Wild card match for destination in a group definition:

– 14) destination IP address group, 15) link or interface name group
v Null client ID

– 16) DEFAULTAPPL, LINEMODEAPPL, USSTCP, INTERPTCP, DEFAULTLUS,
DEFAULTLUSSPEC, DEFAULTPRT, DEFAULTPRTSPEC

Examples:

v Exact client identifier:
1) LUMAP LU1 USERID,USER1
2) LUMAP LU2 NAME1.HOST1.COM
3) LUMAP LU3 1.2.3.4

Client Identifier type USERID is required. If not specified, USER1 is assumed to
be a link or interface name.

v Exact client identifier in a group definition:
LUGROUP LUGRP1 LU100..LU199 ENDLUGROUP
LUGROUP LUGRP2 LU200..LU299 ENDLUGROUP
LUGROUP LUGRP3 LU300..LU399 ENDLUGROUP

USERGROUP USRGRP1
USER1 USER2 USER3

ENDUSERGROUP

Chapter 11. Accessing remote hosts using Telnet 601

HNGROUP HNGRP1
NAME2.HOST1.COM NAME2.HOST3.COM

ENDHNGROUP

IPGROUP IPGRP1
1.2.3.5 1.2.3.6
1.3.4.7..1.3.4.E

ENDIPGROUP

4) LUMAP LUGRP1 USRGRP1
5) LUMAP LUGRP2 HNGRP1
6) LUMAP LUGRP3 IPGRP1

v Wild card match for client identifier in a group definition:
USERGROUP USRGRP2

USER%% TCPU*
ENDUSERGROUP

HNGROUP HNGRP2
*.HOST2.COM **.HOST3.COM

ENDHNGROUP

IPGROUP IPGRP2
255.255.0.0:2.3.0.0
2001:0DB8:3:274C::0/80

ENDIPGROUP

7) LUMAP LUGRP1 USRGRP2
8) LUMAP LUGRP2 HNGRP2
9) LUMAP LUGRP3 IPGRP2

v Exact destination:
10) DEFAULTAPPL TSO DESTIP,1.2.3.4
11) USSTCP USSTAB1 LINK1

Client Identifier type DESTIP is required. If not specified, destination IP address
1.2.3.4 is assumed to be a client IP address.

v Exact destination in a group definition:
DESTIPGROUP DSTIPGRP1

1.2.3.5 1.2.3.6
79DA:10:3.4.9.5
613D:10::9241..613D:10::C510

ENDDESTIPGROUP

LINKGROUP LINKGRP1
LINK1 LINK2 LINK3

ENDLINKGROUP

12) LUMAP LUGRP1 DSTIPGRP1
13) LUMAP LUGRP2 LNKGRP1

v Wild card match for destination in a group definition:
DESTIPGROUP DSTIPGRP2

255.255.0.0:1.4.0.0
ENDDESTIPGROUP

LINKGROUP LINKGRP2
LINK* %LINK

ENDLINKGROUP

14) LUMAP LUGRP1 DSTIPGRP2
15) LUMAP LUGRP2 LNKGRP2

v Null client ID
16) DEFAULTAPPL TSO

LINEMODEAPPL CICS
USSTCP USSTAB1
INTERPTCP INTTAB1
DEFAULTLUS

LU01..LU99
ENDDEFAULTLUS

602 z/OS V1R12.0 Comm Svr: IP Configuration Guide

NULL is a single Client Identifier. The order of the examples has no significance.
If DEFAULTAPPL and USSTCP mapping statements both have the NULL Client
Identifier, the DEFAULTAPPL will be used regardless of order. For more
information, see “Resolving DEFAULTAPPL and USS table conflicts” on page
611.

Object assignment examples: A client can be known by several different Client
Identifiers. These Client Identifiers are used to assign as many Objects as possible
to the connection based on the profile mapping statements. Telnet starts with the
highest priority Client Identifier of the client and assigns all Objects mapped by
that Client Identifier. If all 11 Objects are not assigned, Telnet uses the next highest
priority Client Identifier (for prioritization details, see “Client Identifier selection
rules” on page 601) and assigns all Objects mapped by that Client Identifier. This
Object assignment process continues by using lower and lower priority Client
Identifiers until all 11 Object types are found or until all of the matching Client
Identifier mappings have been checked. If an Object is mapped by multiple Client
Identifiers, only the Object mapped by the highest Client Identifier is used. It is
unlikely all Objects are assigned to connections because not all Objects are always
mapped. For example, many profiles do not contain PRTDEFAULTAPPL or
INTERPTCP mapping statements. In this case, the printer default appl and
Interpret table Objects will not be assigned.

Figure 66 on page 604 is a graphical representation of the following Telnet
mapping statements. The numbered mapping statements correspond to the
numbered buttons in the figure. The mappings that specify USERGROUP USGRP1
generate buttons 4 through 8 for exact user ID in a group and buttons 12 through
16 for wildcard user ID in a group.
LUGROUP LUGRP1 LU01..LU10..FFNN ENDLUGROUP
LUGROUP LUGRP2 LU11..LU99..FFNN ENDLUGROUP
PRTGROUP PRTGRP1 PRT01..PRT10..FFFNN ENDPRTGROUP
PARMSGROUP PGDBG DEBUG DETAIL ENDPARMSGROUP
PARMSGROUP PGSCAN SCANINTERVAL 10 ENDPARMSGROUP
PARMSGROUP PGMTKO TKOSPECLU 7 ENDPARMSGROUP
PARMSGROUP PGALL DEBUG DETAIL

SCANINTERVAL 10
TKOSPECLU 7 ENDPARMSGROUP

MONITORGROUP MONGRP1 NODYNAMICDR ENDMONITORGROUP
USERGROUP USGRP1 PAYUSR1 PAYUSR* ENDUSERGROUP
HNGROUP HNGRP1 USER1.GROUP3.COM

USER5.GROUP3.COM ENDHNGROUP

(1) PARMSMAP PGALL USERID,PAYUSR1
(2) LINEMODEAPPL TSO 9.9.9.9
(3) PARMSMAP PGDBG 9.9.9.9

(4,12) DEFAULTAPPL PAYROLL USGRP1
(5,13) PRTDEFAULTAPPL PAYPRT USGRP1
(6,14) LUMAP LUGRP1 USGRP1 SPECIFIC
(7,15) PRTMAP PRTPGRP1 USGRP1 SPECIFIC
(8,16) PARMSMAP PGTKO USGRP1

(9) USSTCP USSTABHN HNGRP1
(10) LUMAP LUGRP2 HNGRP1 GENERIC
(11) PARMSMAP PGSCAN HNGRP1

(17) INTERPTCP INTTAB1 LINK1
(18) MONITORMAP MONGRP1 LINK1
(19) DEFAULTAPPL TPX1
(20) USSTCP USSTAB1

Chapter 11. Accessing remote hosts using Telnet 603

Client mappings: For this example, assume the following:
v Client 1 connects from IP address 9.9.9.9 using client authentication and is

assigned PAYUSR1. The client does not have a host name ending in
GROUP3.COM and does not have a link name LINK1.

v Client 2 connects from IP address 9.1.1.1 using client authentication and is
assigned PAYUSR5. The client has the host name USER5.GROUP3.COM and
does not have a link name LINK1.

v Client 3 connects from IP address 9.2.2.2 without client authentication and has
the host name USER3.GROUP1.COM. The client connects to link name LINK1.

Based on Figure 66, the clients are assigned objects as shown in Table 29.

Table 29. Client mappings

Button Object type Name Mapping results by client

1 ParmsGroup PGALL 1: Assigned, exact user ID match
2: Ignored, no exact user ID match
3: Ignored, no exact user ID match

2 Linemode Appl TSO 1: Assigned, exact IP address match
2: Ignored, no exact IP address match
3: Ignored, no exact IP address match

1.
2.
3.
4.
5.

Wildcard in HNGROUP
9. Subnet IP Addr in IPGROUP
10. Dest IP Addr
11. Linkname
12. Dest IP in DESTIPGROUP
13. Linkname in LINKGROUP
14. Subnet Dest IP in DESTIPGROUP
15. Wildcard in LINKGROUP
16. Null

User ID
Host Name
IP Addr
User ID in USERGROUP
Hostname in HNGROUP

6. IP Addr in IPGROUP
7. Wildcard in USERGROUP
8.

D
ef

au
lt

A
pp

l

P
R

T
 D

ef
au

lt
A

pp
l

Li
ne

m
od

e
A

pp
l

U
S

S
 ta

bl
e

IN
T

E
R

P
 ta

bl
e

LU
 G

en
er

ic

LU
 S

pe
ci

fic

P
R

T
G

en
er

ic

P
R

T
 S

pe
ci

fic

P
ar

m
sG

ro
up

M
on

ito
rG

ro
up

Client IdentifiersClient

Objects

Client 2

Client 2

Client 3

Client 3

Client 1

Client 1

1

17

18

1819

19 20

20

2

2

17

17

5

5

20

13

13

15

15

16

4

4

12

12

14

14

76

6

8

9

9

10

10

11

11

3

The , known by , is assignedCLIENT CLIENT IDENTIFIERS OBJECTS

Figure 66. Search method

604 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Table 29. Client mappings (continued)

Button Object type Name Mapping results by client

3 ParmsGroup PGDBG 1: Already assigned by button 1
2: Ignored, no exact IP address match
3: Ignored, no exact IP address match

4 Default Appl PAYROLL 1: Assigned, exact user ID in group match
2: Ignored, no exact user ID match
3: Ignored, no exact user ID match

5 PRT Default
Appl

PAYPRT 1: Assigned, exact user ID in group match
2: Ignored, no exact user ID match
3: Ignored, no exact user ID match

6 LU Specific LUGRP1 1: Assigned, exact user ID in group match
2: Ignored, no exact user ID match
3: Ignored, no exact user ID match

7 PRT Specific PRTGRP1 1: Assigned, exact user ID in group match
2: Ignored, no exact user ID match
3: Ignored, no exact user ID match

8 ParmsGroup PGTKO 1: Already assigned by button 1
2: Ignored, no exact user ID match
3: Ignored, no exact user ID match

9 USS table USSTABHN 1: Ignored, no exact host name match
2: Assigned, exact host name in group match
3: Ignored, no exact host name match

10 LU Generic LUGRP2 1: Ignored, no exact host name match
2: Assigned, exact host name in group match
3: Ignored, no exact host name match

11 ParmsGroup PGSCAN 1: Ignored, no exact host name match
2: Assigned, exact host name in group match
3: Ignored, no exact host name match

12 Default Appl PAYROLL 1: Already assigned by button 4
2: Assigned, wildcard user ID match
3: Ignored, no wildcard user ID match

13 PRT Default
Appl

PAYPRT 1: Already assigned by button 5
2: Assigned, wildcard user ID match
3: Ignored, no wildcard user ID match

14 LU Specific LUGRP1 1: Already assigned by button 6
2: Assigned, wildcard user ID match
3: Ignored, no wildcard user ID match

15 PRT Specific PRTGRP1 1: Already assigned by button 7
2: Assigned, wildcard user ID match
3: Ignored, no wildcard user ID match

16 ParmsGroup PGTKO 1: Already assigned by button 8
2: Ignored, no wildcard user ID match
3: Ignored, no wildcard user ID match

17 INTERP table INTTAB1 1: Ignored, no link name match
2: Ignored, no link name match
3: Assigned, link name match

18 MonitorGroup MONGRP1 1: Ignored, no link name match
2: Ignored, no link name match
3: Assigned, link name match

Chapter 11. Accessing remote hosts using Telnet 605

Table 29. Client mappings (continued)

Button Object type Name Mapping results by client

19 Default Appl TPX1 1: Already assigned by button 4
2: Already assigned by button 9
3: Assigned, NULL Client ID match

20 USS table USSTAB1 1: Assigned, NULL Client ID match
2: Already assigned by button 9
3: Assigned, NULL Client ID match

LU name mapping statements
Every connection must be represented by an LU name before a session can be
initiated. The time of LU assignment depends on the connection type. In general,
for TN3270E clients, the LU name is assigned early during connection negotiation
before an application name is known. For all other types of clients, the LU name is
assigned immediately after application name selection. For details and exceptions
to this rule, see “Advanced LU name mapping topics” on page 613. Mapping
statements define which LU name is assigned to the connection.

DEFAULTLUS: The simplest way to assign LUs is to create a default LU group
that Telnet can use for all terminal connections. DEFAULTLUS is a combination
statement that defines the LUs in a default group and maps the group to the
NULL Client Identifier. If the client's Client Identifiers do not match any LU
mapping statements, the client is identified by the NULL Client Identifier and will
be assigned LUs from the default group.

For example, use the following statement to create an LU group with a numeric
range of LUG1001 to LUG1100. When Telnet assigns an LU to a terminal
connection, it will assign the next available LU from that group of 100 LUs.
DEFAULTLUS LUG1001..LUG1100..FFFFNNN ENDDEFAULTLUS

By default, Telnet uses a sequential selection method to assign LUs from the LU
group. No LU name will be reused until all the names in the group have been
used. Specifying NOSEQUENTIALLU changes the selection process to always start
at the beginning and find the first name available. If the range is large and a large
number of LUs are already assigned, NOSEQUENTIALLU might degrade LU
lookup performance.

DEFAULTPRT: The DEFAULTPRT statement is used to create a default LU pool
that Telnet will use for all printer connections. For example, use the following
statement to create an LU group with a numeric range of PRTG1001 to PRTG1100.
When Telnet assigns an LU to a printer connection, it will assign the next available
LU from that group.
DEFAULTPRT PRTG1001..PRTG1100..FFFFFNNN ENDDEFAULTPRT

LUMAP, PRTMAP, LUGROUP, PRTGROUP: The LUMAP and PRTMAP
statements allow you to map LUs to connections based on the Client Identifier for
terminal emulators and printer emulators, respectively. For example, use the
following statements to map LU name LUT001 to any terminal client identified by
the client IP address 1.1.1.1 and map LU name PRT001 to any printer client
identified by client IP address 2.2.2.2.
LUMAP LUT001 1.1.1.1
PRTMAP PRT001 2.2.2.2

606 z/OS V1R12.0 Comm Svr: IP Configuration Guide

A local or shared LU group can be used when it is not necessary to have an exact
LU name to Client Identifier match. For example, use the following statements to
create a terminal LU group and a printer LU group, and map both groups to the
Client Identifier IPGPAY. When a terminal client connects, Telnet will assign an LU
from LUGRP1. When a printer client connects, Telnet will assign an LU from
PRTGRP1.
LUGROUP LUGRP1 LUT101..LUT400..FFFNNN ENDLUGROUP
PRTGROUP PRTGRP1 PRT101..PRT400..FFFNNN ENDPRTGROUP

IPGROUP IPGPAY 255.255.0.0:9.8.0.0 ENDIPGROUP

LUMAP LUGRP1 IPGPAY
PRTMAP PRTGRP1 IPGPAY

If these same LUs can be mapped by more than one Telnet, put them into shared
LU groups instead by adding an S to the object type as follows:
SLUGROUP LUGRP1 LUT101..LUT400..FFFNNN ENDSLUGROUP
SPRTGROUP PRTGRP1 PRT101..PRT400..FFFNNN ENDSPRTGROUP

Once all 300 LUs are assigned, the next client connection request will fail. In this
way, the LUGROUP Object can limit the number of clients connected at one time.

If a client connection is known by a Client Identifier that has an LU group
mapping, only that mapping will be used to assign an LU name. The
DEFAULTLUS group will not be used. It is used only in the case when no other
LU mapping exists.

LU range specification: Telnet LU range rules allow for almost any type of LU
range needed. Ranges can be alphabetic (A), numeric (N), alphanumeric (B),
hexadecimal (X), or a complete wildcard (?), which includes alphanumeric and the
three national characters (@,#,$). The range type can be different for each character
position. Within the LU range, any character position can be fixed (F). To conform
with VTAM LU naming convention, the first character must be alphabetic or a
national character. If the first character is a range, only the alphabetic range can be
used.

An LU range is created by specifying a starting LU name, an ending LU name, and
the range rules to be used. For example, the following statement creates a range
from TCPM1000 to TCPM1100.
TCPM1000..TCPM1100..FFFFFNNN

The three components are:
v Starting LU name (TCPM1000)
v Ending LU name (TCPM1100)
v Range rules (FFFFFNNN)

All three components must be the same length, the Starting LU name overall must
be lower than the Ending LU name, and each character position value must be
appropriate for the specified range rule.

Tip: In the above example, the character 1 following the character M is defined as
fixed because it cannot change. The range rule cannot specify N even though it
seems to be part of the number range.

The ascending order of characters is 0-9, A-Z, @, #, $.

Chapter 11. Accessing remote hosts using Telnet 607

If the range rule is omitted, Telnet assumes the following style, where LowerRange
and UpperRange must be all numeric or all alphabetic:
LuBase+LowerRange..LuBase+UpperRange

Numeric values are lower than alphabetic values to facilitate the use of
hexadecimal ranges. The range rules are:
Range Rule Characters
Numeric N 0-9
Alphabetic A A-Z
AlphaNumeric B 0-9,A-Z
Hexadecimal X 0-9,A-F
Wildcard ? 0-9,A-Z,@,#,$

The maximum number of LUs per range is 4294967295 and the maximum number
of LUs per group is 4294967295.

The creation of LU name values from the range specification begins at the Starting
LU and increments the rightmost variable position first, moving to the left as each
variable position reaches its range maximum. The process is like an odometer,
except that each position can have different basing instead of all positions being
base 10. For example, the following statement has 223 LU name entries.
LU555..LU777..FFNNN

The breakdown of the range is:
LU555->LU559, 5
LU560->LU569, LU570->LU579, LU580->LU589, LU590->LU599, 40
LU600->LU699, 100
LU700->LU769, LU770->LU777 78

===
Total --> 223

The LU names increment just as the numbers on an odometer would. A less
intuitive case involves an alphabetic range of 1407 LU name entries.
LUCCC..LUEEE..FFAAA

The breakdown of the range is:
LUCCC->LUCCZ, 24
LUCDA->LUCDZ, LUCEA->LUCEZ, LUCFA->LUCFZ, ... LUCZA->LUCZZ, 598
LUDAA->LUDZZ, 676
LUEAA->LUEDZ, LUEEA->LUEEE 109

====
Total --> 1407

It is important to realize that these ranges do not break down in the following
patterns:
LUCCC->LUCCE, LUCDC->LUCDE, LUCEC->LUCEE, ...
LU555->LU557, LU565->LU567, LU575->LU577, ...

It is an incorrect assumption that the LU name after LUCCE would be LUCDC.
The correct LU name after LUCCE is LUCCF. The LU names increment to LUCCZ
and the next name is LUCDA. When the rightmost position reaches the range
maximum, the position to its left is incremented by one, and the rightmost position
starts at the range beginning, not the character specified in the Starting LU name.

All range types are handled the same way. The position is incremented to its
maximum value and then wraps to the beginning range value, not the specified

608 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Starting LU name value. By the same logic, the position is incremented to the
ending range value and not the Ending LU name value.

All LU names increment the same way. A more complicated example mixes fixed
and variable character positions with several different range types. The LU range
has 39744 LUs.
LUAD1800..LUGD98FZ..FFAFNFXB

Calculating the number of LUs is easier if the fixed positions are removed. For
purposes of calculating the number of LUs, the range is specified as follows:
A100..G9FZ..ANXB

This breaks down as follows:
A100->A10Z, D110->D11Z, ... A190->A19Z, A1A0->A1AZ ... A1F0->A1FZ 576
A200->A2FZ, A300->A3FZ, ... A900->A9FZ 4608
B000->B9FZ, C000->C9FZ, ... F000->F9FZ 28800
G000->G9FZ 5760

=====
Total ---> 39744

SEQUENTIALLU: Telnet, by default, uses a sequential method to choose LUs
from a group.
LUGROUP LUGRP1

LU001..LU120..FFNNN
LU201..LU250..FFNNN
LU240..LU280..FFNNN
LU010..LU050..FFFNN

ENDLUGROUP

From the previous example, the first LU assigned is LU001, second is LU002, and
so on. If five clients repeatedly connect and disconnect, they will be assigned new
LUs farther into the range each time:
v When the end of the first range is reached, selection goes to the beginning of the

second range.
v At the end of the second range, selection goes to the beginning of the third

range.
v At the end of the third range, selection goes to the beginning of the fourth

range.
v At the end of the fourth range, selection goes to the beginning of the first range

again.

Telnet does not enforce an overall ascension in LU name selection. The selection
process begins at the first name of the first range and progresses to the last name
of the last range. In the example, after LU250 is assigned from range 2, LU240 from
range 3 is attempted next. After LU280, LU010 is attempted. After LU050, the
process starts over and LU001 is attempted.

The SEQUENTIALLU function can be turned off by coding NOSEQUENTIALLU.
In this case, the five LUs that are repeatedly connecting and disconnecting would
never use any LU names other than LU001, LU002, LU003, LU004, and LU005.
NOSEQUENTIALLU might degradate LU lookup performance when a large range
is specified and only LUs at the end of the range are available. Every connection
has to relearn that most of the LUs are already in use. SEQUENTIALLU allows
Telnet to start its search near the last chosen LU where LUs are more likely to be
available. SEQUENTIALLU and NOSEQUENTIALLU parameters can be coded at
all three parameter block levels for different levels of granularity.

Chapter 11. Accessing remote hosts using Telnet 609

If several clients are connecting at the same time, the order of LU assignment
might not be in exactly the same order as the connection IDs due to process timing
between connection ID assignment and LU name assignment.

If single LU names are in a group with LU ranges, the single LU names are
selected before any LU range names are selected, regardless of their order. In the
example below, LUAAA, LUBBB, LUCCC, and LUDDD are all processed before
any of the range LU names.
Profile LUGROUP LUGROUP as used by Telnet

LUGROUP LUGRP2 LUGROUP LUGRP2
LUAAA LUAAA
LU001..LU120..FFNNN LUDDD
LU201..LU250..FFFNN LUBBB
LUDDD LUCCC
LUBBB LU001..LU120..FFNNN
LU240..LU280..FFFNN LU201..LU250..FFFNN
LU010..LU050..FFFNN LU240..LU280..FFFNN
LUCCC LU010..LU050..FFFNN

ENDLUGROUP ENDLUGROUP

Application mapping statements
When a client connects, Telnet either immediately initiates a session request to an
MVS host VTAM application or solicits the end user for an application name.

DEFAULTAPPL: The DEFAULTAPPL mapping statement is used to assign an
application name to the connection and immediately initiate a session with that
application, and not solicit the end user for an application name. The
DEFAULTAPPL statement applies only to terminal emulators connecting in
TN3270, TN3270E, or DBCSTRANSFORM mode. For example, use the following
statement to map the default application PAYROLL to any TN3270(E) terminal
client identified by the IPGROUP IPGPAY. When a TN3270(E) client connects,
Telnet will immediately initiate a session to the PAYROLL application.
DEFAULTAPPL PAYROLL IPGPAY

PRTDEFAULTAPPL and LINEMODEAPPL: The PRTDEFAULTAPPL mapping
statement is used to assign an application to a printer emulator client connecting in
TN3270E mode. The LINEMODEAPPL mapping statement is used to assign an
application to a client connecting in standard or binary LINE mode. For example,
use the following statements to map the default application PAYPRINT to any
TN3270E printer client identified by the IPGROUP IPGPAY and to map the default
application TSO to any linemode client identified by the linkname LINK1. When
the printer client connects, Telnet will immediately initiate a session to the
PAYPRINT application. When a linemode client connects, Telnet will immediately
initiate a session to the TSO application.
PRTDEFAULTAPPL PAYPRINT IPGPAY
LINEMODEAPPL TSO LINK1

The DEFAULTAPPL, PRTDEFAULTAPPL, and LINEMODEAPPL statements imply
a basic ALLOWAPPL statement for the application name if no ALLOWAPPL or
RESTRICTAPPL is explicitly coded.

USSTCP: If the end user needs the ability to choose an application, custom
solicitation panels can be created using unformatted system services (USS) message
tables. These tables are mapped to clients using the USSTCP mapping statement.
For example, use the following statement to map a USS table, USSTAB1, to any

610 z/OS V1R12.0 Comm Svr: IP Configuration Guide

TN3270(E) client identified by any linkname that starts with LINK. When a
TN3270(E) client connects, Telnet will immediately send a custom logon screen
(USSMSG10) from the USS table.
LINKGROUP LNKGRP1 LINK* ENDLINKGROUP
USSTCP USSTAB1 LINKGRP1

Assembled USS tables used by VTAM can also be used by Telnet.

INTERPTCP: In some cases, the application name must be generated based on
the name provided by the end user or the name might be dependent on the LU
name representing the client. The INTERPRET table can provide this function.
Telnet uses the input from the USSMSG10 screen as input to the INTERPRET table
translation list or uses the USSMSG10 input and the LU name as input to one of
the INTERPRET table user-written exits. Because USS logon data is required input
to the INTERPRET process, any client with an INTERPRET table mapping must
also have a USS table mapping. For example, use the following statement to map
an INTERPRET table, INTTAB1, to any TN3270(E) client identified by the linkname
LINK1. When a TN3270(E) client connects to LINK1, Telnet will immediately send
a custom logon screen (USSMSG10) from the USS table. The end user responds
with a USS logon command. LINK1 client input is then processed through the
INTTAB1 INTERPRET table to derive an application name. Telnet uses the derived
name to initiate a session.
LINKGROUP LNKGRP1

LINK*
ENDLINKGROUP
USSTCP USSTAB1 LNKGRP1
INTERPTCP INTTAB1 LINK1

Assembled interpret tables used by VTAM can also be used by Telnet.

If neither a default application nor a USS table is mapped to the connection, the
Telnet Solicitor panel is sent to the end user. For a detailed discussion of the Telnet
Solicitor, USS table, and INTERPRET table, see “Using the Telnet Solicitor or USS
logon panel” on page 637.

Resolving DEFAULTAPPL and USS table conflicts: If both a default application
and a USS table are mapped to the same Client Identifier, Telnet will use the
default application to immediately initiate a session. If each is mapped by a
different Client Identifier, the Object mapped by the higher priority Client
Identifier is used. In all cases, any error messages are sent using the USS table
messages. For example, if CICS and USSTAB1 are both mapped to destination IP
address 1.1.1.1, Telnet will initiate a session with CICS and use the USS messages
for any session setup errors.

If CICS is mapped to USERID USER1 and USSTAB1 is mapped to client IP address
5.5.5.5, Telnet will initiate a session with CICS and use the USS messages for any
session setup errors.

If CICS is mapped to linkname LINK1 and USSTAB1 is mapped to hostname
TEST1.IBM.COM, Telnet will send a USSMSG10 logon panel to the end user. The
USS messages will be used for any session setup errors. The default application
mapping of CICS will never be used.

ALLOWAPPL: Telnet will not initiate a session for a solicited application name
unless the name is allowed. The ALLOWAPPL statement is used to configure
Telnet to allow the initiation request. For example, CICS01 and CICS02 are
allowable names.

Chapter 11. Accessing remote hosts using Telnet 611

ALLOWAPPL CICS01
ALLOWAPPL CICS02

The ALLOWAPPL name can have a wildcard value by using an asterisk (*). For
example, if there are no other CICS regions, these lines could be reduced to the
following:
ALLOWAPPL CICS*

All application names can be allowed by coding the following:
ALLOWAPPL *

Default application names do not need to be explicitly allowed. However, if the
default application issues a CLSDST-PASS to another application name for the
session, the second application must be in the ALLOWAPPL list. For example, TSO
is the default application for the NULL Client Identifier. TSO typically passes the
session to TSO00001, TSO00002, and so on. The following default application
mapping will initiate a session with TSO, but when TSO issues a CLSDST-PASS the
new bind to Telnet will have TSO00001 as the application name.
DEFAULTAPPL TSO

Telnet will fail this session request because TSO00001 is not allowed. Add an
ALLOWAPPL statement to allow the TSO* names as follows:
DEFAULTAPPL TSO
ALLOWAPPL TSO*

RESTRICTAPPL: In addition to the ALLOWAPPL statement, Telnet provides
more restrictive access to applications. The RESTRICTAPPL statement requires the
end user to enter a valid RACF user ID and password before the application name
is used to initiate a session. This user ID is different than the Client Identifier user
ID derived from the client certificate. This user ID is used only as a security check.

For example, use the following statement to allow users USER1, USER2, USER3,
USER4, and USER5 access to the PAYROLL application. At the Solicitor panel, the
end user enters USER1/password and the PAYROLL application name. Telnet
verifies USER1/password is valid and then immediately initiates a session with
PAYROLL.
RESTRICTAPPL PAYROLL

USER USER1
USER USER2
USER USER3
USER USER4
USER USER5

Like ALLOWAPPL, the application name can have a wildcard value by using an
asterisk (*). The USER value can also have a wildcard value by using an asterisk.
The user ID/password combination is used by Telnet to verify the password given
for that user ID. In no way is the user ID or password used by the application. No
matter how the application name request arrived at the server (from
DEFAULTAPPL or USSMSG10), Telnet uses the Solicitor panel to prompt for the
user ID/password. Once the user ID is validated and a password is obtained,
Telnet submits the user ID/password pair for authorization to a security program
such as RACF. The user ID/password check authorizes the client to connect to the
application through Telnet. The application itself might also ask for a user
ID/password pair that can be completely different than the pair entered at the
Telnet Solicitor panel. The user ID/password pair entered at the Telnet Solicitor
panel is not in any way passed to the host application. The user ID/password pair

612 z/OS V1R12.0 Comm Svr: IP Configuration Guide

is solicited only after an application name is entered on the Solicitor (or
USSMSG10) panel. If a second application is reached through the original
application using CLSDST-PASS, the second application is verified and Telnet will
solicit a new user ID/password pair if necessary.

When searching for a match with the input application name, Telnet will find the
most specific match whether it is on the ALLOWAPPL or RESTRICTAPPL
statement. If each statement has the same name specified, the RESTRICTAPPL
entry is used. For example, TSO has its own user ID/password requirement and
probably does not need the additional Telnet security check. However, the Telnet
security check may be needed for all other applications. This example can be
supported with the following statements.
RESTRICTAPPL *

USER *
ALLOWAPPL TSO*

Connection parameters mapping statement
Connection parameters are typically defined once at the port level. Sometimes it is
useful to have different connection parameters depending on the Client Identifier.
The PARMSGROUP and PARMSMAP statements allow connection parameters to
be mapped at the Client Identifier level. This level of granularity applies to almost
all parameters. See z/OS Communications Server: IP Configuration Reference for a list
of Telnet parameters allowed in the PARMSGROUP block.

Assume the PAYROLL department is assigned the highest level of security and
connections are being monitored with summary debug messages, general users are
assigned negotiable security, and inventory employees are experiencing
intermittent problems with Telnet connections that require detailed debug
messages for resolution. The following statements assign the security and debug
levels to the areas needed and do not affect other areas. See “Transport Layer
Security” on page 582 for security information and “Telnet diagnostic tools” on
page 561 for debug information.
HNGROUP HNGINV

**.GROUP3.COM
ENDHNGROUP
IPGROUP IPGPAY

255.255.0.0:2.2.0.0
ENDIPGROUP
IPGROUP IPGGEN

255.0.0.0:2.0.0.0
ENDIPGROUP
PARMSGROUP PRMGDBG

DEBUG DETAIL
ENDPARMSGROUP
PARMSGROUP PRMGSEC1

CONNTYPE SECURE
ENCRYPTION SSL_3DES_SHA ENDENCRYPTION
DEBUG SUMMARY

ENDPARMSGROUP
PARMSGROUP PRMGSEC2

CONNTYPE NEGT
ENCRYPTION SSL_RC4_MD5 ENDENCRYPTION

ENDPARMSGROUP
PARMSMAP PRMGDBG HNGINV
PARMSMAP PRMGSEC1 IPGPAY
PARMSMAP PRMGSEC2 IPGGEN

Advanced LU name mapping topics
Beyond the basic LU mapping statements, there are several functions available to
the advanced user. This topic includes the following subtopics:

Chapter 11. Accessing remote hosts using Telnet 613

v Generic and Specific connection requests
v Mapping groups to Client Identifiers
v LU name assignment user exit
v Associated printer function
v Map default application and ParmsGroup by LU group
v Multiple LUMAP statements for one Client Identifier
v Keep LU for the Client Identifier
v LU group capacity warning
v LU mapping by application name
v LU mapping selection rules
v LU mapping with multilevel security active

Generic and Specific connection requests: There are three types of Telnet
connection requests that dictate how Telnet chooses a name to represent the client.
They are Generic requests, Specific requests, and associated printer requests. For
details about associated printer requests, see “Associated printer function” on page
617. Most connection requests are Generic requests.

For Generic requests, Telnet has complete control over LU name assignment using
the Generic mapping statements as a reference. All linemode and TN3270
connections use only Generic requests, and TN3270E terminal and printer
emulators use Generic requests as their default request type. Specific mapping
statements are ignored by Generic requests.

For Specific requests, the TN3270E client specifies the LU name to be used. Telnet
validates the name using the Specific mapping statements as a reference.
Requesting a Specific LU name allows a client to be assigned the same LU every
time. This is important if the host application is LU name dependent, and the
client does not have a constant Client Identifier to use for mapping an LU name. It
is also important to block Telnet from assigning these LUs to Generic requests.
That is why Specific mapping statements are ignored by Generic requests. If a
Specific mapping does not find an LU match, Generic mapping statements are
checked. Telnet confirms or denies the request during negotiation. If the LU
mapping algorithms reject the client choice, Telnet sends a device type reject to the
client. Most clients then notify the end user that the requested LU name is not
valid or is already in use.

Default LU groups: DEFAULTLUS and DEFAULTPRT are default local LU groups
for Generic requests from terminal and printer emulators. SDEFAULTLUS and
SDEFAULTPRT are default shared LU groups for Generic requests from terminal
and printer emulators. DEFAULTLUSSPEC and DEFAULTPRTSPEC are default
local LU groups for Specific requests from terminal and printer emulators.
SDEFAULTLUSSPEC and SDEFAULTPRTSPEC are default shared LU groups for
Specific requests from terminal and printer emulators. DEFAULTLUS and
DEFAULTPRT are explained in “LU name mapping statements” on page 606. Like
the Generic pools, the Specific pools are checked only if there is no other LU
mapping statement match. For example, use the following statements to create a
terminal LU group with a numeric range of LUS1001 to LUS1100 and a printer LU
group with a numeric range of PRTS1001 to PRTS1100. When Telnet receives a
Specific connection request from a terminal, it will verify that the requested LU
name is within the range specified.
DEFAULTLUSSPEC LUS1001..LUS1100..FFFFNNN ENDDEFAULTLUSSPEC
DEFAULTPRTSPEC PRTS1001..PRTS1100..FFFFFNNN ENDDEFAULTPRTSPEC

614 z/OS V1R12.0 Comm Svr: IP Configuration Guide

The sequential selection rules do not apply to Specific requests.

Mapping groups to Client Identifiers: The LUMAP and PRTMAP statements
allow LUs to be mapped based on a Client Identifier. The LU group can be
mapped Generically or Specifically. The default mapping is Generic. The keyword
SPECIFIC must be coded to define a Specific mapping.

For example, use the following statements to create two LU groups. Map one
group Generically to the IP group IPGPAY and map the other group Specifically to
the same Client Identifier. When a Generic connection request is received, Telnet
will assign the next available LU from LU group LUGRPGEN. When a Specific
connection request is received, Telnet will verify the requested LU name is
included in the LU group LUGRPSPC. If it is, Telnet will assign the LU name to
the connection.
LUGROUP LUGRPGEN LUG101..LUG400..FFFXXX ENDLUGROUP
LUGROUP LUGRPSPC LUS001..LUS100..FFFXXX ENDLUGROUP

IPGROUP IPGPAY 255.255.0.0:9.8.0.0 ENDIPGROUP

LUMAP LUGRPGEN IPGPAY
LUMAP LUGRPSPC IPGPAY SPECIFIC

Generic request connections can be assigned LUs only from Generically mapped
LU groups. If no Generic mapping exists, the DEFAULTLUS group is checked. No
Specific group is checked. This safeguards the Specific LU names from being used
by Generic requests.

For Specific requests, Telnet first checks to see if the LU is in a Specifically mapped
LU group. If the LU name is not found, the Generically mapped groups are
searched. If neither LU group type contains the requested LU name, the connection
request is rejected. The DEFAULTLUSSPEC group is not checked in this case
because LU group mappings exist. If no LU group mappings exist, only the
DEFAULTLUSSPEC group is checked. If the LU name is not found, the connection
request is rejected. The Generic DEFAULTLUS group is not checked.

In addition to requesting an exact LU name, the client can request an LU group
name. Telnet first searches within the mapped groups, assuming the name is an
exact LU name. If that search fails, Telnet then checks the requested name against
mapped Specific LU group names and then checks the name against mapped
Generic LU group names. If the group name is found, the next available LU in the
group is assigned using sequential LU selection unless it has been turned off.

The LU group itself is not defined as Generic or Specific. Rather, the LU group is
mapped Generically or Specifically. It is possible to map the same LU group both
Generically and Specifically. IBM recommends that you do not map the same
group Generically and Specifically unless you are an advanced user.

LU name assignment user exit: Most LU assignment requirements can be
satisfied using the Telnet LU group and LU mapping statements. However, there
are cases when the LU assignment requirements are so specific that Telnet cannot
satisfy them. In these cases, the LU name assignment user exit might be the
solution. The LU name exit is defined like an LUGROUP and is mapped the same
way LUGROUPs are mapped. The LUGROUP is defined as an exit by specifying
,EXIT immediately after the LUGROUP name. For LUGROUPs, Telnet selects an
LU from the group, verifies its availability, and assigns the LU to the connection.
For LU name exits, Telnet calls the user-written assembler program passing a
parameter list that contains client and other information. The program creates the

Chapter 11. Accessing remote hosts using Telnet 615

LU name, places it in the parameter list, and returns control to Telnet. Telnet will
then verify the LU name's availability and assign the LU to the connection. An LU
name exit cannot be dynamically updated. Once it is loaded, it remains unchanged
until Telnet is recycled. To make a change without recycling Telnet, the exit name
must be changed. The new name can then be added on a mapping statement. For
a detailed description of the parameter list and coding requirements for the Telnet
LU exit, see z/OS Communications Server: IP Configuration Reference.

Version 2 of the LU exit allows the exit to override Telnet profile assigned USS
(3270 or SCS format) and interpret tables. The values assigned by the Telnet profile
or blanks are passed into the exit. The exit can override any of the three values
and Telnet will use the new values. For details on Telnet LU exit setup, see z/OS
Communications Server: IP Configuration Reference.

In addition to client information, the parameter list includes any LU names or
ranges that were coded in the LUGROUP, and the requested application name if
known. Telnet does not use the LU list. The LUs specified can be used as seed
values if the LU name exit wants to use them. The LUGROUP can be defined
without any LUs specified. However, if the exit is used with multilevel security, at
least one LU must be specified so the LUGROUP can be assigned a security label.
For details, see “LU mapping with multilevel security active” on page 624.

The LU name exit is called when the LU is assigned, when the LU is released,
when the LU is inactivated, and when the LU is activated. A different function
code is used for each type of call. If you do not need a certain function, like
tracking inactivated LUs, the LU name exit can be written to ignore the function
code. Telnet allows only one connection at a time to use the LU name exit, which
serializes its use in case any local tables are maintained in the exit.

As an example, assume LU names are to be assigned based on client port number
and application requested. The SIMCLIENTLU parameter is used to postpone
TN3270E LU assignment until the application name is known. The parameter list
includes the client port number and the requested application name. In this case,
no seed LU names are needed. The LU name exit will create LU names based on
the port number and application name in the parameter list.
LUGROUP LUEXIT1,EXIT
ENDLUGROUP

In another example, assume that the clients specify LUGROUP names that match
the default applications on the LUMAP statement. The LU names are to be created
based on the last two numbers of the IP address and a prefix that identifies the
application. For example, TSO, IMS, and CICS are three current applications, and
the prefix for each is TS, IM, and CI, respectively. The connection from IP address
9.1.240.111 specifies LUGROUP LUGTSO and is assigned the name TS240111. The
connection from IP address 9.1.240.212 specifies LUGROUP LUGIMS and is
assigned the name IM240212. The connection from IP address 9.1.89.7 specifies
LUGROUP LUGTSO and is assigned the name TS089007. Three LU name exits are
required (LUGTSO, LUGIMS, LUGCICS), but they are all functionally equivalent.
The LU name specified in the LUGROUP statement is passed to the LU name exit
as part of the parameter list, and that name is used by the exit as the prefix. The
client IP address is also in the parameter list. To force Telnet to call each exit, the
LU name exit must return a nonzero return code when the LU name sent by the
client does not match the LUGROUP name. The LU name exit combines the prefix
with the last portions of the IP address to create an LU name. The following
statements can be used to support this scenario.

616 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

IPGROUP IPGRP1 0.0.0.0:0.0.0.0 ENDIPGROUP ; Matches all connections

LUGROUP LUGTSO,EXIT TS ENDLUGROUP
LUGROUP LUGIMS,EXIT IM ENDLUGROUP
LUGROUP LUGCICS,EXIT CI ENDLUGROUP

LUMAP LUGTSO IPGRP1 DEFAPPL TSO
LUMAP LUGIMS IPGRP1 DEFAPPL IMS
LUMAP LUGCICS IPGRP1 DEFAPPL CICS

Capacity checks cannot be performed since Telnet has no way of knowing how
many total LUs are available in the LU name exit.

Associated printer function: The associated printer function allows a printer
emulator to specify an active LU terminal name during connection negotiation.
Telnet understands this special request and knows to assign a printer LU name
that is associated with the requested terminal LU name. You establish the
association by linking a pool of terminal LUs (LUGROUP or SLUGROUP) with a
pool of printer LUs (PRTGROUP or SPRTGROUP). The groups are linked with the
LUMAP statement. The printer LU group name is linked to the terminal LU group
name by adding the PRTGROUP name on the LUMAP statement.

The two LU groups must have the same number of LUs defined so the LUs can be
paired. The groups must have the same number of single LU names, the same
number of LU ranges, and the same number of LU names in each range. If the
groups do not have the same number of LUs defined, error messages will be
produced during profile processing.

Once the groups are linked, Telnet assigns the nth printer LU to a printer
connection that requests association with the nth terminal LU. For example, a CICS
table might specify that if terminal LU1 is requesting printer function, the output
should be routed to printer PRT1. Within CICS, LU1 and PRT1 are associated with
each other. Use the following statements to set up printer association.
LUGROUP LUGCICS LU1..LU9 ENDLUGROUP
PRTGROUP PRTCICS PRT1..PRT9 ENDPRTGROUP
IPGROUP IPGRP9 255.0.0.0:9.0.0.0 ENDIPGROUP
LUMAP LUGCICS IPGRP9 GENERIC PRTCICS

To use shared groups, change the first two lines to indicate that the groups are
shared:
SLUGROUP LUGCICS LU1..LU9 ENDSLUGROUP
SPRTGROUP PRTCICS PRT1..PRT9 ENDSPRTGROUP

Rule: If you are using sysplex distributor to distribute connections across Telnet
servers with associated printers, regardless of whether the LUs are in local groups
or shared groups, you must use timed client affinity to ensure that the clients
connect to the same Telnet server.

If the terminal connection matches a DEFAULTAPPL or LUMAP-DEFAPPL
mapping statement, Telnet immediately initiates a session request for the specified
application. If the printer connection matches a PRTDEFAULTAPPL mapping
statement, Telnet immediately initiates a session request for the specified
application. Building on the previous example, use the following statements to set
CICS as the default application for both the terminal and printer connections:
LUMAP LUGCICS IPGRP9 GENERIC DEFAPPL CICS PRTCICS
PRTDEFAULTAPPL CICS

Chapter 11. Accessing remote hosts using Telnet 617

Neither the LU group nor the printer group can be an LU exit group. If either is an
LU exit, the mapping statement will be rejected.

Drop the printer connection when dropping the terminal connection: In many cases, the
associated printer connection should be dropped when the terminal connection is
dropped. If you code the DROPASSOCPRINTER parameter, Telnet will monitor the
terminal connection. When the terminal connection is dropped, Telnet will initiate
the closing and dropping of the printer connection. The DROPASSOCPRINTER
and NODROPASSOCPRINTER parameters can be coded at all three parameter
block levels for different levels of granularity.

Map default application and ParmsGroup by LU group: The DEFAPPL option
on the LUMAP statement allows a host VTAM application to be mapped with an
LU name or LUGROUP name instead of using DEFAULTAPPL. The
LUMAP-DEFAPPL combination is treated just like DEFAULTAPPL when a Client
Identifier matches the LUMAP statement. The LUMAP-DEFAPPL combination also
supports the LOGAPPL, FIRSTONLY, and DEFONLY parameters that are used by
DEFAULTAPPL, PRTDEFAULTAPPL, and LINEMODEAPPL. The
LUMAP-DEFAPPL combination is a powerful statement when used with multiple
LUMAP statements for the same Client Identifier. If the LUMAP-DEFAPPL or
PRTMAP-DEFAPPL statement is coded and the default application is not available,
an error screen will be sent to the client whether or not MSG07 is coded.

The PMAP option on the LUMAP statement allows assignment of connection
parameters based on LU or LU group name. When the LU is assigned, the
parameter values specified in the PMAP PARMSGROUP will override the
parameter value specified in TELNETGLOBALS, TELNETPARMS, or
PARMSGROUP mapped to this connection's Client Identifier. For example, any
client residing in subnet 9.0.0.0 that specifies the LU group LUGTSO will
immediately have a session initiated to TSO with the LOGAPPL function, and the
TIMEMARK time will be set for two hours instead of the default three hours.
IPGROUP IPGRP9 255.0.0.0:9.0.0.0 ENDIPGROUP
LUGROUP LUGTSO TCPTSO01..TCPTSO99..FFFFFFNN ENDLUGROUP
PARMSGROUP PGRPT2 TIMEMARK 7200 ENDPARMSGROUP
LUMAP LUGTSO IPGRP9 DEFAPPL TSO LOGAPPL PMAP PGRPT2

An LUMAP-DEFAPPL defined default application name is always used if
specified, regardless of USSTCP mappings. LUMAP-DEFAPPL has a higher priority
than any DEFAULTAPPL or USSTCP. The connection parameters assigned using
LUMAP-PMAP will override any other setting of the parameters. However, not all
parameters have a meaningful use by the time the LU is assigned. For example,
NOTN3270E controls whether or not Telnet should negotiate for TN3270E. That
negotiation is done before LU assignments. For information on which parameters
can be properly applied with LUMAP-PMAP, see the parameter table in z/OS
Communications Server: IP Configuration Reference.

The PRTMAP statement supports PRTMAP-DEFAPPL and PRTMAP-PMAP in the
same manner as LUMAP-DEFAPPL and LUMAP-PMAP.

Multiple LUMAP statements: Another feature of Specific LU name requests is
that the client can specify an LUGROUP name, and Telnet will assign an available
LU from that pool. This capability is useful when different applications require
different LU naming schemes, but each end user client does not need to use an
exact LU name for each emulator. For example, an administrator can create three
pools, one for each of three applications. Only three client emulators need to be set
up. One for TSO which requests LU name LUTSO, one for CICS which requests
LUCICS, and one for IMS which requests LUIMS. Assume the general users are in

618 z/OS V1R12.0 Comm Svr: IP Configuration Guide

subnet 3.0.0.0. Any client connecting with a Client Identifier of IPGGEN can be set
up to issue a Specific request for LU pool LUTSO, LUCICS, or LUIMS, and will be
assigned an LU from the appropriate pool.

After an LU is assigned, the DEFAPPL option will cause Telnet to immediately
issue a session request for the appropriate application. If LOGAPPL is coded and
the application is not active, VTAM will continue session initiation once the
application is active.

In most cases, DEFAPPL on multiple Generic LUMAPs is not useful. LUs are
assigned in order starting with the first LUMAP statement. One case that may be
useful is if an application has a user limit but can be cloned. Assume the
INVENTRY application can support only 20 users but can be cloned. Multiple
LUMAPs with DEFAPPL will direct the first 20 HNGINV clients to INVENTRY, the
next 20 HNGINV clients to INVENTR2, and the next 20 HNGINV clients to
INVENTR3.
IPGROUP IPGGEN

255.0.0.0:3.0.0.0
ENDIPGROUP
LUGROUP LUTSO TSO00001..TSO00999 ENDLUGROUP
LUGROUP LUCICS CICS0001..CICS0999 ENDLUGROUP
LUGROUP LUIMS IMS00001..IMS00999 ENDLUGROUP
HNGROUP HNGINV

*.INVDEPT.COM
ENDHNGROUP
LUGROUP LUGINV1 LUINV01..LUINV20 ENDLUGROUP
LUGROUP LUGINV2 LUINV21..LUINV40 ENDLUGROUP
LUGROUP LUGINV3 LUINV41..LUINV60 ENDLUGROUP
LUMAP LUTSO IPGGEN SPECIFIC DEFAPPL TSO LOGAPPL FIRSTONLY
LUMAP LUCICS IPGGEN SPECIFIC DEFAPPL CICS LOGAPPL
LUMAP LUIMS IPGGEN SPECIFIC DEFAPPL IMS LOGAPPL
LUMAP LUGINV1 HNGINV DEFAPPL INVENTRY LOGAPPL DEFONLY
LUMAP LUGINV2 HNGINV DEFAPPL INVENTR2 LOGAPPL DEFONLY
LUMAP LUGINV3 HNGINV DEFAPPL INVENTR3 LOGAPPL DEFONLY

Pool name specification is a powerful mapping method because multiple LUMAP
statements with different Objects can be used for a single Client Identifier.

Keep LU for the Client Identifier: An LU name can be kept (or reserved) for a
period of time so no other client is assigned that name. Only the same Client
Identifier reconnecting to Telnet within the specified time can be assigned that LU
name. After the specified time, the LU name is again available for any connection.
This function is useful when the application does not clean up session information
quickly and a released LU is quickly reassigned to another end user by Telnet. The
application thinks the new session is a continuation of the previous session but it
is not. With KEEPLU, the LU will not be reassigned to a different Client Identifier
for a period of time, long enough for the application to clean up its session
information. The LU name is kept based on the highest Client Identifier by which
the connection is known. It is either a User ID derived from a client certificate, a
Hostname, or an IP address, respectively.

LU group capacity warning: An LU group capacity threshold can be specified on
the LUGROUP, PRTGROUP, and default LU group statements. If specified, Telnet
will check the number of LUs used in the group when an LU is assigned from the
group. A message is issued when the group's in-use LU count is at or above the
specified percentage of the total. Once the message is issued, no other message is
issued until the in-use count has dropped below the threshold by 10% of the total.
For example, an LU group has 200 LUs with a capacity threshold of 80%. When
the 160th LU is assigned, EZZ6007I is issued. Ten percent of the total in the group

Chapter 11. Accessing remote hosts using Telnet 619

is 20. Therefore, after the number of in-use LUs has dropped to 140 or lower,
another warning message will be issued when the in-use count rises to 160 again.
If multiple LU groups have the same LU name, the only LU group checked is the
group from which the LU is assigned to the client. The other LU groups might go
over their capacity limits, but notification will not be issued until an LU is taken
from the group. Below are examples for setting the capacity warning.
LUGROUP LUGRP1,80% TCPLU000..TCPLUF9F..FFFFFXNX
PRTGROUP PRTGRP1,60% TCPRT000..TCPRTFFF..FFFFFXXX
DEFAULTLUS ,75% LU000000..LU999999..FFNNNNNN
DEFAULTPRTSPEC ,90% PRTDEFS1..PRTDEFS9

Capacity checking cannot be done for LU groups that are defined as LU name
exits. During VARY TCPIP,tnproc,OBEYFILE command processing, all LU groups
are checked for in-use LU counts and a capacity warning message is issued if
needed.

Tip: Be sure to leave a blank space between the default LU group statement and
the capacity (,nnn%). Do not leave a blank space between a group name and the
capacity.

LU mapping by application name: In some cases, only certain LU names are
eligible to be in session with the host application. Or only certain LU names are
eligible to represent user IDs. The LU and LUG parameters on the ALLOWAPPL
and RESTRICTAPPL statements provide this checking function and allow some LU
name mapping based on application name. The LUG parameter can represent
either an LUGROUP, a PRTGROUP, or a group that is a mixture of terminal and
printer LUs so that both terminal and printer emulators can access the application.
If single LUs are specified, they are assumed to be terminal LUs.

For example, assume the only LUs eligible to use the inventory set of applications
are the LUs in the inventory LU pools. A new LUGROUP pool named LUGINVT
contains LUs from LUGINV1, LUGINV2, and LUGINV3. The ALLOWAPPL
statement requires that any session request to the inventory applications have an
LU name defined in LUGINVT. The LUG parameter must be used carefully. When
specified, Telnet must match the LU using both the common mapping algorithms
and the mapping by application. For RESTRICTAPPL, assume security
authorization is required to get to the PAYROLL application, and each of the
PAYxx user IDs must map to a certain LU.
LUGROUP LUGINV1 LUINV01..LUINV20 ENDLUGROUP
LUGROUP LUGINV2 LUINV21..LUINV40 ENDLUGROUP
LUGROUP LUGINV3 LUINV41..LUINV60 ENDLUGROUP
LUGROUP LUGINVT LUINV01..LUINV60 ENDLUGROUP
ALLOWAPPL INVENTR* LUG LUGINVT
RESTRICTAPPL PAYROLL

USER PAY01 LU LUPAY01
USER PAY02 LU LUPAY02

(user pay03 through pay20 not listed)

The LU group specified on the LUG parameter cannot be an LU exit. If it is, the
ALLOWAPPL statement is rejected. Multiple LUs can be assigned individually
using the LU keyword or a single LU group can be assigned using the LUG
parameter. LU and LUG cannot be mixed on a single statement and only one LUG
entry per statement is permitted. LU assignment based on application is a
convenient way to limit the access to applications. However, this increases
mapping complexity significantly when LU mapping statements and connection
types are part of the overall mapping equation. Non-TN3270E connections or
TN3270E connections with NOTN3270E or SIMCLIENTLU specified do not keep
the LU name assigned to the connection after a session is dropped. For these

620 z/OS V1R12.0 Comm Svr: IP Configuration Guide

connection types, the end user can establish a session with different application
names even if different LU names are mapped to the application names with the
ALLOWAPPL or RESTRICTAPPL-USER statement. However, LU mapping based
on application name does not work well with TN3270E connections because the
LU is assigned during connection negotiation before the desired application name
is known. In all CLSDST-PASS cases, the LU name cannot change when switching
from the first application to the second because the LU's ACB is not closed during
the switch. If the LU mapping by application name requires an LU name switch,
the new session attempt will be failed by Telnet.

TN3270 connections do not assign an LU to represent the client until an
application name is chosen. Therefore, the LU and LUG parameters can be used as
sole LU mapping statements for TN3270 connections. For example, assume no
other mapping statements exist (LUMAP or DEFAULTLUS), and either no
TN3270E connections will be used or SIMCLIENTLU has been specified. The
following ALLOWAPPL statements will map LUs to the appropriate application
based on the application name chosen. The following RESTRICTAPPL statement
will assign a single LU or LU pool to each user.
ALLOWAPPL TSO* LUG LUGTSO
ALLOWAPPL CICS LUG LUGCICS
ALLOWAPPL IMS LUG LUGIMS
RESTRICTAPPL APP*

USER USER1* LUG LUG10
USER USER01 LU LU01
USER USER02 LU LU02

Both of these assignment methods were very popular before TN3270E connections
were introduced. TN3270E connections will likely achieve poor mapping results.
An LU must be assigned during connection negotiation before the application
name is known which will likely result in an LU mismatch later. TN3270E
connections require that an LU mapping statement exist because an LU must be
assigned to the connection during negotiations before an application name is
known. Consider the following example:
DEFAULTLUS

LU1 LU2 LU3 LU4
ENDDEFALTLUS
RESTRICTAPPL APPL1

USER USER3 LU LU3
ALLOWAPPL APPL2 LU LU4

Assume two TN3270 connections are started.
v Two solicitor screens appear.
v Specify APPL1, USER3, and a password. Telnet selects LU3 based on both the

DEFAULTLUS and the RESTRICTAPPL statements.
v Specify APPL2. Telnet selects LU4 based on both the DEFAULTLUS and the

ALLOWAPPL statements.

Assume two TN3270E connections are started.
v Two solicitor screens appear. Telnet assigns LU1 and LU2.
v Specify APPL1, USER3, and a password. Telnet fails the connection because of

an LU mismatch.
v Specify APPL2. Telnet fails the connection because of an LU mismatch.

If LU name mapping by application name or user ID is desired with TN3270E
clients, the following three solutions are available:

Chapter 11. Accessing remote hosts using Telnet 621

v If the same application or user ID is always used at the same client, individual
LUMAP statements can be used to map the correct LU name to each client. Then
every connection request will result in the correct LU assignment for that client.
The assumptions are that the client keeps the same Client Identifier and only
one client exists per Client Identifier.

v Map the NOTN3270E parameter to clients to disable all TN3270E function in
Telnet so those connections will be TN3270, not TN3270E. The drawback is that
all TN3270E function is disabled. This includes printer function, Generic/Specific
function, and SNA function to the client. The TN3270E and NOTN3270E
parameters can be coded at all three parameter block levels for different levels of
granularity.

v Mapping the SIMCLIENTLU parameter is a less severe solution. This function
will send a dummy LU name of EZBSIMLU to all TN3270E clients issuing
Generic connection requests to satisfy the negotiation but will not assign a Telnet
LU until an application name is chosen. This alternative preserves printer
function, Specific requests, and SNA function to the client. The drawback is the
name sent to the client is not the name Telnet ultimately uses to represent the
client. Printer association will not work for these TN3270E Generic connections
and any emulator programming that depends on the LU name will be using the
dummy LU name. The SIMCLIENTLU and NOSIMCLIENTLU parameters can
be coded at all three parameter block levels for different levels of granularity.

LU mapping selection rules: LU mapping selection can become complicated
because of the many variations of mapping statements, TN3270E versus TN3270
connections, Generic versus Specific connection requests, printer association, and
LU mappings based on application name. LU mapping is very different between
TN3270E and TN3270 and will be discussed separately. But first, some general
Mapping Rules for both TN3270E and TN3270 follow:
v If multiple LUMAP statements exist for a Client Identifier all Specific LUMAPs

are searched (TN3270E only) and then all Generic LUMAPs are searched in the
order they are listed in the profile.

v If the application is known during the LU lookup and the ALLOWAPPL or
RESTRICTAPPL-USER statement has LUs listed, then the found LU must be in
both the mapped LU group and in the application LU group.

v Once an LU match is found, the search stops.
v Telnet performs database lookup for Objects based on the Client Identifier.

TN3270E connections require an Early Lookup so Telnet can give the client an
LU name during connection negotiation. In all cases a Complete Lookup is done
when the application name is known. Telnet performs an Early Lookup and a
Complete Lookup for TN3270E connections. Telnet performs only a Complete
Lookup for TN3270 and Linemode connections.

TN3270E LU mapping: TN3270E connections require an Early Lookup during
connection negotiation. Telnet will use as much information as is available to
assign an LU to the client. However, the eventual application is not known at this
time unless an LUMAP-DEFAPPL or DEFAULTAPPL statement defines the
application name. After connection negotiations are complete, Telnet will either
send a logon solicitor (or USSMSG10) screen to the client or will perform a
Complete Lookup using the application name obtained from the
LUMAP-DEFAPPL or DEFAULTAPPL statement. If Complete Lookup is successful,
Telnet will begin session initiation. If a solicitor (or USSMSG10) screen is sent to
the client, an application name must be entered, at which time Telnet will perform
a Complete Lookup. If LU mapping is being done based on application name, a
conflict might occur between the application LU mapping and the LU already
assigned to the connection. For TN3270E, once an LU name is assigned during

622 z/OS V1R12.0 Comm Svr: IP Configuration Guide

connection negotiation it can never change until the connection is dropped. The
SIMCLIENTLU statement allows Telnet to assign LUs for TN3270E connections as
though they were TN3270 connections. See “TN3270 LU mapping” on page 624 for
mapping Generic TN3270E connection requests with SIMCLIENTLU. A request for
a Specific LU from the Telnet Client will be treated as if SIMCLIENTLU were not
specified. The exact lookup process for TN3270E (non-SIMCLIENTLU) is described
below.

Early Lookup: An LU must be found during Early Lookup. LUMAP-DEFAPPL and
DEFAULTAPPL statements are considered but not necessarily used. Possible
lookup results are:
v An LU is found.
v An LU is not found, the connection is dropped.

Perform TN3270E Early Lookup in the following order. The process stops when LU
lookup is successful. Printer connections use the same process, substituting
PRTMAP and PRTDEFAULTAPPL.
v Check for LUMAP matches considering application lookup results and possible

application-based LU mappings.
1. For each Specific LUMAP used for Specific connection requests: If the

Specific LUMAP has DEFAPPL, or DEFAULTAPPL was specified and the
application lookup return code is either OK or USER_REQUIRED, then
perform LU lookup.

2. For each Generic LUMAP used for Specific or Generic connection requests: If
the Generic LUMAP has DEFAPPL, or DEFAULTAPPL was specified and the
application lookup return code is either OK or USER_REQUIRED, then
perform LU lookup.

v Check for LUMAP matches without considering application lookup results.
1. For each Specific LUMAP used for Specific connection requests: Ignore

DEFAPPL and DEFAULTAPPL and perform LU lookup.
2. For each Generic LUMAP used for Specific and Generic connection requests:

Ignore DEFAPPL and DEFAULTAPPL and perform LU lookup.
v If LUMAP statements were not checked (different from checked but no match), use

the appropriate Default LU pool considering application lookup results and
possible application-based LU mappings. In this case the only relevant
application is the DEFAULTAPPL, if specified. If the application lookup return
code is either OK or USER_REQUIRED, then perform LU lookup.

v If LUMAP statements were not checked, try the appropriate Default LU pool
without considering application lookup results. Perform LU lookup.

Complete Lookup: An application name is required for Complete Lookup. The
application name is obtained from one of three sources in the order specified.
1. Input from the USER or VTAM (via CLSDST with OPTCD=PASS)
2. DEFAPPL parameter on the LUMAP statement
3. DEFAULTAPPL statement

Use the application name and the previously found LU to perform Complete
Lookup. Possible lookup results are:
v The application is not valid.
v The application is valid (return code OK or USER_REQUIRED) for the existing

LU.
v The application-based LU map does not match the already chosen LU.

Chapter 11. Accessing remote hosts using Telnet 623

TN3270 LU mapping: TN3270 connections only perform Complete Lookup after all
information is known. LU lookup is not done during connection negotiation. Telnet
will either send a solicitor (or USSMSG10) screen to the client or will perform
Complete Lookup using the application name known through the
LUMAP-DEFAPPL or DEFAULTAPPL statement. If Complete Lookup is successful,
Telnet will begin session initiation. If not successful, the solicitor (or USSMSG07)
screen is sent to the client without an LU being assigned to the connection or the
connection is dropped. The LU is not assigned until the application name is valid.
If the application name is a RESTRICTAPPL, the LU is not assigned until a user ID
is specified. Application-based LU mappings have a very good chance of success
due to the late LU mapping aspect of TN3270 connections. When SIMCLIENTLU is
coded, Generic TN3270E connections have this same characteristic.

Complete Lookup: An application name is required for Complete Lookup. The
application name is obtained from one of three sources in the order specified.
1. Input from the USER or VTAM (CLSDST with OPTCD=PASS)
2. DEFAPPL parameter on the LUMAP statement
3. DEFAULTAPPL statement

Use the application name to perform Complete Lookup. Possible lookup results
are:
v The application is not valid.
v The application is valid but an LU is not found.
v The application is valid (return code OK) and an LU is found.
v The application LU map does not match the Client Identifier LU map.

If the application is not valid, no LU is assigned to the connection and an error
message is sent to the client. If the application is valid, continue the LU lookup in
the following order.
v Check for LUMAP matches considering application-based LU lookup results.

Only Generic LUMAPs are searched. If the application lookup return code is
OK, then perform LU lookup.

v If no LUMAP statements were used, check for application-based LU mappings.
If the application lookup return code is OK and LUs are defined on the
application statement, perform LU lookup.

v If no LUMAP or application-based LU mapping statements were used, use the
DEFAULTLUS pool considering application lookup results. If the application
lookup return code is OK, then perform LU lookup.

LU mapping with multilevel security active: Telnet can be in a multilevel secure
environment that uses security labels. For more information on preparing for
TCP/IP networking in a multilevel secure environment, see Chapter 4, “Preparing
for TCP/IP networking in a multilevel secure environment,” on page 153 and z/OS
Planning for Multilevel Security and the Common Criteria. To ensure correct security
label comparisons, Network Access Control (NAC) must also be active for Telnet.
For more information about NAC, see “Network Access Control” on page 591.

If multilevel security is active, Telnet ensures the security label of the selected LU
is compatible with the security label of the client.
v Telnet retrieves the security label of the client when the connection is accepted.
v Telnet assigns a security label to all LUGROUPs based on the first LU name in

the group. The first single LU name in the group is used. If no single LU names
exist, the first LU name within the first LU range is used.

624 z/OS V1R12.0 Comm Svr: IP Configuration Guide

– If multilevel security is active, an LUGROUP EXIT is required to have at least
one LU name in the group. The LU name is used to obtain a security label for
the group. The name is passed to the exit in the parameter list and can be
used or ignored by the exit.

– A single LU name on a mapping statement is treated as an LUGROUP with
one LU name. That LU name is used to obtain the security label for the
LUGROUP created by Telnet.

When multilevel security is active, LU lookup uses the following process:
1. The security label of the client is compared with that of the mapped

LUGROUP. If the group is compatible, Telnet searches for an available LU in
the group. If not compatible, the LUGROUP is skipped.

2. Telnet retrieves the security label of the selected LU and compares it with the
security label of the LUGROUP. If the selected LU is not compatible with the
LUGROUP, the LU is inactivated and no other LU in the group is tried.

3. If the LUGROUP was not compatible or no LU was available, the steps are
repeated for each mapped LUGROUP until an LU is found or all LUGROUPs
are checked.

Advanced application topics
In addition to the basic function of facilitating session setup, Telnet supports
several advanced functions such as:
v Connection information passed on the CINIT control vector 64 (CV64)
v Session initiation management (LOGAPPL, QINIT, FIRSTONLY, and DEFONLY)
v Check client connection and connection/session takeover
v Queueing sessions
v Disconnect on session error
v Bypass RESTRICTAPPL with CERTAUTH
v Allow printer sessions with RESTRICTAPPL
v Keeping the ACB open
v Express Logon Feature

Connection information passed on the CINIT control vector 64: During session
establishment, a VTAM session initiation record called a CINIT is created and sent
to the primary application. Attached to the CINIT is a control vector 64 (CV64) that
is created by Telnet to provide additional information about the Telnet connection.
The CV64 control vector contains four sub-vectors. The CV64 control vector and
the four sub-vectors are all defined as key/length vectors.
v CV64 - Start of control vector

– Key/Length (2 bytes)
X'64mm', where mm is (ii + 2) + 4 + (hh +2 (if SBV85 present)) + 19 (if SBV86
present)

v SBV81 - Flags and IP address
– Key/Length (2 bytes)

X'81ii', where ii is 06 for IPv4, 18 for IPv6
– IP address type (1 byte)

04 - IPv4
06 - IPv6

– Flags (1 byte)
80 - Reserved for future use

Chapter 11. Accessing remote hosts using Telnet 625

|

|
|
|
|
|
|

|

|

|
|

|

|

|

|

|

|

|

|

40 - Reserved for future use
20 - On if secure connection
10 - On if secure connection flag is valid
08 - On if takeover of the connection is possible
04 - On if the TCP/IP stack supports IPv6 addresses and the client has an
IPv4 address
02 - On if the Telnet server is the z/OS Communications Server TN3270E
Telnet server
01 - On if the client is a TN3270E client and supports definite response

– IP address (4 bytes if IPv4, 16 bytes if IPv6)
v SBV82 - Port number

– Key/Length (2 bytes)
X'8202'

– Port (2 bytes)
v SBV85 - Host name of the client (SBV85 is not always present)

– Key/Length (2 bytes)
X'85hh', where hh is 1 + DNS name length

– Flags (1 byte)
80 - On if DNS name is truncated to 128 bytes

– DNS name (Maximum 128 bytes)
v SBV86 - Zone ID if specified for a client IPv6 address (SBV86 is not always

present)
– Key/Length (2 bytes)

X'8611'
– Flags (1 byte)

80 - On if zone is truncated
– Zone ID (16 bytes)

Session initiation management (LOGAPPL, QINIT, FIRSTONLY, and
DEFONLY): The LOGAPPL, QINIT, FIRSTONLY, and DEFONLY options can be
coded on DEFAULTAPPL, PRTDEFAULTAPPL, LINEMODEAPPL,
LUMAP-DEFAPPL, or PRTMAP-DEFAPPL. For the remainder of this topic,
DEFAULTAPPL represents all the default application statements.

LOGAPPL, QINIT: The LOGAPPL or QINIT functions keep the Telnet LU active if
a Request Session fails due to the host VTAM application not being active. In
addition, VTAM remembers the attempted Request Session and will initiate a
session request to the Telnet LU on behalf of the application when the application
becomes active. When the Request Session fails, Telnet sends the client a solicitor
panel or USSMSG07 screen. The end user then has the option of logging on to a
different host VTAM application (if DEFONLY is not coded). When this different
session is started, VTAM drops the queued Request Session for the original session.

What happens at session logoff depends on whether or not LUSESSIONPEND and
FIRSTONLY are coded and whether LOGAPPL or QINIT is coded. If
LUSESSIONPEND is coded, the connection remains. Otherwise, it is dropped. If
FIRSTONLY is coded, Telnet will send a USSMSG10 screen or Solicitor panel to the
client. If FIRSTONLY is not coded, Telnet will initiate another session with the
default application defined by the DEFAULTAPPL statement. LOGAPPL and
QINIT have different results when logging off the original application. When

626 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|

|

|

|
|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

|

LOGAPPL is specified, a USSMSG10 or Solicitor panel is sent to the client. When
QINIT is specified, Telnet requests a session with the default application.

FIRSTONLY, DEFONLY: Sometimes a default application is used at initial
connection, but after LOGOFF a USSMSG10 or solicitor panel is more appropriate
than redriving the default. In this case, code the FIRSTONLY parameter. This
indicates the default should be used on the first session only. After a session has
been established, any subsequent lookups will ignore the default and send the
USSMSG10 screen or solicitor panel.

If MSG07, LUMAP-DEFAPPL, or PRTMAP-DEFAPPL is coded and the default
application is inactive, an error screen will be sent to the client. The DEFONLY
parameter will block a user-entered application choice if it is different than the
default. This parameter prevents application choice while giving the end user error
information.

The following table summarizes several possible session initiation failure scenarios.
v ReqSess OK - A Request Session to the default application succeeded or a

Request Session to a second application from the USSMSG07 screen succeeded.
v ReqSess Fail - A Request Session to the default application failed.
v 2nd Appl Fail - A Request Session to a second application from the USSMSG07

screen failed.

FIRSTONLY is not a consideration because the first session has not been
established.
1. In session.
2. Send USSMSG07 or Solicitor panel to client. Close the ACB.
3. Send USSMSG07 or Solicitor panel to client. Keep ACB open, queue original

session request in VTAM.
4. Send USSMSG07 or Solicitor panel to client. Keep ACB open, keep the original

queued session request in VTAM.
5. Drop connection.

The following table summarizes several possible session ending scenarios. The
session is ending due to normal LOGOFF or session breakage (possibly caused by
loss of the application).
v Original Application - User is in session with the original default application.
v CLSDST from Original Appl - User is in session with a second (or later)

application after issuing a CLSDST-PASS from the original application.

Mapping Statement

DEFAULTAPPL name

DEFAULTAPPL name LOGAPPL
DEFAULTAPPL name QINIT

Scenario
ReqSess
OK

ReqSess Fail 2nd Appl Fail

MSG07 MSG07
No
MSG07

No
MSG07

1

1

2

3

5

3

2

4

N/A

4

Figure 67. Session initiation failures scenarios

Chapter 11. Accessing remote hosts using Telnet 627

In all cases, if LUSESSIONPEND is not coded the connection is dropped.
1. Request a session with the default application.
2. Send USSMSG10 or Solicitor panel to client. Close the ACB.

Check client connection and connection/session takeover: A Telnet client can
detect the loss of connectivity to Telnet without Telnet being aware of the loss. This
condition is typically caused by a temporary problem in the network, such as a
router experiencing a failure. In many cases, the network can correct itself and
client retransmission can recover the data flow. However, the user often terminates
the Telnet TCP connection at the emulator without waiting for the network to
recover. In other cases, such as when a single router supports the client, the Telnet
TCP connection is eventually terminated by the client TCP/IP stack after a certain
number of retransmissions fail. When network connectivity is restored, the user
initiates a new connection to Telnet. Even though the user is reconnected, in many
cases the original SNA session cannot be associated with the new TCP connection
because the session continues to be associated with the original TCP connection.

Assume that the host application is TSO and the user is in session with TSO user
ID USER1. The route is lost and the user disconnects. The user then establishes a
new Telnet connection without specifying an LU name. Telnet assigns a different
LU to represent the client. When the logon to user ID USER1 is attempted, TSO
fails the logon attempt because USER1 is still in session with the original Telnet
LU. If the user does specify the same LU name when reconnecting, the connection
is rejected sooner. Telnet fails the request during Early Lookup, indicating that the
LU is already in use. The problem with both situations is that Telnet assumes that
the original connection is still active and that the SNA session is still associated
with that original connection.

The user can not terminate the original TCP connection and SNA session. The user
has two choices:
v Wait for an inactivity timer in Telnet to clean up the original SNA session and

close the original TCP connection
v Wait for an inactivity timer in TSO to initiate session termination

In the second case, either Telnet is configured to close the connection at session
termination (NOLUSSIONPEND), or when Telnet attempts to refresh the TCP
connection, Telnet detects that the TCP connection is gone and closes its
representation of the connection. The end result in all cases is that the original
SNA session and the original TCP connection are cleaned up after the specified
inactive period of time has elapsed.

Mapping Statement

DEFAULTAPPL name
DEFAULTAPPL name QINIT

DEFAULTAPPL name LOGAPPL

DEFAULTAPPL name FIRSTONLY LOGAPPL
DEFAULTAPPL name FIRSTONLY QINIT

Scenario
Original Application 2nd Appl or

CLSDST from Orig

Logoff LogoffBreak Break

1

2

2

1

1

1

1

1

2

1

1

1

Figure 68. Session ending scenarios

628 z/OS V1R12.0 Comm Svr: IP Configuration Guide

The user would like to quickly close the original connection to free the LU and the
SNA session. If you specify the CheckClientConn parameter, Telnet checks the
connectivity of all pre-existing connections associated with the client identifier of
the new connection being established. The check is performed by sending a
Timemark to each existing connection. The new connection is delayed early in the
connection negotiation until all existing connections have responded or the
specified wait time has elapsed. When all connections have responded, setup of the
new connection continues. If some connections do not respond, then after the
specified time elapses, Telnet closes any connections that did not receive a
response. As soon as all of the unresponsive connections are closed, setup of the
new connection continues. The new connection is held until cleanup is performed
to ensure that an LU is available and that the previous SNA session is cleaned up
before the new connection continues negotiation. The CheckClientConn parameter
is useful when multiple emulators exist on a single client and the user can tolerate
the session being disconnected.

Rule: If you are using sysplex distributor to distribute connections across Telnet
servers with CheckClientConn, you must use timed client affinity to ensure that
the clients reconnect to the same Telnet server.

Tip: Be careful using the CheckClientConn parameter where proxy servers are
being used and the Client Identifier is IP address rather than Host name or User
ID. Telnet perceives all connections coming from the same IP address as coming
from the same client. Depending on the number of connections, Telnet could send
a large number of Timemarks every time a new emulator connects. A second
parameter is available to limit the number of connections checked for a single
client identifier.

Some end users require that the same LU be assigned when the new connection
takes over the old connection. The takeover function fixes this problem. When
takeover is active for a connection, Telnet LU lookup attempts LU takeover upon
entry to the lookup function, whenever a single LU name can be associated with a
connection. Any number of existing Specific requests from one client identifier can
be associated with new Specific requests. A single existing Generic request from
one client identifier can be associated with a new Generic request. If there are
multiple existing Generic requests, only the first is taken over and the remaining
connections continue to hang.

The TKOSPECLU and TKOSPECLURECON statements activate takeover for the
connection and require that the end user specify the LU name. The statement name
is derived from the function of connection takeover (TKO) for a Specific LU
(SPECLU) connection request. Because the LU name is specified, LU lookup
attempts to take over the original connection to which the LU was assigned. The
Specific LU request allows an end user to move to any client to take over a
connection that is lost and provides some level of security because it requires the
end user to know the LU name.

The TKOGENLU and TKOGENLURECON statements activate takeover for a
connection without the end user specifying an LU name. The statement name is
derived from the function of connection takeover (TKO) for a Generic LU
(GENLU) connection request. During the original connection LU lookup, Telnet
saves the LU name by Client Identifier. If another connection request is received
from the same Client Identifier, Telnet assumes takeover should be attempted using
the original LU name. If multiple connections are made from a single client, all
additional connection setups will be delayed by the time it takes to attempt
takeover of the first connection. When the takeover attempt fails, Telnet resumes

Chapter 11. Accessing remote hosts using Telnet 629

normal Generic LU lookup for that connection. For Generic LU takeover to work,
the Client Identifier must remain the same. The Client Identifier can be the client
user ID derived from the client security certificate. If no user ID is available, the
client hostname is used. If no hostname is available, the client IP address is used.

Rule: If you are using sysplex distributor to distribute connections across Telnet
servers with TKOGENLU or TKOGENLURECON, you must use timed client
affinity to ensure that the clients reconnect to the same Telnet server.

The TKOSPECLU and TKOGENLU statements cause the following events to occur.
When the takeover connection request arrives, Telnet LU lookup discovers the LU
name is in use and suspends the new request. Telnet sends a TIMEMARK request
to the original client, which acts as an “are you there” message. The client is
required to respond to the TIMEMARK. If no response is received by Telnet within
the time specified on the takeover statement, Telnet drops the original session and
connection. The original LU is reserved during the drop process. Once the original
session and connection are dropped, Telnet resumes processing the new request.
This time the LU is not in use, only reserved for takeover purposes, and is
assigned to the new takeover session. The end user is essentially starting over. The
original session has been dropped, allowing the end user to immediately log on to
the same TSO user ID again.

When sysplex distributor is used to distribute connections across Telnet servers
with the TKOSPECLU or TKOSPECLURECON statements, the series of events can
be extended to include the LUNS and possibly the previous owning LUNR. When
the takeover connection request arrives at a LUNR and Telnet LU lookup discovers
that the LU name is shared and is not already allocated to itself, the new request is
suspended, and verification and allocation is requested from the LUNS. If the
LUNS determines that the LU name has been allocated to another LUNR, the
LUNS sends a verification request to the other LUNR. That LUNR sends a
TIMEMARK to its original client. If the client responds, the owning LUNR informs
the LUNS that the LU name is still in use. If the client does not respond, the
owning LUNR drops the original connection and tells the LUNS to deallocate the
LU name. If the LUNS determines that the LU name is not in use, the name is
allocated to the requesting LUNR. Depending on the response from the LUNS, the
new LUNR then either accepts or rejects the takeover request.

The TKOSPECLURECON or TKOGENLURECON statements can be used to
accomplish the same connection drop but avoid the session drop. When the
original connection is dropped, the Telnet LU stays in session with the host
application. The new connection is established and Telnet sends an LUSTAT to the
host application indicating that Presentation Space Integrity was lost (X'082B').
Depending on the application, it will either end the session or resend the previous
screen. By resending the previous screen, the end user is able save the original
session and avoid the SNA session tear-down and restart process. At worst, if the
application drops the session upon receipt of the LUSTAT, the end user is able to
immediately log on again as if TKOSPECLU or TKOGENLU were coded.

In some cases, the original client TCP/IP stack may respond to the Timemark with
a RESET. Telnet interprets this RESET as a client disconnect and assumes the end
user disconnected the session. Telnet then drops the session. To keep the session in
this case, add the KeepOnTmReset option to the TKOSPECLURECON or
TKOGENLURECON statement. A security risk exists when using this parameter.
An end user may actually disconnect just before the Timemark arrives due to an
unauthorized takeover attempt. Telnet will interpret the disconnect as a response to
the Timemark and allow the takeover without loss of the VTAM session.

630 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Part of session initiation includes Telnet issuing a SETLOGON VTAM macro that
contains control vectors. The control vectors include client information, such as IP
address and host name if available. If the connection is capable of being taken
over, a flag is set in the control vector. This information is passed to the
application's logon exit for use by the application. If the connection is taken over, a
second SETLOGON macro is issued. However, the control vector information does
not go beyond the VTAM that processed the SETLOGON. The application's logon
exit does not run again and is not aware of connection changes. Some applications
require the IP address to remain constant. Since the application cannot be notified
of changes, Telnet has the ability to only allow takeover by clients from the same
IP address. Specify SAMEIPADDR on the TKOGENLURECON or
TKOSPECLURECON statements to ensure takeover is done by a client from the
same IP address.

TKOSPECLU, TKOSPECLURECON, TKOGENLU, and TKOGENLURECON can be
coded at all three parameter block levels for different levels of granularity. Code
NOTKO to turn off all takeover function at any of the three levels.

The new connection must have an equal or higher security level to take over the
original connection. The order for connection security is:
1. Basic
2. Secure
3. Secure with CLIENTAUTH SSLCERT
4. Secure with CLIENTAUTH SAFCERT

If the original connection used SSL with CLIENTAUTH SAFCERT, either takeover
method will verify that the new connection is using a client certificate that maps to
the same user ID. Telnet verifies this by translating the new certificate to a user ID
and comparing the new user ID to the user ID on the original connection.

Tip: If you are using TKOSPECLURECON or TKOGENLURECON, you can specify
SAMECONNTYPE to force the same connection type between the taker and the
target connections. CV64 information is not updated when a session takeover
occurs, and if a secure connection takes over a basic connection, the application is
not updated with the new connection level because no new CV64 is sent to the
application. You can also consider using takeover without reconnect (TKOSPECLU
or TKOGENLU).

Guideline: If you map multiple certificates to the same user ID, a client presenting
any of those certificates will be able to take over the connection. If there is a
chance the connection can be taken over by an unauthorized user,
TKOSPECLURECON and TKOGENLURECON should not be used. Neither
statement requires the end user to reverify user authenticity to the host application.

Tip: A time value of zero is permitted. In this case the server will always perform
the takeover whether or not the original connection is still active. The zero value is
intended for testing purposes rather than production use.

Sometimes a takeover attempt will not complete as expected. This might be due to
one of the following factors:
v The profile of the original connection defines how the original connection can be

taken over. Be sure the original connection supports the desired takeover
method.

Chapter 11. Accessing remote hosts using Telnet 631

|
|
|
|
|
|
|

|

v The new connection is not of the same connection type as the original session,
and SAMECONNTYPE was specified on the TKOSPECLURECON or
TKOGENLURECON statement.

v The new connection request must specify the LU name of the connection being
taken over if TKOSPECLU or TKOSPECLURECON is specified.

v TKOSPECLURECON and TKOGENLURECON do not preserve a session if the
takeover is done from a different port. The ACB of the LU is associated with the
original port and must be closed before it can be associated with the new port.
The takeover will function as a TKOSPECLU and TKOGENLU takeover.

v TKOSPECLURECON and TKOGENLURECON do not preserve a session if the
takeover is done for a shared Telnet LU name managed by a LUNS.

v TKOSPECLURECON and TKOGENLURECON might not preserve a session if
the original client connection is ended before the TKOSPECLURECON or
TKOGENLURECON timer expires. If the close reason is TIMEMARK or
INACTIVE, the session will be preserved under the assumption that the
inactivity is due to a lost connection. Any other close reason will cause the
takeover to function as a TKOSPECLU or TKOGENLU takeover. This is done to
protect users who disconnect their client as a means of logging off their session.
These sessions will not be taken over. Instead, the end user will have to issue a
new logon.

Takeover is also affected by where the new client resides and how the old client
responds. There are several event scenarios and results will vary.
v Event 1

New client connects from a different IP address or Port.
Original client responds to TIMEMARK.
Result - Takeover will not occur in this case because the original client is still
responding. With a Specific LU request, the new client will receive an error
indicating the LU is already in use. With a Generic LU request, Telnet assigns
the next available LU to the connection.

v Event 2
New client connects from a different IP address or Port.
Original client does not respond to TIMEMARK.
Result - Connection takeover will occur. If TKOSPECLURECON or
TKOGENLURECON is mapped to the client, session takeover will occur. A
likely scenario in this case is Telnet has lost connectivity to the old connection
due to a failed router and the new connection is using a different route, the
original machine lost power and has not reestablished connectivity, or the
original machine lost power but reestablished connectivity with a different IP
address.

v Event 3
New client connects from a different IP address or Port.
Original client stack responds with RESET.
Result - Connection takeover will occur. However, even if TKOSPECLURECON
or TKOGENLURECON is coded, session takeover will not occur because Telnet
handles the RESET as a client disconnect. A likely scenario in this case is a PC
lost power and then regained power. The takeover request is accepted from
either a different PC or the same PC using a different port. After the new
connection request is accepted, Telnet sends a TIMEMARK to the original client
PC stack. The PC stack does not recognize the IP-port and responds with a
RESET. If KeepOnTmReset is specified and the RESET is received by Telnet after
the Timemark has been sent, Telnet will keep the session.

632 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|

|

|
|

v Event 4
New client connects from the same IP address and Port.
Telnet stack rejects the request.
Original client times out and sends a RESET.
Result - The original session and connection are dropped. Takeover does not
occur. The new client is able to connect on retry because the original connection
and session were cleaned up. A likely scenario in this case is a PC has lost
power and then regained power. The same PC is used to attempt takeover. The
client is assigned the same port as before the power loss and has the same IP
address.

Queueing sessions: Logon manager applications are very popular. Typically they
are set up as a default application which sends a selection screen to the end user.
Once the end user specifies the destination application choice, the logon manager
typically issues a CLSDST macro with OPTCD=PASS to the destination application.
A new session is started with the destination application. The logon manager
session is closed with a special UNBIND sent to Telnet indicating that a new
session BIND is forthcoming. Telnet receives that special UNBIND and then waits
for the next BIND instead of cleaning up as it would when receiving a normal
UNBIND. When the end user logs off the destination application, Telnet either
goes through the initial database lookup process again (which will result in a
session with the logon manager) or drops the connection, depending on whether
LUSESSIONPEND is coded. Logoff of the original application will cause Telnet to
perform normal close function instead of leaving the LU ACB open.

Many logon managers were written to support real terminals, not Telnet, and issue
a SIMLOGON OPTCD=Q immediately after issuing the CLSDST-PASS. When
SIMLOGON Q is coded, the logon request is added to a VTAM queue. The first
application queued is the first application off the VTAM queue. Immediately after
user logoff from the destination application, VTAM (on behalf of the logon
manager) will request a session with the terminal LU (or Telnet LU representing
the client). This works very well for real terminals, but causes timing problems for
Telnet when the logon manager is a default application. In this case, Telnet and
VTAM both end up requesting a session.

The QSESSION option on ALLOWAPPL or RESTRICTAPPL can be used to correct
this timing problem. When coded for the logon manager, Telnet will not do normal
close processing when the UNBIND from the destination application arrives. Telnet
will leave the LU ACB open and wait for the BIND from the logon manager that is
generated because of the Queued SIMLOGON. When the BIND does arrive, Telnet
will verify that the application name is the original logon manager and finish
session setup.

If QSESSION is specified for an application that does not queue a SIMLOGON, or
the SIMLOGON is removed from the queue because the original application was
recycled, Telnet will be waiting for a BIND that is never coming. The connection
will appear to be hung. To safeguard against this hang condition, a timer can be
started when the destination application UNBIND is received. Telnet will wait for
the specified period of time for a BIND from the QSESSION application. If the
timer expires and there is no session, Telnet will clean up the connection as if the
QSESSION parameter had not been specified.

As an example of the QSESSION parameter, assume that APPL1, APPL2, and
APPL3 are each defined in VTAM. APPL1 will issue a SIMLOGON-Q after

Chapter 11. Accessing remote hosts using Telnet 633

CLSDST-PASS. The following Telnet statements allow connections to access the
applications and define which is a QSESSION application.
ALLOWAPPL APPL1 QSESSION,3
ALLOWAPPL APPL*

The client first logs on to APPL1. APPL1 issues a CLSDST-PASS to APPL2 and a
SIMLOGON-Q. Finally, APPL2 issues a CLSDST-PASS to APPL3. When the APPL3
session is ended, VTAM sends an APPL1 BIND to Telnet. If the queued
SIMLOGON had been removed, Telnet would have continued cleanup 3 seconds
after receiving the UNBIND from APPL3. When the APPL1 session is ended, the
ACB is closed and Telnet either goes through the initial database lookup again or
closes the connection, depending on whether LUSESSIONPEND is coded.

As a second example, assume that APPL2 also issues a SIMLOGON-Q after it
issues a CLSDST-PASS to APPL3. As in the previous example, when the APPL3
session is ended, VTAM sends an APPL1 BIND to Telnet. If the queued
SIMLOGON had been removed, Telnet would have continued cleanup 3 seconds
after receiving the UNBIND from APPL3. When the APPL1 session is ended,
VTAM sends an APPL2 BIND to Telnet. The APPL2 SIMLOGON-Q was queued
behind the APPL1 SIMLOGON-Q in VTAM.

Disconnect on session error: The DISCONNECTABLE option on either the
ALLOWAPPL or RESTRICTAPPL statement determines what type of session
termination to send to the host VTAM application when Telnet initiates session
termination. If DISCONNECTABLE is coded, Telnet issues a TERMSESS
UNBIND(0F). Otherwise, Telnet issues a TERMSESS UNCOND. For example, when
DISCONNECTABLE is coded for the TSO application, an unexpected connection
loss results in an UNBIND(0F) being sent to TSO putting it in a reconnectable
state. The DISCONNECTABLE parameter has no effect on a session ended
normally by the end user logging off the session. The QSESSION parameter can be
coded with DISCONNECTABLE on either statement.

Bypass RESTRICTAPPL with CERTAUTH: CERTAUTH is an option on
RESTRICTAPPL used in conjunction with client authenticated secure connections
or Express Logon. In both cases the client certificate is used to derive a user ID. If
the end user chooses an application that is a RESTRICTAPPL, the normal Telnet
response is to request a valid user ID and password before allowing access to the
application. However, if the end user has been authenticated with a client
certificate it may not be necessary to require a user ID/password. With the
CERTAUTH option on RESTRICTAPPL Telnet will use the derived user ID. If the
user ID is valid (listed on the RESTRICTAPPL statement), Telnet will bypass the
end user solicitation and immediately give access to the application. The derived
user ID value depends on the type of connection. If Express Logon is being used,
the user ID is derived from the latest Client Certificate/Applid combination
received from the client. If Express Logon is not being used, the user ID is the
Client Identifier user ID derived from the Client Certificate from the SSL
handshake.

Allow printer sessions with RESTRICTAPPL: The ALLOWPRINTER option
enables printers to establish a session with an application defined as a
RESTRICTAPPL. Telnet verifies all session requests before finishing session setup,
and if the application name is restricted by the RESTRICTAPPL statement, Telnet
requires the user to enter a user ID and password before session initiation begins.
The user of a printer emulator has no way to provide a user ID and password, and
you might want to allow printer sessions without the user ID and password
verification, mimicking the behavior of the ALLOWAPPL statement. The

634 z/OS V1R12.0 Comm Svr: IP Configuration Guide

ALLOWPRINTER option on RESTRICTAPPL gives you the flexibility to keep the
terminal LU sessions restricted while allowing all printer LU sessions access to the
application, without user ID and password. In most cases, printer sessions
originate from the application and not the user, keeping security control in the
application. However, use this option with care if you have coded
PRTDEFAULTAPPL or PRTMAP-DEFAPPL. In this case, it is possible for users to
originate a printer session.

Keeping the ACB open: Some host VTAM applications are set up to inquire
whether a secondary LU is active. If the LU is active, the application initiates a
session. The LUMAP option, KEEPOPEN, causes the LU to be activated when the
LU is assigned to the connection, and to remain active for as long as the LU is
assigned to the client by this mapping statement.

LU assignment is different for TN3270E and TN3270 connections. TN3270E
connections have an LU assigned during connection negotiation. TN3270
connections do not have an LU assigned until the VTAM application name is
known.

When the host VTAM application initiates a session with the secondary LU, the
host must issue an INQUIRE to see if the LU is active with an OPEN ACB. This
INQUIRE will fail for Telnet LUs because Telnet does not open the ACB until a
session request is sent from Telnet to VTAM. When the end user gets the solicitor
(or USSMSG10) panel, Telnet has not opened the ACB of the LU assigned to a
TN3270E connection. TN3270 and LineMode connections do not have LUs assigned
yet. If the KEEPOPEN parameter is coded on the LUMAP statement used by Telnet
to assign an LU during Early Lookup for a terminal TN3270E connection, Telnet
will open the ACB before sending the solicitor (or USSMSG10) panel. At that time
an end user can either log on to an application as usual or wait for a host
application to INQUIRE about the LU and initiate a session. TN3270 connections
will not have an LU assigned until an application name is known. When the name
is known, an LU is assigned to the connection, the ACB of the LU is opened, and a
session request is issued. If the KEEPOPEN parameter is coded on the LUMAP
statement used by Telnet to assign the LU, the LU stays assigned to the connection
with the ACB open until the connection is dropped. If profile statements define
LUs uniquely to different applications, a second logon to a different application
might fail. When KEEPOPEN is mapped to a connection, the MSG07 and
LUSESSIONPEND functions are in effect whether or not they were explicitly
coded. When a session is ended, the connection remains and the ACB remains
open. Only a client disconnect, a Telnet error, or the KEEPINACTIVE/INACTIVE
timers will cause a KEEPOPEN connection to be dropped. The KEEPINACTIVE
timer is used whenever the Telnet LU is not in session with a VTAM application.
Otherwise, the INACTIVE timer is used. See “Connection persistence” on page 592
for information about ending idle KEEPOPEN connections.

Express Logon Feature: The Express Logon Feature (ELF) allows an end user to
connect to an MVS host VTAM application without explicitly entering a user ID or
password. Telnet uses the client certificate to resolve the user ID and RACF
generates a temporary password, a PassTicket. ELF requires a secure connection
with level 2 client authentication, a client that supports ELF, and RACF PassTicket
setup.

The ELF function is activated by specifying the EXPRESSLOGON parameter. The
function can be inactivated by specifying NOEXPRESSLOGON. Either parameter

Chapter 11. Accessing remote hosts using Telnet 635

|
|
|

can be coded in TELNETGLOBALS, TELNETPARMS or PARMSGROUP. For a
detailed discussion of ELF, see Appendix C, “Express Logon Feature,” on page
1489.

Device types and logmode considerations
The VTAM logmode defines many characteristics of the session established
between the Telnet LU representing the client and the host VTAM application. For
example, the logmode defines response types, presentation style, and the type of
LU Telnet is emulating. LU0 (non-SNA) and LU2 (SNA) represent terminal LU
types. LU1 (SCS) and LU3 (3270 Data) represent printer LU types.

Telnet matches a VTAM logmode to each client as it connects based on the client
device type, unless the end user specifies a logmode on the USSMSG10 screen or
logmode is configured in the USS table mapped to the connection. See z/OS
Communications Server: IP Configuration Reference for default device type and
logmode table information. The default terminal logmodes are non-SNA for
TN3270 connections and SNA for TN3270E connections. At session request time,
Telnet indicates to VTAM the desired logmode based on device type. The host
VTAM application usually honors the request and binds the session using the
requested logmode. However, depending on VTAM statements, the application can
override the requested logmode and bind the session using different characteristics
than Telnet requested. For this reason, some screen sizes might not work correctly
even though the logmode defined in Telnet is correct. If the KEEPOPEN function is
used to allow session initiation by the host application, the desired logmode must
be coded on the DLOGMOD parameter as part of the VTAM application definition
statement that defines the Telnet LU. Otherwise, the application will choose its
own logmode.

Telnet processes the ATTN KEY request differently for non-SNA and SNA sessions.
For non-SNA sessions (BIND FM value 02), Telnet converts the ATTN KEY request
to a '6C'x data byte and sends it to the application. For SNA sessions (BIND FM
value 03), Telnet converts the ATTN KEY request into a SNA signal and sends it to
the application as expedited data. Some clients send both an ATTN KEY function
code and a '6C'x data byte to ensure the ATTN is seen by the application. Telnet
converts the ATTN KEY function into either a '6C'x data byte or a SNA signal and
also forwards the '6C'x data. Some applications give unexpected results or Telnet
might appear to not support ATTN when two ATTNs are received. The
SINGLEATTN parameter causes Telnet to drop the second ATTN if it immediately
follows an ATTN. The SINGLEATTN and NOSINGLEATTN parameters can be
coded at all three parameter block levels for different levels of granularity.

To change either the TN3270 or the TN3270E logmode for a device type, use the
TELNETDEVICE parameter. Whenever Telnet initiates the session request, Telnet
will request that the logmode specified on the TELNETDEVICE statement be used
for the session. The application (the primary LU) does have the ability to override
the requested logmode and use a completely different logmode. The
TELNETDEVICE parameter can be coded in all three parameter block levels for
different levels of granularity. Coding TELNETDEVICE in a PARMSGROUP that is
mapped on the LUMAP-DEFAPPL-PMAP statement enables the logmode to be LU
and application specific.

If the application initiates the session, the TELNETDEVICE logmode has no affect
on the session. For example, printer sessions are initiated by the application unless
a printer default application is specified. The LUMAP-KEEPOPEN parameter can
be used to open a terminal ACB and wait for the primary application to initiate the
session.

636 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Transform Linemode connections can have a unique logmode by coding
TELNETDEVICE with a device type of TRANSFORM. Any logmode used must not
support extended graphics.

The special case logmode NONE can be specified indicating that Telnet should not
send any logmode request when initiating the session.

In the examples that follow, the first line causes only the TN3270 logmode to
change from the default to SNX32705. The second line causes both the TN3270 and
TN3270E logmodes to change from their defaults to SNX32705 and SNX32702. The
third line causes only the TN3270E logmode to change from the default to
SNX32702.
TELNETDEVICE 3278-5-E SNX32705
TELNETDEVICE 3278-5-E SNX32705,SNX32702
TELNETDEVICE 3278-5-E ,SNX32702

Using the Telnet Solicitor or USS logon panel
This topic describes the Telnet Solicitor panel and Telnet Unformatted System
Services (USS) support. All information needed to establish a session can be
entered on the Telnet Solicitor panel. However, Telnet is often used as the primary
method of connecting to the SNA mainframe environment. SNA end users are
accustomed to entering abbreviated logon commands, specifying their own
logmode, and entering user data from SNA terminals. The USS table itself can be
used to customize information such as logmode before it is sent to VTAM. The
logmode specified by the user or the USS table overrides the logmode specified by
the TELNETDEVICE statement. For ease of migration, Telnet simulates SNA USS
processing very closely. This simulation extends to being able to use the same
assembled USS tables that are used by VTAM. VTAM-only character substitutions
are ignored by Telnet and Telnet-only character substitutions are ignored by
VTAM. Blanks are used in their place. To further extend the simulation of SNA
terminals, Telnet also supports all of the INTERPRET table function.

Using the Telnet Solicitor logon panel: Telnet sends a Solicitor panel to the end
user if one of the following is true:
v No DEFAULTAPPL, LINEMODEAPPL, USSTCP, or LUMAP-DEFAPPL

mappings match the client's Client Identifier.
v The requested application is a RESTRICTAPPL.

Below is an example of the Telnet Solicitor panel:
Enter Your Userid:
Password: New Password:
Application:

Initial cursor placement can be specified. Where initial placement should be
depends on client macros used and end user preferences. The OLDSOLICITOR
parameter is used to implement this choice. The default cursor position is on the
'Application:' field. If OLDSOLICITOR is coded, the cursor is positioned on the
'Enter Your Userid:' field. The OLDSOLICITOR and NOOLDSOLICITOR
parameters can be coded at all three parameter block levels for different levels of
granularity.

In addition to satisfying RESTRICTAPPL, there are other times when an end user
might want to use the user ID/Password fields. For example, the solicitor panel
may also be used to change a password by entering the user ID, old password,
and new password. The application field does not need to be filled in. If
insufficient information was provided by the client (for example, a user ID but no

Chapter 11. Accessing remote hosts using Telnet 637

password), then the Telnet Solicitor panel is returned with a message prompting
for the required field. A message is also returned if the security program
encounters an error when attempting to change the password. Example messages
include:
v Password required
v Password is not authorized

Using the Telnet USS and INTERPRET support: The Telnet USS function
provides the end user with a USSMSG10 logon panel similar to the logon panel
used by native SNA terminals. The Telnet USS function supports sending
USSMSGs to the client, receiving and parsing USSCMDs from the client, and using
a translation table defined in the USS table.

Telnet supports both 3270-format and SNA character stream (SCS)-format USS
tables. The SCS USS table name is optional on the USSTCP mapping statement. If
an SCS name is provided, the SCS USS table is used for all TN3270E connections.

The CLEAR key is handled differently by the client depending on whether a
3270-format or SCS-format USS table is used. The CLEAR key has a special
function for 3270-format USSMSGs. Pressing the CLEAR key sends the CLEAR key
data stream to Telnet. If REFRESHMSG10 is specified or used by default, pressing
the CLEAR key refreshes the screen with USSMSG10 for any USSMSG other than
USSMSG10. If you press the CLEAR key while at USSMSG10, the screen is cleared
and the cursor is placed near the upper left corner (row 1, column 2). If you press
the CLEAR key a second time, the screen refreshes with USSMSG10. If
NOREFRESHMSG10 is specified, pressing the CLEAR key always clears the screen
of any USSMSG and places the cursor in the upper left corner (row 1, column 1).
For SCS-format USSMSGs, the CLEAR key does not provide the same special
function. For SCS, the client processes the CLEAR key by clearing the screen and
placing the cursor at the upper left corner (row 1, column 1) with no data sent to
Telnet.

USS data traffic is also handled differently depending on whether a 3270-format or
SCS-format USS table is used. If a 3270-format USS table is used with a TN3270E
connection that has negotiated BIND-IMAGE, a Telnet-generated Bind/Unbind
encapsulates the USS traffic. If the connection is TN3270, BIND-IMAGE is not
negotiated, or the SCS-format USS table is used, Telnet does not encapsulate the
USS traffic in a Bind/Unbind. If a 3270-format USS table is used, the Telnet data
type for all traffic is 3270-DATA. If an SCS-format USS table is used, the Telnet
data type for all traffic is SSCP-LU-DATA. Regardless of USS table format, if the
SYSREQ function is supported on a TN3270E connection and SYSREQ is received
by Telnet, Telnet will accept a LOGOFF command in SSCP-LU-DATA format. If the
client sends any command other than LOGOFF, COMMAND UNRECOGNIZED is returned
in SSCP-LU-DATA format. If the client sends a second SYSREQ, Telnet reverts back
to whatever the session state was prior to receiving the first SYSREQ.

USSCMD parsing also includes checking for INTERPRET table entries that might
provide more function than USS tables alone can provide. Sample USS tables are in
TCP/IP data sets SEZAINST(EZBTPUST) and SEZAINST(EZBTPSCS). A sample
INTERPRET table is in TCP/IP data set SEZAINST(EZBTPINT). The 3270 format
USS sample has been assembled, linked, and loaded into the product data set. The
tables can be used by coding the USSTCP and INTERPTCP mapping statements in
BEGINVTAM. For example, the statements below will map the sample tables to the
client at IP address 1.1.1.1. See “Mapping Objects to Client Identifiers” on page 595
for mapping details.

638 z/OS V1R12.0 Comm Svr: IP Configuration Guide

USSTCP EZBTPUST,EZBTPSCS 1.1.1.1
INTERPTCP EZBTPINT 1.1.1.1

A new table can be created at any time and link-edited. Customized USS and
INTERPRET tables can be created to change messages, commands, and translation
tables. For example, messages can be changed to have non-English text or to have
different syntax. Commands can be changed to accept different syntax or to have
different default values. A VARY TCPIP,tnproc,OBEYFILE command will cause
Telnet to load the new table with the new profile being processed. Any new
connection using the new profile will be assigned the new table. Telnet also
supports dynamic updating of same-name USS or INTERPRET tables. The VARY
TCPIP,tnproc,OBEYFILE command adds the new version of the table to the new
profile. New connections use the new copy associated with the new profile while
old connections continue to use the old copy associated with the old profile.

USS table customization: Customized USS tables are used by both VTAM and
Telnet, with any product-specific character substitutions converted to blanks. For
example, @@SSCPNM is blank for Telnet and @@PRT is blank for VTAM. Telnet
USS processing also supports system symbolic substitution. VTAM does no
substitution for system symbolics. The tables must reside in a data set that is in the
system's linklist or is in the STEPLIB statement of the TCP/IP startup procedure.
Any changes to a Telnet USS table should be made with supplementary
user-defined USS tables. The IBM-supplied USS table should not be changed as it
provides a good example of coding most commands and messages. Telnet loads
the first table found with the name EZBTPUST and defines it as the default USS
table. If this table is not found, there is no default USS table. Whether or not a
default USS table should be included depends on the desired message output.
When writing a USS Message, Telnet searches the USS table mapped to the client
first. If the message does not exist in the mapped table, Telnet searches the default
table. If the message does not exist in the default table, Telnet writes USSMSG14. If
no default table exists, Telnet generates a USSMSG14. For 3270 format USSMSGs,
the end user can get back to the USSMSG10 from any message by pressing the
CLEAR key. The default table does not affect the USS commands. The command
entered must be in the mapped table or it is not recognized. The sample SCS USS
table found in SEZAINST(EZBTPSCS) is not assembled and linked, and it is not
loaded into Telnet as a default SCS USS table. The table must be assembled, linked,
loaded, and mapped in the Telnet profile to be used.

Creating a USS table: The following macro instructions are used to create the USS
table. Telnet USS function supports almost all VTAM session-level USS message
and command definitions. See z/OS Communications Server: IP Configuration
Reference for macro details.
v USSTAB indicates the beginning of the USS table.
v USSCMD defines commands accepted by Telnet.
v USSPARM defines each operand or positional parameter that can be specified on

the USSCMD macro instruction. It also defines default values for the operand or
positional parameter. Multiple USSPARM macro instructions can be associated
with a USSCMD macro instruction. For each operand or positional parameter
code a USSPARM macro instruction.

v USSMSG defines messages sent from Telnet.
v USSEND indicates the end of the USS table.

Following are some of the more common rules to consider when coding a new
USS table. Also, see the samples found in SEZAINST(EZBTPUST) and

Chapter 11. Accessing remote hosts using Telnet 639

SEZAINST(EZBTPSCS) as a guide. “Considerations when using mixed-case
passwords” discusses general table rules.
v If a DEFAULTAPPL application is mapped at the same Client Identifier level as

a USS table, or an LUMAP-DEFAPPL application is mapped, the USS table is
used only to return error messages and optionally after the first session logoff.
FIRSTONLY or LOGAPPL options on DEFAULTAPPL will cause Telnet to send a
USSMSG10 after the first session logoff. DEFAULTAPPL without the FIRSTONLY
or LOGAPPL options will cause Telnet to request a session with the default
application after every session logoff.

v Both the 3270 data stream and the SNA character stream (SCS) formats are
supported. For more information, see 3270 Data Stream Programmer's Reference
and the table samples.

v If a user-defined table is coded as part of another module, code an assembler
EXTRN definition statement for the table name in that module so the table will
be known externally and can be accessed by other modules.

Below are message related rules.
v 3270 format USSMSGs must contain the 3270 data stream write control

characters (WCCs).
v All character substitutions (@@'s) substitute the same number of characters. Any

character substitution that is VTAM-specific will be translated to blanks. If the
substituted value is smaller, the field is padded to the right with blanks. The
parameter LUNAME or SCAN must be coded on the USSMSG macro instruction
for Telnet to perform character substitutions. For a complete list of character
substitutions, see z/OS Communications Server: IP Configuration Reference for Telnet
and z/OS Communications Server: SNA Resource Definition Reference for VTAM.
Telnet supports multiple USSPARMs with the DATA keyword. This method can
be used to pass multiple data parameters to the host application. For example,
two DATA USSPARMs allow the end user to type 'TSO USER1 PROC001' and
have both the user ID and the Procname passed to TSO as data. Telnet also
supports the system symbolics substitution, padding to the right when the
substituted value is smaller than the symbolic. VTAM USS processing does not
support system symbolic substitution.

Below are command related rules.
v LOGON command format

PL1 - logon applid(tso) logmode(snx32702) data(user1)
BAL - logon applid=tso,logmode=snx32702,data=user1

v Any application defined in a USSCMD macro instruction must also be specified
on either an ALLOWAPPL or a RESTRICTAPPL statement in the Telnet profile.

v If the USS Command rules in z/OS Communications Server: IP Configuration
Reference cannot be followed, use an interpret table to convert the
character-coded command into a formatted SNA request.

Considerations when using mixed-case passwords: Mixed-case passwords can be used
by applications if an SAF-compliant security product (such as RACF) has enabled
this support. In some cases, the USS LOGON DATA parameter is used to send the
password to the application. If a terminal user enters a mixed-case password on
the USS LOGON command and it is translated to uppercase by the translation
table, the logon will fail if the target application expects the password in mixed
case.

The USS LOGON command is displayed on the terminal as it is typed, so the
password is displayed unless the 3270 format is used and the password is entered

640 z/OS V1R12.0 Comm Svr: IP Configuration Guide

into a field with a non-display attribute. For additional security, inform the
terminal user to stop entering the password as part of the USS LOGON. Instead,
the application should prompt the terminal user for the password in a
non-displayed field. If mixed-case passwords are used and the terminal user
continues to enter the password as part of the USS LOGON command, the logon
will fail when using TRANSLATE=YES (the default) on the USSPARM, because the
password has been translated to uppercase.

If you want to continue allowing the terminal user to enter the password on the
LOGON command, use one of the following methods to support mixed-case
passwords:
v If the current USS translate table is used to set all characters to uppercase, the

TRANSLATE=NO operand can be added to the USSPARM macros for the
corresponding USSCMD, to prevent the specified DATA USSPARM containing
the password from being translated to uppercase. For details, see z/OS
Communications Server: IP Configuration Reference.

v Do not change the USS command and inform the terminal user to enter the
DATA portion of the USS LOGON in single quotes. USS will not translate data
within single quotes, and the quotes are removed before the data is passed to
the application.

v If the terminal user is specifying only APPLID and DATA on the USS LOGON
command, you can use an interpret table. The Telnet Interpret function passes all
entered data without translation to the application. Specify REMOVE=Y on the
LOGCHAR macro to remove the first non blank string from the entered data.
Because the terminal user could enter the APPLID in lowercase, you should set
up an interpret table that searches for both an uppercase and a lowercase
APPLID.

With each of these methods, if the user ID is entered with the password, you must
first verify whether the application supports translating the user ID to uppercase.
A simple test is to enter the DATA portion of the USS LOGON in single quotes
with the user ID specified in lowercase. USS will not translate data within single
quotes and the quotes are removed before the data is passed to the application. If
the logon fails, the application does not support translating the user ID to
uppercase and the terminal user must enter the user ID in uppercase and the
password in mixed case for the methods suggested.

INTERPRET table customization: The standard Telnet USS logon support should
meet the needs of most installations. However, Telnet does support INTERPRET
table function if special circumstances require accepting a sequence of characters
outside the normal USS command format. For example, the end user might want
to enter logon data that includes blanks. The INTERPRET table defines all entered
data, including blanks, as a USSPARM DATA entry. The PL1 USSCMD format
treats each blank as a parameter delimiter and cannot properly process a variable
number of parameters. The INTERPRET table character sequences are scanned
whenever the client is mapped to both a USS table and an INTERPRET table. Both
must be mapped because the INTERPRET function is a subset of the USS function.
INTERPRET is not a stand-alone function. The sample INTERPRET table found in
SEZAINST(EZBTPINT) is not assembled and linked, and it is not loaded into
Telnet as a default INTERPRET table. The table must be assembled, linked, loaded,
and mapped in the Telnet profile to be used.

Chapter 11. Accessing remote hosts using Telnet 641

Creating an INTERPRET table: Telnet INTERPRET function supports all functions
provided by the VTAM INTERPRET definitions. See z/OS Communications Server: IP
Configuration Reference for macro details. The following macro instructions are used
to create an INTERPRET table:
v INTAB indicates the beginning of the INTERPRET table.
v LOGCHAR defines a single logon message and name of an application program.
v ENDINTAB indicates the end of the INTERPRET table.

Below are some of the more common rules to consider when coding a new
INTERPRET table. Also, see the sample found in SEZAINST(EZBTPINT) as a
guide.
v The LOGCHAR APPLID= supports APPLICID, ROUTINE and USERVAR.
v Code the most restrictive, or longest, LOGCHAR SEQNCE values first.

Otherwise, unexpected matches can occur. The table is scanned from top to
bottom until a match is found whether or not it is the most exact match. For
example, assume sequence 'LOGA' is assigned APPL1 and any other 'LOG'
sequence is assigned APPL2. If sequence 'LOG' is before 'LOGA', entry 'LOGA'
will never be found even when the end user enters 'LOGA' because entry 'LOG'
will be the first match. All sessions will go to APPL2. The problem is corrected
by putting 'LOGA' before 'LOG' in the table.

Assemble, link, and load a table: Use the sample JCL in SEZAINST(EZBUSJCL). In
the sample, the USS table is in USER1.TABLES(USSTEST). It must be assembled
and link-edited into the system's linklist or into a library concatenated as a
STEPLIB in the TCP/IP startup procedure. In the sample, the table is link-edited
into USER1.LINKLIB(USSTEST). The same procedure can be used for the
INTERPRET table. Simply change the name of the input file source and the
link-edit target member. The VTAM USS and INTERPRET macros used for the
assemble can be found in hlq.SISTMAC1.

SMF
SMF records are written when an end user establishes a session (SMF LOGN or
Telnet SNA Session Initiation record) and when the session is ended (SMF LOGF
or Telnet SNA Session Termination record). Optional SMF recording is controlled
by using the SMFINIT and SMFTERM statements.

Two different record formats are available: SMF type 118 and 119. The type 119
records were first introduced in z/OS V1R2 Communications Server, and are
controlled by use of the TYPE119/NOTYPE119 operands on the SMFINIT and
SMFTERM statements. The subtypes cannot be changed for type 119 records and
are set to the STD values. The use of the STD operand or the specification of a
nonstandard subtype number on the SMFINIT and SMFTERM parameters control
the usage of the older type 118 record processing. Data recorded includes the
application name, Telnet LU name, client and host IP address and port, time of
logon or logoff, and data count in and out. Combined with the SMF utility exit
routine, SMF data can be used to track Telnet usage by a number of variables. If
statements for both format types are coded then both record types are written.
That capability should be used sparingly due to the additional processing costs
involved in generating both types records. For more information about the layouts
for type 118 and type 119 SMF records, see z/OS Communications Server: IP
Programmer's Guide and Reference.

Connection monitoring mapping statement
Telnet collects monitoring data for any client connection that is mapped to a
MONITORGROUP Object. The collected data can be retrieved several ways:

642 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

v Display the data for a single connection using the D
TCPIP,tnproc,TELNET,CONN,CONN=connid command.

v A network management agent can request the data from the Telnet SNMP
subagent, after the subagent is started by specifying the TNSACONFIG
statement. TCPIPJOBNAME must be specified for the subagent to connect with
the agent. For information about the TNSACONFIG statement and the
parameters needed to start the subagent, see z/OS Communications Server: IP
Configuration Reference. For details about configuring the SNMP agent, see
Chapter 25, “Simple Network Management Protocol,” on page 1325.

v The Network Management Interface (NMI) Application Programming Interface
(API), EZBNMIFR, can be used instead of SNMP to retrieve the data. In this
case, the TNSACONFIG statement is not needed. For details about configuring
EZBNMIFR and the parameters needed to issue the call, see z/OS
Communications Server: IP Programmer's Guide and Reference.

v The Telnet SMF119 session termination record contains two optional sections that
can be used to retrieve life-of-session performance data. Life-of-session data is a
subset of life-of-connection data. Sliding-window data is not available because
data is reported only at the end of the session and not at periodic intervals. One
optional section contains response time statistics (excluding sliding-window) and
a second optional section contains response time counts by time bucket. For
details on the Telnet server SNA session termination record, see z/OS
Communications Server: IP Programmer's Guide and Reference.

Telnet is capable of collecting two types of response time data at the connection
level.
v Response time statistics

– Life-of-connection response time averages
– Sliding-window response time averages
– Sum of squares for variance and standard deviation calculations

v Response time counts by time bucket

The MONITORGROUP Object statement in BEGINVTAM is used to set the criteria
for monitoring. Options allow the inclusion or exclusion of averages, counts by
time bucket, and whether or not the IP network should be included in
measurements. When a MONITORGROUP is mapped to Client Identifiers with the
MONITORMAP mapping statement, the requested data will be collected for those
connections.

Up to 255 MonitorGroups can be active at one time for all ports per Telnet
instance. Once 255 MonitorGroups are active, no additional groups can be created
until some groups are no longer in use by Telnet. A MonitorGroup is considered
no longer in use when the group is not defined in a current profile and no
connections are using the non-current profile where the MonitorGroup was
defined. After being notified that no entries are available, it is up to the operator to
manage the removal of some entries by ending connections to free a profile. The
operator does not get a notification when an entry becomes available.

Each MonitorGroup entry in the table is assigned an index number. The index
number coincides with one of the 255 slots available in the MonitorGroup table.
Each Telnet connection entry saves the index number of the MonitorGroup
mapped to the connection. When the management application queries a connection
for data, it can also query the MonitorGroup table to get the group name and
configuration values based on the index found in the connection entry. With the
data from the connection and the MonitorGroup criteria from the MonitorGroup

Chapter 11. Accessing remote hosts using Telnet 643

|
|

table, a management application can generate several summary reports. If a
management application is not being used to collect the connection monitoring
data, the D TCPIP,tnproc,TELNET,CONN,CONN=connid command can be used to
view all the collected data and MonitorGroup information for a single connection.

Collecting response time data: The typical Telnet data flow can be represented as
shown in Figure 69.

Telnet saves timestamp A when it sends a client data request to VTAM, saves
timestamp B when the target SNA host application returns data, and saves
timestamp C when the client responds to the definite response request that flowed
with the reply.

There are many clients, mostly those not supporting TN3270E negotiation, that do
not support the Definite Response (DR) function. In this case, Telnet approximates
IP response time by appending a TIMEMARK request immediately after the data.
A Telnet TIMEMARK acts as a synchronization mark or simply an “are you there”
function for almost all clients. Almost all clients respond to the TIMEMARK
request. Timestamps B and C are set based on when the TIMEMARK request is
sent and a TIMEMARK response is received. In rare cases, a client does not
respond to a TIMEMARK request. If Telnet does not receive a response to the
TIMEMARK, a flag in the connection data indicates that IP transit time
measurements were not attempted.

Some installations might not want to incur the additional network traffic of DRs or
TIMEMARKs to measure IP transit time, and are only interested in the SNA
application side transit time. In this case, turn off IP response measurements by
specifying NOINCLUDEIP within MonitorGroup. Total response times will be the
SNA response time only.

Specify INCLUDEIP within the MonitorGroup to include IP response
measurements when monitoring a connection. It does not matter whether the SNA
host application requested a definite response on its reply. Many applications save
processing time and IP transactions by not requesting Definite Response. If IP
response time monitoring is desired and the client supports DR, specify
DYNAMICDR within MonitorGroup to add the definite response request to ensure
a response is received from the client. In this case, Telnet does not forward the
response to the target SNA host application, as indicated by the dotted line in
Figure 69. Specify NODYNAMICDR to turn off dynamic DR creation. If
INCLUDEIP and NODYNAMICDR are specified and data from the application
does not include a DR request, the TIMEMARK method is used.

IP Network SNA NetworkTN3270 Server
Timestamps

request A

B reply (DR)

+/- RSP C

Client

Target
SNA Host

Figure 69. Typical Telnet data flow

644 z/OS V1R12.0 Comm Svr: IP Configuration Guide

If chained data is sent from the host application, Telnet collects the entire chain
before sending the complete data stream to the client. Telnet will save timestamp B
when the entire data chain is sent.

It should be pointed out that the measured response time might not be exactly
what the end user sees. The first timestamp, A, is recorded when the data passes
from Telnet to VTAM on its way to the SNA VTAM application. For various SNA
reasons, Telnet might have received the data much earlier and had to queue it
before it could be sent to VTAM. The most common reason for this is the
application might not have given Telnet direction (the ability to send data). SNA
applications often use a Change Direction Indicator (CDI) to manage which side
can send data. The current sender can send data until it sends a CDI, which gives
the other side permission to send. There might be scenarios where a client data
request comes in, Telnet does not have direction, and must queue the data until the
application sends a CDI. The measured response time will not include this queue
time.

Average response time data collection: Specify AVERAGE within MonitorGroup
to collect average response time data. Specify NOAVERAGE to turn off average
response time data collection. If average response time data is requested, the
following data is available on a per connection basis:
v Life-of-connection response time averages
v Sliding-window response time averages
v Variance and standard deviation of response time averages

Life-of-connection response time averages: These averages are based on data collected
since the beginning of the connection. Data collected for this average includes:
v Total transaction count.
v Sum of the round-trip response times. Round-trip response time is the time

difference between timestamp C and timestamp A.
v Sum of the IP response times. IP response time is the time difference between

timestamp C and timestamp B. Sum of the SNA response times can be derived
by subtracting the IP sum from the round-trip sum.

With this data collected, the average round-trip time, average IP time, and average
SNA time can be calculated by dividing each sum by the transaction count. The
data accumulation values might wrap. It is up to the management application to
detect this. The Telnet connection display will indicate the wrapped condition
instead of displaying averages.

Sliding-window response time averages: These averages give higher significance to
more recent data without ever completely losing the impact of earlier data. The
sliding-window methodology calculates an average over an interval of time instead
of over the life of the connection. An interval is made up of a specified number of
equal time periods. Use AVGSAMPMULTIPLIER to specify how many periods are
in the interval. Use AVGSAMPPERIOD to specify the time length of a period. An
interval should be long enough to have several data flows measured. Data
collected during the period includes:
v Transaction count in the period (pTX).
v Sum of round-trip response times in the period (pRT).
v Sum of IP response times in the period (pIP). Sum of SNA response times can be

derived.

Chapter 11. Accessing remote hosts using Telnet 645

In addition, there are three sliding-window variables that represent the interval
and are used to calculate the sliding-window average. These variables are updated
at the end of each period. They are:
v Sliding-window transaction count (swTX).
v Sliding-window sum of round-trip response times (swRT).
v Sliding-window sum of IP response times (swIP). Sliding-window sum of SNA

response times can be derived.

When the interval has moved one period, subtracting the oldest period of collected
data from the total and adding the newest period is one method for determining
the new interval averages. However, this simple method loses all impact of earlier
periods on the averages. Instead of dropping the collected data from the oldest
period in the interval and completely losing its effect on the average, an average
period of data is subtracted from the sliding-window totals. With this method,
even the oldest period data continues to have a declining effect on the latest
average calculations. And, by using an average period amount, the unique data for
each period does not need to be retained. Only a total for the entire interval needs
to be saved. Average period data is determined based on the fact that a period is a
fraction of the total interval time. A period of data is 1/n of the current
sliding-window totals, where n is the number of periods in the interval. The
sliding-window average is derived from the new sliding-window values. At the
end of each period the following calculations occur:
v Calculate the average period values:

avTX = swTX * (1/n)
avRT = swRT * (1/n)
avIP = swIP * (1/n)

v Remove an average period amount from the sliding-window totals and add the
new period values:
swTX = swTX - avTX + pTX
swRT = swRT - avRT + pRT
swIP = swIP - avIP + pRT

v Calculate and report new sliding-window averages:
sliding-window round-trip average = swRT/swTX
sliding-window IP average = swIP/swTX
sliding-window SNA average = (swRT-swIP)/swTX

After the calculations are done, the period variables are reset and the next period
of data collection begins. At the end of that period, the sliding-window variables
are updated again with new information. The cycle continues for the life of the
connection.

AVGSAMPMULTIPLIER 1 is a special case where 100% of the existing interval
data is subtracted before the new period data is added. The result is an average for
just that interval and the effect of older data is completely ignored.

AVGSAMPMULTIPLIER 0 is a special case that tells Telnet to include all data
equally. The result is a life-of-connection average that is already available. A very
large multiplier will have a similar effect.

A sliding-window round-trip average example follows. Assume an interval is made
up of 5 periods. Each period is 2 minutes. Specify AVGSAMPMULTIPLIER 5 and
AVGSAMPPERIOD 120. For illustrative purposes in this example, the average
response time starts low and then increases to a steady state value. The data
collected for each period is the sum of all response times in milliseconds (ms) and
the number of transactions (tx).

646 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Table 30. Sliding-window round-trip average example

Period
Sum of response
times (ms)

Number of
transactions (tx)

Average response
time (ms/tx)

1 1000 10 100

2 1650 15 110

3 2800 20 140

4 3500 25 140

5 4200 30 140

6 4900 35 140

7 5600 40 140

The sliding-window average response time for period 1:
1000ms/10tx = 1000ms/10tx = 100 ms/tx

The sliding-window average response time for period 2:
(1000-(1000*(1/5))+1650)ms/ (10-(10*(1/5))+15)tx = 2450ms/23tx = 106.5 ms/tx

The sliding-window average response time for period 3:
(2450-(2450*(1/5))+2800)ms/ (23-(23*(1/5))+20)tx = 4760ms/38.4tx = 124.0 ms/tx

The sliding-window average response time for period 4:
7308ms/55.7tx = 131.2 ms/tx

The sliding-window average response time for period 5:
10046.4ms/74.6tx = 134.7 ms/tx

The sliding-window average response time for period 6:
12937.1ms/94.7tx = 136.6 ms/tx

The sliding-window average response time for period 7:
15949.7ms/115.7tx = 137.9 ms/tx

The sliding-window method continues to include the effects of the earlier response
time averages. The greater the number of periods (AVGSAMPMULTIPLIER), the
longer older data will continue to impact new average calculations. Decreasing the
number of periods (AVGSAMPMULTIPLIER) gives less emphasis to older data.
The AVGSAMPMULTIPLIER gives the system administrator control over the
emphasis placed on old data.

Each of the last five periods in the example had average response times of 140
ms/tx. Different multiplier values give the following results after seven periods. It
is clear that the greater the number of periods in the interval, the greater the
impact of the older data.
v 2 period interval - 139.7 ms/tx
v 5 period interval - 137.9 ms/tx
v 10 period interval - 136.6 ms/tx

Variance and standard deviation of response time averages: It is useful to know the
dispersion of the response time data. The variance is a measure of how spread out

Chapter 11. Accessing remote hosts using Telnet 647

the data is. The square root of the variance is the standard deviation. Assuming the
distribution is a normal distribution, you can have a confidence level of the
following:
v 68% that a response time value will fall within the average, plus or minus 1

standard deviation
v 95% that a response time value will fall within the average, plus or minus 2

standard deviations
v 99% that a response time value will fall within the average, plus or minus 3

standard deviations

The data saved for variance and standard deviation includes the data saved for
life-of-connection averages, and the sum of each response time squared for the
following:
v Complete round-trip.
v IP portion of the transaction.
v SNA portion of the transaction. The sum of squares cannot be derived in this

case and must be separately maintained.

These values might wrap. It is up to the management application to detect this.
The Telnet connection display will indicate the wrapped condition instead of
displaying these values or the standard deviation. The typical formula used for
variance is:
VARIANCE = SUM((Xi-Xm)**2)/(n-1)

However, that would require keeping all the individual response times to calculate
the sum of the squares. The same formula can be expanded and rewritten to not
need individual response times. The formula used by Telnet is:
VARIANCE = [SUM(Xi**2) - (SUM(Xi))**2/n]/(n-1)

The values needed in this formula are saved by Telnet for each connection
requesting average response time monitoring.

Time buckets: Five time buckets, each defined by a maximum response time, are
used. Every transaction has a total response time, and that time fits into one of the
five configurable time buckets. The bucket boundaries are created by specifying the
maximum response time for the first four buckets. The fifth bucket has an
open-ended maximum value. The minimum response time boundary for each
bucket is the maximum of the previous bucket. The first bucket has a minimum
value of 0. A bucket transaction count is incremented by one when a response time
is greater than the minimum and less than or equal to the maximum. Figure 70
depicts the time buckets. For default values, see z/OS Communications Server: IP
Configuration Reference.

Bucket 1 Bucket 2 Bucket 3 Bucket 4 Bucket 5

Zero Bucket 1
Max

Bucket 2
Max

Bucket 3
Max

Bucket 4
Max

Response
Time

Figure 70. Time buckets

648 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Reducing demand for ECSA storage
Telnet server configurations that support a large number of connections can place a
high demand on ECSA storage. To reduce this demand, configure the Telnet server
to enable multiple Telnet LUs to share an ACB.

To configure the Telnet server to enable LUs to share an ACB, specify SHAREACB
in the TELNETGLOBALS statement block. Replace any predefined (static) VTAM
APPL definitions that are being used to represent Telnet LUs with corresponding
model application program definitions; the latter are required when using the
SHAREACB function.

Configuring the z/OS UNIX Telnet server
The z/OS UNIX Telnet server (otelnetd) provides access to z/OS UNIX shell
applications on the host using the Telnet protocol. The z/OS UNIX Telnet server
lets hosts in an IP network log on to the z/OS shell environment directly, without
going through TSO. The z/OS UNIX Telnet server supports AIX and UNIX
full-screen applications such as the vi editor, so that AIX and UNIX users can use
familiar Telnet commands. The z/OS UNIX Telnet server runs in both line mode
and raw mode, but does not support TN3270 or TN3270E, as the TN3270E Telnet
server does.

Installation information
The files used in the z/OS UNIX Telnet server and their locations in the z/OS
UNIX file system are as follows:

/etc/services
The ports for each application are defined here. For example:
otelnet xxxx/tcp

where xxxx is the port that inetd should listen on for otelnet.

/etc/syslog.conf
The configuration parameters for usage of syslogd are defined in this file.
otelnetd writes to syslog facility local1.

/etc/inetd.conf
The configuration parameters for all applications started by inetd are
defined in this file.

/usr/sbin/otelnetd
This is a symbolic link to /usr/lpp/tcpip/sbin/otelnetd.
/usr/lpp/tcpip/sbin/otelnetd is a sticky-bit file. The OTELNETD member
of SEZALOAD contains the executable code for the Telnet server.

/etc/banner
This file contains a login message that is printed to the client's screen after
the client logs in, unless the -h option is specified. Store the banner in this
file.

/etc/otelnetd.banner
This file contains a message that is printed to the client's screen prior to
the login prompt when the user connects to the server, unless the -h option
is specified. Store the banner in this file.

/etc/utmpx
This file is updated by the call to fsumoclp. It contains a list of all the
users who are logged in with their associated tty.

Chapter 11. Accessing remote hosts using Telnet 649

|
|
|
|

|
|
|
|
|

/dev/ptypXXXX and /dev/ttypXXXX
These special device files represent pseudoterminals (ptys); they are used
by the z/OS UNIX Telnet server and other programs.

Note: For information on allocating more of these files for more
connections, see z/OS UNIX System Services Planning.

/usr/share/lib/terminfo
The descriptions of supported terminals are stored here. For more
information, see z/OS UNIX System Services Planning.

/usr/lib/nls/msg/C/tnmsgs.cat
The message catalog used by the z/OS UNIX Telnet server is stored here.

If the message catalog does not exist, the software will use the messages
hard-coded within the software by default. These messages duplicate the
English message catalog that is shipped with the product.

/usr/man/C/cat1/otelnetd.1
This file contains the associated manual (man) pages for the z/OS UNIX
Telnet server. It provides online help for the user.

Environment variables
Table 31 provides a list of environment variables that can be explicitly set by z/OS
UNIX Telnet.

Table 31. Environment variables for z/OS UNIX Telnet

Environment variable Description

_BPX_SHAREAS Controls whether a spawned child process is
started in the same address space as the
login shell.

KRB5_SERVER_KEYTAB Specifies the location of the key table.

LC_ALL Determines the values for all local
categories.

LC_COLLATE Determines the local category for character
collation.

LC_CTYPE Determines the local category for character
handling functions, such as tolower(),
toupper(), and isalpha(). Also determines the
interpretation of sequences of bytes of text
data as characters (for example, single as
opposed to multibyte characters), the
classification of characters (for example,
alpha, digit, graph), and the behavior of
character classes.

LC_MESSAGES Determines the local category for processing
affirmative and negative responses, and the
language and cultural conventions in which
messages should be written.

LC_NUMERIC Determines the local category for numeric
formatting information (for example,
thousands separator and radix character) in
various utilities, as well as the formatted
I/O operations in printf() and scanf() and
the string conversion functions in strtod().

650 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Table 31. Environment variables for z/OS UNIX Telnet (continued)

Environment variable Description

LC_TIME Determines the local category for date and
time formatting information. It affects the
behavior of the time functions in strftime().
Additional semantics of this variable, if any,
are implementation defined.

NLSPATH Contains a sequence of templates that the
catopen() function uses when attempting to
locate message catalogs. Each template
consists of an optional prefix, one or more
conversion specifications, a file name, and
an optional suffix.

TERMINFO Specifies the path name for an unsupported
terminal that has been added to the terminfo
file. Use the TERMINFO variable in
/etc/profile or /etc/.login.

Starting, stopping, and administration of z/OS UNIX Telnet
The z/OS UNIX Telnet server is started by inetd for each incoming Telnet
connection. When the Telnet session is complete, the z/OS UNIX Telnet server will
exit. Each active Telnet session will have a separate instance of the Telnet server
which will communicate with the Telnet client.

The z/OS UNIX inetd daemon does not propagate environment variables other
than PATH and TZ to its child processes, so the NLSPATH and LANG
environment variables cannot be used to point to a different message catalog.

The following standards are supported:
v RFC 854 Telnet Protocol Specification
v RFC 855 Telnet Option Specification
v RFC 856 Telnet Binary Transmission
v RFC 857 Telnet Echo Option
v RFC 858 Telnet Suppress Go Ahead Option
v RFC 859 Telnet Status Option
v RFC 860 Telnet Timing Mark Option
v RFC 861 Telnet Extended Options - List Option
v RFC 885 Telnet End of Record Option
v RFC 1073 Telnet Window Size Option
v RFC 1079 Telnet Terminal Speed Option
v RFC 1091 Telnet Terminal type option
v RFC 1096 Telnet X Display Location Option
v RFC 1123 Requirements for Internet Hosts -- Application and Support
v RFC 1184 Telnet Linemode Option
v RFC 1372 Telnet Remote Flow Control Option
v RFC 1571 Telnet Environment Option Interoperability Issues
v RFC 1572 Telnet Environment Option
v RFC 2941 Telnet Authentication Option
v RFC 2942 Telnet Authentication: Kerberos Version 5
v RFC 2946 Telnet Data Encryption Option
v RFC 2952 Telnet Encryption: DES 64 bit Cipher Feedback
v RFC 2953 Telnet Encryption: DES 64 bit Output Feedback

Chapter 11. Accessing remote hosts using Telnet 651

When a z/OS UNIX Telnet session is started up, otelnetd sends Telnet options to
the client side indicating a willingness to do the following:
v WILL ENCRYPT
v DO ENCRYPT
v DO TERMINAL TYPE
v DO TSPEED
v DO XDISPLOC
v DO NEW-ENVIRON
v DO ENVIRON
v WILL SUPPRESS GO AHEAD
v DO ECHO
v DO LINEMODE
v DO NAWS
v WILL STATUS
v DO LFLOW
v DO TIMING-MARK

The z/OS UNIX Telnet server can enable the following options locally.
v WILL BINARY

This option indicates that the client is willing to send 8 bits of data, rather than
the normal 7 bits of network virtual terminal data.

v WILL ECHO
When the LINEMODE option is enabled, a WILL ECHO or WONT ECHO will
be sent to the client to indicate the current state of terminal echoing. When
terminal echo is not desired, a WILL ECHO is sent to indicate that Telnet will
take care of echoing any data that needs to be echoed to the terminal, and then
nothing is echoed. When terminal echo is desired, a WONT ECHO is sent to
indicate that Telnet will not be doing any terminal echoing, so the client should
do any terminal echoing that is needed.

v WILL LOGOUT
When a DO LOGOUT is received, a WILL LOGOUT is sent in response and the
Telnet session is shut down.

v WILL SGA
This option indicates that it will not be sending IAC GA, the go ahead
command.

v WILL STATUS
Indicates a willingness to send the client, upon request, the current status of all
Telnet options.

v WILL TIMING-MARK
Whenever a DO TIMING-MARK is received, a WILL TIMING-MARK is the
response. It is only used in kludge linemode support.

v WILL ENCRYPT
Indicates a willingness to encrypt the data stream.

The z/OS UNIX Telnet server can enable the following options remotely.
v DO BINARY

Sent to indicate that Telnet is willing to receive an 8-bit data stream.
v DO ECHO

If a WILL ECHO is received, a DONT ECHO will be sent in response.
v DO ENVIRON

652 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Indicates a desire to be able to request environment variable information. (See
RFC 1408.)

v DO LFLOW
Requests that the client handle flow control characters remotely.

v DO LINEMODE
Supports requests that the client do line-by-line processing.

v DO NAWS
Requests that the client inform the server when the window size changes.

v DO NEW-ENVIRON
Indicates a desire to be able to request environment variable information. (See
RFC 1572.)

v DO SGA
Indicates that it does not need to receive IAC GA, the go ahead command.

v DO TERMINAL-TYPE
Indicates a desire to be able to request the name of the type of terminal that is
attached to the client side of the connection.

v DO TERMINAL-SPEED
Indicates a desire to be able to request information about the speed of the serial
line to which the client is attached.

v DO TIMING-MARK
Only supported if the client responded with WONT LINEMODE. If the client
responds with WILL TM, then it is assumed that the client will support kludge
linemode. It is not used for any other purposes.

v DO XDISPLOC
Indicates a desire to be able to request the name of the X Window System
display that is associated with the Telnet client.

v DO AUTHENTICATION
Indicates a willingness to receive authentication information for automatic login.

v DO ENCRYPT
Indicates a willingness to decrypt the data stream.

Chapter 11. Accessing remote hosts using Telnet 653

otelnetd

Note: The user ID associated with the daemon in /etc/inetd.conf requires
superuser authority. See z/OS UNIX System Services Planning for a
description of the types of authority defined for daemons.

The following syntax is used in the /etc/inetd.conf file to define the arguments
used to invoke otelnetd.

Syntax

�� otelnetd
-C

�-D all
options
report
netdata
ptydata
login
authentication
encryption

-h -k -l
�

�
-m -n -t -U -b -c timeout_value

�

�
-T terminfo_value none

-a valid
other
user
off

-X authtype -s
��

Parameters
-C

Prints user messages in uppercase. There are several exceptions. Messages
issued at startup are not affected by the -C option because the -C option is not
processed during the startup. Also, data transmittal messages will not be
uppercase. Data transmittal messages are generated from the -D netdata option
or the -D ptydata option.

-D The following suboptions apply to -D:

options
Prints information about the negotiation of Telnet options. This
information is used for debugging purposes. This suboption allows
telnetd to generate debugging information to the connection, which
allows the user to view telnetd activity.

report Prints the options information and additional information about
processing. This information also includes print information designated
for suboption=options. This can be used for debugging purposes. This
suboption telnetd to generate debugging information to the connection,
which enables the user to view telnetd activity.

netdata
Displays the data stream received by telnetd. This information is used

654 z/OS V1R12.0 Comm Svr: IP Configuration Guide

for debugging purposes. It allows telnetd to generate debugging
information to the connection, which enables the user to view telnetd
activity.

ptydata
Displays the data stream written to the pty. This information is used
for debugging purposes. It allows telnetd to generate debugging
information to the connection, which enables the user to view telnetd
activity.

all Enables options, report, netdata, ptydata, login, authentication and
encryption.

login Records login and logout activity to syslogd facility auth using
message EZYTU36I.

authentication
Turns on authentication debugging code.

encryption
Turns on encryption debugging code.

-h Disables the display of the /etc/banner and /etc/otelnetd.banner files at the
terminal of the client.

-k Disables kludge linemode. The server normally attempts to use kludge
linemode when the -l option was specified, but the client does not support line
mode. Use the -k option when there are remote clients that do not support
kludge linemode, but pass the heuristic for kludge line mode support (for
example, if they respond with WILL TIMING-MARK in response to a DO
TIMING-MARK). This option does not disable kludge line mode when the
client requests it. This is accomplished by the client sending DONT
SUPPRESS-GO-AHEAD and DONT ECHO.

-l Specifies linemode, which tries to force clients to use linemode. If the
LINEMODE option is not supported and the -k option was not specified, it
will attempt to use kludge linemode.

Notes:

1. Many clients decline the server's request to operate in linemode.
2. Linemode is not appropriate for full-screen applications like the z/OS

UNIX vi editor.

-m Enables the creation of a forked or spawned process to coexist in the same
address space. This option can improve performance because the user's login
shell runs in the same address space as otelnetd.

-n Disables TCP keep-alives. Normally, telnetd enables the TCP keep-alive
mechanism to probe connections that have been idle for some time to
determine if the client is still there. In this way, idle connections from machines
that have crashed or can no longer be reached can be cleaned up. The cleanup
of disabled connections is controlled by the presence of the INTERVAL
parameter on the TCPCONFIG statement in the TCPIP profile.

-t Specifies internal tracing. It also activates the REPORT option, as if the user
also specified -D Report.

-U Causes telnetd to drop connections from any IP address that cannot be
mapped back into a symbolic name by the gethostbyaddr or getnameinfo
routines.

Chapter 11. Accessing remote hosts using Telnet 655

-b Forces the server to DO BINARY in the first pass during negotiations with the
client.

-c timeout_value
Specifies the number of seconds to wait before terminating the Telnet session
for inactive connections. The timeout_value is a value between 1 and 86400
seconds.

-T terminfo_value
Sets the TERMINFO environment variable to the specified values at startup.
This option is needed when terminfo definitions are located in nonstandard
directories.

-a This option may be used for specifying what mode should be used for
authentication. There are several valid suboptions for authentication mode:

valid
Only allow connections when the remote user can provide valid
authentication information to identify the remote user. Thus, for otelnetd,
Kerberos authentication will be required. User verification will still occur
through the login and password prompt. However, if the login user ID
matches the TSO user ID that was mapped from the name in the Kerberos
principal using the SAF R_usermap function, then no password will be
requested. This is the most secure authentication mode.

other
Only allow connections that supply some authentication information. This
option is currently not supported by any of the existing authentication
mechanisms, and is thus the same as specifying -a valid.

user
Only allow connections when the remote user can provide valid
authentication information to identify the remote user, and is allowed
access to the specified account without providing a password. Thus, for
otelnetd, Kerberos authentication is required. The NAME received during
AUTHENTICATION option negotiation must match the name in the
Kerberos principal, and the Kerberos principal must map to a valid TSO
user ID on the host using the SAF R_usermap function. No user
verification will occur through the login or password prompt.

none
This is the default state. Authentication information is not required. User
verification will still occur through the login and password prompt.
However, if the login user ID matches the TSO user ID that was mapped
from the name in the Kerberos principal using the SAF R_usermap
function, then no password will be requested.

off
This disables the authentication code. All user verification happens through
the login and password prompt. During option negotiation, otelnetd will
not send DO AUTHENTICATION and, if necessary, will send DONT
AUTHENTICATION.

Note: Authentication is not supported for IPv6 connections. If tcp6 is specified
in inetd.conf, -a should not be used as a start option. If tcp6 and -a are
both specified, the suboption will be overridden and forced to OFF.

-X authtype
This option disables the use of authtype authentication. Currently the only
valid value for authtype is KERBEROS_V5. Thus, if otelnetd sends the

656 z/OS V1R12.0 Comm Svr: IP Configuration Guide

AUTHENTICATION option SEND command, the authentication-type-pair-list
will not contain any KERBEROS_V5 entries and will be empty.

-s Used to set the KRB5_SERVER_KEYTAB environment variable. If this
environment variable is set, security runtime uses a local instance of the
Kerberos security server to decrypt service tickets instead of obtaining the key
from a key table. To use this capability, the otelnetd application must have at
least READ access to the IRR.RUSERMAP resource in the FACILITY class. For
more information, see z/OS Integrated Security Services Network Authentication
Service Administration.

Chapter 11. Accessing remote hosts using Telnet 657

SMF record handling
The SMF records generated are the typical set of records that MVS generates for
start of job (login) and end of job (logoff). Additionally, interval records might be
issued during the life of the user login. These records are SMF type 30 and type 72
and not the type 118 or type 119 in the current z/OS UNIX Telnet server. The
process of issuing these records is external to the specific daemons.

BPX.DAEMON considerations
If the BPX.DAEMON FACILITY class profile is defined, perform the following
additional configuration steps:
1. Provide read access to BPX.DAEMON for the user ID specified in

/etc/inetd.conf for otelnetd.
2. Define SEZALOAD to program control.
3. Define the C run-time library, hlq.SCEERUN to program control.

See z/OS UNIX System Services Planning for more information about the
BPX.DAEMON FACILITY class profile, the security product commands used to
perform the required configuration, and the diagnosis procedure for resolving
related problems.

Kerberos
otelnetd supports Kerberos Version 5 for authentication on IPv4 connections.
Authentication is not supported on IPv6 connections (that is, if tcp6 is specified for
otelnetd in inetd.conf). On z/OS, Kerberos is implemented by Security Server. See
z/OS Integrated Security Services Network Authentication Service Administration for
more information.

The Kerberos principal used by otelnetd will generally be of the form
"host/<hostname>@realm". That is, the first component of the Kerberos principal is
"host"; the second component is the fully qualified lowercase hostname of the
server; and the realm is the Kerberos realm to which the server belongs.

otelnetd will not accept forwarded credentials from the client.

Successful AUTHENTICATION option negotiation is required for successful
ENCRYPT option negotiation. The ENCRYPT option must be negotiated in both
directions.

658 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Chapter 12. Transferring files using FTP

The File Transfer Protocol (FTP) allows a user to copy files from one machine to
another. The protocol allows for data transfer between the client (the end user) and
the server in either direction. In addition to copying files, the client can issue FTP
commands to the server to manipulate the underlying file system of the server (for
example, to create or delete directories, delete files, rename existing files, and so
on.) FTP is the most frequently used TCP/IP application for moving files between
computers.

Copying files from one machine to another is one of the most frequently used
operations. The data transfer between client and server can be in either direction.
The client can send a file to the server machine. It can also request a file from this
server.

To access remote files, the user must identify himself or herself to the server. At
this point the server is responsible for authenticating the client before it allows the
file transfer.

From an FTP user's point of view, the link is connection-oriented. FTP uses TCP as
a transport protocol to provide reliable end-to-end connections. Both hosts must
run TCP/IP to establish file transfer.

The z/OS model for the FTP server includes a daemon process and a server
process. The daemon process starts when you start your cataloged procedure (for
example, START FTPD) and it listens for connection requests on a specific port.
The port is the well-known port 21 unless otherwise specified. For methods of
choosing a different port number, see “Configuring ETC.SERVICES” on page 661
and “Configuring the FTPD cataloged procedure” on page 662. When the daemon
accepts an incoming connection, it creates a new process (server's address space)
for the FTP server, which handles the connection for the rest of the FTP login
session. Each login session has its own server process.

The server process inherits the accepted connection from the daemon process. This
connection is called the control connection. The server receives commands from the
client and sends replies to the client using the control connection. The control
connection port is the same as the daemon's listening port.

The client and server use a different connection for transferring data; this
connection is called the data connection. By default, the data port is one less than
the control connection port. For example, if the control connection port is 21, the
data port is 20. An FTP client can override the default data port by directing the
server to run in passive mode. In passive mode, the server uses an ephemeral port
for the data port. Passive mode is requested by firewall friendly clients and by
clients initiating three-way data transfers.

Notes:

1. This topic discusses RACF configuration required for FTP. References to RACF
apply to any other SAF-compliant security products that contain the required
support. If you are using another security product, read the documentation for
that product for instructions on task performance.

2. If you use the environment variable _BPX_JOBNAME when you start FTPD,
the server's address space is known as the job name specified in the

© Copyright IBM Corp. 2000, 2011 659

_BPX_JOBNAME variable. You might need to have a common naming
convention for your installation's FTP address spaces if your installation uses
syslogd isolation or has other workload management requirements.
If you do not use the _BPX_JOBNAME environment variable, the server's
address space assumes the name of the user. For example, if a user logs into an
FTP server with the user ID TCP0001, the FTP server address space servicing
the request is also known as TCP0001.
If the FTP daemon accepts a connection that is protected by the TLS security
mechanism and you are not using the _BPX_JOBNAME environment variable,
the server's address space name is a name derived from the FTP server job
name. The name is in the form jobnamex, where the jobname value is the job
name, and the x value is a number in the range 1 – 9. If the FTP daemon
accepts a connection that is protected by the TLS security mechanism and you
are using the _BPX_JOBNAME environment variable, the server's address space
name is a name derived from the _BPX_JOBNAME environment variable. The
name is in the form bpxjobnamex, where the bpxjobname value is the value
specified for the _BPX_JOBNAME environment variable, and the x value is a
number in the range 1-9.

Configuring PROFILE.TCPIP for FTP
If you have configured the FTP server to have affinity to a specific stack, or you
have configured the FTP server to be a generic server in a single stack
environment, the FTP server can be started automatically when the TCP/IP
address space is started by specifying the name of the FTP server cataloged
procedure in the AUTOLOG statement. If you have configured the FTP server as a
generic server in a multiple stack environment, you should not use the AUTOLOG
statement to automatically start the server. Instead, use some other automation
outside of AUTOLOG to automatically start the server.

In the following example, if your procedure is called FTPD, the following
statement allows TCP/IP to issue the MVS START command for procedure FTPD.
The job name of FTPD1 will be used on the port statement shown below. If the
daemon job name is fewer than eight characters, the FTP daemon forks a process
that has the job name of the original daemon appended with the numeral 1.
AUTOLOG

FTPD JOBNAME FTPD1
ENDAUTOLOG

To reserve ports 21 and 20 for the FTP server, add the following:
PORT

21 TCP FTPD1 ; FTP server control port
20 TCP OMVS NOAUTOLOG ; FTP server data port

Specifying FTPD1 on the PORT and AUTOLOG statements directs TCP/IP to
restart FTPD if it shound end.

To allow FTP to detect data connection errors when there has been no activity on
the data connection for a certain amount of time, set the INTERVAL parameter on
the TCPCONFIG statement to a relatively low value. The keepalive packets that
the stack sends as specified on the INTERVAL parameter enable the stack to detect
errors, such as a reset or terminated peer connection, instead of waiting
indefinitely. Be careful when choosing an INTERVAL value on the TCPCONFIG
statement because this value will affect all TCP connections at the host for which
the interval has been activated, not just FTP connections.

660 z/OS V1R12.0 Comm Svr: IP Configuration Guide

The control connection can also benefit from keepalive packets. Many firewalls
require periodic activity on any connection that is made and the control connection
can appear idle during a long data transfer. Coding the INTERVAL parameter on
the TCPCONFIG statement will, of course, cause keepalive packets to be sent on
the control connection as well as the data connection. You can override the
keepalive interval that you have configured in the stack for the FTP control
connection and data connection with the FTPKEEPALIVE (control connection) and
DATAKEEPALIVE (data connection) statements in the FTP.DATA file or data set.

Optimally, FTP needs a buffer size of 180K for data connections. Setting
TCPMAXRCVBUFRSIZE below 180K is not recommended. The default value for
the parameter is 256K. IBM Health Checker for z/OS can be used to check whether
the TCPMAXRCVBUFRSIZE value is sufficient to provide optimal support to the
z/OS Communications Server FTP server. For more details about IBM Health
Checker for z/OS, see z/OS Communications Server: IP Diagnosis Guide and IBM
Health Checker for z/OS: User's Guide.

For more information about the AUTOLOG, PORT, and TCPCONFIG statements,
see z/OS Communications Server: IP Configuration Reference.

If your FTP server accepts connections on a distributed Dynamic VIPA (DVIPA),
SYSPLEXPORTS must be specified for the distributed DVIPA if either of the
following are true:
v The DVIPA is an IPv6 address.
v Passive mode FTP is used.

For more information about the VIPADYNAMIC statement and specifying the
SYSPLEXPORTS option on the VIPADISTRIBUTE parameter, see z/OS
Communications Server: IP Configuration Reference.

Configuring ETC.SERVICES
The ETC.SERVICES file contains the relationship between service names (servers)
and port numbers in the z/OS UNIX environment. If necessary, update your
ETC.SERVICES file to include the control port that the FTP server is to use. For the
search order used to locate the ETC.SERVICES file, see “Configuration files for
TCP/IP applications” on page 30. For example, add the following:
ftp 21/tcp

Notes:

1. In the ETC.SERVICES file, only one port (the one for the control connection) is
listed.

2. If the ETC.SERVICES file is changed such that a port other than 21 is specified,
that port will become the FTP port for that z/OS host.

3. The port specified for FTP in the ETC.SERVICES file can be overridden by the
FTP start parameter, PORT nnnn. In either case, the port that is specified should
match the port specified for FTP on the PORT statement in PROFILE.TCPIP.

Configuring /etc/syslog.conf

Note: For FTP syslog, you should consider the fact that FTP writes log messages to
the system console if syslogd is not running. If you enable FTP server traces
without syslogd active, large amounts of data might be written to the
system console.

Chapter 12. Transferring files using FTP 661

The daemon.priority entries in /etc/syslog.conf determine where FTP messages and
trace entries are written. The FTP server issues info, warning, and error messages.
All trace entries are written with debug priority. To direct trace entries (and all
messages) to /tmp/daemon.trace, include the following in /etc/syslog.conf:
..daemon.debug /tmp/daemon.trace

Log messages can be isolated within syslogd. For FTP, an installation might want
FTP log messages to be written to different files depending on the user ID, or
separately for the FTP daemon. If FTP messages are to be isolated for user1, use
the first statement below. If FTP messages are to be logged for all the FTP
applications, use the second statement below.
user1.*.daemon.debug /tmp/daemon.trace

.FTPD.daemon.debug /tmp/daemon.trace

In this statement, it is assumed that _BPX_JOBNAME is set to FTPD.

Configuring the FTPD cataloged procedure
The FTPD catalogued procedure is sample JCL that you can use to start the FTP
server. To use the sample, you must modify it to suit your needs.

Before you begin: You must configure TCP/IP and your security product. You will
modify the configuration of your security product for use with your FTP server.

Perform the following steps to configure the FTPD catalogued procedure:

1. Copy the sample in SEZAINST(FTPD) to your system or recognized PROCLIB.

2. Update the SYSFTPD DD and SYSTCPD statements.

See “Configuring FTP.DATA” on page 671 to configure SYSFTPD DD and
“Configuring TCPIP.DATA for FTP” on page 671 to configure SYSTCPD DD.

3. Decide whether you will pass start parameters in the FTPD catalogued
procedure.
v If you are not going to pass start parameters, add your parameters to the

FTP.DATA file.
v If you are going to pass start parameters, add your parameters to the

PARMS parameter in the PROC statement of the FTPD cataloged procedure.
Any parameters that you modify in the PROC statement override
parameters that are set in the FTP.DATA file. Separate each parameter with a
blank and enter all parameters in uppercase.
The system parameters required by the FTP server are passed by the PARM
parameter on the EXEC statement of the FTPD cataloged procedure. For
example, the entry //FTPD PROC MODULE=’FTPD’,PARMS=’TRACE ANONYMOUS
PORT 21’ starts FTP with tracing active, anonymous support enabled, and
using control port 21.

For more information about the FTPD parameters, see z/OS Communications
Server: IP Configuration Reference.

4. Define the FTPD catalogued procedure to the security program.

Add the FTPD catalogued procedure to the RACF STARTED class facility or to
the started procedures table.

662 z/OS V1R12.0 Comm Svr: IP Configuration Guide

The user ID that is associated with the FTP server STARTED class must have
UID 0. If the FACILITY class is active and the BPX.DAEMON or BPX.POE
profiles are defined, the user ID that is associated with the FTP server must
have READ access to them.

5. (Optional) If the daemon address space will be configured to run as
nonswappable, provide at least READ access to the FACILITY class resource
BPX.STOR.SWAP.

6. Set up security for the FTP server.

See “Security for the FTP server” for information about setting up security.

7. (Optional) Define environment variables.

See “Defining environment variables for the FTP server (optional)” on page
669 for information about defining environment variables for the FTP server.

When you are done, you should be able to start the FTPD catalogued procedure
with no errors. If you receive errors, then ensure that you have completed all the
steps correctly.

See SEZAINST(EZARACF) for more information about SAF resource requirements
needed for FTP.

Restriction: The Language Environment runtime option NATLANG(JPN) is not
supported. If you specified NATLANG(JPN) as a Language Environment runtime
option, then you need to specify PARM='NATLANG(ENU)' in the FTPD cataloged
procedure to override the runtime option for FTP.

Security for the FTP server
To provide security for the FTP server, you must perform the following tasks:
1. (Optional) Activate and define the SERVAUTH class [see “(Optional) Steps for

activating and defining the SERVAUTH class” on page 664].
2. Set up security for the FTP server (see “Steps for setting up security for your

FTP server” on page 664).
3. Provide and control user access to the FTP server (see “Steps for controlling

user access to the FTP server” on page 665).
4. Set up a port of entry for users of the FTP server (see “Steps for setting up a

port of entry for users of the FTP server” on page 666).
5. Provide and control user access to the z/OS UNIX file system (see “(Optional)

Steps for controlling user access to the z/OS UNIX file system” on page 667).
6. Prevent exploitation of your FTP server (see “Preventing exploitation of your

FTP server” on page 668).

FTP uses resource profiles in the System Authorization Facility (SAF) SERVAUTH
class to control access to certain facilities and servers. When access to a resource is
controlled by a profile in the SERVAUTH class, you must activate and RACLIST
the SERVAUTH class. You do not have to use the SERVAUTH class, but when a
profile is defined in that class, all FTP users who require access to it must be
permitted to it.

For more information, see z/OS UNIX System Services Planning and z/OS Security
Server RACF Security Administrator's Guide. For more information about network
access security zones, see “Network access control” on page 120. If you are

Chapter 12. Transferring files using FTP 663

|
|
|
|

planning to implement a multilevel security environment on your z/OS system,
see Chapter 4, “Preparing for TCP/IP networking in a multilevel secure
environment,” on page 153.

(Optional) Steps for activating and defining the SERVAUTH class
Before you begin: You need to know which resource profiles you want to define.
You need to install and start your security product.

Perform the following steps to activate and RACLIST the SERVAUTH class, if you
have not already done so:

1. Issue the following command from a RACF special user to activate the
SERVAUTH class:
SETROPTS CLASSACT (SERVAUTH)

Requirement: If you change the SERVAUTH class after you activate it, you
must refresh the class. Changes include, but are not limited to, adding a
resource profile to the SERVAUTH class or changing access to a profile in the
SERVAUTH class. To refresh the class, issue the following command from a
RACF special user:
SETROPTS RACLIST (SERVAUTH) REFRESH

2. Issue the following command from a RACF special user to RACLIST the
SERVAUTH class:
SETROPTS RACLIST (SERVAUTH)

Steps for setting up security for your FTP server
Before you begin: You need to know the user ID that is associated with the FTP
daemon and how TCP/IP is configured for security. You should also know the
resource profiles that are in the SAF classes.

To set up security for your FTP server, perform one or more of the following tasks:
v If the SERVAUTH class is activated and a profile is defined for the

EZB.STACKACCESS.mvsname.tcpname resource, you must grant the user ID that
is associated with the FTP daemon READ access to the profile.

v If the SAF class APPL is activated and the OMVSAPPL resource profile is
defined, grant the user ID that is associated with the FTP daemon READ access
to the OMVSAPPL resource profile. For more information on defining the
OMVSAPPL profile, see z/OS UNIX System Services Planning.

v If the SAF class APPL is activated and you have a resource profile defined in
that class that matches the job name of the address space that the FTP server
starts when a user logs into FTP, a user ID should have READ access to that
resource profile.

v The FTP daemon listening port should be reserved for the FTPD job by a PORT
statement in the TCPIP PROFILE. If the PORT statement for the FTPD port is
protected with the SAF keyword, you must define a SERVAUTH profile for the
EZB.PORTACCESS.sysname.tcpname.SAFkeyword resource. The user ID
associated with the FTP daemon must have READ access to that resource.

v If your IP network is configured to use named security zones, grant the user ID
that is associated with the FTP daemon READ access to the security zone that
maps its bind address (0.0.0.0/32 for INADDR_ANY or ::/128 for the IPv6
unspecified address, in6addr_any), unless these addresses are overridden by the
PORT statement in the TCP/IP profile.

You know you are done when you can start the FTP server without receiving an
error.

664 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Steps for controlling user access to the FTP server
Every user who logs in to your FTP server requires access to that server. Perform
the following steps to provide and control user access to your server.

Before you begin: You need to know which users you want to allow to log in to
your FTP server. You need to know whether your IP network is configured to use
named security zones.

Perform the following steps to control user access to the FTP server:

1. Provide each user who is going to log in to the FTP server with a z/OS UNIX
UID.
You can either provide a UID to the user, or the user can use the default UNIX
UID.

2. If your IP network is configured to use named security zones, each defined
security zone has a SERVAUTH profile for the resource named
EZB.NETACCESS.sysname.tcpname.zonename. If the client IP address is mapped
into a network access security zone, grant each login user ID READ access to
the SERVAUTH profile that corresponds to the security zone.
For more information about security zones, see “Network access control” on
page 120.

3. Do one or more of the following to allow only certain users to log in to the
FTP server:
v Code an FTCHKPWD user exit routine to allow or deny access to users,

based on user ID.
For more information about user exits, see FTP server user exits in z/OS
Communications Server: IP Configuration Reference and “Configuring the
optional FTP user exits” on page 706.

v Use the SERVAUTH resource profile that FTP uses for TLS level 3
authentication to control which users can log in to FTP:
a. Define a profile in the SERVAUTH class for the FTP port.

For information about how to define the profile, see “Add user IDs to
the SERVAUTH profile access list” on page 1478.

b. Grant at least READ access to the profile to the users that you want to
permit to log in to FTP.
For example, if your security product is RACF, your FTP port is port 21,
and the profile that you defined is EZB.FTP.*.*.PORT21, issue the
following command to grant the user ID FTPUSER access to the profile:
PERMIT EZB.FTP.*.*.PORT21 CL(SERVAUTH) ID(FTPUSER)

See z/OS Security Server RACF Command Language Reference, z/OS Security
Server RACF Security Administrator's Guide, or the documentation for
your SAF-compliant security product for more information.

c. Code VERIFYUSER TRUE in the server's FTP.DATA file.
FTP verifies the user's access to the profile for every session, whether or
not that session is secured. TLS-secured sessions are also verified, even
when level 3 authentification has not been requested.

4. (Optional) Set up transport layer security (TLS) support or Kerberos support
for the FTP server.
The FTP server supports TLS. TLS enables secure file transfer by providing
data privacy, message authentication, and message integrity services for data
sent and received using the FTP control and data connections. For information

Chapter 12. Transferring files using FTP 665

about setting up TLS support for the FTP server, see “Customizing Transport
Layer Security and Kerberos security” on page 681.
You can use the Generic Security Service Application Programming Interface
(GSSAPI) to authenticate FTP clients to FTP servers. For more information
about setting up GSS support for the FTP server, see “Customizing Transport
Layer Security and Kerberos security” on page 681.

When you are finished, only certain users will be able to log in to your FTP server.

Steps for setting up a port of entry for users of the FTP server
The port of entry is the origin of work for the FTP server. You must establish a port
of entry for each user who logs in to your FTP server. For IPv4 connection
partners, you can establish either terminal access or servauth access. IPv6
connection partners must use servauth access, which is established automatically
for them.

Before you begin: You need to know the following:
v The IP addresses of the clients who will be logging in to your FTP server
v Whether your connection partners are in a network access security zone
v Whether your RACF SETROPTS options are TERMINAL(READ) or

TERMINAL(NONE)

Perform the following steps to set up the port of entry for IPv4 and IPv6 users of
the FTP server.
v To establish terminal access for IPv4 connection partners, do one of the

following:
– If your RACF SETROPTS options are TERMINAL(NONE):

1. Define profiles for the IP addresses that you want to permit to your
system in the TERMINAL class.
Translate all the IP addresses of any clients that connect to the FTP server
to an 8-byte hexadecimal character strings that contain an IPv4 address.
Add the strings to the TERMINAL class.
For example, the IP address 163.97.227.17 is translated to A361E311. To
allow all addresses in the 163.97.227.17 subnet, code the following:
RDEFINE TERMINAL A361E3* UACC(READ)

2. Ensure that login user IDs have READ access to the TERMINAL profile
that includes their client system IP address.

– If your RACF SETROPTS options are TERMINAL(READ), then all terminals
are allowed access to your system and you do not need to add extra resource
definitions to your RACF database.

v To establish servauth access, instead of terminal access, for IPv4 connection
partners, specify PORTOFENTRY4 SERVAUTH in the FTP.DATA file. The FTP
server will use the UNIX System Services _poe() service to identify the control
socket as the port of entry.

v To establish servauth access for IPv6 connection partners, you do not need to do
anything; IPv6 connection partners automatically establish servauth access. If the
IPv6 connection partner is not in a network access security zone, the _poe()
service does not pass a port of entry resource name and the port of entry is not
checked. For information about network access security zones, see “Network
access control” on page 120.

666 z/OS V1R12.0 Comm Svr: IP Configuration Guide

For IPv4 and IPv6 users with either terminal or servauth access, you can optionally
restrict access to DATASET resources during the login session by adding
WHEN(TERMINAL=...) or WHEN(SERVAUTH=...) conditions to DATASET
resource profiles in RACF.

When you are finished, access to the FTP server is controlled based on the client's
port of entry.

(Optional) Steps for controlling user access to the z/OS UNIX file
system
FTP uses the resource profile EZB.FTP.sysname.ftpdaemonname.ACCESS.HFS in the
SAF SERVAUTH class to control access to the z/OS UNIX file system. If you do
not control access to this profile, then all users will be able to access your z/OS
UNIX file system. If the FTP.DATA file for the server specifies STARTDIRECTORY
HFS and the user is not permitted to the SERVAUTH class profile, FTP makes the
TSO user ID the starting directory.

Before you begin: You must have the authority to issue the necessary RACF
commands.

Perform the following steps to control access to the z/OS UNIX file system:

1. Define the profile for the FTP user access to the z/OS UNIX file system.

The profile has the following form:
RDEFINE SERVAUTH EZB.FTP.sysname.ftpdaemonname.ACCESS.HFS

For example, the profile name for FTP daemon FTPD running on system
MVSA is the following:
EZB.FTP.MVSA.FTPD1.ACCESS.HFS

Tip: The profile name can contain wildcard values as allowed by the security
product. All security-product rules (for example wildcards, PROTECTALL, and
so on) apply. For example, if all systems will use the same access list and
RACF generic profile checking is active for the SERVAUTH class, you could
use the following profile name:
EZB.FTP.*.FTPD.ACCESS.HFS

2. Permit the user IDs that require access to the z/OS UNIX file system to the
profile:
PERMIT EZB.FTP.sysname.ftpdaemonname.ACCESS.HFS CL(SERVAUTH)

ID(ftpuser)

3. Issue the following command to activate the RACF SERVAUTH class, if it is
not already activated:
SETROPTS CLASSACT (SERVAUTH)

4. Do one of the following:

v RACLIST the SERVAUTH class, if this is a new profile:
SETROPTS RACLIST (SERVAUTH)

v Refresh the SERVAUTH class, if you have changed an existing profile:
SETROPTS RACLIST (SERVAUTH) REFRESH

When you are finished, only certain users will be able to access the z/OS UNIX
file system.

Chapter 12. Transferring files using FTP 667

Preventing exploitation of your FTP server
Your FTP server can be used by a client for disruptive purposes. A client can use
your server to send random data to other servers, or a client can request that your
server be the passive server in a three-way transfer.

Any FTP client that is in PROXY mode with your FTP server can establish a data
connection to any server that is listening to a port. This situation could be very
disruptive to that server, because the client could then send a very large amount of
unexpected data to it. Any malicious FTP client can attack or disrupt the server in
a normal server-to-client connection by making the FTP server send a large amount
of data to another application server that is listening to a specific port. Because the
client itself is not sending the disruptive data, it is difficult to identify the client
that is causing the problem. Use the PORTCOMMAND, PORTCOMMANDPORT
and PORTCOMMANDIPADDR statements in FTP.DATA to prevent your server
from being used in this way.

Table 32. PORTCOMMAND scenarios

When you want your
server to...

Code the following statements in the
server's FTP.DATA Comments

Reject all PORT or EPRT
commands

PORTCOMMAND REJECT If you disable the PORT or EPRT
commands, then you prevent your server
from being used to send random data to
other servers. However, your server loses
some ability to transfer data in PROXY
mode. If a client sends a PORT or EPRT
command to your server to set up a proxy
transfer, your server will reject the
command and the proxy transfer will fail.
If your client is not firewall friendly, and it
does not implement the default port
number and IP address for data transfer,
that client cannot transfer files to and from
your server.

Reject all PORT or EPRT
commands that specify
well-known ports (port
numbers less than 1024)

PORTCOMMANDPORT NOLOWPORTS When you specify this combination, your
server cannot be used to send random
data to servers listening on well-known
ports. However, a rogue client can use
your server to send random data to
servers listening on other ports. The server
still supports data transfer in PROXY
mode.

Reject all PORT or EPRT
commands that specify an
IP address other than the
client's own IP address.

PORTCOMMANDIPADDR NOREDIRECT When you specify this combination, a
client can request data transfer in PROXY
mode only between your server and a
server on its own IP address. Transfers
between client and server are not affected.

Reject all PORT or EPRT
commands that specify an
IP address other than the
client's own IP address or
port numbers that are well
known.

PORTCOMMANDPORT NOLOWPORTS
PORTCOMMANDIPADDR NOREDIRECT

When you specify this combination, a
client can request data transfer in PROXY
mode only between your server and a
server that is on its own IP address; the
port numbers cannot be well known. The
client cannot use PROXY mode to send
random data to a server that is on its own
IP address and listening to a well-known
port.

668 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Your FTP server can also be used as a passive server in a three-way transfer. When
a client sends a PASV or EPSV command to the server, the server opens a listening
data socket. This socket is similar to the listening socket associated with the
well-known port, in the sense that any application that knows its IP address and
port number can connect to it (not just the client that sent the PASV or EPSV
command). The client can exploit this situation to initiate a three-way data transfer,
which is a data transfer between two servers. The client sends PASV to one server
followed by PORT to the other. The client sets the PORT command IP address and
port number to the information it gets from the PASV reply, and the second server
connects to the IP address and port number specified in the PORT command,
connecting the two servers. The next data transfer command causes data to move
directly between the two servers. The client can also use the EPSV and EPRT
commands to set up the three-way data transfer.

Three-way transfers are supported functions in the FTP protocol, but you might
not want to allow your server to participate in three-way transfers. To prevent
your server from being the passive server (the server that receives the PASV or
EPSV command) in a three-way data transfer, code PASSIVEDATACONN
NOREDIRECT in the server's FTP.DATA file. This directs the server to verify that
the data connection comes from the IP address where the original FTP client
resides (the client that sent the PASV or EPSV command). If that is not where the
data connection originates, the server closes the data socket and the next data
transfer command fails.

To completely disallow the use of your FTP server in three-way transfers, code the
PASSIVEDATACONN statement as described in the preceding paragraph, and the
PORTCOMMANDIPADDR NOREDIRECT statement or PORTCOMMAND REJECT
statement described in Table 32 on page 668.

Defining environment variables for the FTP server (optional)
The FTP server optionally uses environment variables to identify the translate table
data sets to be used for the control and data connections. These environment
variables are used to override a default naming convention as described below.
CCXLATE and XLATE statements will be ignored if EXTENSIONS UTF8 is
specified in FTP.DATA.

_FTPXLATE_name used for translation
In your FTP.DATA file, you can use the CCXLATE or XLATE statements to specify
a name that corresponds to a particular data set that is to be used for the initial
translate tables for the control or data connections.

FTP will look for an environment variable defined as
_FTPXLATE_name=fully_qualified_dsn, where name must be one to eight uppercase
characters or numbers, and fully_qualified_dsn can be a fully qualified MVS data set
name or z/OS UNIX file name.

If the environment variable exists, FTP will use the data set name defined by the
environment variable. If no such environment variable is defined, FTP will use the
data set name hlq.name.TCPXLBIN.

Similarly, from any client you can issue SITE XLATE= to set the translate tables for
the data connection for that particular FTP session. The FTP server will look for an
environment variable called _FTPXLATE_name. If the environment variable does
not exist, the server will look for a data set called hlq.name.TCPXLBIN.

Chapter 12. Transferring files using FTP 669

Note: The CCXLATE and XLATE statements and SITE XLATE command are not
case-sensitive, but the name of the optional environment variable is
case-sensitive and must be in uppercase or FTP will not recognize it.

TZ and other UNIX environment variables
You can use the ENVAR runtime option in your FTPD start procedure to set
environment variables for the FTP server. For information on using the ENVAR
runtime option to set environment variables, see z/OS XL C/C++ Programming
Guide. The following example shows how to specify environment variables in your
FTPD started procedure:
//FTPD PROC MODULE=’FTPD’,PARMS=’’
//FTPD EXEC PGM=&MODULE,REGION=4096K,TIME=NOLIMIT,
// PARM=(’POSIX(ON) ALL31(ON)’,
// ’ENVAR("TZ=EST")/&PARMS’)

_BPX_JOBNAME
An installation that wants all FTP forked tasks to have similar job names needs to
set the _BPX_JOBNAME environment variable. WorkLoad Manager (WLM),
accounting, and isolation of syslogd messages are reasons an installation might not
want to have each FTP logged-in user to have a job name of its user ID.

The following example sets all FTP forked() tasks to have the job name of FTPD:
//FTPD PROC MODULE=’FTPD’,PARMS=’’
//FTPD EXEC PGM=&MODULE,REGION=4096K,TIME=NOLIMIT,
// PARM=(’POSIX(ON) ALL31(ON)’,
// ’ENVAR("_BPX_JOBNAME=FTPD"’,
// ’"TZ=EST")/&PARMS’)

Requirement: If you activate the SAF class APPL, and you have defined a resource
profile in that class that matches the job name that you specify with the
_BPX_JOBNAME environment variable, you must grant user IDs that log into FTP
at least READ access to the resource profile.

_BPXK_SETIBMOPT_TRANSPORT for affinity to a specific stack
As discussed in “Generic server versus server with affinity for a specific transport
provider” on page 51, if an installation wants to ensure that FTP has an affinity to
a TCP/IP stack, the _BPXK_SETIBMOPT_TRANSPORT keyword should be used.

The example below sets the FTP server to have an affinity to TCPIPOE.
//FTPD PROC MODULE=’FTPD’,PARMS=’’
//FTPD EXEC PGM=&MODULE,REGION=4096K,TIME=NOLIMIT,
// PARM=(’POSIX(ON) ALL31(ON)’,
// ’ENVAR("_BPXK_SETIBMOPT_TRANSPORT=TCPIPOE"’,
// ’"TZ=EST")/&PARMS’)

Configuring FTP with multiple TCP/IP stacks
Prior to configuring the FTP server with multiple TCP/IP stacks, review
“Considerations for multiple instances of TCP/IP” on page 50.

The FTP server can be configured as a server with affinity to a specific transport
provider or as a generic server.

To configure the FTP server to have affinity to a specific transport provider, do the
following:

670 z/OS V1R12.0 Comm Svr: IP Configuration Guide

v Code the _BPXK_SETIBMOPT_TRANSPORT keyword in the FTP cataloged
procedure. The example below sets the FTP server to have an affinity to
TCPIPOE.
//FTPD PROC MODULE=’FTPD’,PARMS=’’
//FTPD EXEC PGM=&MODULE,REGION=4096K,TIME=NOLIMIT,
// PARM=(’POSIX(ON) ALL31(ON)’,
// ’ENVAR("_BPXK_SETIBMOPT_TRANSPORT=TCPIPOE"’,
// ’"TZ=EST")/&PARMS’)

v Reserve ports 21 and 20 for the FTP server in PROFILE.TCPIP as follows:
PORT

21 TCP FTPD1 ; FTP server control port
20 TCP OMVS NOAUTOLOG ; FTP server data port

To configure the FTP server as a generic server, reserve ports 21 and 20 for the FTP
server in PROFILE.TCPIP on all transport providers. The FTP server will detect
when new transport providers are activated and attempt to bind to port 21. If this
port is not reserved for the FTP server, the FTP server will end with the following
message:
EZYFT13E bind error : EDC5111I Permission denied

Configuring TCPIP.DATA for FTP
The following five statements are used by the FTP server:

DATASETPREFIX
Specifies HLQ for dynamic allocation

DOMAINORIGIN
Specifies the domain name to be appended to host name

HOSTNAME
Specifies the TCP host name

LOADDBCSTABLES
Specifies the DBCS tables used by the client and server

MESSAGECASE
Specifies the case that messages should be displayed in

See Chapter 2, “IP configuration overview,” on page 11 for information about
TCPIP.DATA or see z/OS Communications Server: IP Configuration Reference for
information about these statements.

Configuring FTP.DATA
The FTP.DATA data set is optional. The FTP daemon looks for this data set during
initialization, using the first file it finds in the following search order:
1. A data set specified by the //SYSFTPD DD statement
2. ftpserve_job_name.FTP.DATA
3. /etc/ftp.data
4. SYS1.TCPPARMS(FTPDATA)
5. hlq.FTP.DATA data set

It is not necessary to include all statements in the FTP.DATA data set. Only include
the statements if the default value is not what you want, because the default will
be used for any statement not included in the FTP.DATA data set.

To pick up changes made in the FTP.DATA data set, the FTP server must be
stopped and restarted. Some FTP server parameters can be changed during an FTP

Chapter 12. Transferring files using FTP 671

session by the client issuing the SITE subcommand. See z/OS Communications
Server: IP User's Guide and Commands for more information. The FTP client has an
FTP.DATA data set which can also be used to change the defaults for the FTP client
local site parameters. See the z/OS Communications Server: IP User's Guide and
Commands for more information about using the FTP.DATA data set for the FTP
client local site parameters.

Optionally configuring user-level server options using
FTPS.RC

The default values for the site parameters are coded in the server FTP.DATA. These
SITE defaults apply to all login sessions to the server. You can customize settings
for a specific user or group of users by creating an FTPS.RC configuration data set
containing FTP commands specific to that login session. This file may contain a
series of CWD and SITE commands. See z/OS Communications Server: IP User's
Guide and Commands for information about these commands.

The FTP server uses the following search order to find the MVS data set or z/OS
UNIX file:
1. tso_prefix.FTPS.RC
2. userid.FTPS.RC
3. $HOME/ftps.rc

Data set attributes
Data set attributes play a significant role in FTP performance. If your environment
permits, tune both BLOCKSIZE and LRECL according to the following
recommendations:
v Use half a track as the block size.
v For IBM 3380 DASD, use 23424 as the block size with an LRECL of 64 bytes.
v For IBM 3390 DASD or IBM9334, use 27968 as the block size with an LRECL of

64 bytes.
v Use FB as the data set allocation format.
v Use cached DASD controllers.
v If your environment permits, use a preallocated data set for FTP transfers into

MVS.

The following configuration data statements apply to FTP server's allocation of
data sets.
v AUTOMOUNT
v AUTORECALL
v BLKSIZE
v BUFNO
v CONDDISP
v DATACLASS
v DCBDSN
v DIRECTORY
v LRECL
v MGMTCLASS
v MIGRATEVOL
v PDSTYPE
v PRIMARY

672 z/OS V1R12.0 Comm Svr: IP Configuration Guide

v RECFM
v RETPD
v SECONDARY
v SPACETYPE
v STORCLASS
v UCOUNT
v UMASK
v UNITNAME
v VCOUNT
v VOLUME

See z/OS Communications Server: IP Configuration Reference for more detailed
information about these keywords.

Some of these allocation variables might provide duplicate information. FTP passes
all variables that are specified to z/OS's dynamic allocation function and lets it
determine which of the specifications take precedence. The only exceptions to this
are the following:
v If the data set organization is physical sequential, directory blocks are not sent.
v If neither primary nor secondary space quantities are specified, the allocation

units value is not sent.

For example, the model DCB (DCBDSN) might have a record format (RECFM) that
differs from the record format specified by a data class and from the one explicitly
specified by the client. The order of precedence for dynamic allocation variables
are as follows:
1. Any FTP.DATA statements or SITE parameters explicitly specified or in effect

by default.
2. Any attributes picked up from the model DCB and not otherwise explicitly

specified.
3. Any attributes picked up from the data class and not previously derived from 1

and 2 above.
4. Any system allocation defaults.

Specifying attributes for new MVS data sets
When allocating new data sets, there are two methods you can use to specify the
data set attributes. You can customize the data set attributes for your login session
using the SITE command, or you can configure the data set attributes for logging
in to your server using statements in FTP.DATA. Or, if your system programmer
has used the Storage Management System to group together default attributes into
named classes, you can specify those class names on the DATACLASS,
STORCLASS, and MGMTCLASS statements.

Dynamic allocation
The FTP server allows a client program to dynamically allocate a new physical
sequential data set, a partitioned data set (PDS), or a partitioned data set extended
(PDSE), for the purpose of transferring data to be written to that data set. The
following optional allocation variables can be used to override and turn off the
defaults that affect the allocation of the data set.

Variable FTP.DATA statement
allocation units SPACETYPE

Chapter 12. Transferring files using FTP 673

blocksize BLKSIZE
data class DATACLASS
directory blocks DIRECTORY
logical record length LRECL
management class MGMTCLASS
model DCB values DCBDSN
PDS type PDSTYPE
primary space PRIMARY
secondary space SECONDARY
unit count UCOUNT
volume count VCOUNT
record format RECFM
retention period RETPD
storage class STORCLASS
unit UNITNAME
volume serial number or list VOLUME

Some of these allocation variables might provide duplicate information. For
example, the model DCB might have a record format (RECFM) that differs from
the record format specified by a data class and from the one explicitly specified by
the client. FTP passes all variables that are specified to dynamic allocation and lets
it determine which of the specifications take precedence. The following list
describes the exceptions to that policy:
v If neither the primary nor secondary space quantity is specified, the allocation

units value is not sent.
v If the data set organization is physical sequential, directory blocks specification

is not sent.
v Otherwise, all variables are sent to dynamic allocation where the order of

precedence is:
1. Any FTP.DATA statements or SITE parameters explicitly specified or

specified by default
2. Any attributes picked up from the model DCB and not otherwise explicitly

specified
3. Any attributes picked up from the data class and not previously derived

from 1 or 2
4. Any allocation defaults

Storage Management Subsystem
You can specify one or more of the following Storage Management Subsystem
(SMS) classes to manage characteristics that are associated with or assigned to data
sets.
v Data class is an SMS construct that an installation can define to control data set

allocation attributes used by SMS for the creation of data sets. An installation
can override all or part of an SMS DATA CLASS definition by using FTP.DATA
statements. Note that there is an order of precedence for dynamic allocation.
(See “Data set attributes” on page 672 for more information on the precedence.)
The fields listed are available attributes that serve as a template for allocation.
Each is optional and is overridden by any explicit specification of FTP allocation
variables or by a model DCB (DCBDSN).

Variable FTP.DATA statement
directory blocks DIRECTORY
logical record length LRECL
primary space PRIMARY
record format RECFM

674 z/OS V1R12.0 Comm Svr: IP Configuration Guide

retention period RETPD
secondary space SECONDARY
pds type PDSTYPE

Note: If either primary or secondary space is explicitly specified, the primary
and secondary values from data class are not used.

v Management class (MGMTCLASS) is an SMS construct that determines DFHSM
action for data set retention, migration, backup, and release of allocated but
unused space. Management class replaces and expands attributes that otherwise
would be specified. That is, management class might override any other
specification of retention period.

v Storage class (STORCLASS) is a list of storage performance and availability
services requests for an SMS-managed data set that SMS attempts to honor when
selecting a volume or volumes for the data set. It might conflict with an explicit
specification of volume and unit. If storage class is used, volume and unit
should not be specified.

Translation of data
Selecting an appropriate translate table for conversion of data from host to network
format, and from network to host format, will ensure that data read from or
written to the z/OS system are in correct format. The following statements apply
to translation of data for the FTP server. See z/OS Communications Server: IP
Configuration Reference for more information on these statements. The statements
are:
v ASATRANS
v CTRLCONN
v DBSUB
v ENCODING
v EXTENSIONS UTF8
v MBDATACONN
v MBSENDEOL
v MBREQUIRELASTEOL
v SBDATACONN
v SBSENDEOL
v SBSUB
v SBSUBCHAR
v UCSHOSTCS
v UCSSUB
v UCSTRUNC
v UNICODEFILESYSTEMBOM

z/OS UNIX named pipes
FTP can transfer data to and from z/OS UNIX System Services named pipes. The
following statements apply to the creation of named pipes:
v UMASK
v UNIXFILETYPE

The following statements apply to the transfer of data to and from named pipes:
v CONDDISP

Chapter 12. Transferring files using FTP 675

v FIFOIOTIME
v FIFOOPENTIME

For more information about these FTP.DATA data set statements, see z/OS
Communications Server: IP Configuration Reference. For information about using z/OS
UNIX System Services named pipes, see z/OS Communications Server: IP User's
Guide and Commands.

FTP code page conversion
Code page conversion must be performed for:
v FTP commands and replies sent over the control connection
v Data transferred over the data connection

FTP uses the iconv function to establish ASCII-to-EBCDIC and EBCDIC-to-ASCII
translate tables for the control connection. The default network transfer code page
for the control connection is 7-bit ASCII. In addition, FTP maintains support for the
use of translate tables by the CONVXLAT utility. After an end user has logged in,
a SITE subcommand can be used to change the code page being used on the
control connection.

FTP uses the iconv function to establish network transfer to file system and file
system to network transfer translate tables for the data connection. In addition,
FTP maintains support for the use of translate tables by the CONVXLAT utility.

Note: Using iconv conversion to retrieve EBCDIC data that was created with
CONVXLAT-generated conversion tables could result in data corruption due
to possible conversion table differences.

After an end user has logged in, SITE and LOCSITE subcommands can be issued
to change the translation tables being used for single-byte translation.

Code page conversions for the control connection
For the control connection, FTP generally uses ASCII for the network code page, as
specified in the FTP RFCs. For the host/ASCII conversion for the control
connection, FTP uses either iconv() or the support for single-byte translation tables.
However, when EXTENSIONS UTF8 is coded in FTP.DATA, FTP starts the
connection in 7-bit ASCII and negotiates a switch to UTF-8 encoding of the control
connection, as described in RFC 2640. FTP uses iconv() for the host/UTF-8
conversion.

Priority: The priority for establishing the conversion tables used for the control
connection is:
1. FTP start parameter (FTP client only)
2. EXTENSIONS UTF8 coded in FTP.DATA
3. CTRLCONN or CCXLATE keyword in FTP.DATA
4. Search order used to locate a TCPXLBIN data set:

a. Original jobname.SRVRFTP.TCPXLBIN
b. hlq.SRVRFTP.TCPXLBIN
c. Original jobname.STANDARD.TCPXLBIN
d. hlq.STANDARD.TCPXLBIN

5. 7–bit ASCII
6. Internal (hard-coded) 7–bit tables

676 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Code page conversions for the data connection
For the transfer of data on the data connection, FTP supports:
v All single-byte conversions available through iconv. For example, iconv supports

conversions between IBM-1047 and IBM-850, so conversions between IBM-1047
and IBM-850 are available for data transfer.

v UNICODE conversions available through iconv: UTF-8, UTF-16, UTF-16BE, and
UTF-16LE for network transfer, and UTF-8 and UTF-16 for file storage.

v Multibyte conversions for the Chinese standard GB18030 using code page
IBM-5488 with code page IBM-1388 or UTF-8, as well as certain double-byte
character set (DBCS) code page pairs that are equivalent to supported DBCS
languages.

v Both single-byte and double-byte data conversions are supported with the
translate tables provided with TCP/IP or generated by the CONVXLAT utility.

Priority for single-byte conversions: The priority that determines how to build
single-byte translate tables for converting network transfer data and file system
data is the following:
v SYSFTSX DD statement in the startup procedure, where the named data

connection is CONVXLAT-generated translate tables. The data set can be an
MVS data set or a z/OS UNIX file.

v SBDATACONN or XLATE keyword in FTP.DATA.
v Search order to locate a TCPXLBIN data set, where the MVS data set contains

CONVXLAT-generated translate tables:
1. Original jobname.SRVRFTP.TCPXLBIN
2. hlq.SRVRFTP.TCPXLBIN
3. Original jobname.STANDARD.TCPXLBIN
4. hlq.STANDARD.TCPXLBIN

v The same conversions established for the control connection.

Multibyte character sets (MBCS) support: MBCS support in the FTP server is
provided for the following code page pairs:

Support for: TYPE command File system code
page

Network transfer
code page

Chinese standard
GB18030

Not applicable IBM-1388 or UTF-8 IBM-5488

BIG5 TYPE B 8 IBM-937 IBM-950 or BIG5

EUCKANJI TYPE B 2 IBM-930 IBM-eucJP

JIS78KJ (JISROMAN TYPE B 4 R IBM-930 IBM-5053

JIS78KJ (ASCII TYPE B 4 A IBM-939 IBM-5055

JIS83KJ (JISROMAN TYPE B 3 R IBM-930 IBM-5052

JIS83KJ (ASCII TYPE B 3 A IBM-939 IBM-5054

KSC5601 TYPE B 6 IBM-933 IBM-949

SCHINESE TYPE B 9 IBM-935 IBM-1381

SJISKANJI TYPE B 1 IBM-930 or IBM-939 IBM-932 or
IBM-eucJC

TCHINESE TYPE B 7 IBM-937 IBM-948

Chapter 12. Transferring files using FTP 677

Support for: TYPE command File system code
page

Network transfer
code page

UNICODE Not applicable UTF-8, UTF-16 UTF-8, UTF-16,
UTF-16BE, and
UTF-16LE

Guidelines: The following restrictions and limitations exist::
v ENCODING must be specified as MBCS, either in FTP.DATA or on a SITE

command.
v The data type must be ASCII.
v The file structure must be FILE (not RECORD), and the transfer mode must be

STREAM (not BLOCK or COMPRESS).
v The FTP file type must be SEQ (not JES or SQL).
v If the file is transferred to or from an MVS data set, the record format of the

data set must be V, VB, or U.
v If a file is transferred outbound and is an MVS data set with record format V or

VB, the request for RDWs is not allowed.
v Translation of ASA or machine control characters is not allowed.
v MBCS can be used as a migration path for the DBCS languages listed that have

an associated TYPE B x command.
Restriction: The DBCS languages can be migrated to the MBCS support only if
they do not use the following parameters on the TYPE B x command:

S A SOSI ASCII characters X'1E' and X'1F' in the ASCII data stream

S E SOSI EBCDIC characters X'0E' and X'0F' in the ASCII data stream

S S SOSI SPACE characters X'20' and X'20' in the ASCII data stream

N No SOSI characters in the ASCII data stream and none written to the file
system

Master catalog access
FTP uses the IGGCSI00 function to request catalog processing. This accesses both
the user and master catalog. Users require READ access to the master catalog as
well as their own user catalog.

Customizing FTP message catalogs
FTP messages and replies are contained in two z/OS UNIX message catalogs as
follows:
v ftpdmsg.cat

Contains messages that the FTP daemon, server, and client issue.
v ftpdrply.cat

Contains replies that the server sends to the client.

If messages in either of these catalogs need to be modified, the timestamp that is
contained in the shipped level of the FTP catalog must be preserved in the
modified catalog.

This timestamp is included within and is unique to each catalog. When FTP (client
or daemon) is started, FTP verifies that this timestamp matches the timestamp that

678 z/OS V1R12.0 Comm Svr: IP Configuration Guide

it expects. This prevents FTP from presenting the wrong message when the z/OS
UNIX message catalogs and FTP are not synchronized.

When you apply a service update to FTP load modules that requires a service
update to a catalog, you must install both at the same time. Otherwise, FTP will
report an error and use default messages instead of messages from the catalog.

If you are using a modified FTP catalog, the catalog that matches the service level
of FTP load modules needs to be updated with your local modifications, and the
timestamp of the catalog must be preserved.

Steps for creating a message catalog from the shipped
catalog and preserving its timestamp

Before you begin: This example assumes that the FTP code and catalog are at the
correct levels and that only local customization to the catalog is to be performed.
Also, if you customize a catalog, IBM Service personnel might require that you use
the shipped level of the catalog to recreate and diagnose a reported problem.

Perform the following steps to create a file from the shipped catalog and preserve
its timestamp. You can then update this file with your local modifications, and
create a new FTP catalog with the preserved timestamp. Perform all of these steps
from the z/OS UNIX shell; the commands indicated are z/OS UNIX commands.

1. Copy the official z/OS UNIX catalog that is shipped with the release or service
to a backup file.
cp /usr/lpp/tcpip/lib/nls/msg/C/ftpdmsg.cat /tmp/ftpdmsg.cat.backup

2. Using the dspcat command, convert a copy of the backup catalog that you just
copied to a copy that you can edit. This is the file that you need to update to
preserve the timestamp, and that you will update to support any local user
message changes.
dspcat -t -g /tmp/ftpdmsg.cat.backup >/tmp/ftpdmsg.cat.copy

3. Change the first line in the catalog from a comment to a z/OS UNIX gencat
command, which enables the timestamp to be imbedded in the catalog when it
is rebuilt.
a. Edit the file to be updated.

oedit /tmp/ftpdmsg.cat.copy

b. Change the first line comment to add a gencat command to preserve the
timestamp when the directory is built. The first line in the file will be
similar to the following line:
The time stamp of catalog /tmp/ftpdmsg.cat.backup is: 2006 095 20:30 UTC

Replace the leading text on the line with the gencat subcommand
$timestamp as follows:
$timestamp 2006 095 20:30 UTC

If this step is omitted and the original line is left in the catalog, when an
attempt is made to generate a catalog from this file, you will see a message
similar to the following:
FSUM5108 gencat: Invalid message number.

c. Save the file.

4. Update the catalog (/tmp/ftpdmsg.cat.copy) with any local modifications and
save the file.

Chapter 12. Transferring files using FTP 679

5. Build a new and customized catalog using the z/OS UNIX gencat command,
and save a copy of the shipped level of the catalog.
gencat /tmp/ftpdmsg.cat /tmp/ftpdmsg.cat.copy

The correct response is:
FSUM5105 gencat: Message catalog generated normally.

6. Browse the new catalog and verify that the timestamp from step 3 on page 679
matches what is in the file.
obrowse /tmp/ftpdmsg.cat

The first record contains the time stamp (yyyy ddd hh:mm UTC). For example:
...2006 095 20:30 UTC

7. Replace the official z/OS UNIX catalog that is shipped with the release with
the updated catalog that you created in step 5.

You know you are done when you test the catalogs to verify correct
synchronization by performing the following:
1. Start the FTP server and inspect the syslog output (console if no syslog is

running). Message EZYFS30W should not appear.
2. Using the FTP client, connect to the FTP server and inspect the SYSPRINT

output. Message EZYFS31W should not appear.

For more information on the dspcat and gencat utilities, see z/OS UNIX System
Services Command Reference.

Accounting
The following parameters apply to SMF data:
v SMF
v SMFAPPE
v SMFDEL
v SMFEXIT
v SMFJES
v SMFLOGN
v SMFREN
v SMFRETR
v SMFSQL
v SMFSTOR

See z/OS Communications Server: IP Configuration Reference for more information on
these statements.

Configure the FTP server for SMF (optional)
The FTP server can write SMF type 118 (X'76') or type 119 (X'77') records to record
transactions made by the FTP server. SMF records can be written for the following
commands:
v APPE (append)
v DELE (delete)
v RNTO (rename)
v RETR (retrieve)

680 z/OS V1R12.0 Comm Svr: IP Configuration Guide

v STOR (store)
v STOU (store unique)

Information about the previous commands can be recorded for:
v FTP server running in normal data transfer mode (FILETYPE=SEQ)
v FTP server running remote job submission (FILETYPE=JES)
v FTP server running Structured Query Language (SQL) queries (FILETYPE=SQL)
v Any combination of SEQ, JES, and SQL

For commands involving data transfer (APPEND, RETR, STOU or STOR) an SMF
record will be written for both successfully and unsuccessfully completed data
transfer commands which have begun data transfer. For data transfer commands
which have completed unsuccessfully, the byte count of transmission field will
contain the number of bytes transferred before the failure, and the recent server
reply field will contain the 3-digit error reply code sent to the client. See the
information about type 118 records and type 119 records in z/OS Communications
Server: IP Programmer's Guide and Reference to find the particular offsets for the
record type being used.

The FTP server can also write SMF records when a login attempt fails.

The capability also exists for a user-written exit routine to get control before the
SMF records are written. See “Configuring the optional FTP user exits” on page
706 for more information.

If you want the FTP server to write SMF type 118 (X'76') or type 119 (X'77') SMF
records, you must include at least one of the SMF subtype statements (SMF,
SMFAPPE, SMFDEL, SMFLOGN, SMFREN, SMFRETR, or SMFSTOR) in the
FTP.DATA data set.

If SMF subtype statements are not coded in the FTP.DATA data set, no SMF
records are written by the FTP server.

Customizing Transport Layer Security and Kerberos security
The following terms apply to Transport Layer Security (TLS) and Kerberos.

Integrity protected, data integrity, or data authentication
Indicates an algorithm is applied to the data being transferred, which
modifies the data such that the receiving program can verify the data was
not modified or changed during the transfer.

Privacy protected
Indicates an algorithm is applied to the data being transferred, which
encrypts or scrambles the data such that only the receiving program can
use a special key to decrypt or unscramble the data to its original format.
The original data cannot be seen or interpreted while the data is in transit.

Raw Indicates data is transmitted without being modified by any encryption or
data integrity algorithms.

Encipher or cipher algorithm
Data being transferred is encrypted, integrity protected, or both. This term
does not imply which algorithm is used and does not imply the data is
encrypted.

Chapter 12. Transferring files using FTP 681

|
|
|
|
|
|
|
|
|

Steps for customizing the FTP server for TLS
Before you begin: You should understand the following:
v The FTP server can be enabled to support both TLS and Kerberos. Some of the

configuration statement settings apply to both TLS and Kerberos and affect the
behavior of both.

v To support TLS, the FTP server always provides server certificate authentication
to all the clients to validate that the server is what it says it is. Therefore, a
server key ring database is required to contain at least the FTP server's digital
certificate and private key. For more information about key ring databases, see
Appendix B, “TLS/SSL security,” on page 1461.

v The FTP server can implement TLS security by itself, or the FTP server can be
configured to use Application Transparent Transport Layer Security (AT-TLS) as
a controlling application. For more information about AT-TLS, see Chapter 22,
“Application Transparent Transport Layer Security data protection,” on page
1193.
Guideline: Using AT-TLS is the better way to implement TLS security. With
AT-TLS, for example, you can do the following:
– Specify the label of the certificate to be used for authentication instead of

using the default certificate
– Support SSL Session Key Refresh
– Support SSL Sysplex Session ID Caching
– Trace decrypted SSL data for FTP in a data trace
– Receive more detailed diagnostic messages in syslogd
Requirement: AT-TLS requires Policy Agent to be configured, and the TCP/IP
stack to be enabled for AT-TLS. To configure AT-TLS, see “Configuring the
server system” on page 1199.

Perform the following steps to customize the FTP server for TLS:

1. Decide what level of RFC 4217, On Securing FTP with TLS, that you want the
server to support.
v To have the server support On Securing FTP with TLS at the Internet draft

level, code the following statement in the server's FTP.DATA configuration
file:
TLSRFCLEVEL DRAFT

This is the default. The z/OS FTP server has supported TLS security at
this level since V1R2. Code this statement in FTP.DATA to maintain this
level of support.

v To have the server support On Securing FTP with TLS at the RFC 4217
level, code the following statement in the server's FTP.DATA configuration
file:
TLSRFCLEVEL RFC4217

The RFC On Securing FTP with TLS was published as RFC 4217 in October,
2005. The RFC differs from the Internet draft in its description of the
AUTH, CCC, and REIN commands. RFC 4217 is less restrictive than the
Internet draft regarding when the AUTH and CCC commands can be sent
to the server, and more explicit about the details of the server REIN
implementation. For more information, see RFC 4217.

682 z/OS V1R12.0 Comm Svr: IP Configuration Guide

2. Code the following statement in the server's FTP.DATA configuration file to
enable the server for TLS:
EXTENSIONS AUTH_TLS

3. Decide what level of authentication you will use for TLS sessions:

v Server authentication only
v Client authentication level 1
v Client authentication level 2
v Client authentication level 3

For more information about server authentication and client authentication,
see “Secure Socket Layer overview” on page 1461.

4. Create the server key ring database and add the certificates you will need to
the server key ring database.
For information on how to create a key ring database and add certificates to
that database, see “Creating and managing keys and certificates at the
server” on page 1467.
Every TLS session handshake includes server authentication, so you must
always add a certificate for this server to the server key ring database. If a
server certificate is self signed, you must also export that certificate to the
key ring databases of those clients that will log in using TLS. If a server
certificate is signed by a certificate authority (CA), the CA certificate used to
sign the server certificate needs to be in the client key ring databases, rather
than the server certificate. For more information about server authentication,
see “Server authentication” on page 1462 and “Creating and managing keys
and certificates at the server” on page 1467.
If you are using client authentication and self-signed certificates, you must
import the client certificates into the server key ring database. If a client
certificate is signed by a CA, the CA certificate used to sign the client
certificate needs to be in the server key ring database, rather than the client
certificate. For more information, see “Client authentication” on page 1463
and “Creating and managing keys and certificates at the server” on page
1467.

5. Decide whether FTP will implement TLS security or AT-TLS will implement
TLS security. The default is to have FTP implement TLS security. This setting
is customized using the TLSMECHANISM configuration statement.
v To configure the FTP server to use AT-TLS for TLS security, code the

following statement in FTP.DATA:
TLSMECHANISM ATTLS

v To configure the FTP server to implement TLS security by itself, code the
following statement in FTP.DATA:
TLSMECHANISM FTP

This is the default setting.

6. If using TLSMECHANISM FTP, you must configure the FTP server with a
key ring database. To configure the FTP server with the name of the key ring
database, code the following statement in FTP.DATA:

Chapter 12. Transferring files using FTP 683

KEYRING server-keyring-database

For information about the KEYRING statement, see z/OS Communications
Server: IP Configuration Reference.

7. Decide whether clients logging in to this server should be required to use the
TLS protocol. The default is to allow the client to decide whether to use TLS.
This setting is customized using the SECURE_FTP configuration statement.
You should understand that its setting affects both TLS security behavior and
Kerberos security behavior.
To allow the client to decide whether to use TLS, code the following
statement in the server's FTP.DATA configuration file:
SECURE_FTP ALLOWED

This is the default setting, and indicates the following:
v If the server is enabled for TLS only, clients must either log in using TLS,

or with no security mechanism.
v If the server is enabled for Kerberos only, clients must either log in using

Kerberos, or with no security mechanism.
v If the server is enabled for both TLS and Kerberos, clients can log in using

TLS, Kerberos, or with no security mechanism.

To require that clients log in using a security mechanism, code the following
statement in the server's FTP.DATA configuration file:
SECURE_FTP REQUIRED

This setting indicates:
v If the server is enabled for TLS only, clients must log in using TLS.
v If the server is enabled for Kerberos only, clients must log in using

Kerberos.
v If the server is enabled for both TLS and Kerberos, clients must log in

using either TLS or Kerberos.

8. If you do not want to use client authentication, you can code the following
statement in the server's FTP.DATA configuration file:
SECURE_LOGIN NO_CLIENT_AUTH

This is the default.
If you do want to use client authentication, the following levels of client
authentication are possible:
v Level 1 authentication is performed by system SSL. The client passes an

X.509 certificate to the server. To pass authentication, the Certificate
Authority that signed the client certificate must be considered trusted by
the server. To use level 1 client authentication, code the following
statement in the server's FTP.DATA configuration file:
SECURE_LOGIN REQUIRED

v Level 2 authentication provides level 1 authentication, and additionally
requires that the client certificate be registered with RACF (or another SAF
compliant security product) and mapped to a user ID. The client certificate
received during the SSL handshake is used to query the security product
to verify that the certificate maps to a user ID known to the system prior

684 z/OS V1R12.0 Comm Svr: IP Configuration Guide

to connection negotiation. To use level 2 client authentication, code the
following statement in the server's FTP.DATA configuration file:
SECURE_LOGIN VERIFY_USER

v Level 3 authentication provides level 1 and 2 authentication. In addition, it
provides the capability to restrict access to the server based on the user ID
returned from RACF. If the SERVAUTH class of RACF is active and the
server's port profile is defined, a connection is accepted only if the
requester's user ID associated with the client certificate is defined in the
server's port profile. To use level 3 client authentication, code the following
statement in the server's FTP.DATA configuration file:
SECURE_LOGIN VERIFY_USER

Also, define the server's port profile in the SERVAUTH class of RACF. For
more information on the FTP server's port profile, see “Add user IDs to
the SERVAUTH profile access list” on page 1478.

If you choose to use client authentication, you can also use the client
certificate authentication process to eliminate the client login password
prompt so that a client supplies only the login user ID to establish the
session. The certificate received from the client must be registered in the
security product and must be associated with the login user ID. You can use
the RACDCERT ADD command to register and associate the certificate. If
either the certificate is not registered or is not associated with the user ID,
you will be prompted for a password.
If you do not want to use the client authentication process to eliminate the
client password prompt, you can code the following statement in the server's
FTP.DATA configuration file:
SECURE_PASSWORD REQUIRED

This is the default.
If you want to use the client authentication process to eliminate the client
password prompt, along with your client authentication statement (either
SECURE_LOGIN REQUIRED or SECURE_LOGIN VERIFY_USER), code the
following statement in the server's FTP.DATA configuration file:
SECURE_PASSWORD OPTIONAL

9. If you specified TLSMECHANISM ATTLS, configure the AT-TLS policy for
the FTP server. To configure AT-TLS, see “Configuring the server system” on
page 1199.
Requirements:

v The FTP server is a controlling application. For more information about
controlling applications, see “Advanced application considerations” on
page 1216.
Code a TTLSEnvironmentAdvancedParms statement with the
ApplicationControlled and SecondaryMap parameters; both parameters
should specify the value On. The ApplicatonControlled parameter allows
FTP to start and stop TLS security on a connection. The SecondaryMap
parameter enables active or passive data connections to use the AT-TLS
policy that is used for the control connection. You do not need to code any
additional TTLSRule statements for the data connections.

v The FTP server requires that the HandshakeRole parameter with the value
Server or ServerWithClientAuth be coded on the TTLSEnvironmentAction
statement. If the SECURE_LOGIN statement is coded in FTP.DATA with

Chapter 12. Transferring files using FTP 685

the parameters REQUIRED or VERIFY_USER, the HandshakeRole
parameter value must be ServerWithClientAuth.

v The TTLSRule statement for the FTP server requires the Direction
parameter with the value Inbound.

A sample Policy Agent AT-TLS configuration showing the required policy
configuration statements for AT-TLS is as follows:

TTLSGroupAction secure_ftp_server_group
{

TTLSEnabled On
}
TTLSEnvironmentAction secure_ftp_server_env
{

TTLSKeyringParms
{

Keyring server-keyring-database
}
HandshakeRole Server # When Secure_Login NO_CLIENT_AUTH is coded
#HandshakeRole ServerWithClientAuth # When Secure_Login Required or Verify_User is coded
TTLSEnvironmentAdvancedParms
{

ApplicationControlled On
SecondaryMap On

}
TTLSCipherParmsRef ftp_server_ciphers # Used to customize ciphersuites for the FTP

server
}

TTLSCipherParms ftp_server_ciphers
{

Sample ciphers. Should be customized!
V3CipherSuites TLS_RSA_WITH_AES_256_CBC_SHA
V3CipherSuites TLS_RSA_WITH_3DES_EDE_CBC_SHA
V3CipherSuites TLS_RSA_WITH_NULL_SHA

}

TTLSRule secure_ftp_server_rule
{

LocalPortRange 21 # This should be set to the port the FTP server is
listening on

Direction Inbound
TTLSGroupActionRef secure_ftp_server_group
TTLSEnvironmentActionRef secure_ftp_server_env

}

Tip: You can enable additional security settings with AT-TLS, such as LDAP
servers and handshake timeout values. The configuration used in the
example is the minimum required to allow the FTP server to use AT-TLS.
You can add additional configuration statements.

10. Decide which cipher algorithms the server should use to encipher data
transfers and to encipher control information.
FTP and AT-TLS support TLS through the system SSL cryptographic services
base element of z/OS. System SSL supports multiple cipher algorithms that
provide both encryption and data authentication (that is, data integrity).
Encryption scrambles the data so it is transferred confidentially and cannot
be interpreted without a special key. Data authentication algorithms ensure
the data was not modified during transfer. Some of the supplied cipher
algorithms provide only data authentication, and some provide both
encryption and authentication. Be aware that the actual cipher algorithm
used for the session is determined by a negotiation between the server and
client. For example, if you configure an FTP server to use the Triple DES
encryption, SHA authentication algorithm, but the client does not support
that cipher algorithm, Triple DES encryption, SHA authentication will not be
used for sessions between the server and that client.
If using TLSMECHANISM FTP, select which cipher algorithms you prefer to
use by coding a CIPHERSUITE configuration statement in the FTP.DATA file
for each cipher algorithm the server can use. For a list of the cipher
algorithms you can specify on the CIPHERSUITE statement, see z/OS
Communications Server: IP Configuration Reference. List the CIPHERSUITE

686 z/OS V1R12.0 Comm Svr: IP Configuration Guide

statements in FTP.DATA in the order of preference, your most preferred
cipher algorithm being first. System SSL will negotiate a cipher algorithm
with the server on behalf of the client using the same order of preference as
is indicated by the order of CIPHERSUITE statements in FTP.DATA.
If you specify TLSMECHANISM ATTLS, select which cipher algorithms you
want to use by coding a TTLSCipherParms configuration statement to
specify the cipher algorithms that the server can use. For a list of the cipher
algorithms you can specify with the TTLSCipherParms statement, see z/OS
Communications Server: IP Configuration Reference. List the ciphers in the order
of preference, your most preferred cipher algorithm first. The cipher
algorithm is negotiated with the server on behalf of the client using the same
order of preference as indicated by the order of the TTLSCipherParms
statement.
Restrictions:

v Only RSA key exchange is supported.
v The following algorithms are subject to export regulations and might not

be available to your system:
– Triple DES encryption, SHA authentication
– RC4 (128-bit) encryption, SHA authentication
– RC4 (128-bit) encryption, MD5 authentication
– AES (128-bit and 256-bit) encryption, SHA authentication

Guideline: The default ciphers used by System SSL support a null cipher,
which has no encryption or authentication. A TTLSCipherParms statement or
CIPHERSUITE statement should be coded to remove the null cipher from the
list of acceptable ciphers.

11. Decide the level of security for the data connection. You can choose to
require enciphered data transfers, or to allow the client to decide the level of
security for data transfers. The default is to allow the clients to decide the
level of security.
This setting is customized using the SECURE_DATACONN configuration
statement. You should understand that its setting affects both TLS security
behavior and Kerberos security behavior.
If you want the server to require that data is transferred raw with no cipher
algorithm applied to the data and that clients attempting to use ciphers are
rejected, code the following statement in the server's FTP.DATA configuration
file:
SECURE_DATACONN NEVER

If you want the client to decide whether data is transferred raw or
enciphered, you can code the following statement in the server's FTP.DATA
configuration file:
SECURE_DATACONN CLEAR

This is the default.
For TLS, the client decides whether data is enciphered or not. If it indicates it
should be enciphered, the cipher algorithm is negotiated between the server
and the client using TLS protocols. For Kerberos, the client can specify
whether data is transferred raw, integrity protected only, or both integrity
and privacy protected.

Chapter 12. Transferring files using FTP 687

If you want the server to require that data is transferred enciphered and that
clients attempting to send raw data are rejected, code the following statement
in the server's FTP.DATA configuration file:
SECURE_DATACONN PRIVATE

For TLS, the cipher algorithm is negotiated between the server and the client
using TLS protocols. For Kerberos, the data must be transferred using both
integrity and privacy protection. Clients attempting to send data that is only
integrity protected are rejected.

12. For information about configuring your security product for TLS, see
Appendix B, “TLS/SSL security,” on page 1461.

Steps for customizing the FTP server for Kerberos
Before you begin: You should understand that the FTP server can be enabled to
support both TLS and Kerberos. Some of the configuration statement settings
apply to both TLS and Kerberos and will affect the behavior of both.

Decide which RACF ID the service principal will be associated with. This will help
determine whether or not a keytab file is required. If the service principal is
associated to the FTP startup procedure ID, a keytab file will not be required.
Decide whether or not a keytab file is required. If a keytab file is not required and
will not be used, decide how the FTP startup procedure will be updated to identify
the environment variable (ENVAR) KRB5_SERVER_KEYTAB.

Perform the following steps to customize the FTP server for Kerberos:

1. Code the following statement in the server's FTP.DATA configuration file to
enable the server for Kerberos:
EXTENSIONS AUTH_GSSAPI

2. Decide whether clients should be required to use the Kerberos protocol. The
default is to allow the client to decide whether to use Kerberos.
This setting is customized using the SECURE_FTP configuration statement.
You should understand that its setting affects both TLS security behavior and
Kerberos security behavior.
To allow the client to decide whether to use Kerberos, you can code the
following statement in the server's FTP.DATA configuration file:
SECURE_FTP ALLOWED

This is the default setting, and indicates the following:
v If the server is enabled for TLS only, clients must either log in using TLS, or

with no security mechanism.
v If the server is enabled for Kerberos only, clients must either log in using

Kerberos, or with no security mechanism.
v If the server is enabled for both TLS and Kerberos, clients can log in using

TLS, Kerberos, or with no security mechanism.

To require that clients log in using Kerberos, code the following statement in
the server's FTP.DATA configuration file:
SECURE_FTP REQUIRED

688 z/OS V1R12.0 Comm Svr: IP Configuration Guide

This setting indicates:
v If the server is enabled for TLS only, clients must log in using TLS.
v If the server is enabled for Kerberos only, clients must log in using Kerberos.
v If the server is enabled for both TLS and Kerberos, clients must log in using

either TLS or Kerberos.

3. Decide whether to use the client authentication process to eliminate the client
login password prompt so that a client supplies only the login user ID to
establish the session.
The Kerberos principal that is received from the client is used to query the
security product (either RACF or another SAF-compliant security product) to
determine whether the Kerberos principal maps to a user ID that is known to
the system. If the Kerberos principal maps to a user ID, and that user ID
matches the user name passed from the client on the USER command, you can
eliminate the password prompt.
If the client principal is for the same realm as the FTP server, the principal is
correlated to the user ID using the KERBNAME option of the ADDUSER or
ALTUSER commands. If the client principal is a cross-realm principal, it is
correlated to the user ID using the RDEFINE KERBLINK command.
If you want to require the client to provide a password even when the client
authentication process does not require it, code the following statement in the
server's FTP.DATA configuration file. This is the default.
SECURE_PASSWORD_KERBEROS REQUIRED

If you want to use the client authentication process to eliminate the client
password prompt, code the following statement in the server's FTP.DATA
configuration file:
SECURE_PASSWORD_KERBEROS OPTIONAL

4. Decide the level of security for the data connection. You can choose to require
enciphered data transfers, or to allow the client to decide the level of security
for data transfers. The default is to allow the clients to decide the level of
security.
This setting is customized using the SECURE_DATACONN configuration
statement. You should understand that its setting affects both TLS security
behavior and Kerberos security behavior.
If you want the server to require that data is transferred raw with no cipher
algorithm applied to the data and that clients attempting to use ciphers are
rejected, code the following statement in the server's FTP.DATA configuration
file:
SECURE_DATACONN NEVER

If you want the client to decide whether data is transferred raw or enciphered,
you can code the following statement in the server's FTP.DATA configuration
file:
SECURE_DATACONN CLEAR

This is the default.
For TLS, the client decides whether data is enciphered or not. If it indicates it
should be enciphered, the cipher algorithm is negotiated between the server
and the client using TLS protocols. For Kerberos, the client can specify
whether data is transferred raw, integrity protected only, or both integrity and
privacy protected.

Chapter 12. Transferring files using FTP 689

If you want the server to require that data is transferred both integrity and
privacy protected, code the following statement in the server's FTP.DATA
configuration file:
SECURE_DATACONN PRIVATE

For TLS, the cipher algorithm is negotiated between the server and the client
using TLS protocols, and clients attempting to send raw data are rejected. For
Kerberos, the data must be transferred using both integrity and privacy
protection, and clients attempting to send raw data or data that is only
integrity protected are rejected.
If you want the server to require that data is transferred integrity protected
only or both integrity and privacy protected, code the following statement in
the server's FTP.DATA configuration file:
SECURE_DATACONN SAFE

For TLS, specifying this option is identical to specifying SECURE_DATACONN
PRIVATE. For Kerberos, specifying this option indicates the data can be
transferred integrity protected only, or both integrity and privacy protected.
Clients attempting to send raw data are rejected.

5. Decide the level of security for the control connection (that is, for FTP
commands and replies). You can choose to require enciphered control
connection data, or to allow the client to decide the level of security. The
default is to allow the clients to decide the level of security.
This setting is customized using the SECURE_CTRLCONN configuration
statement. This setting applies only to Kerberos. For TLS, the control
connection is required to be enciphered and this setting has no effect on TLS
behavior.
If you want the client to decide whether control data is transferred raw or
enciphered, you can code the following statement in the server's FTP.DATA
configuration file:
SECURE_CTRLCONN CLEAR

This is the default.
The client can specify whether data is transferred raw, integrity protected only,
or both integrity and privacy protected.
If you want the server to require that control data is transferred both integrity
and privacy protected, code the following statement in the server's FTP.DATA
configuration file:
SECURE_CTRLCONN PRIVATE

Clients attempting to send raw data or data that is only integrity protected are
rejected.
If you want the server to require that data is transferred integrity protected
only or both integrity and privacy protected, code the following statement in
the server's FTP.DATA configuration file:
SECURE_CTRLCONN SAFE

Clients attempting to send raw data are rejected.

6. Create the service principal against a RACF ID for use with a keytab (see step
7 for using Kerberos with no keytab).
a. Create a RACF user ID to associate with the FTP service principal.

690 z/OS V1R12.0 Comm Svr: IP Configuration Guide

adduser FTP NOPASSWORD DFLTGRP(SYS1) omvs(autouid home(’/u/ftp’) prog(’/bin/sh’))

b. After the FTP RACF user ID is created, add the Kerberos principal to it.
ALTUSER FTP KERB(KERBNAME(ftp/<hostname>))

c. To ensure the Kerberos segment was added, use the following command to
display the ID.
LU FTP NORACF KERB

Result:
USER=FTP

KERB INFORMATION

KERBNAME= ftp/<hostname>
KEY VERSION= 001
KEY ENCRYPTION TYPE= DES DES3 DESD

d. To add the FTP service principal to the keytab file, do the following:
1) The keytab file is located in the /etc/skrb directory. Switch to that

directory using the following command:
cd /etc/skrb

2) Use the following command to see what is currently in the keytab file:
keytab list

If nothing is currently in the keytab file, the following is returned:
Key table: /etc/skrb/krb5.keytab

3) Add the FTP service principle using the following command:
keytab add ftp/<hostname>

You will be prompted for the principals’ password. For this example,
that password is FTP. The password must be entered in uppercase. This
password was assigned with the RACF ALTUSER command when the
FTP service principal was created.

4) Issue the keytab list command again.
The following should be displayed when the FTP service principal is
present:
Key table: /etc/skrb/krb5.keytab

Principal: ftp/<hostname>@<realm>
Key version: 1
Key type: 56-bit DES
Entry timestamp: 2005/02/04-16:21:10

Principal: ftp/<hostname>@<realm>
Key version: 1
Key type: 56-bit DES using key derivation
Entry timestamp: 2005/02/04-16:21:10

Principal: ftp/<hostname>@<realm>
Key version: 1
Key type: 168-bit DES using key derivation
Entry timestamp: 2005/02/04-16:21:10

7. An alternate way to run without a keytab file is to associate the FTP service
principal to the ID under which the FTP started task runs. If the ID that the
FTP started task runs under is FTPD, issue the following command to create
the FTP service principal and have it associated to that ID.
ALTUSER FTPD PASSWORD(ftpd) NOEXPIRED KERB(KERBNAME(ftp/<hostname>))

Chapter 12. Transferring files using FTP 691

Rule: In this setup, you must set the KRB5_SERVER_KEYTAB environment
variable. Specify it directly in the FTP startup procedure as follows:
//FTPD EXEC PGM=&MODULE,REGION=4096K,TIME=NOLIMIT,
// PARM=(’POSIX(ON) ALL31(ON)’,
// ’ENVAR("KRB5_SERVER_KEYTAB=1")/&PARMS’)

Another way of specifying the environment variable directly in the startup
procedure is to specify a file where the environment variables are listed.
//FTPD EXEC PGM=&MODULE,REGION=4096K,TIME=NOLIMIT,
// PARM=(’POSIX(ON) ALL31(ON)’,
// ’ENVAR("_CEE_ENVFILE=/etc/ftp.envvars")/&PARMS’)

Then, within the /etc/ftp.envvars file, add the following:
KRB5_SERVER_KEYTAB=1

You know you are done when a client is able to successfully log in to the FTP
server using Kerberos. An example of the login is as follows:
1. Obtain the Kerberos credentials by issuing the following command:

kinit joe

2. You will be prompted for the password. Enter it.
3. Issue the ftp command:

ftp <hostname>

You should see the following:
Using /u/JOE/ftp.data for local site configuration parameters.
IBM FTP CS V1R9
FTP: using TCPIP
Connecting to: <hostname><ip address> port: <port number>.
220-FTPD1 IBM FTP CS V1R9 at <hostname>, 21:51:51 on 2007-04-04.
220 Connection will close if idle for more than 5 minutes.
>>> AUTH GSSAPI
334 Using authentication mechanism GSSAPI
>>> ADAT
235 ADAT=YGgGCSqGSIb3EgECAgIAb1kwV6ADAgEFoQMCAQ+iSzBJoAMC7moS==
Authentication negotiation succeeded
NAME (<hostname>:USER):
JOE
>>> USER JOE
331 Send password please.
PASSWORD:

>>> PASS
230 JOE is logged on. Working directory is "JOE".
Command:

Tip: The password prompt is skipped if the server is configured with
SECURE_PASSWORD_KERBEROS OPTIONAL and the client's Kerberos ticket
principal name matches the logon user ID.

Steps for customizing the FTP client for TLS
Before you begin: You should understand the following:
v The FTP client can be enabled to use either TLS or Kerberos, but not both at the

same time.
v To support TLS, the FTP server always provides server certificate authentication

to all the clients to validate that the server is what it says it is. Therefore, a client
key ring database is required to contain at least the certificate for the CA that

692 z/OS V1R12.0 Comm Svr: IP Configuration Guide

signed the server certificate (or the server certificate if the server certificate is
self-signed). For more information about key ring databases, see Appendix B,
“TLS/SSL security,” on page 1461.

v The FTP client can implement TLS security by itself, or the FTP client can be
configured to use Application Transparent Transport Layer Security (AT-TLS) as
a controlling application. For more information on AT-TLS, see Chapter 22,
“Application Transparent Transport Layer Security data protection,” on page
1193.
Guideline: Using AT-TLS is the best way to implement TLS security. With
AT-TLS, for example, you can do the following:
– Specify the label of the certificate to be used for authentication instead of

using the default certificate
– Support SSL Session Key Refresh
– Support SSL Sysplex Session ID Caching
– Trace decrypted SSL data for FTP in a data trace
– Receive more detailed diagnostic messages in syslogd
Requirement: AT-TLS requires Policy Agent to be configured, and the TCP/IP
stack to be enabled for AT-TLS. To configure AT-TLS, see “Configuring the client
systems” on page 1201.

Perform the following steps to customize the FTP client for TLS:

1. Decide what level of RFC 4217, On Securing FTP with TLS, that you want the
client to support.
v To have the client support On Securing FTP with TLS at the Internet draft

level, code the following statement in the client's FTP.DATA configuration
file:
TLSRFCLEVEL DRAFT

This is the default. The z/OS FTP client has supported TLS security at this
level since V1R2. Code this statement in FTP.DATA to maintain this level
of support.

v To have the client support On Securing FTP with TLS at the RFC 4217 level,
code the following statement in the client's FTP.DATA configuration file:
TLSRFCLEVEL RFC4217

The RFC On Securing FTP with TLS was published as RFC 4217 in October,
2005. The RFC differs from the Internet draft in its description of the
AUTH, CCC, and REIN commands. This has implications for client
subcommands such as AUTH and CCC. Generally, RFC 4217 is less
restrictive than the Internet draft. For more information, see RFC 4217. For
more information on RFC 4217 and using security mechanisms, see z/OS
Communications Server: IP User's Guide and Commands.

2. Code the following statement in the client's FTP.DATA configuration file to
enable the client for TLS:
SECURE_MECHANISM TLS

3. Decide what level of authentication you will use for TLS sessions:

v Server authentication only
v Client authentication level 1

Chapter 12. Transferring files using FTP 693

v Client authentication level 2
v Client authentication level 3

For more information about server authentication and client authentication,
see “Secure Socket Layer overview” on page 1461.

4. Use a CERTAUTH virtual key ring, or create a client key ring database and
add the certificates that you need to that database.
If you are using server authentication only and the FTP server certificate is
signed by a certificate authority (CA), the FTP client can use a CERTAUTH
virtual key ring and you do not need to create a client key ring database. To
use a CERTAUTH virtual key ring, use the key ring name *AUTH*/* .
If you cannot use a virtual key ring, create the client key ring database and
add the certificates that you need to that database. For information about
how to create a key ring database and add certificates to that database, see
“Creating and managing keys and certificates at the server” on page 1467.
Every TLS session handshake includes server authentication. If a server
certificate is self-signed, you must import that certificate to the key ring
database of any client that will log in using TLS. If the server certificate is
signed by a CA, the CA certificate used to sign the server certificate (rather
than the server certificate itself) needs to be in the client key ring database.
For more information, see “Server authentication” on page 1462 and
“Creating and managing keys and certificates at the server” on page 1467.
If you are using client authentication, you must add a certificate for the client
to the client key ring database.
If you are using client authentication and self-signed client certificates, you
must add a certificate for the client to the server key ring database. If a client
certificate is signed by a CA, the CA certificate used to sign the client
certificate needs to be in the server key ring database, rather than the client
certificate.
For information about the client certificates you must create, see “Client
authentication” on page 1463 and “Creating and managing keys and
certificates at the server” on page 1467.

5. Decide whether FTP will implement TLS security or AT-TLS will implement
TLS security. The default is to have FTP implement TLS security. This setting
is customized using the TLSMECHANISM configuration statement.
v To configure the FTP client to use AT-TLS for TLS security, code the

following statement in FTP.DATA:
TLSMECHANISM ATTLS

v To configure the FTP client to implement TLS security by itself, code the
following statement in FTP.DATA:
TLSMECHANISM FTP

This is the default setting.

6. If using TLSMECHANISM FTP, you must configure the FTP client with the
name of the key ring database. Code the following statement in FTP.DATA:
KEYRING client-keyring-database

For information about the KEYRING statement, see z/OS Communications
Server: IP Configuration Reference.

694 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|

|
|
|
|

|
|
|
|

|
|

7. If you specified TLSMECHANISM ATTLS, configure the AT-TLS policy for
the FTP client. To configure AT-TLS, see “Configuring the client systems” on
page 1201.
Requirements:

v The FTP server and client are controlling applications. For more
information about controlling applications, see “Advanced application
considerations” on page 1216.
Code a TTLSEnvironmentAdvancedParms statement with the
ApplicationControlled and SecondaryMap parameters; both parameters
should specify the value On. The ApplicatonControlled parameter allows
FTP to start and stop TLS security on a connection. The SecondaryMap
parameter enables active or passive data connections to use the AT-TLS
policy that is used for the control connection. You do not need to code any
additional TTLSRule statements for the data connections.

v The FTP client requires the HandshakeRole parameter with the value
Client to be coded on the TTLSEnvironmentAction statement.

v The TTLSRule statement for the FTP client requires the Direction
parameter with the value Outbound.

A sample Policy Agent AT-TLS configuration showing the required policy
configuration statements for AT-TLS is as follows:

TTLSGroupAction secure_ftp_client_group
{

TTLSEnabled On
}
TTLSEnvironmentAction secure_ftp_client_env
{

TTLSKeyringParms
{

Keyring client-keyring-database
}
HandshakeRole Client
TTLSEnvironmentAdvancedParms
{

ApplicationControlled On
SecondaryMap On

}
TTLSCipherParmsRef ftp_client_ciphers # Used to customize ciphersuites

}
TTLSCipherParms ftp_client_ciphers
{

Sample ciphers. Should be customized!
V3CipherSuites TLS_RSA_WITH_AES_256_CBC_SHA
V3CipherSuites TLS_RSA_WITH_3DES_EDE_CBC_SHA
V3CipherSuites TLS_RSA_WITH_NULL_SHA

}

TTLSRule secure_ftp_client_rule
{

RemotePortRange 21 # This should be set to the port the FTP server is
listening on

Direction Outbound
TTLSGroupActionRef secure_ftp_client_group
TTLSEnvironmentActionRef secure_ftp_client_env

}

Tip: You can enable additional security settings with AT-TLS, such as LDAP
servers and handshake timeout values. The sample configuration is only the
minimum required to allow the FTP client to use AT-TLS. You can add
additional configuration statements.

8. Decide which cipher algorithms the client should use to encipher data
transfers and control information.
FTP and AT-TLS support TLS through the system SSL cryptographic services
base element of z/OS. System SSL supports multiple cipher algorithms that

Chapter 12. Transferring files using FTP 695

provide both encryption and data authentication (that is, data integrity).
Encryption scrambles the data so it is transferred confidentially and cannot
be interpreted without a special key. Data authentication algorithms ensure
that the data was not modified during transfer. Some of the supplied cipher
algorithms provide only data authentication, and some provide both
encryption and authentication. Be aware that the actual cipher algorithm
used for the session is determined by a negotiation between the server and
client. For example, if you configure an FTP client to use the Triple DES
encryption, SHA authentication algorithm, but the server does not support
that cipher algorithm, Triple DES encryption, SHA authentication will not be
used for sessions between the client and that server.
If using TLSMECHANISM FTP, select which cipher algorithms you prefer to
use by coding a CIPHERSUITE configuration statement in the FTP.DATA file
for each cipher algorithm the client can use. For a list of the cipher
algorithms you can specify on the CIPHERSUITE statement, see z/OS
Communications Server: IP Configuration Reference.
If you specify TLSMECHANISM ATTLS, select which cipher algorithms you
want to use by coding a TTLSCipherParms configuration statement to
specify the cipher algorithms the client can use. For a list of the cipher
algorithms you can specify with the TTLSCipherParms statement, see z/OS
Communications Server: IP Configuration Reference. List the ciphers in the order
of preference, your most preferred cipher algorithm first. The cipher
algorithm is negotiated with the server on behalf of the client using the same
order of preference as is indicated by the order of the TTLSCipherParms
statement.
Restrictions:

v Only RSA key exchange is supported.
v The following algorithms are subject to export regulations and might not

be available to your system:
– Triple DES encryption, SHA authentication
– RC4 (128-bit) encryption, SHA authentication
– RC4 (128-bit) encryption, MD5 authentication
– AES (128-bit and 256-bit) encryption, SHA authentication

Guideline: The default ciphers used by System SSL support a null cipher,
which has no encryption or authentication. A TTLSCipherParms statement or
CIPHERSUITE statement should be coded to remove the null cipher from the
list of acceptable ciphers.

9. Decide whether the client should be required to use the TLS protocol. If the
FTP server does not support TLS, you can choose to allow the client to log in
without using the TLS security, or require the client to use a secure session,
thus failing the login. The default is to not require the client to use TLS. This
setting is customized using the SECURE_FTP configuration statement.
To have the client log in using the TLS protocol when the server supports
TLS, and log in without TLS when the server does not support TLS, code the
following statement in the client's FTP.DATA configuration file:
SECURE_FTP ALLOWED

This is the default.
To have the client log in using the TLS protocol, but close the server
connection and prevent logging in when the server does not support TLS,
code the following statement in the client's FTP.DATA configuration file:

696 z/OS V1R12.0 Comm Svr: IP Configuration Guide

SECURE_FTP REQUIRED

10. Decide the level of security for the data connection. You can choose to
require enciphered data transfers, or to allow the FTP user to decide the level
of security for data transfers. The default is to not encipher the data, but
allow the data to be enciphered at the server's request or at the FTP user's
request during the FTP session.
Note that the level of security for data connections is determined by both the
SECURE_DATACONN statement in FTP.DATA and by subcommands an FTP
user might issue during an FTP session.
The following subcommands can be issued by the user:

clear Resets the security level so that data is transferred raw.

private Resets the security level so that data is transferred
enciphered. The cipher algorithm is negotiated between the
server and the client using the TLS protocol negotiation.

If you want the client to transfer data raw with no cipher algorithm applied
to the data, code the following statement in the client's FTP.DATA
configuration file:
SECURE_DATACONN NEVER

To indicate the data can be transferred raw or enciphered, code the following
statement in the client's FTP.DATA configuration file:
SECURE_DATACONN CLEAR

This is the default.
By default, data is transferred raw. However, the user can issue the private
subcommand during the FTP session to change the data connection security
level, so that data is transferred enciphered. The user can also issue the clear
subcommand to reset the data connection security level back, so that data is
transferred raw again. For TLS, if the private subcommand is issued, the
cipher algorithm is negotiated between the server and the client using TLS
protocols.
If you want to require that data is transferred enciphered, code the following
statement in the client's FTP.DATA configuration file:
SECURE_DATACONN PRIVATE

For TLS, the cipher algorithm is negotiated between the server and the client
using TLS protocols.

Steps for customizing the FTP client for Kerberos
Before you begin: You should understand that the FTP client can be enabled to
use either TLS or Kerberos, but not both at the same time.

Perform the following steps to customize the FTP client for Kerberos:

1. Code the following statement in the client's FTP.DATA configuration file to
enable the client for Kerberos:
SECURE_MECHANISM GSSAPI

2. Decide whether the client should be required to use the Kerberos protocol. If
the FTP server does not support Kerberos, you can choose to allow the client
to log in without using Kerberos security, or require the client to use a secure

Chapter 12. Transferring files using FTP 697

session, thus failing the login. The default is to not require the client to use
Kerberos. This setting is customized using the SECURE_FTP configuration
statement.
To have the client log in using the Kerberos protocol, but if the server does not
support Kerberos allow the client to complete the login without using it, code
the following statement in the client's FTP.DATA configuration file:
SECURE_FTP ALLOWED

This is the default.
To have the client log in using the Kerberos protocol, but if the server does not
support Kerberos have the login fail and not allow the client to log in, code
the following statement in the client's FTP.DATA configuration file:
SECURE_FTP REQUIRED

3. Decide the level of security for the data connection. You can choose to require
enciphered data transfers, or to allow the FTP user to decide the level of
security for data transfers. The default is to not encipher the data, but allow
the data to be enciphered at the server's request or at the FTP user's request
during the FTP session.
Note that the level of security for data connections is determined by both the
SECURE_DATACONN statement in FTP.DATA and by subcommands an FTP
user might issue during an FTP session.
The following subcommands can be issued by the user:

clear Resets the security level so that data is transferred raw.

private Resets the security level so that data is transferred enciphered.
If the client is using the Kerberos security mechanism, the data
is transferred both integrity protected and privacy protected. If
the client is using the TLS security mechanism, the cipher
algorithm is negotiated between the server and the client using
the TLS protocol negotiation.

safe Resets the security level so that data is transferred integrity
protected only.

If you want the client to transfer data raw with no cipher algorithm applied to
the data, code the following statement in the client's FTP.DATA configuration
file:
SECURE_DATACONN NEVER

To indicate the data can be transferred raw or enciphered, code the following
statement in the client's FTP.DATA configuration file:
SECURE_DATACONN CLEAR

This is the default.
By default, data is transferred raw. However, the user can issue the private
subcommand during the FTP session to change the data connection security
level, so that data is transferred both integrity and privacy protected. The user
can also issue the safe subcommand to change the data connection security
level so that data is transferred integrity protected only, or the clear
subcommand to reset the data connection security level back so that data is
transferred raw again.
If you want to require that data is transferred both integrity and privacy
protected, code the following statement in the client's FTP.DATA configuration
file:

698 z/OS V1R12.0 Comm Svr: IP Configuration Guide

SECURE_DATACONN PRIVATE

If you want to require that data is transferred integrity protected only, or both
integrity and privacy protected, code the following statement in the client's
FTP.DATA configuration file:
SECURE_DATACONN SAFE

By default, data is transferred integrity protected only. However, the user can
issue the private subcommand during the FTP session to change the data
connection security level so that data is transferred both integrity and privacy
protected. The user can also issue the safe subcommand to reset the data
connection security level back, so that data is transferred integrity protected
only.

4. Decide the level of security for the control connection (that is, for FTP
commands and replies). You can choose to require enciphered data, or to allow
the FTP user to decide the level of security. The default is to not encipher the
data, but allow the data to be enciphered at the server's request or at the FTP
user's request during the FTP session.
Note that the level of security for data connections is determined by both the
SECURE_CTRLCONN statement in FTP.DATA and by subcommands an FTP
user might issue during an FTP session.
The following subcommands can be issued by the user:

cprotect clear
Resets the security level so that data is transferred raw.

cprotect private
Resets the security level so that data is transferred both integrity
protected and privacy protected.

cprotect safe
Resets the security level so that data is transferred integrity protected
only.

To indicate the data can be transferred raw or enciphered, you can code the
following statement in the server's FTP.DATA configuration file:
SECURE_CTRLCONN CLEAR

This is the default.
By default, data is transferred raw. However, the user can issue the cprotect
private subcommand during the FTP session to change the security level so
that data is transferred both integrity and privacy protected. The user can also
issue the cprotect safe subcommand to change the security level so that data
is transferred integrity protected only, and the cprotect clear subcommand to
reset the security level back so that data is transferred raw again.
If you want to require that data is transferred both integrity and privacy
protected, code the following statement in the client's FTP.DATA configuration
file:
SECURE_CTRLCONN PRIVATE

If you want to require that data is transferred integrity protected only, or both
integrity and privacy protected, code the following statement in the client's
FTP.DATA configuration file:
SECURE_CTRLCONN SAFE

By default, data is transferred integrity protected only. However, the user can
issue the cprotect private subcommand during the FTP session to change the

Chapter 12. Transferring files using FTP 699

data connection security level so that data is transferred both integrity and
privacy protected. The user can also issue the cprotect safe subcommand to
reset the data connection security level, so that data is transferred integrity
protected only.

Port 990
The use of port 990 to implicitly protect FTP sessions was included in the early
drafts of the IETF documents that describe how to use TLS with FTP, but has been
removed from later drafts and from RFC 4217. For more information, see
Information APAR II13516.

Port 990 is known as the protected port, or the TLSPORT. You can disable implicit
security for port 990, or reassign the protected port, by coding the TLSPORT
statement in the server's FTP.DATA configuration file.

Rule: If you start the FTP server on the protected port, you should code a
SECUREIMPLICITZOS statement in the server's FTP.DATA file to specify when the
server should expect the client to negotiate TLS security.

The FTP server can provide explicit TLS security on a different port by specifying
the following in FTP.DATA:
EXTENSIONS AUTH_TLS
SECURE_FTP REQUIRED
SECURE_CTRLCONN PRIVATE
SECURE_DATACONN PRIVATE

Steps for migrating the FTP server and client to use AT-TLS
Before you begin: Application Transparent Transport Layer Security (AT-TLS) is
the best way to implement TLS security for the FTP server and client. AT-TLS
provides additional functionality and performance for TLS secured connections.

Perform the following steps to migrate from an existing configuration using TLS
security for the FTP server and client to a configuration using AT-TLS:

1. Configure AT-TLS and Policy Agent.

For details about AT-TLS setup, see Chapter 22, “Application Transparent
Transport Layer Security data protection,” on page 1193. For Policy Agent
setup and AT-TLS policy statements, see z/OS Communications Server: IP
Configuration Reference.
Requirements:

v The FTP server and client are controlling applications. For more information
about controlling applications, see “Advanced application considerations”
on page 1216.
Code a TTLSEnvironmentAdvancedParms statement with the
ApplicationControlled and SecondaryMap parameters; both parameters
should specify the value On. The ApplicatonControlled parameter allows
FTP to start and stop TLS security on a connection. The SecondaryMap
parameter enables active or passive data connections to use the AT-TLS
policy that is used for the control connection. You do not need to code any
additional TTLSRule statements for the data connections.

v The FTP server requires the HandshakeRole parameter with the value Server
or ServerWithClientAuth to be coded on the TTLSEnvironmentAction

700 z/OS V1R12.0 Comm Svr: IP Configuration Guide

statement. If the SECURE_LOGIN statement is coded in FTP.DATA with the
parameters REQUIRED or VERIFY_USER, the HandshakeRole parameter
value must be ServerWithClientAuth.

v The TTLSRule statement for the FTP server requires the Direction parameter
with the value Inbound.

v The FTP client requires the HandshakeRole parameter with the value Client
to be coded on the TTLSEnvironmentAction statement.

v The TTLSRule statement for the FTP client requires the Direction parameter
with the value Outbound.

Guideline: The FTP server and client do not support SSLv2 when using
TLSMECHANISM TLS. By default, AT-TLS does not enable SSLv2. SSLv2
should not be enabled in AT-TLS unless explicitly required by a remote
system. If SSLv2 is required by a remote system, use a specific TTLSRule
statement for the remote system that points to a TTLSConnectionAction
statement enabling SSLv2.

2. Configure the FTP server and client to use AT-TLS by coding
TLSMECHANISM ATTLS in FTP.DATA.

3. Use Table 33 to migrate the existing FTP server and client configuration to
AT-TLS. Remove the statements from FTP.DATA and code the AT-TLS
equivalent statement.

Table 33. Migrating existing FTP server and client configuration

FTP.DATA statement AT-TLS equivalent statement AT-TLS policy statement

KEYRING Keyring TTLSKeyRingParms ->
TTLSEnvironmentAction

CIPHERSUITE V3CipherSuites TTLSCipherParms ->
TTLSEnvironmentAction

TLSTIMEOUT GSK_V3_SESSION_TIMEOUT TTLSGskAdvancedParms ->
TTLSEnvironmentAction

4. Use Table 34 to migrate existing ciphers coded on CIPHERSUITE statements in
FTP.DATA to AT-TLS TTLSCipherParms statements.

Table 34. Migrating existing ciphers

CIPHERSUITE
cipher V3CipherSuites cipher Hexadecimal value

SSL_DES_SHA TLS_RSA_WITH_DES_CBC_SHA 09

SSL_3DES_SHA TLS_RSA_WITH_3DES_EDE_CBC_SHA 0A

SSL_NULL_MD5 TLS_RSA_WITH_NULL_MD5 01

SSL_NULL_SHA TLS_RSA_WITH_NULL_SHA 02

SSL_RC2_MD5_EX TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5 06

SSL_RC4_MD5 TLS_RSA_WITH_RC4_128_MD5 04

SSL_RC4_MD5_EX TLS_RSA_EXPORT_WITH_RC4_40_MD5 03

SSL_AES_128_SHA TLS_RSA_WITH_AES_128_CBC_SHA 2F

SSL_AES_256_SHA TLS_RSA_WITH_AES_256_CBC_SHA 35

For example, for an FTP.DATA file containing the following:

Chapter 12. Transferring files using FTP 701

CIPHERSUITE SSL_AES_256_SHA
CIPHERSUITE SSL_3DES_SHA
CIPHERSUITE SSL_NUL_SHA

The equivalent TTLSCipherParms statement is:
TTLSCipherParms
{

V3CipherSuites TLS_RSA_WITH_AES_256_CBC_SHA
V3CipherSuites TLS_RSA_WITH_3DES_EDE_CBC_SHA
V3CipherSuites TLS_RSA_WITH_NULL_SHA

}

Traversing firewalls with SSL/TLS secure FTP
This topic describes functions in FTP that enable you to use FTP sessions that are
secured by SSL/TLS using both network address translation (NAT) and filtering
firewalls.

FTP requires the following TCP connections to transfer a file:
v Control connection
v Data connection

The control connection is established from the FTP client to the FTP server (default
port 21). The data connection is established either from the FTP client to the FTP
server, or from the FTP server to the FTP client; the direction is based on whether
the client selects active mode or passive mode FTP.
v Active mode

With active mode FTP, the data connection is established from the FTP server to
the FTP client, which is the opposite direction of the control connection. The
active mode data connection is established from a well-known port on the server
host (default port 20) to an ephemeral port on the client host.

v Passive mode
With passive mode FTP, the data connection is established from the FTP client to
the FTP server, which is the same direction as the control connection. The data
connection is established from an ephemeral port on the server host to an
ephemeral port on the client host.
Passive mode is also referred to as firewall-friendly FTP. An intranet FTP client
connecting to an Internet FTP server can establish connections outbound through
the company firewall, but not inbound through the firewall. With passive mode,
both the control and data connections are established outbound through the
firewall to the Internet.

The FTP client user decides which mode to use. Active mode is the default, but the
user can usually change to passive mode. The z/OS FTP client user can switch
between active and passive modes by issuing the LOCSITE subcommand with the
NOFWFRIENDLY and FWFRIENDLY parameters.

Both active mode and passive mode FTP require the exchange of IP address and
port information over the control connection. For active mode, the FTP client sends
a PORT command specifying the IP address and port number to which the server
must connect to establish the data connection. For passive mode, the FTP client
sends a PASV command to the server, and the server replies with the IP address
and port number to which the client should connect to establish the data
connection.

702 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Firewalls are often aware of FTP; they monitor the exchanges over the FTP control
connection to learn the IP address and port number to which the data connection
is to be established. NAT firewalls change the IP addresses on the PORT command
or in the PASV reply. Filtering firewalls install dynamic filters based on the IP
addresses and port information to enable the data connection to be established.

When you use SSL/TLS for FTP, the control connection is typically encrypted, so
firewalls between the FTP client and server cannot see the data that is exchanged
on the PORT command and the PASV reply. The firewalls cannot perform NAT
successfully and they cannot install dynamic filters for the data connection, so the
result is that your data connection very likely fails.

z/OS FTP includes the following support for functions that are specifically aimed
at enabling FTP sessions through such firewalls:
v Extended passive mode (EPSV)

Extended passive mode works very much like passive mode. Instead of sending
a PASV command to the server, the client sends an EPSV command to the
server. The server EPSV reply includes only a port number. The client always
uses the same IP address for the data connection that it used for the control
connection. A z/OS FTP client user switches to extended passive mode for IPv4
connections by issuing the LOCSITE subcommand with the EPSV4 and
FWFRIENDLY parameters. These options can also be configured in the z/OS
FTP client FTP.DATA file.
EPSV allows sessions secured by SSL/TLS through NAT firewalls, but EPSV
alone does not allow FTP sessions that are secured by SSL/TLS through
firewalls that also implement dynamic filters.

v The PASSIVEIGNOREADDR configuration option
This z/OS FTP client option directs the z/OS FTP client to ignore the IP address
in the PASV reply and use only the port number when FTP is in passive mode.
The client uses the same IP address that it used to log into the FTP server for the
data connection. A z/OS FTP client user enables this support by issuing a
LOCSITE subcommand with the PASSIVEIGNOREADDR option. You can also
configure this option in the z/OS FTP client FTP.DATA file.
The PASSIVEIGNOREADDR configuration enables sessions secured by SSL/TLS
through NAT firewalls in the same way that extended passive mode enables
them, subject to the same limitations. You can use the PASSIVEIGNOREADDR
option when the server does not support the EPSV command.

v The PASSIVEDATAPORTS statement in FTP.DATA
This z/OS FTP server option enables you to define a range of port numbers that
the z/OS FTP server can use in PASV and EPSV replies for passive mode data
connections. If the PASSIVEDATAPORTS statement on the z/OS FTP server is
used in combination with EPSV from the FTP client, the two techniques together
allow FTP sessions secured with SSL/TLS through NAT firewalls that also
implement static IP filters, assuming that the firewall administrators add static
filter rules that allow FTP data connections access to one or more of the ports in
the PASSIVEDATAPORTS range.

v The clear command channel (CCC) command
The CCC command can be used on a control connection secured by SSL/TLS to
disable SSL/TLS security. The control connection starts out as secured by
SSL/TLS, and stays that way until a user ID and password have been exchanged
with the server. At that point, the FTP client can send a CCC command to the
server, which disables SSL/TLS for the control connection and enables PORT
commands and replies to PASV and EPSV commands to flow in the clear on the

Chapter 12. Transferring files using FTP 703

control connection. When these exchanges occur in the clear, firewalls between
the FTP client and FTP server can perform NAT processing and dynamic filter
processing as if the connection is not secured with SSL/TLS. The CCC command
does not turn off security for the data connection.
To enable the z/OS FTP server to accept the CCC command, configure
TLSRFCLEVEL RFC4217 or TLSRFCLEVEL CCCNONOTIFY at the FTP server.
To enable the z/OS FTP client to support the CCC command, configure
TLSRFCLEVEL RFC4217 or TLSRFCLEVEL CCCNONOTIFY at the FTP client,
matching the client TLSRFCLEVEL value to the server TLSRFCLEVEL value.
You can use the LOCSITE subcommand to change the TLSRFCLEVEL value.
When TLSRFCLEVEL RFC4217 or TLSRFCLEVEL CCCNONOTIFY is configured
at the z/OS FTP client, use the CCC subcommand after logging in to the FTP
server to send a CCC command to the FTP server.

The support you use depends on your network topology. Following are a few
selected scenarios to consider for making sure that FTP sessions secured by
SSL/TLS can get through your network. The scenarios assume that z/OS is at least
one of the endpoints of the secure FTP session. The partner endpoint can be z/OS
or any secure FTP product on the market that supports the same RFC levels as
z/OS (primarily RFC 4217).
v Your firewall performs NAT only (minimal or no filtering), your FTP client is in

a private network behind the NAT firewall, and the FTP server is in a public
network such as the Internet, as shown in Figure 71.

Normal passive mode (PASV) usually works in such a scenario. Extended
passive mode (EPSV) also works, but is generally not required.

v Your firewalls perform NAT only (minimal or no filtering), your FTP client is in
one private network, your FTP server is in another private network, and you
have two NAT firewalls between the client and server networks that are
connected over a public network, as shown in Figure 72.

If your partner's secure FTP product supports extended passive mode, use
extended passive mode (EPSV) from the FTP client. If the FTP client is the z/OS
FTP client and the partner's secure FTP server product does not support EPSV,
configure the PASSIVEIGNOREADDR option at your z/OS FTP client to
simulate EPSV processing.

v Your firewall performs NAT and static filtering (predefined filter rules). Your
FTP client is in a private network behind the NAT firewall, with a z/OS FTP
server residing in a public network such as the Internet, as shown in Figure 73
on page 705.

Figure 71. SSL/TLS-secured FTP session scenario 1

Figure 72. SSL/TLS-secured FTP session scenario 2

704 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Use the PASSIVEDATAPORTS statement in the z/OS FTP server's FTP.DATA file
to predefine a range of port numbers that the z/OS FTP server can use for data
connections. Your firewall administrator needs to add static filter rules for the
passive data port range. Normal passive mode (PASV) usually works in such a
scenario, but extended passive mode (EPSV) can also be used if supported by
the FTP client.

v Your firewalls perform NAT and static filtering (predefined filter rules). Your
FTP client is in one private network, your z/OS FTP server is in another private
network, and you have two NAT firewalls between the client and server
networks that are connected over a public network, as shown in Figure 74.

Use the PASSIVEDATAPORTS statement in the z/OS FTP server's FTP.DATA file
to predefine a range of port numbers that the z/OS FTP server can use for data
connections. Your firewall administrator needs to add static filter rules for the
passive data port range. In this case, you must use extended passive mode. If
the FTP client does not support extended passive mode, this scenario is not
likely to work.

v Your firewalls perform dynamic filtering (with or without NAT) and your
partner's secure FTP product supports the CCC command, as shown in
Figure 75.

Use the CCC command from the FTP client. This scenario is not likely to work
without CCC command support.

v You do not know what your firewalls do and your partner's secure FTP product
does support the CCC command, as shown in Figure 76.

Use the CCC command from the FTP client. This scenario is not likely to work
without CCC command support.

Figure 73. SSL/TLS-secured FTP session scenario 3

Figure 74. SSL/TLS-secured FTP session scenario 4

Figure 75. SSL/TLS-secured FTP session scenario 5

Figure 76. SSL/TLS-secured FTP session scenario 6

Chapter 12. Transferring files using FTP 705

Firewalls reject FTP sessions secured by SSL/TLS in the following additional
scenarios:
v Some firewalls are known to apply various validity checks on the FTP control

connection data stream. One known check verifies that all interactions on the
FTP control connection are terminated with an ASCII newline (NL) character.
Most of these checks fail when the control connection is secured with SSL/TLS,
because the data is encrypted. If you use the information in this topic and still
run into problems establishing FTP sessions secured by SSL/TLS through
firewalls, verify with your firewall administrators whether your firewalls
implement such validity checks on the FTP control connection, and consider
disabling those validity checks.

v Some firewalls are known to disable active mode data connections by default,
and block all active mode data connections. Use passive mode or extended
passive mode FTP instead.

v Many firewalls monitor activity on TCP connections and terminate connections
that are idle for a certain period of time. During a large data transfer over an
FTP data connection, the FTP control connection is idle. To avoid having
firewalls terminate idle FTP connections, consider coding the FTPKEEPALIVE
statement in the z/OS FTP.DATA file for the client or the server. For more
information about the FTPKEEPALIVE statement, see “Configuring
PROFILE.TCPIP for FTP” on page 660.

DB2 and JES
The following statements are used when FTP interfaces with DB2 and JES,
respectively. For more information, see z/OS Communications Server: IP Configuration
Reference and the optional steps in this information.
v DB2
v DB2PLAN
v JESGETBYDSN
v JESINTERFACELEVEL
v JESLRECL
v JESPUTGETTO
v JESRECFM
v SPREAD and SQLCOL

Configuring the optional FTP user exits
The following describes exit routines you can code and install. For detailed
information regarding these exit routines, see z/OS Communications Server: IP
Configuration Reference.

The FTPSMFEX user exit
Note the FTP server SMF user exit is called before an SMF type 118 record that
contains information about an FTP server session is written to the SYS1.MANx
data set. The user exit allows site specific modifications to the record and controls
whether the record is written to the SYS1.MANx data set.

Note that the exit is called only for type 118 records. SMF type 119 FTP records
must use the system-wide SMF user exits (IEFU83, IEFU84, and IEFU85) to obtain
this same functionality. For information on these SMF user exits, see z/OS MVS
System Management Facilities (SMF).

706 z/OS V1R12.0 Comm Svr: IP Configuration Guide

The FTCHKIP user exit
The FTCHKIP user exit is called when a user attempts to log in to the FTP server
or when a user issues the OPEN subcommand to establish a new connection. The
following information is passed to the exit:
v Client IP address *
v Client port number *
v Server IP address *
v Server port number *
v The socket address structure of the client's control connection
v The socket address structure of the server's control connection
v Session instance identifier

Note: Fields above marked with an asterisk (*) are valid only for IPv4 addresses,
including IPv4-mapped IPv6 addresses.

An installation can use this exit to determine if a particular IP address or port
number is allowed to access the FTP site. If the connection is denied by the user
exit, the following message is sent to the user:
421 User Exit rejects open for connection

The FTCHKPWD user exit
The FTCHKPWD user exit is called immediately after the user enters the password
or e-mail address during login to the FTP server. The following information is
passed to the exit:
v The user ID
v The user password or an asterisk (*) if an e-mail address is entered instead of a

password
v A userdata buffer

If an e-mail address is entered to log in, the userdata buffer contains the e-mail
address.

v The number of bad passwords entering during this login attempt
v The socket address structure of the client's control connection
v The socket address structure of the server's control connection
v Session instance identifier

The exit can be used to restrict access to a site based on user ID, password,
number of bad passwords, or anything in the socket address information for the
client or server. If the login is denied by the user exit, the following reply is sent to
the user:
530 PASS command failed

Note: If ACCESSERRORMSGS TRUE is coded in FTP.DATA, an additional 530
reply with information about why the PASS command failed might precede
the reply above.

The FTCHKCMD user exit
The FTCHKCMD user exit is called whenever the user enters an FTP command.
The following information is passed to the user exit:
v The user ID
v The FTP command to be issued

Chapter 12. Transferring files using FTP 707

v The command's arguments
v The directory type (MVS or HFS)
v The FILETYPE (SEQ, JES, or SQL)
v The current working directory
v A buffer to hold a modified argument string
v A buffer to hold a 500 reply extension to explain why the exit denied the request
v The socket address structure of the client's control connection
v The socket address structure of the server's control connection
v Session instance identifier
v A 256-byte scratchpad buffer

The user exit allows an installation to modify the arguments of an FTP command
or to deny a user from issuing the command. For example, if a user issues a DIR *
ftp command, the exit can either deny the command or modify it to DIR 'USER1.*'.
If the user exit denies the request by this user to issue this command, one or both
of the following replies will be sent to the user. The first reply is optional and is
sent only if the user exit returns a string in the 500 reply extension buffer.
500-UX-buffercontents
500 User Exit denies Userid userid from using Command command

The FTCHKJES user exit
FTCHKJES is called if the server is in FILETYPE=JES mode and the client tries to
submit a job. The following information is passed to the exit:
v The user ID
v A buffer containing the current JCL statement
v Size of statement in the buffer
v JESLrecl value
v Number of this buffer in current series
v Bytes transferred so far (including this buffer)
v Client identifier (see also session instance identifier)
v JESRecfm value
v FTCHKJES exit-specific workarea (4 bytes)
v The socket address structure of the client's control connection
v The socket address structure of the server's control connection
v Session instance identifier
v A 256-byte scratchpad buffer

The exit can allow or refuse the job to be submitted to the JES internal reader
based on any information passed to the exit. For example, the exit can look for a
USER= parameter on the JOB statement and check it against the client's user ID. If
the remote job submission is denied, the exit sends the user the following reply:
550 User Exit refuses this job to be submitted by userid

The FTPOSTPR user exit
FTPOSTPR is called after execution of the FTP commands RETR, STOR, STOU,
APPE, DELE, and RNTO. The following information is passed to the exit:
v The user ID
v Client IP address *
v Client port number *

708 z/OS V1R12.0 Comm Svr: IP Configuration Guide

v The directory type (MVS or HFS)
v The current working directory
v The FILETYPE (SEQ, JES, or SQL)
v Most recent reply code number
v Most recent reply text string
v Current FTP command
v Current CONDDISP setting
v Close reason code
v Name of data set or z/OS UNIX file retrieved or stored
v Bytes transferred
v The socket address structure of the client's control connection
v The socket address structure of the server's control connection
v Session instance identifier
v A 256-byte scratchpad buffer
v The 1-byte description of the confidence-of-successful-completion level assigned

to this file transfer

Notes:

1. Fields above marked with an asterisk (*) are valid only for IPv4 addresses,
including IPv4-mapped IPv6 addresses.

2. The directory type reflects the current working directory. The MVS data set or
z/OS UNIX file that is retrieved or stored can be located in a different type of
directory.

The exit allows for post processing at the termination of data transfer functions
within the server.

Customizing the FTP-to-JES interface for JESINTERFACELevel 2
(optional)

If FTP.DATA does not change the JESINTERFACELEVEL to 2, the FTP server uses
the JES interface provided in releases prior to CS for OS/390 V2R10. At this level,
the FTP user is allowed to submit jobs to JES, retrieve held output matching their
logged-in user ID plus one character, and delete held jobs matching their logged-in
user ID plus one character.

If JESINTERFACELevel is set to 2, FTP users have the ability to retrieve and delete
any job in the system permitted by the System Authorization Facility (SAF)
resource class JESSPOOL. For that reason, JESINTERFACELevel=2 should only be
specified if the proper JES and SDSF security measures are in place to protect
access to JES output. The SAF controls used for JESINTERFACELevel=2 are
essentially a subset of those used by SDSF. Therefore, if an installation has
customized SAF facilities for SDSF, they are configured for FTP JES level 2.

Before customizing the FTP-to-JES interface, complete JES customization. For
example, JESJOBS is an SAF class that controls which users can submit jobs to JES.
JESSPOOL is the SAF class that controls which users can access output jobs.
Customize these SAF classes before beginning customization of the FTP-to-JES
interface.

JESSPOOL defines resource names as
<nodeid>.<userid>.<jobname>.<Dsid>.<dsname>. An FTP user can delete an

Chapter 12. Transferring files using FTP 709

output job if they have UPDATE access to the resource that matches their nodeid,
userid, and job name. If the FTP user has READ access to the resource, they can
list, retrieve, or GET the job output. For more information on JES security, see z/OS
JES2 Initialization and Tuning Guide. For more information on the SAPI interface, see
z/OS MVS Using the Subsystem Interface.

There are three filters used by the FTP server to control the display of jobs:
v JESSTATUS
v JESOWNER
v JESJOBNAME

SDSF resources are employed for this.

JESSTATUS can be changed by an FTP user with the SITE command to filter jobs
in INPUT, ACTIVE, or OUTPUT state. The SDSF resources checked for these states
are ISFCMD.DSP.INPUT.jesx, ISFCMD.DSP.ACTIVE.jesx, and
ISFCMD.DSP.OUTPUT.jesx, respectively. At login time (USER command), the
default value is set to ALL if READ access is allowed to all three classes. Otherwise
it attempts to set it to OUTPUT, ACTIVE, and then INPUT if the appropriate
READ access is allowed. If no READ access is allowed to any of the classes,
JESSTATUS is set to OUTPUT but JESOWNER and JESJOBNAME cannot be
changed from the default. In this way, SAF controls can be put in place to limit
FTP users to whatever status of jobs an installation requires.

At login time, JESOWNER will have the value of the logged-in user ID. Authority
to change JESOWNER is obtained through READ access to RACF profile
ISFCMD.FILTER.OWNER. An FTP user who has READ access to
ISFCMD.FILTER.OWNER will be allowed to change the JESOWNER parameter
with the SITE command.

At login time, JESJOBNAME will have the value of the logged-in user ID plus an
asterisk (*). Authority to change JESJOBNAME is obtained through READ access to
RACF profile ISFCMD.FILTER.PREFIX. An FTP user who has READ access to
ISFCMD.FILTER.PREFIX will be allowed to change the JESJOBNAME parameter
with the SITE command.

For example, to allow all users except USER1 to be allowed to change JESOWNER
enter the following:
SETROPTS CLASSACT(SDSF) REFRESH
RDEFINE SDSF (ISFCMD.FILTER.OWNER) UACC(READ)
PERMIT ISFCMD.FILTER.OWNER ACCESS(NONE) CLASS(SDSF) ID(USER1)
SETROPTS CLASSACT(SDSF) REFRESH

For more information on SDSF security, see z/OS SDSF Operation and Customization.

Configuring the FTP server for anonymous logins (optional)
You can configure the FTP server to accept anonymous logins. A login is
anonymous when the remote user specifies USER ANONYMOUS instead of an
FTP user ID. To enable anonymous logins, add the ANONYMOUS statement to the
server FTP.DATA data set.

You can specify three levels of anonymous support via the ANONYMOUSLEVEL
keyword. ANONYMOUSLEVEL 1 is the default, and is equivalent to anonymous
login support provided by releases prior to OS/390 V2R10. That is, the

710 z/OS V1R12.0 Comm Svr: IP Configuration Guide

ANONYMOUS statement is supported. If no operands are specified on the
ANONYMOUS statement, the anonymous user needs no password and has
unrestricted access to MVS data sets and the z/OS UNIX file system.

You can specify ANONYMOUSLEVEL 2, but this is not recommended.
ANONYMOUSLEVEL 2 is provided for migration purposes only. Consider
ANONYMOUSLEVEL 3 if ANONYMOUSLEVEL 1 does not meet your anonymous
login security requirements.

If you specify ANONYMOUSLEVEL 3, the anonymous user cannot issue the USER
command to leave anonymous mode, nor can another user issue USER anonymous
to enter anonymous login mode. If you specify ANONYMOUSLEVEL 3 and
STARTDIRECTORY HFS in FTP.DATA, the anonymous user's z/OS UNIX file
system access is restricted to the anonymous user's home directory and home
directory subtrees.

The ANONYMOUSLEVEL 3 server recognizes additional keywords that restrict the
anonymous user's access to FTP resources. These keywords are ignored when
ANONYMOUSLEVEL is less than three:
v ANONYMOUSFILEACCESS allows the system programmer to preclude access

to either the z/OS UNIX file system or MVS data sets.
v ANONYMOUSFILETYPEJES, ANONYMOUSFILETYPESQL, and

ANONYMOUSFILETYPESEQ control whether the anonymous user can set
filetype JES, SQL, or SEQ, respectively.

v ANONYMOUSHFSFILEMODE defines the mode bits used for files written to
the z/OS UNIX file system.

v ANONYMOUSHFSDIRMODE defines the mode bits used for directories created
in the z/OS UNIX file system.

Finally, when ANONYMOUSLEVEL is set to three, the user's e-mail address is
requested in lieu of a password when:
v ANONYMOUS is specified without any parameters.
v ANONYMOUS is specified with user ID/password.
v ANONYMOUS is specified with user ID/SURROGATE.

Control the degree of verification of the e-mail address an anonymous user enters
as password by using the EMAILADDRCHECK keyword in FTP.DATA. See z/OS
Communications Server: IP Configuration Reference for details about the
EMAILADDRCHECK keyword. The e-mail address entered is logged to the syslog
daemon and is also passed to a user exit routine, FTCHKPWD, for user processing.

The FTP server can be defined to process users without passwords by using the
ANONYMOUS SURROGATE support. In order to support this,
ANONYMOUSLEVEL must be set to 3 in FTP.DATA on the server and BPX.SRV
surrogate must be defined in RACF.

z/OS UNIX uses profiles defined to the RACF SURROGAT class to authorize the
server to act as a surrogate of a client. Profiles defined to the SURROGAT class are
of the form:
BPX.SRV.<userid>

in which <userid> is the MVS user ID of the user that the server will support
without a password.

Chapter 12. Transferring files using FTP 711

The steps below are for a sample userid of the FTP daemon (the userid associated
with the FTP started task procedure) called FTPD with the ability to support user
ID GUEST without a password. As you add more servers, you will need to follow
similar procedures.
1. Activate the SURROGAT class support in RACF:

SETROPTS CLASSACT(SURROGAT)

This has to be done only once on the system. The SURROGAT class may
already have been set up on your system. If a daemon or server you are
running will be using the SURROGAT support heavily, consider using the
RACLIST command to keep the SURROGAT profiles in storage. The following
example shows how to cache the SURROGAT profiles in storage:
SETROPTS RACLIST(SURROGAT)

2. If the SURROGAT profile is in the RACLIST, any changes to the SURROGAT
profiles must be followed by a REFRESH command. To create the SURROGAT
class profile for user ID GUEST, issue:
RDEFINE SURROGAT BPX.SRV.GUEST UACC(NONE)
SETROPTS RACLIST(SURROGAT) REFRESH

A similar SURROGAT profile is required for each user ID that a server must
support without a password.

3. To permit the userid of the FTP daemon (the userid associated with the FTP
started task procedure), FTPD, to create a security environment for user ID
GUEST, issue the PERMIT command:
PERMIT BPX.SRV.GUEST CLASS(SURROGAT) ID(FTPD) ACCESS(READ)
SETROPTS RACLIST(SURROGAT) REFRESH

If you choose ANONYMOUSLEVEL greater than one and you choose
STARTDIRECTORY HFS, you must create an anonymous directory structure in the
z/OS UNIX file system.

Creating an anonymous directory structure in the z/OS UNIX
file system

The sample shell script, ftpandir.scp, will create an anonymous directory structure
for you, containing required and optional structures. Or, a superuser can create the
anonymous directory structure. In this topic, the steps a superuser would follow to
create an anonymous directory structure are outlined.

For the following steps, assume that the RACF user ID that is used when an
anonymous user logs in is called GUEST, that the HOME directory in that user's
OMVS segment in RACF is /u/guest, and that FTP.DATA contains a statement
similar to this: ANONYMOUS GUEST
1. Create a bin subdirectory in the anonymous root containing the executable files

ls and sh. This is a required directory. ls can be copied from the standard
directory. sh is part of the standard MVS search order, so you need only create
an empty file with the sticky bit.
The following example shows how to create ls and sh in the user GUEST's
home directory:
===> cd /u/guest
===> mkdir bin
===> chmod 711 bin
===> cd bin

===> cp /bin/ls ls

712 z/OS V1R12.0 Comm Svr: IP Configuration Guide

===> chmod 711 ls
===> touch sh
===> chmod 711 sh
===> chmod +t sh

An ls -al command should give the following results. Owner and group
attributes may be different in your system.
ls -al
total 280
drwx--x--x 2 USER22 0 8192 Sep 21 17:39 .
drwx--x--x 7 USER22 0 8192 Nov 1 14:44 ..
-rwx--x--x 1 USER22 0 126976 Sep 21 17:39 ls
-rwx--x--t 1 USER22 0 0 Sep 21 17:39 sh

2. Create a usr/sbin sudirectory of the anonymous root containing the executable
file ftpdns. This is a required subdirectory. The file ftpdns can be empty with
the sticky bin on.
The following example is for anonymous user GUEST:
===> cd /u/guest
===> mkdir usr
===> chmod 711 usr

===> cd usr
===> mkdir sbin
===> chmod 711 sbin
===> cd sbin
===> touch ftpdns
===> chmod 711 ftpdns
===> chmod +t ftpdns

If you do not configure the subdirectories, bin and usr/sbin, and their contents
correctly, the FTP server will not be able to accept anonymous logins and
message EZYFT731 will be displayed.

3. Create a dev subdirectory within the anonymous root. This is a required
subdirectory. A null file is created in this directory and used during the open of
syslog.
The following example is for anonymous user GUEST:
===> cd /u/guest
===> mkdir dev
===> chmod 711 usr

If you do not have the dev subdirectory, syslog might not open correctly.
Messages such as EZA2830I will not be logged out correctly.

4. Set up the public directory structure. This is a required directory.
This is the directory structure into which you place files that can be
downloaded by the anonymous FTP user. It does not have to be named pub; it
can be any name you choose. A general convention for anonymous FTP sites is
to call it pub:
===> cd /u/guest
===> mkdir pub
===> cd pub

If you want to structure the files you allow to be accessed, you can create
multiple subdirectories underneath this directory.
For simplicity, assume a single level directory, the pub directory. Into this
directory you copy the files you want to allow the anonymous user to
download:

Chapter 12. Transferring files using FTP 713

===> cp /x/y/z/prodinfo1.txt prodinfo1.txt
===> cp /x/y/z/prodinfo2.txt prodinfo2.txt
===> cd ..

Make sure that the permission bits are set correctly by using the following shell
command when executed in the /u/guest directory. This will set the
permission bits of all files in the pub directory and its subdirectories to 755:
===> chmod -R 755 pub

If your system does not require an incoming or extract directory, the system is
configured for anonymous FTP. An ls -al command of the pub directory should
give the following results:
drwxr-xr-x 3 IBMUSER SYS1 8192 May 13 21:15 .
drwxr-xr-x 6 IBMUSER SYS1 8192 May 20 14:51 ..
-rwxr-xr-x 1 IBMUSER SYS1 12 May 11 12:41 prodinfo1.txt
-rwxr-xr-x 1 IBMUSER SYS1 12 May 11 12:41 prodinfo2.txt

5. Set up an incoming directory (optional).
If you want anonymous users to be able to upload files to your FTP server, you
need some additional setup. The objective is to allow an anonymous user to
upload a file, but not to allow another anonymous user to download or even
be aware of the existence of the file until after an administrative user has
verified that the content of the file is acceptable. You do not want your FTP
server site to become a store-and-forward site for files of questionable ethical
content.
Positioned at the /u/guest directory, a superuser issues the following shell
command:
===> cd /u/guest
===> mkdir incoming
===> chmod 733 incoming

It does not have to be named incoming; it can be any name you choose. A
general convention for anonymous FTP sites is to call it incoming.
The 733 permission bits means that a non-superuser cannot list the content of
the incoming directory, but can write a file to it. Because the FTP server
enforces a UMASK of 777 when an anonymous user logs in, these files will be
written with permission bits 000, which means that they cannot be accessed by
the anonymous user or by any other user except a superuser.
An FTP client user can normally change the UMASK via a SITE UMASK
command or the user can change the permission bits of files they own through
a SITE CHMOD command.
If you define ANONYMOUSLEVEL 3, you can use the
ANONYMOUSHFSDIRMODE keyword to set the permission bits of any
directory created by an anonymous user, and the
ANONYMOUSHFSFILEMODE to set the permission bits of any file created by
an anonymous user.
If you do allow anonymous users to store files on your FTP server, you should
ensure that the directory into which these files are stored is a separate z/OS
UNIX file system that can fill up without impacting other work on your z/OS
system. The best way to do that is to allocate the /u/guest/incoming directory
in its own zSeries File System, HFS data set, or Network File System. If an
anonymous user uploads large amounts of data to the incoming directory, only
this separate z/OS UNIX file system will be filled up. Filling this separate
z/OS UNIX file system prevents other anonymous users from storing new files
on the server, but will not affect other functions on your system. At a
minimum, you should make sure that the incoming directory is not located on
the same physical device as your /tmp directory.

6. Set up the extract directory (optional).

714 z/OS V1R12.0 Comm Svr: IP Configuration Guide

If you need to make files available to certain anonymous users, but not to
everyone, you can create a directory that cannot be listed, but files in it can be
downloaded if the anonymous user knows the name of the file.
Positioned at the /u/guest directory, a superuser issues the following shell
commands:
===> cd /u/guest
===> mkdir extract
===> chmod 711 extract

It does not have to be named extract; it can be any name you choose. A general
convention for anonymous FTP sites is to call it extract.
A superuser can then copy files into this directory, ensure they have
permissions of 755, inform the intended anonymous user of the file name, and
that user can then log on as anonymous and retrieve the file.
An ls -al command at the /u/guest location should give the following result, if
you created all four subdirectories:
drwxr-xr-x 6 IBMUSER SYS1 8192 May 20 14:51 .
dr-xr-xr-x 6 IBMUSER SYS1 0 Jun 10 15:43 ..
drwx--x--x 2 IBMUSER SYS1 8192 May 11 12:44 bin
drwx--x--x 3 IBMUSER SYS1 8192 May 11 13:39 extract
drwx-wx-wx 3 IBMUSER SYS1 8192 May 25 09:35 incoming
drwxr-xr-x 3 IBMUSER SYS1 8192 May 13 21:15 pub

Configure the welcome banner page, login, and directory message
(optional)

The FTP server provides support to enable FTP administrators to provide useful
information about the site to FTP users. The following FTP.DATA statements are
available:
v BANNER
v LOGINMSG
v ANONYMOUSLOGINMSG
v MVSINFO
v ANONYMOUSMVSINFO
v HFSINFO
v ANONYMOUSHFSINFO

You can use the LOGINMSG statement in FTP.DATA to point to a set of messages
displayed when a known user logs in to FTP. Similarly, ANONYMOUSLOGINMSG
can point to a set of messages displayed when an anonymous user logs in to FTP.

You can use the MVSINFO statement to point to a set of messages displayed when
a known user changes the working directory to a particular MVS data set path.
Likewise, use the ANONYMOUSMVSINFO statement to point to a set of messages
displayed when an anonymous user changes working directory to a particular
MVS data set path.

You can use the HFSINFO statement to point to a set of messages displayed when
a client changes the working directory to a particular z/OS UNIX directory.
Likewise, use the ANONYMOUSHFSINFO statement to point to a set of messages
displayed when an anonymous user changes working directory to a particular
z/OS UNIX directory.

Chapter 12. Transferring files using FTP 715

Using magic cookies to represent information
The content of all the informational messages may include a predefined set of
magic cookies, which are substituted by the FTP server before the data is sent to
the FTP client. The following magic cookies are supported:
v %T — Local time
v %C — Current working directory
v %E — The FTP server administrators e-mail address
v %R — Remote host name
v %L — Local host name
v %U — Username (logged in user)

If %R is used, a long delay in login processing might occur as the FTP server will
issue a DNS query to resolve the remote host IP address. In order to use %E, the
ADMINEMAILADDR keyword must be specified in the server FTP.DATA
configuration file.

Configuring the FTP server to log session (user ID) activity
You can configure the FTP server to write log messages for trace activity related to
individual sessions by coding the FTPLOGGING or ANONYMOUSFTPLOGGING
statements in FTP.DATA. If you have configured syslogd for FTP, the log messages
appear in syslog.

Table 35 shows the FTP log message written for various activities. You can identify
an FTP log message by the ID=sessionID parameter in the message. Each login
session is assigned a session ID that can be used to identify all log messages
related to that session. For more information about EZYFxxxx messages, see z/OS
Communications Server: IP Messages Volume 3 (EZY).

Table 35. EZYFxxxx messages

FTP log message Activity

EZYFS50I A client connected to the FTP daemon.

EZYFS51I A client connection to the FTP daemon
failed.

EZYFS52I An FTP session ended.

EZYFS54I The server accepted the security mechanism.
The connection with the client is now
protected.

EZYFS55I The server rejected the security mechanism.
The connection with the client is not
protected.

EZYFS56I A client logged into the server.

EZYFS57I A client login to the server failed.

EZYFS58I The server denied the client access to an
MVS data set.

EZYFS59I The server denied the client access to a
z/OS UNIX file.

EZYFS60I, EZYFS61I, EZYFS62I The server successfully allocated an MVS
data set.

EZYFS63I, EZYFS64I, EZYFS65I The server could not allocate an MVS data
set.

716 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Table 35. EZYFxxxx messages (continued)

FTP log message Activity

EZYFS67I The server successfully allocated an MVS
data set.

EZYFS68I, EZYFS69I The server could not allocate a z/OS UNIX
file.

EZYFS70I, EZYFS74I, EZYFS75I The server deallocated an MVS data set.

EZYFS71I, EZYFS72I, EZYFS73I The server detected an error while
deallocating an MVS data set.

EZYFS77I The server deallocated a z/OS UNIX file.

EZYFS78I, EZYFS79I The server detected an error while
deallocating a z/OS UNIX file.

EZYFS80I The server sent a reply to the client after
data transfer.

EZYFS81I The server finished processing an MVS data
set transfer.

EZYFS82I The server finished processing a z/OS UNIX
data set transfer.

EZYFS83I The server stored a data set or file into its
file system.

EZYFS84I The server sent a data set or file to the client
(or to a server in the case of a proxy
transfer).

EZYFS85I The server finished returning job output to
the client.

EZYFS86I The server assigned a confidence of success
level to the completed data transfer.

EZYFS91I The server submitted a job for the client.

EZYFS92I The server returned a SQL report.

EZYFS95I An abend occurred while the server was
transferring data.

Configuring to send detailed login failure replies to an FTP client
(optional)

The FTP server returns minimal information to the client when the PASS command
fails. However, you can configure the FTP server to send additional information by
coding ACCESSERRORMSGS TRUE in FTP.DATA. This directs the server to reply
to the client with detailed login failure data. The reply might report server errors,
such as failing function calls with diagnostic return codes. It might report user
errors, such as an expired or incorrect password, an unknown user ID, or a
revoked user ID. You should not code ACCESSERRORMSGS TRUE in FTP.DATA if
you do not want to share this type of information with users logging in to FTP.

You can capture the same information in syslog by coding FTPLOGGING TRUE
and ANONYMOUSFTPLOGGING TRUE in FTP.DATA. You can also turn on the
DEBUG option called ACC to log the error messages in the syslog. For more
information on coding FTP.DATA statements, see z/OS Communications Server: IP
Configuration Reference.

Chapter 12. Transferring files using FTP 717

Install the SQL query function (optional) and access the DB2 modules
To use FTP to do SQL queries, bind the DBRM called EZAFTPMQ to the plan used
by FTP, and grant execution privileges for that plan to PUBLIC. (The name of the
plan can be specified by the DB2PLAN keyword in FTP.DATA or the default is
EZAFTPMQ.) This FTP facility only performs SELECT operations on the DB2
tables. It does not perform UPDATE, INSERT, or DELETE.

Note: If secondary authorization for SQL queries is required, the DSN3SATH
sample exit shipped by DB2 must be modified. The exit will return the
primary AUTHID for requests originating from the FTP server.

The following sample job is provided in the FTOEBIND member of the SEZAINST
data set. It can be used to enable the FTP server and client to do SQL queries.
//FTPSETUP JOB FTPSETUP,
// CLASS=A,
// NOTIFY=&SYSUID
//**
//*
//* File name: tcpip.SEZAINST(FTOEBIND)
//* SMP/E distribution name: EZAFTPAB
//*
//* Licensed Materials - Property of IBM
//* This product contains "Restricted Materials of IBM"
//* 5647-A01 (C) Copyright IBM Corp. 1997, 2002
//* All rights reserved.
//* US Government Users Restricted Rights -
//* Use, duplication or disclosure restricted by GSA ADP Schedule
//* Contract with IBM Corp.
//* See IBM Copyright Instructions.
//*
//* This JCL binds the EZAFTPMQ DBRM to the specified
//* DB2 subsystem and allows execution of the
//* EZAFTPMQ plan by PUBLIC.
//*
//* The FTP server and client use this plan. (See
//* Usage note #7)
//*
//*
//* Usage notes:
//*
//* 1. You must execute this job from a user ID that has
//* the authority to bind the EZAFTPMQ plan.
//*
//* 2. Change the STEPLIB DD statement in the FTPBIND and
//* FTPGRANT steps to reflect the DB2 DSNLOAD data set.
//*
//* 3. Change the DB2 sybsystem name in the FTPBIND and
//* FTPGRANT steps from SYSTEM(xxx) to the
//* installation defined DB2 subsystem name.
//*
//* 4. Change the library parameter in the FTPBIND step from
//* TCPIP.SEZADBRM to the installation defined TCPIP
//* SEZADBRM library.
//*
//* 5. Change the plan name in the FTPGRANT step from
//* DSNTIAYY to reflect the plan associated with the
//* program DSNTIAD.
//*

718 z/OS V1R12.0 Comm Svr: IP Configuration Guide

//* 6. Change the library parameter in the FTPGRANT step
//* from xxxxxx.RUNLIB.LOAD to reflect the library
//* where the DSNTIAD program resides.
//*
//* 7. You can bind the DBRM to a plan name other than EZAFTPMQ
//* by changing the plan specified in the FTPBIND and
//* FTPGRANT steps. If you do this, you must use the
//* DB2PLAN keyword in FTP.DATA to change the plan name
//* used by the FTP server and/or client to the plan name
//* specified here.
//*
//**
//FTPBIND EXEC PGM=IKJEFT01,DYNAMNBR=20
//STEPLIB DD DSN=xxxxxx.DSNLOAD,DISP=SHR
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSTSIN DD *
DSN SYSTEM(xxx)
BIND ACQUIRE(USE) -

ACTION(REPLACE) -
CACHESIZE(1024) -
CURRENTDATA(NO) -
EXPLAIN(NO) -
ISOLATION(CS) -
LIBRARY(’TCPIP.SEZADBRM’) -
MEMBER(EZAFTPMQ) -
NODEFER(PREPARE) -
PLAN(EZAFTPMQ) -
RELEASE(COMMIT) -
VALIDATE(RUN) -
RETAIN

END
//*
//FTPGRANT EXEC PGM=IKJEFT01,DYNAMNBR=20
//STEPLIB DD DSN=xxxxxx.DSNLOAD,DISP=SHR
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSTSIN DD *
DSN SYSTEM(xxx)
RUN PROGRAM(DSNTIAD) -

PLAN(DSNTIAYY) -
LIBRARY(’xxxxxx.RUNLIB.LOAD’)

END
//SYSIN DD *
GRANT EXECUTE ON PLAN EZAFTPMQ TO PUBLIC;
//*

Accessing DB2 modules
The FTP server or client loads 3 DB2 modules into storage to perform an SQL
query. These modules are:
v DSNALI
v DSNHLI2
v DSNTIAR

The modules are usually found in the DB2 load library with the suffix DSNLOAD.
The DB2 administrator or system programmer should add the DSNLOAD library
to the LINKLIST to ensure FTP has access to this library.

Chapter 12. Transferring files using FTP 719

Another way to ensure access is to add the DSNLOAD library to the FTP STEPLIB.
For the FTP server this means the JCL used to start the FTP server has a STEPLIB
DD statement referring to the DSNLOAD library or, if the FTP daemon is started
from the z/OS shell, the STEPLIB environment variable is set. For the FTP client,
this means a TSO CLIST must allocate the DSNLOAD library as the STEPLIB.

If the FTP client is to be run from a batch job to perform SQL queries, the
DSNLOAD library must be added to the STEPLIB DD statement for the batch job.

Usage notes:

To allow FTP access to multiple levels of DB2, link to the libraries that contain the
lowest level of DB2 to be accessed.

FTP.DATA updates for SQL query function
To obtain FTP.DATA updates for the SQL query function, follow these steps:
1. Set the FTP.DATA DB2 statement to specify the name of the DB2 subsystem.
2. Set DB2PLAN to specify the DB2 plan to be used by the FTP server.
3. Set the SPREAD statement to specify whether SQL output is in spreadsheet

format.
4. Set SQLCOL to specify the column headings of the output data.

Verifying the FTP server
If FTP is in the autolog list and the TCP/IP address space is restarted, FTP should
start automatically. For other cases, it should be started manually. To do this, go to
the MVS console and enter the following command:
S FTPD

Note: This command assumes the FTP procedure name is FTPD.

If the FTP server startup is complete, the following message should be seen on the
MVS console:
EZY2702I Server-FTP: Initialization completed at 17:37:29 on 12/17/99.

If the message is not seen, a message explaining why FTP did not start up will
appear in SYSLOG. Even if the above message is issued, it would be beneficial to
inspect SYSLOG for warning messages issued during FTP initialization. EZY2700I
displays the port FTP uses as the control port, the port it listens to for incoming
connections from clients. In this example, FTP is listening to standard port 21.

The file syslog uses is defined in /etc/syslog.conf. The statement daemon.info
/tmp/daemon.log directs SYSLOGD to save all the daemon messages in
/tmp/daemon.log. Below is an example of output error messages.
EZYFT18I Using catalog ’/usr/lib/nls/msg/C/ftpdmsg.cat’ for FTP messages.
EZY2697I IBM FTP CS V1R10 21:04:56 on 04/17/08
EZY2640I Using dd:SYSFTPD=USER1.FTP.DATA for local site configuration parameters
EZYFT46E Error in dd:SYSFTPD file: line 4 near column 9.
EZY2636E SMFLOGN value not specified.
EZYFT46E Error in dd:SYSFTPD file: line 5 near column 8.
EZY2636E SMFREN value not specified.
EZYFT47I dd:SYSFTPD file, line 21: Ignoring keyword "EXTENSIONS REST_STREAM".
EZYFT47I dd:SYSFTPD file, line 29: Ignoring keyword "CTRLCONN".
EZYFT21I Using catalog ’/usr/lib/nls/msg/C/ftpdrply.cat’ for FTP replies.
EZYFT26I Using 7-bit conversion derived from ’ISO8859-1’ and ’IBM-1047’ for the control connection.
EZYFT33I Unable to open DDNAME ’SYSFTSX’ for the data connection: EDC5129I No such file or directory.
EZYFT31I Using //’TPOUSER.STANDARD.TCPXLBIN’ for FTP translation tables for the data connection.
EZYFT09I system information for VIC135: z/OS version 1 release 10 (2094)
EZY2700I Using port FTP control (21)

720 z/OS V1R12.0 Comm Svr: IP Configuration Guide

EZY2701I Inactivity time is 0
EZYFT57I FTP registering with WLM as group = ftpgroup host = VIC135
EZY2702I Server-FTP: Initialization completed at 21:05:57 on 04/17/08.
EZYFT41I Server-FTP: process id 16777255, server job name FTPD11

Verifying the FTP client
To verify that the FTP client works correctly, log onto TSO and issue the NETSTAT
HOME command, or issue NETSTAT –h from the z/OS UNIX shell. These
commands will show the interface addresses that are known to the system. Below
is an example of the output from NETSTAT HOME:
MVS TCP/IP NETSTAT CS V1R9 TCPIP Name: TCPCS 14:22:17
Home address list:
LinkName: OSAQDIO6L

Address: 9.67.115.13
Flags: Primary

LinkName: LSAMEH
Address: 9.1.1.1

Flags:
LinkName: LOOPBACK

Address: 127.0.0.1
Flags:

Address: fe80::9:6b00:671a:586
Type: Link_Local
Flags: Autoconfigured

IntfName: V6SAMEH
Address: 1::8

Type: Global
Flags:

IntfName: V6VIRT
Address: 2::55

Type: Global
Flags:

IntfName: LOOPBACK6
Address: 3::1

Type: Global
Flags:

Address: ::1
Type: Loopback
Flags:

To invoke the FTP client, use any address shown on the NETSTAT HOME address
list. The first example below shows how you could log in to the FTP server at
9.67.115.13 using a batch job (the output of the batch job is not shown). The second
example shows logging in to the FTP server at 9.67.113.37 from the TSO
environment.
//FTPBATCH JOB FTPUSER,
// USER=USER1,PASSWORD=TCPSUP
//BATCH EXEC PGM=FTP
//OUTPUT DD SYSOUT=*
//INPUT DD *

9.67.115.13
USER10 tcpusr
SITE FILE=SEQ
QUIT

//*

Using ’USER1.FTP.DATA’ for local site configuration parameters.
IBM FTP CS V1R9
FTP: using TCPCS
Connecting to: vic135.tcp.raleigh.ibm.com 9.67.113.37 port: 21.
220-FTPD1 IBM FTP CS V1R9 at vic135, 19:07:34 on 2006-10-08.
220 Connection will close if idle for more than 5 minutes.
>>> FEAT

Chapter 12. Transferring files using FTP 721

211- Extensions supported
AUTH TLS
PBSZ
PROT
211 End
NAME (vic135:USER1):

user1
NAME (vic135:USER1):
>>> USER USER1
331 Send password please.
PASSWORD:

>>> PASS
230 USER1 is logged on. Working directory is "/".
Command:

Verifying FTP.DATA statements
Many FTP.DATA statements can be verified via the FTP client STAT and LOCSTAT
commands. The output from each installation's STAT and LOCSTAT will depend
on the client and server copy of FTP.DATA. Below is sample output of one system.
stat
EZA1701I >>> STAT
211-Server FTP talking to host 127.0.0.1, port 1027
211-User: USER1 Working directory: USER1.
211-The control connection has transferred 2006 bytes
211-There is no current data connection.
211-The next data connection will be actively opened
211-to host 127.0.0.1, port 1027,
211-using Mode Stream, Structure File, type ASCII, byte-size 8
211-Automatic recall of migrated data sets.
211-Automatic mount of direct access volumes.
211-Auto tape mount is allowed.
211-Inactivity timer is set to 600
211-VCOUNT is 59
211-ASA control characters in ASA files opened for text processing
211-will be transferred as ASA control characters.
211-Trailing blanks are removed from a fixed format
211-data set when it is retrieved.
211-Data set mode. (Do not treat each qualifier as a directory.)
211-ISPFSTATS is set to FALSE
211-Primary allocation 5 tracks. Secondary allocation 2 tracks.
211-Partitioned data sets will be created with 15 directory blocks.
211-FileType SEQ (Sequential - default).
211-Number of access method buffers is 5
211-RDWs from variable format data sets are discarded.
211-Records on input tape are unspecified format
211-SITE DB2 subsystem name is DB2
211-Data not wrapped into next record.
211-Tape write is not allowed to use BSAM I/O
211-Truncated records will not be treated as an error
211-JESLRECL is 80
211-JESRECFM is Fixed
211-JESINTERFACELEVEL is 2
211-ENcoding is set to SBCS
211-SBSUB is set to FALSE
211-SBSUBCHAR is set to SPACE
211-SMS is active.
211-Mgmtclass for new data sets is TCPMGMT
211-New data sets will be catalogued if a store operation ends abnormally
211-Single quotes will override the current working directory.
211-UMASK value is 027
211-Process id is 12
211-Checkpoint interval is 0

722 z/OS V1R12.0 Comm Svr: IP Configuration Guide

211-Authentication type: None
211-Record format VB, Lrecl: 128, Blocksize: 6144
211 *** end of status ***

locstat
EZA1600I Trace: FALSE, Send Port: TRUE
EZA1601I Send Site with Put command: TRUE
EZA2676I Connected to:127.0.0.1, Port: FTP control (21), logged in
EZA1605I Local Port: 1027
EZA1606I Data type:a, Transfer mode:s, Structure:f
EZA2098I Automatic recall of migrated data sets.
EZA2100I Automatic mount of direct access volumes.
EZA2101I Data set mode. (Do not treat each qualifier as a directory.)
EZA2844I ISPFSTATS is set to FALSE
EZA2134I Primary allocation 5 tracks, Secondary allocation 2 tracks.
EZA2138I Partitioned data sets will be created with 15 directory blocks
EZA2103I FileType is SEQ (Sequential - the default).
EZA2141I Number of access method buffers is 5.
EZA2948I ENcoding is set to SBCS
EZA2943I SBSUB is set to FALSE
EZA2944I SBSUBCHAR is set to SPACE
EZA2142I Mgmtclass for new data sets is TCPMGMT
EZA2145I RDW’s from VB/VBS files are discarded.
EZA2518I Records on input tape are unspecified format
EZA2148I DB2 subsystem name is DB2
EZA2152I Volid of Migrated Data Sets is MIGRAT
EZA2154I Trailing blanks in records read from RECFM F datasets are discarded.
EZA2535I Record format: VB, Lrecl: 128, Blocksize: 6144.
EZA2801I Data not wrapped into next record.
EZA2529I Truncated records will not be treated as an error.
EZA2494I Checkpoint interval is 0
EZA2511I Checkpoint data set will be opened for GET
EZA2428I CHKPTPrefix uses Home to determine the HLQ of the FTP.CHECKPOINT file.
EZA2817I Automatic mount of tape volumes.
EZA2809I CCONNTIME is 120
EZA2810I DATACTTIME is 120
EZA2811I DCONNTIME is 120
EZA2812I INACTTIME is 120
EZA2813I MYOPENTIME is 120
EZA2815I VCOUNT is 59
EZA2689I Prompting: ON, Globbing: ON
EZA2719I ASA control characters transferred as ASA control characters
EZA2720I New data sets catalogued if a store operation terminates abnormally
EZA2722I Single quotes will override the current working directory
EZA2724I UMASK value is 027
EZA2819I Data connections for the client are not firewall friendly.
EZA2889I Authentication mechanism: None
EZA2866I Tape write is not allowed to use BSAM I/O
EZY2640I Using ’SYS1.TCPPARMS(FTPDATA)’ for local site configuration parameters.
EZA1460I Command:

Verifying anonymous, banner, and other optional configuration
information

Depending on your installation's choices for anonymous level, banner support
chosen, exits, and so on, verification of support output will differ. To verify
anonymous configuration at a particular installation, log in as anonymous and
verify the behavior is as expected. For example, if EMAILADDRCHECK FAIL is
specified in FTP.DATA, try to log in as anonymous using an incorrect e-mail
address as password. To verify banner support, login and verify the banners are
displayed as expected. Below is a sample of FTP.DATA and FTP client output for
one such installation.

Chapter 12. Transferring files using FTP 723

; BANNER STUFF
EMAILADDRCHECK FAIL
BANNER USER1.TEST1
ADMINEMAILADDR FTPADMIN@MYSYSTEM.COM
; ANONYMOUS STUFF
ANONYMOUSLEVEL 3
STARTDIRECTORY HFS

ftp 9.67.113.63
IBM FTP CS V1R9 2006 349 01:35 UTC
FTP: using TCPCS
Connecting to: 9.67.113.63 port: 21.
220-FTPD1 IBM FTP CS V1R9 at HOSTA, 19:07:34 on 2006-01-08.
220-You have just read ’USER1.TEST1’
220-ADMINEMAILADDRESS is FTPADMIN@MYSYSTEM.COM
220 Connection will not timeout.
NAME (9.67.113.63:USER4):
anonymous no-email-pw
>>> USER anonymous
331 Send password please.
>>> PASS
530 PASS command failed.
Command:

Verifying the FTP-JES interface (optional)
As with the other optional configuration information, FTP-JES support can best be
verified by logging in and confirming the FTP.DATA parameters chosen. To verify
JES support, a simple batch job can be created if the JESINTERFACELEVEL is set
to the security requirements of an installation. Below is the batch job and FTP
client output for JESINTERFACELEVEL 2.
EDIT USER1.FTP.JCL.TEST Columns 00001 00072
Command ===> Scroll ===> CSR
****** ***************************** Top of Data *****************************
000100 //JOBTEST JOB MSGCLASS=H,MSGLEVEL=(1,1),CLASS=A,
000200 // USER=USER1
000300 //STEP1 EXEC PGM=IEBGENER
000400 //OBJTMP1 DD DSN=&PRLOBJ,DISP=(NEW,PASS,DELETE),
000500 // SPACE=(CYL,(1,1,10)),
000600 // DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)
000700 //SYSPRINT DD SYSOUT=A
000800 //SYSUT1 DD DSN=SYS1.PROCLIB(JES2),DISP=SHR
000900 //SYSIN DD DUMMY
001000 //SYSUT2 DD SYSOUT=H
001100 //
001200 // EXEC PGM=IEFBR14
****** **************************** Bottom of Data ***************************

site file=jes jesjobname=jobtest jesowner=* jesstatus=all
EZA1701I >>> SITE file=jes jesjobname=jobtest jesowner=* jesstatus=all
200 Site command was accepted
EZA1460I Command:
put ’user1.ftp.jcl.test’
EZA1701I >>> SITE FIXrecfm 80 LRECL=80 RECFM=FB BLKSIZE=32720
200 Site command was accepted
EZA1701I >>> PORT 127,0,0,1,4,12
200 Port request OK.
EZA1701I >>> STOR ’user1.ftp.jcl.test’
125 Sending Job to JES internal reader FIXrecfm 80
250-It is known to JES as JOB00076
250 Transfer completed successfully.
EZA1617I 984 bytes transferred in 0.005 seconds. Transfer rate 196.80 Kbytes/sec.
EZA1460I Command:
dir j76
EZA1701I >>> PORT 127,0,0,1,4,13
200 Port request OK.

724 z/OS V1R12.0 Comm Svr: IP Configuration Guide

EZA1701I >>> LIST j76
125 List started OK for JESJOBNAME=JOBTEST, JESSTATUS=ALL and JESOWNER=*
EZA2284I JOBNAME JOBID OWNER STATUS CLASS
EZA2284I JOBTEST JOB00076 USER1 OUTPUT A RC=0000
EZA2284I ID STEPNAME PROCSTEP C DDNAME BYTE-COUNT
EZA2284I 001 JESE H JESMSGLG 1084
EZA2284I 002 JESE H JESJCL 1023
EZA2284I 003 JESE H JESYSMSG 1143
EZA2284I 004 STEP1 H SYSUT2 741
EZA2284I 005 STEP1 A SYSPRINT 209
EZA2284I 5 spool files
250 List completed successfully.
EZA1460I Command:

Chapter 12. Transferring files using FTP 725

726 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Chapter 13. Trivial File Transfer Protocol

Trivial File Transfer Protocol (TFTP) is a UDP protocol used to transfer files. TFTP
can read or write files from or to a remote server. On the z/OS system, TFTP is a
server you can configure with the command line option during TFTP invocation.
TFTP can also be started as a procedure.

TFTP is installed in the /usr/lpp/tcpip/sbin/ directory.

Recommendation: The TFTP server uses well-known port 69. The TFTP server has
no user authentication. Any client that can connect to port 69 on the server has
access to TFTP. If the TFTP server is started without a directory, it allows access to
the entire file system. To restrict access to the file system, start the TFTP server
with a list of directories.

The TFTP server preforks a child process to handle incoming requests when the
concurrency limit is exceeded. Consequently, immediately after starting the TFTP
server, two TFTP processes exist.

In case of a flood of concurrent TFTP commands, the TFTP server may fork
additional processes. When the number of concurrent requests being processed
drops below the concurrency limit, the number of TFTP processes is decreased
back to two.

Starting TFTP from the command line
To start the TFTP server from the command line, type the tftpd command.

tftpd [-l] [-p port] [-t timeout] [-r maxretries] [-c concurrency_limit]
[-s maxsegsize] [-f file] [-a archive directory [-a ...]]
[-b IP address] [directory ...]

The following are parameters used for the tftpd command:

-l Logs all incoming read and write requests and associated information to
the system log. Logged information includes the IP address of the
requester, the file requested, and whether the request was successful.

-p port
Uses the specified port. The TFTP server usually receives requests on
well-known port 69. You can specify the port in which requests are to be
received.

-t timeout
Sets the packet timeout. The TFTP server usually waits 5 seconds before
assuming a transmitted packet has been lost. You can specify a different
timeout period in seconds.

-r maxretries
Sets the retry limit. The TFTP server usually limits the number of
retransmissions it performs due to lost packet to 5. You can specify a
different retry limit.

-c concurrency_limit
Sets the concurrency limit. The TFTP server spawns both threads and
processes to handle incoming requests. You can specify the limit for the

© Copyright IBM Corp. 2000, 2011 727

number of threads that may be concurrently processing requests under a
single process. When the limit is exceeded, a new process is spawned to
handle requests. The default is 200 threads.

-s maxsegsize
Sets the maximum block size that can be negotiated by the TFTP block size
option. The default is 8192.

-f file Specifies a cache file. You can specify a file containing information on files
to be preloaded and cached for transmission. A cache file consists of one or
more entries. For clarity, place each entry on a separate line. An entry has
the form:

a | b <pathname>

where:
v a indicates that the specified file is cached in ASCII form. The file is

preconverted to netascii format.
v b indicates that the specified file is cached in binary form, with no

conversion.

Following are examples of cache file entries,

a /usr/local/textfile
b local/binaryfile

If a relative pathname to the file is specified, the TFTP server searches the
specified directories for the file.

The cached version of a file is only used for requests requiring the
specified format. For example, the binary cached version of a file is not
used in satisfying a request for the file in netascii format. If a file is to be
retrieved in both binary and ASCII formats, the user must specify that two
copies of the file be cached with one in binary format, and the other in
netascii format.

Caching is not dynamic. The cache files are read in when the TFTP server
is started and are not updated, even if the file on disk is updated. To
update or refresh the cache, the TFTP server must be recycled.

-a archive directory
Specifies an archive directory. The files in this directory and its
subdirectories are treated as binary files for downloading. This option is
useful on EBCDIC machines that act as file servers for ASCII clients.
Multiple -a options can be specified; one directory per -a option.
Directories must be specified as absolute path names. You can specify no
more than 20 directories.

-b IP address
Uses the specified IP address. The TFTP server usually binds to
INADDR_ANY or the IPv6 unspecified address, in6addr_any. You can
specify the IP address on which requests are to be received. TFTP requests
that come in on other IP addresses will not be accepted by this instance of
TFTPD.

directory
Specifies an absolute path name for a directory. You may specify no more
than 20 directories on the tftpd command line.

If the TFTP server is started without a list of directories, all mounted
directories are considered active.

728 z/OS V1R12.0 Comm Svr: IP Configuration Guide

If a list of directories is specified, only those directories specified are active.
That list is used as a search path for incoming requests specifying a
relative path name for a file.

Activating a directory activates all of its subdirectories.

For a file to be readable by the TFTP server, the file must be in an active
directory and have world ("other") read access enabled. For a file to be
writable by the TFTP server, the file must already exist in an active
directory and have world ("other") write access.

Starting TFTPD as a procedure
Before you begin: Obtain a copy of the sample procedure, shipped as
SEZAINST(TFTPD), and store it in one of your PROCLIB concatenation data sets.

Perform the following step to start TFTPD as a procedure:
v Invoke the procedure using the system operator start command. Following is a

copy of the sample, which shows how to start TFTPD as a procedure:
//TFTPSD PROC
//*
//* Communications Server IP
//* SMP/E distribution name: EZATTFDP
//*
//* 5694-A01 5655-HAL (C) Copyright IBM Corp. 1997, 2004.
//* Licensed Materials - Property of IBM
//* This product contains "Restricted Materials of IBM"
//* All rights reserved.
//* US Government Users Restricted Rights -
//* Use, duplication or disclosure restricted by
//* GSA ADP Schedule Contract with IBM Corp.
//* See IBM Copyright Instructions.
//*
//* Function: Trivial File Transfer Protocol Server start
//*
//* Please note:
//*
//* -a Specify an archive directory. TFTPD treats files in this
//* directory and its subdirectories as binary files for uploads
//* and downloads, regardless of how they were requested by the
//* client. Use this option on EBCDIC machines that act as file
//* servers for ASCII clients.
//*
//* You can specify up to 20 -a options, one directory per -a
//* option. You must specify directories as absolute pathnames.
//*
//* -c the number of threads to use concurrently. Make the number
//* a some reasonable number like 20 and not the default, which
//* is 200.
//*
//* -t Set the packet timeout. The TFTP server usually waits 5 seconds
//* before presuming that a transmitted packet has been lost. You can
//* specify a different timeout period in seconds.
//*
//* -l Log all incoming read and write requests and associated
//* information to the system log. Logged information includes the IP
//* address of the requestor, the file requested, and whether the
//* request was successful.
//*

Chapter 13. Trivial File Transfer Protocol 729

//* -p Specify the port. The TFTP server usually receives requests on
//* well-known port 69. You can specify the port in which requests
//* are to be received.
//*
//* -r Set the retry limit. The TFTP server usually limits the number
//* of retransmissions it performs due to lost packet to 5. You
//* can specify a different retry limit.
//*
//* -s Set the maximum block size that can be negotiated by the
//* TFTP block size option. The default is 8192.
//*
//* -f Secify a cache file. You can specify a file containing
//* information on files to be preloaded and cached for transmission.
//* A cache file consists of one or more entries. For clarity, place
//* each entry on a separate line. See the IP Configuration Guide for
//* details on this option.
//*
//* -b Specify IP address. The TFTP server usually binds to in6addr_any
//* or inaddr_any. You can specify the IP address on which requests
//* are to be received.
//* TFTP requests that come in on other IP addresses will not be
//* accepted by this instance of TFTPD.
//*
//TFTP EXEC PGM=TFTPD,REGION=0K,TIME=NOLIMIT,
// PARM=’POSIX(ON),ALL31(ON),TRAP(OFF)/
// -c 20 -t 300’
//*STEPLIB DD DISP=SHR,DSN=TCP.SEZALOAD,
//* VOL=SER=,UNIT=
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=F,LRECL=132,BLKSIZE=132)
//SYSIN DD DUMMY
//SYSERR DD SYSOUT=*
//SYSOUT DD SYSOUT=*,DCB=(RECFM=F,LRECL=132,BLKSIZE=132)
//CEEDUMP DD SYSOUT=*
//SYSABEND DD SYSOUT=*
// PEND

You know that TFTPD is starting when the following message appears on the
console:
EZZ7001I starting

Stopping the TFTP server
To terminate the TFTP server, send a SIGTERM signal using the UNIX kill
command to the oldest existing TFTP process. This is the process with a parent
process ID of 1. Termination of this process will cause all of its children to
terminate.

If multiple instances of the TFTP server are running, to determine the pid and its
corresponding start options for each instance of the TFTP server, invoke the
following UNIX command:
ps -o pid,ppid,args

Terminate an instance of the TFTP server using the UNIX kill command with the
appropriate pid.

730 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Chapter 14. The resolver

The resolver acts on behalf of programs as a client to perform the following
functions:
v Access name servers to provide name-to-address or address-to-name resolution
v Allocate and read the TCPIP.DATA file
v Establish TCP/IP stack affinity for certain socket APIs
v Provide protocol and services information

To resolve the query for the requesting program, the resolver uses information that
it obtains from the following sources:
v Available name servers
v The DNS response information that has been cached locally (when system-wide

caching is enabled)
v Local definitions, such as /etc/hosts, /etc/ipnodes, HOSTS.SITEINFO,

HOSTS.ADDRINFO, and ETC.IPNODES

The TCPIP.DATA statements control how (and if) the resolver uses name servers.
For detailed information about TCPIP.DATA configuration statements, see z/OS
Communications Server: IP Configuration Reference.

Requirement: The resolver address space must be started before any application or
TCP/IP stack resolver calls can occur.

Resolver API calls
Application programs invoke resolver functions using resolver API calls such as
gethostbyname() and getaddrinfo(). The z/OS resolver supports a number of IBM
APIs, although not all APIs support all possible resolver API calls. The z/OS
resolver is invoked by the following resolver API calls:
v Application programs using the gethostbyaddr() and gethostbyname() resolver

calls from the following IBM APIs:
– z/OS XL C/C++ Run-time Library functions
– z/OS UNIX assembler callable services
– z/OS Communications Server C/C++ API
– z/OS Communications Server Callable and Macro API
– z/OS Communications Server REXX API
– z/OS Communications Server PASCAL API

v Application programs using the getaddrinfo(), getnameinfo(), and freeaddrinfo()
resolver calls from the following IBM APIs:
– z/OS XL C/C++ Run-time Library functions
– z/OS UNIX assembler callable services
– z/OS Communications Server Callable and Macro API
– z/OS Communications Server REXX API

v Application programs using the sethostent(), gethostent(), and endhostent()
resolver calls from the following IBM APIs:
– z/OS XL C/C++ Run-time Library functions

© Copyright IBM Corp. 2000, 2011 731

|
|

|

|

|

|

|
|

|

|
|

|
|

|
|
|

|
|

|

|
|
|
|

|

– z/OS Communications Server C/C++ API

The z/OS Communications Server SMTP server, BIND 9 DNS and DNS V9 utilities
(dig, nslookup, and nsupdate) provide their own unique resolver services. When
their resolver initializes, it uses the appropriate TCPIP.DATA information, including
information from the global TCPIP.DATA file, if one is specified. For more
information, see “The resolver and the global TCPIP.DATA file” on page 735.

Restrictions for the SMTP resolver:

v The SMTP resolver does not support the EDNS0 standards.
v The SMTP resolver uses only the first value of the SEARCH TCPIP.DATA

statement when resolving host names.
v The SMTP resolver does not support IPv6 addresses on a NAMESERVER or

NSINTERADDR statement.
v The SMTP resolver does not support caching.
v The SMTP resolver cannot use the name server responsiveness monitor function.

Starting the resolver
There are two ways that the resolver can be started:
v Use z/OS UNIX to start the resolver

The resolver is started when z/OS UNIX is initialized. This method of starting
the resolver ensures that applications that require resolver services are not
started before the resolver starts. If you use z/OS UNIX to start the resolver, you
can use the default resolver settings (see “The default resolver settings” on page
733), or you can optionally create a start procedure and define the address space
(see “Customizing the resolver” on page 733).

v Use automation tools to start the resolver
The resolver is started by issuing the MVS START operator command. You must
customize the resolver to use this starting method; see “Customizing the
resolver” on page 733 for more information. If you use this method of starting
the resolver, then it is possible that an application that needs resolver services
(such as INETD) is started before the resolver address space is initialized. In this
case, you might need to remove the starting of INETD from the z/OS UNIX
/etc/rc file and start INETD with automation after the resolver has initialized.

If you are using z/OS UNIX to start the resolver, then the following actions occur
when z/OS UNIX is initialized:
v z/OS UNIX uses SUB=MSTR to start the resolver (the resolver does not require

JES); for information about SUB=MSTR, see z/OS MVS JCL Reference

v z/OS UNIX issues an informational message that contains the name of the
procedure that it is starting:
BPXF224I THE RESOLVER_PROC, procname, IS BEING STARTED

Rule: If the RESOLVER_PROC statement is not present or is specified with the
procedure name DEFAULT, the procname value is RESOLVER, even though a
start procedure was not used. For more information about the
RESOLVER_PROC statement, see z/OS MVS Initialization and Tuning Reference.

v If the start procedure is not found or if it contains a JCL error, then error
messages for the z/OS START command are issued.

v If the address space cannot be started, z/OS UNIX initialization continues.

732 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|
|
|
|
|

|

|
|

|

|

|

|

|

|
|
|
|
|
|

|

|
|
|
|
|
|
|

|
|

|
|

|
|

|

|
|
|
|

|
|

|

The default resolver settings
You do not have to perform any customization steps to use the resolver. The
default resolver starts automatically when z/OS UNIX is initialized; you cannot
use automation tools to start the resolver unless you customize it. z/OS UNIX
starts a resolver address space, which uses the assigned name RESOLVER, using
the system default procedure IEESYSAS. The resolver uses the applicable native
MVS or z/OS UNIX search order to find TCPIP.DATA statements, without a
GLOBALTCPIPDATA or a DEFAULTTCPIPDATA specification.

The following resolver functions are active by default:
v System-wide caching, using the default maximum cache size and the default

maximum time-to-live (TTL) value (see “Resolver caching” on page 744)
v Responsiveness monitoring of Domain Name System (DNS) servers, using the

default threshold setting (see “Monitoring the responsiveness of Domain Name
System name servers” on page 752)

v Extension Mechanisms for DNS standards (see “Extension Mechanisms for DNS
standards and the resolver” on page 758)

Customizing the resolver
You can customize resolver functions, or enable or disable certain resolver
functions, by using resolver configuration statements in a resolver setup file. For
example, you can control which resolver statements are used by all applications or
TCP/IP stacks for name resolution by specifying the GLOBALTCPIPDATA
statement (see “The resolver setup file” for more information about the statements
that are supported by the resolver setup file). If you want to customize resolver
functions, you must create a resolver setup file and define the resolver address
space.

The resolver setup file
The resolver setup file is an optional file (either an MVS data set or a z/OS UNIX
file) that contains resolver configuration statements that you can use to customize
resolver functions.

If the resolver setup file is an MVS data set, the file must have the following
characteristics:
v Use sequential (PS) or partitioned (PO) organization
v Use fixed (F) or fixed block (FB) format
v Contain a logical record length (LRECL) that is 80 - 256 bytes in length
v Contain any valid blocksize (BLKSIZE) for a fixed block
v If you think you will need to modify the setup file, use a member of an MVS

partitioned data set

If the resolver setup file is a z/OS UNIX file, the file can be located in any
directory. The maximum line length that is supported is 256 characters. If a line is
longer than 256 characters, then the line is truncated to 256 characters before it is
processed.

If you do not use a resolver setup file, the resolver uses the applicable native MVS
or z/OS UNIX search order without any additional information and performs the
following functions using the default settings:

Chapter 14. The resolver 733

|

|
|
|
|
|
|
|

|

|
|

|
|
|

|
|

|

|
|
|
|
|
|
|
|

|

|
|
|

|
|

|

|

|

|

|
|

|
|
|
|

|
|
|

v Enables system-wide caching (using the default maximum cache size and the
default time-to-live [TTL] value)

v Monitors Domain Name System (DNS) name server responsiveness (using the
default threshold setting)

The following statements are supported by the resolver setup file:
v Comments (; or #)
v CACHE

Enables system-wide caching of DNS queries that have been resolved.
System-wide caching is enabled by default, but you can explicitly enable it using
this statement. See “Resolver caching” on page 744 for more information about
caching.

v CACHESIZE
Defines the amount of storage that can be allocated by the resolver to manage
cached records.

v COMMONSEARCH
Indicates that the same search order for local host files is used for both IPv4 and
IPv6 name queries.

v DEFAULTIPNODES
Identifies the default local host file.

v DEFAULTTCPIPDATA
Identifies a default TCPIP.DATA file. The file that is specified by the
DEFAULTTCPIPDATA statement becomes the last file that is searched by the
resolver for resolver configuration information. If you do not specify the
DEFAULTTCPIPDATA statement, the default file is TCPIP.TCPIP.DATA. See
“The resolver and the global TCPIP.DATA file” on page 735 for more
information.

v GLOBALIPNODES
Identifies a local host file that contains hard-coded IP addresses and host names
that can be used globally.

v GLOBALTCPIPDATA
Identifies the file that is the first file that is searched by the resolver for resolver
configuration information. Parameters that you specify in the file that is
identified by the GLOBALTCPIPDATA statement become the global settings for
the entire MVS image and for all TCP/IP stacks. See “The resolver and the
global TCPIP.DATA file” on page 735 for more information.

v MAXTTL
Defines the amount of time that the resolver can use resource information that it
receives from a name server.

v NOCACHE
Disables system-wide caching of DNS response data. If you do not specify this
statement, system-wide caching is enabled by default.

v NOCOMMONSEARCH
Indicates that a different search order for local host files is used for IPv4 and
IPv6 name queries.

v UNRESPONSIVETHRESHOLD
The threshold value that determines when the resolver declares a DNS name
server to be unresponsive. The threshold represents a percentage of resolver
queries within a sliding 5-minute interval. If the percentage of query failures to a
name server is greater than or equal to this threshold value, the resolver

734 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|

|
|

|

|

|

|
|
|
|

|

|
|

|

|
|

|

|

|

|
|
|
|
|
|

|

|
|

|

|
|
|
|
|

|

|
|

|

|
|

|

|
|

|

|
|
|
|

considers the name server to be unresponsive. See “Monitoring the
responsiveness of Domain Name System name servers” on page 752 for more
information.

For more information about resolver setup statements, see z/OS Communications
Server: IP Configuration Reference.

The resolver and the global TCPIP.DATA file
The optional GLOBALTCPIPDATA statement identifies a global TCPIP.DATA file,
in which you can specify global settings. If you specify a global TCPIP.DATA file,
you can control which resolver statements are used for name resolution and you
do not need to merge resolver statements from multiple files. TCPIP.DATA
statements in this file are the first that are searched, regardless of which socket API
library you are using.

If you use a global TCPIP.DATA file, you can specify the following resolver
statements, or you can use the default values. These statements are required by the
resolver to process queries.
v DomainOrigin or Domain
v NSInterAddr or NameServer
v NSPortAddr
v ResolveVia
v ResolverTimeOut
v ResolverUDPRetries
v Search
v SortList

If you specify any of these statements in the global TCPIP.DATA file, those settings
become the global settings for this MVS image and for all users of resolver
services, across the entire system. If you do not specify one of these statements in
the global TCPIP.DATA file, the resolver uses the default values. The search
continues beyond the global TCPIP.DATA file, but any of these resolver statements
that are specified in files that are located lower in the search order are ignored.

If you do not identify a global TCPIP.DATA file, then the resolver uses the regular
search order until it finds a local TCPIP.DATA file. If you do not specify one of
these statements in this local TCPIP.DATA file, the resolver uses the default values.
The setting that the resolver uses applies only to this application, not to all users of
resolver services. In any case, the search order depends on whether the native MVS
or z/OS UNIX application environment is in use. The search order for the local
hosts table (HOSTS.xxxxINFO, ETC.IPNODES, /etc/hosts, or /etc/ipnodes)
remains the same.

You can specify other statements in the global TCPIP.DATA file (for information
about configuration statements in TCPIP.DATA, see z/OS Communications Server: IP
Configuration Reference). There are some statements, like TRACE RESOLVER, for
which you likely do not want a global setting. If you do not specify one or more of
these other statements in the global file, the resolver uses the regular search order
until it finds a local TCPIP.DATA file. If you do not specify these other statements
in the local TCPIP.DATA file, the resolver uses the default values.You can
implement these global settings gradually, in case there are private TCPIP.DATA
files that are in use on your system about which you are unaware.

Chapter 14. The resolver 735

|
|
|

|
|

|
|
|
|
|
|
|

|
|
|

|

|

|

|

|

|

|

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

You can identify a global TCPIP.DATA file in a CINET (common INET)
environment. You specify in the global TCPIP.DATA file all the resolver statements
for which you want to set a global value, and the resolver conducts its searches in
the same way as in a non-CINET environment. However, if you do use a global
TCPIP.DATA file in a CINET environment, all the resolver statements must be
usable by all stacks. For example, the IP addresses that are specified by the
NameServer statement must be accessible from all stacks. If the IP addresses are
not accessible, then you should not use a global TCPIP.DATA file; use multiple
TCPIP.DATA data sets instead.

You can use the DEFAULTTCPIPDATA setup statement to specify a TCPIP.DATA
file as the last TCPIP.DATA file that is searched, instead of TCPIP.TCPIP.DATA. You
can specify any file as the default file.

Steps for creating a resolver setup file
The SETUP DD statement in the start procedure for the resolver points to the
resolver setup file. The setup file can be an MVS data set or a z/OS UNIX file.

Perform the following steps to create a resolver setup file:

1. Use an MVS data set or a z/OS UNIX file for your setup file, depending on
your requirements.

2. Customize the search order that the resolver uses to resolve queries by
specifying one or more of the following statements:
v Specify the GLOBALTCPIPDATA statement to identify the global

TCPIP.DATA file that becomes the first file that is searched. Parameters that
you specify in this file become the global settings for the entire MVS image
and for all users of resolver services, across the entire system.

v Specify the DEFAULTTCPIPDATA statement to identify a default
TCPIP.DATA file. The file specified by the DEFAULTTCPIPDATA statement
becomes the last file that can be searched. If you do not specify the
DEFAULTTCPIPDATA statement, the default file is TCPIP.TCPIP.DATA.

v Specify either the GLOBALIPNODES statement or the DEFAULTIPNODES
statement to identify a local host file. The GLOBALIPNODES statement
identifies a local host file that contains hard-coded IP addresses and host
names that can be used globally. The DEFAULTIPNODES statement
identifies the default local host file.

v Specify the COMMONSEARCH statement or the NOCOMMONSEARCH
statement. The COMMONSEARCH statement indicates that the same search
order for local host files is used for both IPv4 and IPv6 name queries, and
for MVS and UNIX searches. The NOCOMMONSEARCH statement
indicates that different search orders for local host files are used for IPv4
and IPv6 name queries, and for MVS and UNIX searches. For more
information, see “Search orders used in the z/OS UNIX environment” on
page 762 and “Search orders used in the native MVS environment” on page
769.

v Specify the CACHE statement or the NOCACHE statement. The CACHE
statement enables system-wide caching of Domain Name System (DNS)
queries that have been resolved. System-wide caching is enabled by default,
but you can explicitly enable it using this statement. See “Resolver caching”
on page 744 for more information about caching. The NOCACHE statement
indicates that you do not want to cache DNS response data.
– If you specified the CACHE statement, specify the CACHESIZE statement

to define the amount of storage that can be allocated by the resolver to

736 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

|

|
|

|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|

manage cached records. If you specify this statement and the NOCACHE
statement, the CACHESIZE statement is ignored.

– Specify the MAXTTL statement to define the amount of time that the
resolver can use resource information that it receives from a name server.
If you specify this statement and the NOCACHE statement, the MAXTTL
statement is ignored.

v Specify the UNRESPONSIVETHRESHOLD statement to define the threshold
value that is used by the resolver to declare that a DNS name server is
unresponsive. The monitoring of unresponsive name servers is enabled by
default, but you can explicitly enable it using this statement. If you do not
want to be notified of unresponsive name servers, you can use this
statement to disable resolver monitoring of name server responsiveness to
resolver queries.

The following example setup file is located in SEZAINST as member EZBRECNF
(alias RESSETUP):
;
; IBM Communications Server for z/OS
; SMP/E distribution name: EZBRECNF
;
; 5694-A01 Copyright IBM Corp. 2002, 2010,
; Licensed Materials - Property of IBM
;
; Function: Sample Resolver setup file
;
;
; The following statement defines the final search location for
; TCPIP.DATA statements. It will replace TCPIP.TCPIP.DATA
; It may be an MVS data set or HFS file.
;
DEFAULTTCPIPDATA(’TCPIP.TCPIP.DATA’)
;
The following statement defines the first search location for
TCPIP.DATA statements. It may be an MVS data set or HFS file.
;
; Update with the correct data set or HFS file name
;
; GLOBALTCPIPDATA(’TCPCS.SYS.TCPPARMS(GLOBAL)’)
;
; GLOBALTCPIPDATA(/etc/tcpipglobal.data)
;
The following statement defines the first search location for
IPNODES statements. It may be an MVS data set or HFS file.
;
; Update with the correct data set or HFS file name
;
; GLOBALIPNODES(’TCPCS.SYS.TCPPARMS(IPNODES)’)
;
; GLOBALIPNODES(’TCPCS.ETC.IPNODES’)
;
; GLOBALIPNODES(/etc/ipnodes)
;
The following statement defines the final search location for
IPNODES statements. It may be an MVS data set or HFS file.
;
; Update with the correct data set or HFS file name
;
; DEFAULTIPNODES(’TCPCS.SYS.TCPPARMS(IPNODES)’)

Chapter 14. The resolver 737

|
|

|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

;
; DEFAULTIPNODES(’TCPCS.ETC.IPNODES’)
;
; DEFAULTIPNODES(/etc/ipnodes)
;
The following statement defines if the common search order
should be used or not.
;
NOCOMMONSEARCH
;
; COMMONSEARCH
;
The following statement defines if system-wide resolver caching
should be used or not.
;
CACHE
;
; NOCACHE
;
The following statement defines the amount of storage that the
resolver can use for holding system-wide resolver cache data.
;
CACHESIZE(200M)
;
The following statement defines the maximum amount of time that
the resolver can use resource information that was cached as
a result of a query to a name server.
;
MAXTTL(2147483647)
;
The following statement defines the threshold value for when
a name server is declared to be unresponsive to resolver queries.
;
UNRESPONSIVETHRESHOLD(25)

The resolver address space
The resolver address space must be started before any application or TCP/IP stack
resolver calls can occur. When the address space starts, it reads an optional
resolver setup data set that is pointed to by the SETUP DD card in the resolver JCL
procedure. To use the functions that are provided by the GLOBALTCPIPDATA
statement and other statements, you must define a resolver address space. You use
a BPXPRMxx statement, RESOLVER_PROC, to specify the procedure name, if any,
to be used by z/OS UNIX to start the resolver address space. If the
RESOLVER_PROC statement is not in the BPXPRMxx parmlib member or is
specified with the procedure name DEFAULT, z/OS UNIX starts a resolver address
space that has the assigned name RESOLVER.

Steps for defining the resolver address space
You must define the resolver address space to use the functions provided by the
GLOBALTCPIPDATA statement and other statements.

Before you begin: You must have already created a resolver setup file, if you are
using one.

Perform the following steps to define the resolver address space:

1. Create a start procedure.

The start procedure has the following requirements:

738 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|

|

|

|

v The procedure must not contain any DD cards that specify SYSOUT=*.
v The procedure must reside in a data set that is specified by the IEFPDSI DD

card specification of the MSTJCLxx PARMLIB member. If the procedure is
not in this location, the resolver will not start. For information about
MSTJCL, see z/OS MVS Initialization and Tuning Reference.

To process its definitions, the resolver might need to allocate data sets or files.
For those definitions, such as GLOBALTCPIPDATA, DEFAULTTCPIPDATA,
/etc/hosts, HOSTS.SITEINFO, and HOSTS.ADDRINFO, allocation messages
appear in the JES joblog. For long-running applications that heavily use
resolver services, such as IBM Tivoli® NetView for z/OS, consider using a
started job that specifies MSGLEVEL=(1,0) to eliminate all allocation messages.
This specification could also eliminate allocation messages that might be useful
for problem analysis. For information about started jobs and the MSGLEVEL
parameter, see z/OS MVS JCL Reference.
See “the example resolver startup procedure” on page 740.

2. In the SETUP DD JCL statement, specify the location of the setup file.

3. Grant read access (using RACF or other security program) to the following
files for the user ID that is assigned to the resolver address space:
v SYS1.PARMLIB
v The resolver setup file
v The file specified by the GLOBALTCPIPDATA statement, if you are using

one
v The file specified by the DEFAULTTCPIPDATA statement, if you are using

one
v The file specified by the GLOBALIPNODES statement, if you are using one
v The file specified by the DEFAULTIPNODES statement, if you are using one

4. If you are using any of the following files, grant read access to the files for the
user IDs or jobs that are using TCP/IP facilities:
v The file specified by the GLOBALTCPIPDATA statement
v The file specified by the DEFAULTTCPIPDATA statement
v The file specified by the GLOBALIPNODES statement
v The file specified by the DEFAULTIPNODES statement
v /etc/hosts
v /etc/ipnodes
v /etc/services
v HOSTS.SITEINFO
v HOSTS.ADDRINFO
v ETC.IPNODES
If you do not specify the correct permission bit settings for a file to allow that
file to be read, error message IEC141I 013-C0 is issued. Other error messages
might also be issued that indicate that a file cannot be read.

5. If the resolver setup file is a z/OS UNIX file, configure an OMVS segment or
use the default OMVS segment for the resolver user ID and for any user IDs
or jobs that are using TCP/IP facilities.
If you do not define an OMVS segment or if you grant insufficient
authorization to user IDs or jobs to read a data set, then RACF message
ICH408I is issued if a file cannot be accessed. Other error messages might also
be issued to indicate that a file cannot be accessed.

Chapter 14. The resolver 739

|

|
|
|
|

|
|
|
|
|
|
|
|
|

|

|

|
|

|

|

|
|

|
|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|
|
|

|
|
|

|
|
|
|

6. (Optional) If you want z/OS UNIX to start the resolver (rather than using
automation to start the resolver with the MVS START operator command),
specify the resolver start procedure name as the procname value in the
RESOLVER_PROC(procname) statement of the BPXPRMxx parmlib member. See
“Starting the resolver” on page 732 for information about starting the resolver.
Guideline: The default procedure name is RESOLVER. If you want to specify a
procedure that uses the name RESOLVER, then specify RESOLVER for the
procname value.
If you do not specify the RESOLVER_PROC statement or if you specify
DEFAULT, then z/OS UNIX starts a resolver address space using the system
default procedure IEESYSAS with the assigned name RESOLVER. If you do
not want to use z/OS UNIX to start the resolver, you must use the MVS
START command to start the resolver address space.

Example: The following example resolver start procedure is located in SEZAINST
as member EZBREPRC (alias RESOPROC).
//RESOLVER PROC PARMS=’CTRACE(CTIRES00)’
//*
//* IBM Communications Server for z/OS
//* SMP/E distribution name: EZBREPRC
//*
//* 5694-A01 Copyright IBM Corp. 2001, 2010.
//* Licensed Materials - Property of IBM
//*
//* Function: Start Resolver
//*
//EZBREINI EXEC PGM=EZBREINI,REGION=0M,TIME=1440,PARM=&PARMS
//*
//* When the Resolver is started by UNIX System Services it is
//* started with SUB=MSTR.
//* This means that JES services are not available to the Resolver
//* address space. Therefore, no DD cards with SYSOUT can be used.
//* See the MVS JCL Reference manual for SUB=MSTR considerations in
//* section "Running a Started Task Under the Master Subsystem".
//* This Resolver start procedure will need to reside in a data
//* set that is specified by the MSTJCLxx PARMLIB member’s
//* IEFPDSI DD card specification. If not, the procedure will
//* not be found and the Resolver will not start.
//* See the MVS Initialization and Tuning Reference manual for
//* MSTJCL considerations in section "Understanding the Master
//* Scheduler Job Control Language"
//*
//* SETUP contains Resolver setup parameters.
//* See the chapter "The resolver" in the
//* IP Configuration Guide for more information. A sample of
//* Resolver setup parameters is included in member RESSETUP
//* of the SEZAINST data set.
//*
//*SETUP DD DSN=TCPIP.TCPPARMS(SETUPRES),DISP=SHR,FREE=CLOSE
//*SETUP DD DSN=TCPIP.SETUP.RESOLVER,DISP=SHR,FREE=CLOSE
//*SETUP DD PATH=’/etc/setup.resolver’,PATHOPTS=(ORDONLY)

740 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|

|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Managing the resolver address space
The resolver start procedure name is used with the following MVS system
commands to manage the resolver address space:
v Start (S)
v Stop (P)

You should stop and restart the resolver only when a new level of the resolver
code has been installed.

v Force
v Modify (F)

Use the MODIFY command to dynamically change resolver setup statements, to
update the use of TCPIP.DATA statements, or to update the use of local host and
services tables. Dynamic changes are not supported by the resolver that is
provided by the SMTP server, BIND 9 DNS, and DNS V9 utilities.
You can also use the MODIFY command to delete the information that the
resolver has acquired about name server capabilities.
You can use the MODIFY FLUSH command to delete all the resolver cache data.

See z/OS Communications Server: IP System Administrator's Commands for more
information about these commands.

You can use the following MVS system commands to control and display the
status of the resolver CTRACE facilities:
v Trace CT
v Display Trace

See z/OS Communications Server: IP Diagnosis Guide for information about using
CTRACE.

Steps for manually restarting the resolver
If the resolver has stopped for any reason, perform one of the following steps to
restart the resolver:
v If you have not customized the resolver (you have not created a start procedure

and you have not defined the address space), then issue the following system
operator command:
START IEESYSAS.RESOLVER,PROG=EZBREINI,SUB=MSTR,REUSASID=YES

v If you have customized the resolver, issue one of the following system operator
commands, where procname is the name of the PROCLIB member that you
created:
START procname,REUSASID=YES
START procname,SUB=MSTR,REUSASID=YES

Rule: When you start the resolver, specify REUSASID=YES on the START
command to ensure that a reusable ASID is used. If the resolver address space is
stopped enough times and you do not specify REUSASID=YES then when you
restart the resolver, all available ASIDs might be exhausted, which would prevent
the creation of a new address space on the system. If a new address space is not
created on the system, an IPL is required. For more information on tuning
parameters for the maximum number of ASIDs on a system, see the MAXUSER
parameter in z/OS MVS Initialization and Tuning Reference.

Chapter 14. The resolver 741

|
|

|
|

|

|

|
|

|

|

|
|
|
|

|
|

|

|
|

|
|

|

|

|
|

|

|
|

|
|
|

|

|
|
|

|
|

|
|
|
|
|
|
|
|

Steps for applying an interim fix to the resolver
To apply IBM-supplied interim fixes to the resolver, you do not need to stop and
restart the TCPIP started task or any application programs. However, for the short
duration of time that the resolver is not running, all resolver requests will fail.

Perform the following steps to apply an interim fix to the resolver:

1. Use SMP/E to apply the interim fix.

2. If LLA (library lookaside) is running, refresh it by issuing the following
operator command:
MODIFY LLA,REFRESH

3. Stop the resolver by performing one of the following steps:

v If you have not customized the resolver (you have not created a start
procedure), issue the following system operator command:
STOP RESOLVER

v If you have customized the resolver, issue the following system operator
command, where procname is the name of the PROCLIB member that you
created:
STOP procname

4. Restart the resolver by performing one of the following steps:

v If you have not customized the resolver (you have not created a start
procedure), issue the following system operator command:
START IEESYSAS.RESOLVER,PROG=EZBREINI,SUB=MSTR,REUSASID=YES

v If you have customized the resolver, issue one of the following system
operator commands, where procname is the name of the PROCLIB member
that you created:
START procname,REUSASID=YES
START procname,SUB=MSTR,REUSASID=YES

Rule: When you manually stop and then restart the resolver, specify
REUSASID=YES on the START command to ensure that a reusable ASID is
used. If the resolver address space is stopped enough times and you do not
specify REUSASID=YES then when you restart the resolver, all available ASIDs
might be exhausted, which would prevent the creation of a new address space
on the system. If a new address space is not created on the system, an IPL is
required. For more information on tuning parameters for the maximum
number of ASIDs on a system, see the MAXUSER parameter in z/OS MVS
Initialization and Tuning Reference.

IPv6 name servers and the resolver
The z/OS resolver can communicate to a Domain Name System (DNS) name
server using either IPv4 or IPv6 communications. When the resolver is operating
on an IPv6-capable system, the resolver opens an IPv6 socket to connect to the
target DNS name server, regardless of the IP address family type, and relies on
TCP/IP stack processing of IPv4-mapped IPv6 addresses to provide the proper
communication with the name server. When the resolver is operating on an
IPv4-only system, any IPv6 address specified as a target name server is ignored.

The list of name servers to be searched, as defined using the NSINTERADDR or
NAMESERVER configuration statements in the TCPIP.DATA file, is stored in the
res_state control block structure. Depending on the API used, applications can
obtain the res_state control block, and can examine or even modify the contents of

742 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|

|

|
|
|
|
|
|
|

|
|
|
|

the res_state list of name servers (nsaddr_list). The nsaddr_list structure is not
designed to accommodate IPv6 addresses, and changing the structure to
accommodate IPv6 addresses would adversely affect existing applications.
Therefore, resolver does not save IPv6 addresses into the nsaddr_list array, and
returns only the IPv4 addresses coded on the NSINTERADDR or NAMESERVER
configuration statements. If only IPv6 addresses are specified for name server
addresses, the nsaddr_list array returns as an empty list in res_state. If your
application examines the contents of the res_state control block, in particular the
nsaddr_list information, and requires that at least one name server IP address be
present in the list, you need to specify at least one IPv4 address on a
NSINTERADDR or NAMESERVER statement in the TCPIP.DATA file used by the
application. Although nsaddr_list does not reflect the IPv6 addresses specified in
the TCPIP.DATA file, resolver maintains the full list internally and uses the entire
list for searching and caching purposes, unless the application modifies nsaddr_list
for its own purposes.

The following z/OS functions do not use the resolver's ability to communicate to a
name server using IPv6:
v The TSO DIG and TSO NSLOOKUP commands do not support specification of

an IPv6 address as the target server IP address, either explicitly on the command
or as an entry in the TCPIP.DATA file.

v SMTP uses the resolver only to obtain TCPIP.DATA configuration information as
stored in res_state, and then uses its own customized resolver for
communicating with a name server. Because res_state cannot accommodate IPv6
addresses, SMTP does not recognize any IPv6 name server addresses. If your
system uses an SMTP server, you must specify at least one NSINTERADDR or
NAMESERVER statement with an IPv4 address.

If you choose to use IPv6 name servers, ensure that the setting for the
MAXSOCKETS parameter on the BPXPRMxx AF_INET6 NETWORK statement is
sufficiently large enough to include the number of IPv6 sockets being opened by
resolver. Use the following rough calculations to determine whether the
MAXSOCKETS value is large enough:
1. Determine how many concurrent resolver calls typically occur on your system.

Each resolver call that involves communication with a DNS name server opens
1 or 2 sockets depending on the actual resolver API being used.

2. Determine the largest number of IPv6 sockets you have open on your system at
any one point in time.

3. Add (number of concurrent resolver calls * 2) and the largest number of IPv6
sockets together. Compare this number against the setting of MAXSOCKETS on
the appropriate BPXPRMxx AF_INET6 NETWORK statement.
v If the MAXSOCKETS setting is the larger value, then the setting is

acceptable.
v If the MAXSOCKETS setting is the lesser value, update the MAXSOCKETS

setting to the larger number.

Resolver functions
To use the resolver functions efficiently in your environment, you need to be
familiar with the following resolver functions that are active, by default, when the
resolver is started:
v Resolver caching
v Monitoring responsiveness of Domain Name System name servers

Chapter 14. The resolver 743

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|

|
|
|

|
|

|
|

|

|
|
|

|

|

v Extension Mechanisms for DNS standards

Resolver caching
In the context of resolvers, caching is defined as saving and storing information
from resolved DNS queries so that the information can be reused. A cache is the
area of memory where the information is kept. The primary advantage of caching
is the improved performance that is obtained by the elimination of repetitive
queries to the name servers.

For example, in the configuration shown in Figure 77, a local caching-only DNS
name server is defined to provide some level of resource caching.

In the caching-only name server model depicted in Figure 77, when a request for
host.raleigh.ibm.com is received, the resolver contacts the local name server (see
arrow 1). The local name server then must perform standard name-server
processing to locate the resource, which might include contacting one or more
name servers (see arrows 2 through 9). When the name server that can provide an
authoritative response for the queried host name is found and the response is
returned to the local name server, the local name server caches the information and
forwards it back to the resolver (arrow 10).

However, in the caching-only name server model depicted in Figure 77, subsequent
requests to the resolver for information about host.raleigh.ibm.com still require that
a DNS query be created and forwarded to the local name server to obtain the
cached results. This DNS query can be eliminated if the resolver itself caches the
information, as shown in Figure 78 on page 745.

Figure 77. Local caching-only name server example

744 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

In the resolver caching model, when the initial query of the resolver cache does not
return any host name information, the DNS query is sent to the network name
server, which might or might not already have information cached about
host.raleigh.ibm.com. When the response is received, the information is cached by
the resolver, and subsequent requests for host.raleigh.ibm.com can be satisfied
without a DNS query.

Resolver caching is advantageous for the following reasons:
v You do not need to take any steps to enable resolver caching; it is automatically

enabled. As shown in Figure 77 on page 744 and in Figure 78, this eliminates the
need to manually configure a local name server to cache the DNS responses.

v The cached information can be used by all applications that are running in the
z/OS logical partition (LPAR), which provides the performance benefits of
caching across the entire system for the cost of one DNS query.

v Resolver caching provides high performance because it reduces the network
traffic to name servers.

v The resolver automatically regulates your storage use.

If you want to manually configure a caching-only name server, see “Configuring a
caching-only name server” on page 802.

If you have been using a caching-only name server and you want to use resolver
caching, see “Migrating from a local caching-only name server to resolver caching”
on page 751.

You can disable resolver caching for selected applications; for more information,
see “Steps for disabling caching for selected applications” on page 749.

Information that is cached by the resolver
Table 36 on page 746 shows the application programming interfaces (APIs) that use
resolver caching.

Figure 78. Resolver caching example

Chapter 14. The resolver 745

|
|
|

|
|

|

Table 36. APIs that use resolver caching

API Usage

getaddrinfo() Resolves host name to one or more IP addresses. Supports both
IPv4 and IPv6 addresses.

gethostbyaddr() Resolves an IP address to a host name. Supports only IPv4
addresses.

gethostbyname() Resolves a host name to one or more IP addresses. Supports only
IPv4 addresses.

getnameinfo() Resolves an IP address to a host name. Supports both IPv4 and
IPv6 addresses.

The resolver caches the following DNS response information generated by the APIs
in Table 36:
v Forward lookup information (IP addresses as A or AAAA records)

Forward lookups are host-name-to-IP-address resolution requests. This includes
IPv4 (A records) and IPv6 (AAAA records) addressing records from
getaddrinfo() and gethostbyname() API calls.

v Reverse lookup information (domain name pointers as PTR records)
Reverse lookups are IP-address-to-host-name resolution requests. This includes
records from getnameinfo() and gethostbyaddr() API calls.

v Negative caching (NX) information
Negative caching is the storage of the knowledge that a record does not exist, or
that a request for a specific resource cannot or does not give an answer. The
negative cache represents the received NXDOMAIN (nonexistent domain)
responses from the server. The negative cache also represents the received
NOERROR responses that did not include answer records of the requested type,
such as a request for IPv6 addresses when the resource has only IPv4 addresses
defined. Negative cache entries represent resources that are known to not exist
and they include both reverse and forward entries.

There is an upper limit on the amount of storage that can be used for negative
caching information. The upper limit is 20 percent of the maximum amount of
cache storage that the resolver is permitted to use. The resolver does not set aside
this amount of storage for exclusive use by negative cache entries; rather, the
resolver never exceeds this amount of storage to hold negative cache entries. When
the upper limit is reached, no subsequent negative cache entries are saved until
some existing entries are deleted and the negative cache entry storage use drops
below the 20 percent upper limit. For information about setting the maximum
amount of cache storage available to the resolver, see “Steps for configuring
resolver caching (optional)” on page 748.

The resolver does not cache information retrieved from local host files, such as
/etc/hosts and /etc/ipnodes; that type of information is already cached at a
process level. The resolver also does not cache information retrieved using an API
not listed in Table 36.

The length of time that cache entries, including negative entries, are valid depends
on the time-to-live (TTL) value that is returned by each domain name server. This
is consistent with the behavior when using a caching-only name server or an
intermediate name server to resolve a query.

746 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|

|

|

|
|
|

|
|

In the following situations, cached entries are not saved up to the TTL value that is
returned by the name server:
v When you flush the cache using the MODIFY RESOLVER,FLUSH,ALL command

to delete all cached entries (for more information, see “Step for deleting cache
entries” on page 751)

v When the maximum allocated storage for the cache is exhausted (for more
information, see “Managing the cache size and cache storage” on page 750)

v When you limit the duration of time that any individual cache record can be
saved using the MAXTTL resolver setup statement (for more information about
the MAXTTL statement, see z/OS Communications Server: IP Configuration
Reference)

The organization of the cached data
The cache is contained in one physical location that has separate logical structures
for forward and reverse lookup information. The cache data is organized by DNS
name server, which permits different name servers to provide different values for a
given host name or IP address.

For example, consider the installation shown in Figure 79. There are two TCP
stacks; one TCP stack is used for the core production processing, and a second TCP
stack is used for test purposes only. The stacks use different name servers to isolate
test resources from the production environment. Each name server can potentially
have different IPv4 (A record) definitions for the same host name, as is the case for
host.ibm.com. If the test application issues a query for host.ibm.com, the test TCP
stack directs the request to the test name server, and IP address 10.45.5.5 is
obtained. If the production application issues the same query, a different IP address
(10.145.5.5) is obtained. The resolver caches both responses but remembers which
response was received from which name server, so that a subsequent request from
the test application for host.ibm.com returns the correct test IP address, and not the
production IP address.

Figure 79. Resolver caching process; each stack specifies one NSINTERRADDR value

Chapter 14. The resolver 747

|
|

The resolver performs cache lookups using the NSINTERADDR search order list in
the TCPIP.DATA data set. In Figure 79 on page 747, each stack specifies a single
NSINTERADDR value. More likely, in reality, multiple NSINTERADDR definitions
are provided, as shown in Figure 80. In this example installation, if the primary
name server is unavailable, a secondary name server is used instead. The resolver
considers a cache entry that is associated with any name server in the
NSINTERADDR list as a match for the target host name; the name resolution is
complete and no DNS queries are sent to any of the name servers. The resolver
searches the cache in the order that the name servers appear in the
NSINTERADDR list; if multiple entries exist for the same target host name (one
from each of the name servers in the NSINTERADDR list), the information
provided by the first name server in the list is used. In Figure 80, if the test
application issues a query for host.ibm.com, IP address 10.145.5.5 is obtained
because the first name server IP address in the list is now the production name
server (10.6.6.6). If the production application issues the same query, the same IP
address, 10.145.5.5 is obtained because there is no entry in the cache for
host.ibm.com from the first name server in the list, but there is cache information
from the second name server (which is, again, 10.6.6.6).

IPv4 information and IPv6 information are cached as separate entries. A maximum
of 35 IP addresses is saved per host name for each name server that provides data
for that host name.

Tip: Resolver caching does not provide round-robin support for response data.
DNS servers can be configured to use a round-robin method for ordering the IP
addresses that are returned by queries, but the resolver always caches the
information in the order in which it was received, and returns the IP addresses in
the same order, as long as cache information is still valid.

Steps for configuring resolver caching (optional)
Resolver caching is automatically enabled and you do not need to make parmlib or
JCL changes. Unless you choose to do so, you do not have to configure the cache;
however, you can explicitly configure resolver caching.

Before you begin: You must have already created a resolver setup file; see “The
resolver setup file” on page 733 for more information.

Perform the following steps to configure resolver caching:

getaddrinfo()
(af_inet,host.ibm.com)

TCPIP.DATA
Data set specifies:
NSINTERADDR 10.6.6.6
NSINTERADDR 10.3.3.3

getaddrinfo()
(af_inet,host.ibm.com)

TCPIP.DATA
Data set specifies:
NSINTERADDR 10.7.7.7
NSINTERADDR 10.6.6.6DNS IP address=10.6.6.6

host.ibm.com=10.145.5.5

DNS IP address=10.3.3.3
host.ibm.com=10.45.5.5

Resolver
Cache
Data

Resolver

Test Application Production Application

z/OS Communications Server

Figure 80. Resolver caching process; each stack specifies multiple NSINTERRADDR values

748 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|

|

1. Specify the CACHE statement to enable system-wide caching of Domain Name
System (DNS) queries that have been resolved.
System-wide caching is enabled by default, but you can explicitly enable it by
specifying this statement.

2. Specify the CACHESIZE(cachesizeM) statement to define the amount of storage,
in megabytes, that can be allocated by the resolver to manage cached records.
The default value is 200 megabytes.
Guideline: If you set a CACHESIZE value that is too low, the resolver might
repeatedly take action to reduce cache usage. You should set the CACHESIZE
value to be at least 50 percent higher than your expected usage.
If you specify this statement and the NOCACHE statement, the CACHESIZE
statement is ignored. For more information about cache size, see “Managing
the cache size and cache storage” on page 750.

3. Specify the MAXTTL statement to define the maximum amount of time, in
seconds, that cache entries are considered to be valid by the resolver.
The default value is the time-to-live (TTL) value that is provided by the name
server for this resource. If you specify this statement and the NOCACHE
statement, the MAXTTL statement is ignored. For more information about
cache size, see “Managing the cache size and cache storage” on page 750.

4. Perform one of the following steps:

v If the resolver is not active, start the resolver.
v If the resolver is currently active, issue the MODIFY

RESOLVER,REFRESH,SETUP=setup_file_name command to cause the resolver
to use the new settings.

You know you are done when the correct values for the CACHE,
CACHESIZE(cachesizeM), and MAXTTL statements are displayed after you issue
the START command or in the MODIFY RESOLVER,REFRESH command output.

For more information about resolver setup statements, see z/OS Communications
Server: IP Configuration Reference.

For more information about the MODIFY command for the resolver address space,
see z/OS Communications Server: IP System Administrator's Commands.

Steps for disabling caching for selected applications
All the applications in your environment might not need to use resolver caching.
For example, as shown in Figure 79 on page 747, you might have a production
network and a test network in your environment. Users of the test network might
require specialized host name resolution using a unique set of DNS servers that are
not used in the production network. Because the test network is completely
isolated and is likely to affect only a small number of users, using resolver caching
for the test network could waste cache storage, and could complicate operation of
the production network by adding information that is not pertinent to the
production network. You can disable resolver caching for applications using the
test network, while continuing to use resolver caching for the production network.

Perform the following steps to disable caching for some applications:

1. Identify or create the TCPIP.DATA data set associated with the application for
which you want to disable resolver caching.

Chapter 14. The resolver 749

|
|

|
|

|
|

|

|
|
|

|
|
|

|
|

|
|
|
|

|

|

|
|
|

|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|

|

|
|

2. Turn off the resolver caching function by specifying the NOCACHE statement
in that TCPIP.DATA data set.

3. Issue the MODIFY RESOLVER,REFRESH command to cause the resolver to
refresh the settings for the application.

4. Activate the trace resolver facility to determine which TCPIP.DATA values are
being used by the resolver and where they are being read from.

5. When the trace is active, issue the Netstat HOME/-h command to display the
values.

You know you are done when the value NOCACHE is displayed in the trace
resolver output that is generated by the Netstat HOME/-h command.

For more information about configuration statements in TCPIP.DATA, see z/OS
Communications Server: IP Configuration Reference. For more information about the
MODIFY command for the resolver address space, see z/OS Communications Server:
IP System Administrator's Commands.

Managing the cache size and cache storage
Resolver cache information is maintained in 64-bit private storage in the resolver
address space, which is also referred to as the storage above the 2 GB bar. This
means that caching does not impact common storage.

The default maximum size of the cache is 200 megabytes. The size is allocated
incrementally, as the cache increases. For planning purposes, assume that 1
megabyte of storage holds between 400 and 450 cache entries. The actual number
of cache entries depends on the amount of storage used for cache infrastructure
control blocks, which varies depending on the number of name servers and the
number of entries. If you want to control the maximum size of the cache instead of
using the 200 megabyte default, you can use the CACHESIZE resolver setup
statement. The CACHESIZE statement specifies the maximum amount of storage,
in megabytes, that can be allocated by the resolver to manage cached records. The
CACHESIZE statement is also used to determine the upper limit of storage that
can be used for negative cache entries. If you use the default CACHESIZE value of
200M, then no more than 40 megabytes of that storage will be used for negative
cache entries.

The resolver does not automatically delete expired records (those records whose
TTL value has been exceeded). Regardless of the amount of cache storage that is in
use, the resolver deletes expired records if a new request is received for the expired
resource. The resolver also deletes expired records when your cache storage usage
has reached the following levels, and takes additional actions to reduce your
storage usage.
v When cache storage is less than 75 percent full, the resolver deletes all expired

records approximately every 10 minutes, without waiting for a new request to
be processed.

v When cache storage is 75 - 97 percent full, the resolver deletes all expired
records approximately every minute, without waiting for a new request to be
processed.

v When cache storage is 98 percent or more full, the resolver deletes all expired
records approximately every 30 seconds, without waiting for a new request to be
processed. The resolver does not add new records to the cache while usage is
greater than 99 percent. Message EZZ9307E is displayed until usage is less than

750 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|

|
|

|
|

|
|

|
|

|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|

90 percent, you increase the CACHESIZE value, or you delete the contents of the
cache; see “Step for deleting cache entries” for more information.

Steps for manually managing the storage capacity of the resolver cache: Before
you begin: You must have already created a resolver setup file; see “The resolver
setup file” on page 733 for more information.

Perform one of the following steps to manage the storage capacity of the resolver
cache:
v On the CACHESIZE statement in the resolver setup file, increase the

CACHESIZE value and issue the MODIFY
RESOLVER,REFRESH,SETUP=ressetup_filename command.

v On the MAXTTL statement in the resolver setup file, decrease the MAXTTL
value to decrease the length of time that cache records are saved in the cache
and issue the MODIFY RESOLVER,REFRESH,SETUP=ressetup_filename
command. The new MAXTTL value affects only new cache records as they are
created; there is no affect on existing cache records.

v Issue the MODIFY RESOLVER,FLUSH,ALL command to delete all cache entries.

You know you are done when message EZZ9307E is no longer displayed on the
operator console.

Step for deleting cache entries
You might want to delete the contents of the cache when an IP address has
changed for a given host name or when your cache storage is exhausted. Perform
the following step to delete the contents of the cache:
v Issue the MODIFY RESOLVER,FLUSH,ALL command to delete all cache entries.

For more information about the MODIFY command for the resolver address
space, see z/OS Communications Server: IP System Administrator's Commands.

If you have deleted cache entries because your cache storage was exhausted, you
know you are done when message EZZ9307E no longer appears on the screen.

Step for displaying the contents of the cache
Perform the following step to display the contents of the resolver cache:
v Issue the Netstat RESCache/-q command to display the RESCache/-q report.

The Netstat RESCache/-q report displays the contents of the resolver cache data.
You can display statistical data, both overall and by name server. You can also
create a report that shows all the cache entries, or you can use filters to produce
a report that shows subsets of cache entries.

For details about access control considerations for the Netstat RESCache/-q report,
see “Netstat access control” on page 125. For Netstat command syntax and sample
report output, see z/OS Communications Server: IP System Administrator's Commands.

Migrating from a local caching-only name server to resolver
caching
If you have been using a local caching-only name server, you should consider
using resolver caching. You can compare the contents of your local caching-only
name server with the contents of the resolver cache by performing the following
steps:

Before you begin: Resolver caching must be enabled and active. If resolver caching
is not enabled (the NOCACHE statement is coded in the resolver setup statement),
see “Steps for configuring resolver caching (optional)” on page 748.

Chapter 14. The resolver 751

|
|

|
|
|

|
|

|
|
|

|
|
|
|
|

|

|
|

|
|
|
|

|

|
|

|
|

|

|

|
|
|
|

|
|

|
|
|

Perform the following steps to migrate from a local caching-only name server to
resolver caching:
1. Display the contents of your caching-only name server and of the resolver

cache at specific intervals.
v For your caching-only name server, you can dump the contents of the DNS

cache using the z/OS UNIX rndc dumpdb command.
v For the resolver cache, use the Netstat RESCache/-q report. For more

information, see “Step for displaying the contents of the cache” on page 751.
2. Compare the contents of the caching-only name server and the resolver cache,

and determine whether to use only resolver caching or resolver caching with
the local caching-only name server, using the following criteria:
v If the contents are similar, and consist primarily of A, AAAA, and PTR DNS

records, then you would benefit the most by using only resolver caching.
This situation is the most common.

v If the contents are dissimilar, but the caching-only name server has primarily
A, AAAA, and PTR DNS records, then the dissimilar contents are most likely
the result of differences in how the resolver cache and the caching-only name
server delete expired records. In this situation, you are still most likely to
benefit from using only resolver caching.

v If the contents are dissimilar, and the caching-only name server has many
DNS records that are not A, AAAA, or PTR records, you will probably
benefit the most by using both resolver caching and the caching-only name
server. This situation is not common.

3. Calculate the amount of resolver cache storage that you think you need.
You can use the default amount of storage (200 megabytes) or you can use the
CACHESIZE resolver setup statement to specify a maximum amount of
storage. For calculation purposes, 1 megabyte of storage holds roughly 400 -
450 cache entries.

4. If you are not going to use the local caching-only name server, stop that server.
Guideline: If the local caching-only name server is the only name server in the
NSINTERADDR list of name servers to be contacted, replace the caching-only
name server entry with one or more name server IP addresses to be contacted.
If there is already more than one name server in the NSINTERADDR list of
name servers, simply delete the IP address of the local caching-only name
server.

For more information about resolver setup statements, see z/OS Communications
Server: IP Configuration Reference.

Monitoring the responsiveness of Domain Name System name
servers

The resolver monitors the responsiveness level of Domain Name System (DNS)
name servers that are in the network and alerts the network operator about name
servers that fail to respond to a significant percentage of resolver queries. You can
use these alerts to better manage the list of name servers that the system uses and
to avoid unnecessary delays when a host name or IP address is being resolved.

To determine name server responsiveness, the resolver collects statistics about
name server responsiveness in 1-minute intervals, but makes decisions regarding
the name server based on the five most recent monitor intervals. These intervals
are called sliding 5-minute intervals.

752 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|

|

|
|
|
|

|

|
|
|
|
|
|

|

|

|
|
|
|
|

|
|
|
|

During a given monitoring interval, the resolver keeps system-wide statistics about
the total number of resolver queries that are sent to a name server and about the
number of those resolver queries that were not responded to by the name server.
At the end of the monitoring interval, the resolver calculates a percentage of the
total number of queries that were not responded to by the name server over the
course of the last five intervals. This percentage is compared to the setting on the
UNRESPONSIVETHRESHOLD resolver setup statement; if the percentage of
failures equals or exceeds the threshold value, the resolver considers the name
server to be unresponsive. For information about the
UNRESPONSIVETHRESHOLD statement and how to set its value, see the
UNRESPONSIVETHRESHOLD statement in z/OS Communications Server: IP
Configuration Reference and “Optimizing the UNRESPONSIVETHRESHOLD value
for your network” on page 756.

The phrase resolver queries does not mean the same thing as resolver API calls in the
context of name server responsiveness. A single resolver API call, such as
getaddrinfo() or gethostbyname(), can generate multiple resolver queries to one or
more DNS name servers, based on retry counts, domain names to append to a
search, or the type of information that is being requested by the API. Conversely, a
resolver API call might not generate any resolver queries to any DNS name
servers, if the resource is already in the resolver cache. See “Examples of resolver
monitoring of DNS name servers” on page 755 for examples of how different
TCPIP.DATA file settings can influence name server responsiveness statistics.

Restriction: The resolver can monitor a maximum of 32 name servers for
responsiveness.

The resolver considers the following failures to be indicative of an unresponsive
name server:
v The resolver sends a UDP or TCP query to a name server and never receives a

response.
v The resolver sends a UDP query to a name server and receives a response after

the RESOLVERTIMEOUT value has expired.
v The resolver attempts to send data to a name server using UDP, but the data

cannot be sent to the target IP address (for example, because of an error in the
route configuration).

v The resolver attempts to connect to a name server using TCP, but the connection
attempt times out.

v In some situations, the BIND 9 DNS utilities (for example, dig or nsupdate) issue
getaddrinfo() API calls to resolve a host name that represents a remote DNS
name server, and those API calls invoke z/OS resolver processing. If any of the
previously mentioned failures occur during these BIND 9 resolver calls, the
failures are included in the name server statistics.

The resolver does not consider the following failures to be indicative of an
unresponsive name server:
v The resolver cannot open a socket (UDP or TCP) to send a request to a name

server, including instances in which the system is IPv4-only capable and an IPv6
name server IP address is coded on the NSINTERADDR statement.

v The resolver sends a UDP query to a name server to determine whether the
name server is EDNS0-capable, but does not receive a response to that UDP
query; see “Extension Mechanisms for DNS standards and the resolver” on page
758 for more information about EDNS0 processing.

Chapter 14. The resolver 753

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|

|
|

|
|

|
|

|
|
|

|
|

|
|
|
|
|

|
|

|
|
|

|
|
|
|

v The resolver sends a UDP query to a name server and the name server responds
with a DNS return code (such as SERVFAIL or NOTIMPL) that indicates that the
name server is active and responding but is unable to process the request that
was sent.

v Timeouts or failures occur during SMTP processing (SMTP uses its own resolver
services to send queries to a name server).

v Timeouts or failures occur during BIND 9 DNS utility processing that does not
involve getaddrinfo() calls (that processing uses BIND 9 resolver services to send
queries to a name server).

Resolver notifications for DNS name server responsiveness
If the resolver detects that a name server is not being responsive, a series of
network operator messages is issued that relate to that name server. For example,
if a name server is operating at IP address 9.42.35.200 and the
UNRESPONSIVETHRESHOLD value is 25, then the following sequence of
messages might be generated by the resolver:
1. At the end of a 5-minute monitoring interval, the resolver determines that the

name server failed to respond to 35% of 6 000 queries that were attempted by
the resolver. The resolver considers the name server to be unresponsive and
issues the following messages:
EZZ9308E UNRESPONSIVE NAME SERVER DETECTED AT IP ADDRESS 9.42.35.200
EZZ9310I NAME SERVER 9.42.35.200

TOTAL NUMBER OF QUERIES SENT 6000
TOTAL NUMBER OF FAILURES 2100
PERCENTAGE 35%

2. At the end of the next 5-minute interval, the resolver determines that the name
server failed to respond to 55% of the 3 000 queries that it attempted during
that interval. The name server is still considered to be unresponsive, and the
following message is issued:
EZZ9310I NAME SERVER 9.42.35.200

TOTAL NUMBER OF QUERIES SENT 3000
TOTAL NUMBER OF FAILURES 1650
PERCENTAGE 55%

This message and the statistical information for the name server are issued at
5-minute intervals for as long as the resolver considers the name server to be
unresponsive.

3. At the end of a subsequent monitor interval, the resolver determines that the
name server failed to respond to 15% of the 4 500 queries that the resolver
attempted during the latest sliding 5-minute interval. This percentage is under
the threshold value, so the resolver considers this name server to be responsive
again. The resolver clears message EZZ9308E from the operator console and
issues the following messages:
EZZ9309I NAME SERVER IS NOW RESPONSIVE AT IP ADDRESS 9.42.35.200
EZZ9310I NAME SERVER 9.42.35.200

TOTAL NUMBER OF QUERIES SENT 4500
TOTAL NUMBER OF FAILURES 675
PERCENTAGE 15%

4. The resolver also clears message EZZ9308E from the operator console if any of
the following situations occur:
v The network operator disables the monitoring function using the MODIFY

RESOLVER,REFRESH,SETUP command. For more information, see “Steps for
modifying the UNRESPONSIVETHRESHOLD value” on page 757.

v No resolver queries are sent to the name server during the current 5-minute
monitor interval.

v The resolver is stopped.

754 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|

|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|

|
|
|

|
|

|

The resolver issues individual messages for each name server that it considers to
be unresponsive at the end of a given monitoring interval. Because the resolver
calculates the responsiveness of a name server by using a sliding 5-minute interval,
you might see messages for different name servers at different times, rather than
see notifications about all unresponsive name servers at the same time.

Use the statistics supplied in message EZZ9310I to determine the severity of the
problem that the resolver is reporting. For example, if the unresponsive name
server is the primary server for the network, and it is failing to respond to over
half of a large number of queries that are directed to it, that situation might be
more serious than a secondary name server that is not responding to 25% of a
small number of queries. You can also use the statistics that are displayed when
message EZZ9309I is issued to determine whether the name server is fully
responsive again, is likely to become unresponsive again because the failure rate is
still close to the threshold value, or is just not being used in your environment.

Guideline: The resolver does not require that there be a certain number of failed
queries to a particular name server before it declares that server to be
unresponsive. For example, if only one query is received by a particular name
server during a monitoring interval, and that query fails to obtain a response, then
the resolver considers that name server to be 100% unresponsive.

Examples of resolver monitoring of DNS name servers
Values in the TCPIP.DATA file can affect the statistics that the resolver collects
when it monitors DNS name servers. For example, consider the following settings
from TCPIP.DATA:
NAMESERVER 9.43.25.200 9.43.125.203 9.43.25.200
RESOLVERUDPTRIES 2
RESOLVERTIMEOUT 0.075
RESOLVEVIA UDP

In this example, one name server (9.43.25.200) appears twice in the list of name
servers that the resolver will search. The resolver should retry that list of name
servers one time before it considers the name servers to be unresponsive. Assume
that the resolver generates a query to resolve the address user.ibm.com as part of
gethostbyname processing. The following example sequence occurs:
1. The resolver sends the query to name server 9.43.25.200, which times out after

75 milliseconds (based on the RESOLVERTIMEOUT value).
2. The resolver forwards the request to name server 9.43.125.203, which also times

out.
3. The request goes to name server 9.43.25.200 a second time (as the last name

server in the list), which times out again.
The first retry of the list name servers is complete.

4. The resolver begins at the top of the list again and sends the request to name
server 9.43.25.200 for a third time. A response arrives from this name server,
possibly as the result of name server delays.

5. The resolver stops searching for the resource.

Result: Based on the searching that the resolver performed, the system-wide total
request count for name server 9.43.25.200 is incremented by 3, and the total failure
count is incremented by 2. If the searches that are shown in this example is all the
activity for this name server over the course of 5 minutes, the failure rate for this
name server is 66%. The system-wide total request count and the total failure
count for name server 9.43.124.203 are both incremented by 1. If the resolver does

Chapter 14. The resolver 755

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

|
|

|
|

|

|
|
|

|

|
|
|
|
|
|

not send any more queries to this name server during the 5-minute interval, the
failure rate for name server 9.43.124.203 is 100%.

Consider these different TCPIP.DATA file settings:
NAMESERVER 9.43.25.200
SEARCH raleigh.ibm.com
RESOLVERTIMEOUT 0.075
RESOLVEVIA UDP

In this example, only one name server is coded, and only one domain name can be
appended to the input host name as an additional search attempt. Assume that an
application issues getaddrinfo() for host name user, and that
ai_family=AF_UNSPEC is specified. The following example sequence occurs:
1. The resolver searches for domain name user.raleigh.ibm.com and requests

AAAA records.
2. One of the following actions occurs:

v If the resolver obtains resource information, the search ends.
v If the resolver does not obtain resource information, the resolver continues to

request AAAA records, but searches the next domain in the sequence, which
is user.

3. One of the following actions occurs:
v If the resolver obtains resource information, the search ends.
v If the resolver does not obtain resource information, the resolver searches for

domain name user.ibm.com and requests A records.
4. One of the following actions occurs:

v If the resolver obtains resource information, the search ends.
v If the resolver does not obtain resource information, the resolver continues to

request A records, but searches the next domain in the sequence, which is
user.

Result: If the name server at 9.43.25.200 fails to respond to any of the queries, the
system-wide total request count and the total failure count for this name server are
incremented by 4.

Optimizing the UNRESPONSIVETHRESHOLD value for your
network
Every minute, the resolver calculates the percentage of queries to a name server
that failed in the previous 5 minutes, and then compares this percentage to the
threshold value that you set in the UNRESPONSIVETHRESHOLD statement to
determine whether that DNS name server is unresponsive. If the resolver sends a
query to a name server multiple times and the name server does not respond to
multiple queries, each query is considered to be a unique failure to respond. When
you specify the UNRESPONSIVETHRESHOLD value, consider the following
factors that have an impact on the effectiveness of your setting:
v If you specify a small percentage for this value, an excessive number of operator

notifications might occur. Short network disruptions that occur during the
5-minute monitoring interval might result in some undeliverable resolver queries
or name server responses, and a low threshold value might cause the resolver to
alert the operator unnecessarily.

v If you specify a large percentage for this value, persistent issues with the
network or the name server might be undetected even though a significant
portion of resolver queries are not being processed by the name server.

756 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|

|

|
|
|
|

|
|
|
|

|
|

|

|

|
|
|

|

|

|
|

|

|

|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

v The setting on the RESOLVERTIMEOUT statement in the TCPIP.DATA file also
affects the value that you should specify for the UNRESPONSIVETHRESHOLD
setting. If you set a very short timeout value, even slight network disruptions
might cause name server responses to be delayed longer than the amount of
time specified by the RESOLVERTIMEOUT value. These delays are considered to
be non-responses from the name server, which might cause unnecessary
messages to be generated for this name server. A less aggressive (higher)
percentage setting for the UNRESPONSIVETHRESHOLD value might be
warranted in such a situation.

v The settings of the RESOLVERUDPRETRIES, SEARCH, and NAMESERVER
statements in the TCPIP.DATA file can also contribute to high numbers of
apparent failures on the part of the name server. See “Examples of resolver
monitoring of DNS name servers” on page 755 for information about how these
settings can influence the statistics that are collected by the resolver.

One strategy that you can use to select the most optimal threshold value is to start
with the default setting, which is 25%, and determine how many network operator
messages are issued, if any, during normal operation of the network.
v If your network is operating in an acceptable manner (for example, no

performance issues are detected and no host name or IP address resolutions
delays are detected), examine the number of network operator alerts that are
generated by the resolver:
– If the number of network operator messages is zero or insignificant, leave the

setting at the default value, or even decrease the threshold value slightly.
– If the number of network operator messages is excessive, which suggests that

a lot of false negative conditions were detected by the resolver, increase the
threshold setting until the number of messages that is generated is
appropriate for your network.

v If the name server is now responsive, but the failure rate is just slightly below
the threshold value, the name server will probably become unresponsive again
with a minor disruption in the network. If your network is currently operating
in a satisfactory manner, consider increasing the threshold setting so that the
resolver issues EZZ9308E messages only when your network conditions change
significantly. Use the statistics that are displayed when message EZZ9309I is
issued to modify the threshold setting to a more optimal value.

v If your network is experiencing performance issues that resolver delays might be
contributing to (for example, unexplained application delays), consider
decreasing the responsiveness threshold setting to determine whether issues
with the name servers are being detected by the resolver but are not being
reported as unresponsive. If this lower threshold value causes the resolver to
generate network operator messages that identify name servers that are
unresponsive and that are impacting network operations, consider using this
lower value for normal operations to provide more timely identification of name
server issues.

Steps for modifying the UNRESPONSIVETHRESHOLD value
Before you begin: You must have already created a resolver setup file; see “Steps
for creating a resolver setup file” on page 736 for instructions.

Perform the following steps to modify the UNRESPONSIVETHRESHOLD value.

1. Specify the UNRESPONSIVETHRESHOLD value that you want to use in the
resolver setup file:
v To disable the monitoring function, specify

UNRESPONSIVETHRESHOLD(0).

Chapter 14. The resolver 757

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

|

|
|

|
|

v To set a specific threshold value for the monitoring function, specify
UNRESPONSIVETHRESHOLD(percentage), where percentage is a value in the
range 1 - 100.

2. Perform one of the following steps:

v If the resolver is not active, start the resolver.
v If the resolver is currently active, issue the MODIFY

RESOLVER,REFRESH,SETUP=setup_file_name command to cause the resolver
to use the new threshold setting.
The new value will be used at the end of the next sliding 5-minute interval
to determine name server responsiveness.

You know you are done when the correct UNRESPONSIVETHRESHOLD value is
displayed after you issue the START command or in the MODIFY
RESOLVER,REFRESH command output.

Extension Mechanisms for DNS standards and the resolver
The resolver can use UDP protocols to more efficiently obtain resource information
when it uses the Extension Mechanisms for DNS (EDNS0) standards. Before these
standards existed, UDP responses from a name server were limited to 512 bytes. If
a large number of resource records appear on a DNS response message, more than
512 bytes might be required to return all the response data to the resolver. IPv6
resource records are larger than IPv4 resource records, so fewer IPv6 resource
records are needed to reach the 512 byte limitation, but the limitation can be
reached even with just IPv4 resource records. EDNS0 support permits the resolver
to accept DNS messages, using UDP protocols, of greater than 512 bytes, if the
name server that is providing the response message also supports EDNS0 (the
z/OS Communications Server BIND 9 DNS name server supports the EDNS0
standard).
v If the name server does not support EDNS0, these larger responses are truncated

to fit within 512 bytes of UDP packet data, and the resolver resends the request
using TCP protocols to acquire the entire response message.

v If the name server does support EDNS0, the resolver accepts up to 3072 bytes of
DNS response message data in a single UDP packet.

You do not need to configure support for EDNS0 standards. The resolver
dynamically determines whether each name server supports EDNS0 processing,
and modifies the DNS requests that are sent to the name servers accordingly. If a
name server is upgraded to support EDNS0, the resolver rediscovers the
capabilities of the name server dynamically, although the rediscovery period might
take some time. You can use the MODIFY RESOLVER,REFRESH command to
cause the resolver to rediscover the capabilities of the name servers more quickly.
For more information about the MODIFY RESOLVER,REFRESH command, see
z/OS Communications Server: IP System Administrator's Commands. To verify whether
a name server supports EDNS0, use the dig command with the +bufsize= option
to force dig to send an OPT RR record on the request. If the name server supports
EDNS0, it responds with its own OPT RR record on the response.

If you have upgraded a name server to support Extension Mechanisms for DNS
(EDNS0), you can issue the MODIFY RESOLVER,REFRESH command to force the
resolver to dynamically determine name server capability. The resolver can then
use EDNS0 support to accept DNS messages of greater than 512 bytes, using the
less costly UDP protocol, which results in improved DNS and resolver
performance.

758 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|

|

|

|
|
|

|
|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

Resolver configuration files
Understanding the resolver search orders used in native MVS and z/OS UNIX
environments is key to setting up your system properly.

The resolver can use available name servers, local definitions, or a combination of
both, to process API resolver requests. Figure 81 shows how local definitions can
be specified and searched for when needed.

Use the trace resolver facility to determine what TCPIP.DATA values are being
used by the resolver and where they were read from. For information about
dynamically starting the trace, see z/OS Communications Server: IP Diagnosis Guide.
After the trace is active, issue the Netstat HOME/-h command to display the
values. You can issue a Ping of a host name from TSO and from the z/OS UNIX
shell to show the activity to the resolver cache and to any DNS servers that might
be configured.

Table 37 on page 760 shows the complete set of local definition possibilities
available to the resolver.

TCP UDP RAW

IP

Device Interfaces

Rexx
Sockets

System
Resolver

UNIX System Services
Socket API

System
Resolver

Config
HFS files:

Config
Data Sets:

C
Sockets

IMS CICS

Sockets

Sockets Extended
Callable

Sockets Extended
Assembler MACRO

Native MVS Sockets

TCPIP.DATA
ETC.IPNODES
ETC.PROTO
ETC.SERVICES
HOSTS.ADDRINFO
HOSTS.SITEINFO

/etc/resolv.conf
/etc/protocol
/etc/services
/etc/hosts
/etc/ipnodes

Figure 81. Resolver related configuration files in z/OS UNIX and native MVS environments

Chapter 14. The resolver 759

|
|
|
|
|
|
|

Table 37. Local definitions available to resolver

File type
description APIs affected Candidate files

Base resolver
configuration
files

All APIs 1. GLOBALTCPIPDATA

2. RESOLVER_CONFIG environment variable

3. /etc/resolv.conf

4. SYSTCPD DD-name

5. userid.TCPIP.DATA

6. jobname.TCPIP.DATA

7. SYS1.TCPPARMS(TCPDATA)

8. DEFAULTTCPIPDATA

9. TCPIP.TCPIP.DATA

Translate
tables

All APIs 1. X_XLATE environment variable

2. userid.STANDARD.TCPXLBIN

3. jobname.STANDARD.TCPXLBIN

4. hlq.STANDARD.TCPXLBIN

5. Resolver-provided translate table, member
STANDARD in SEZATCPX

Local host
tables

endhostent
endnetent
getaddrinfo
gethostbyaddr
gethostbyname
gethostent
GetHostNumber
GetHostResol
GetHostString
getnameinfo
getnetbyaddr
getnetbyname
getnetent
IsLocalHost
Resolve
sethostent
setnetent

1. X_SITE environment variable

2. X_ADDR environment variable

3. /etc/hosts

4. userid.HOSTS.xxxxINFO

5. jobname.HOSTS.xxxxINFO

6. hlq.HOSTS.xxxxINFO

7. GLOBALIPNODES

8. RESOLVER_IPNODES environment variable

9. userid.ETC.IPNODES

10. jobname.ETC.IPNODES

11. hlq.ETC.IPNODES

12. DEFAULTIPNODES

13. /etc/ipnodes

Protocol
information

endprotoent
getprotobyname
getprotobynumber
getprotoent
setprotoent

1. /etc/protocol

2. userid.ETC.PROTO

3. jobname.ETC.PROTO

4. hlq.ETC.PROTO

Services
information

endservent
getaddrinfo
getnameinfo
getservbyname
getservbyport
getservent
setservent

1. /etc/services

2. SERVICES DD-name

3. userid.ETC.SERVICES

4. jobname.ETC.SERVICES

5. hlq.ETC.SERVICES

Host alias
table

getaddrinfo
gethostbyname

HOSTALIASES environment variable

The actual search order of the candidate files varies depending on the type of API
used and the resolver's setup. The search orders are explained in more detail in

760 z/OS V1R12.0 Comm Svr: IP Configuration Guide

“Search orders used in the z/OS UNIX environment” on page 762 and “Search
orders used in the native MVS environment” on page 769. Because the resolver
runs in the address space of the application, the candidate files are accessed from
the application address space.

Information about an application's search order can be obtained by using the trace
resolver facility. Trace resolver output provides a caller API value that determines
which search order is used. For information on dynamically starting the trace, see
z/OS Communications Server: IP Diagnosis Guide.

The following caller API values indicate the z/OS UNIX environment search order
is used:
v Language Environment C Sockets
v Unix System Services

The following caller API values indicate the native MVS environment search order
is used:
v TCP/IP C Sockets
v TCP/IP Pascal Sockets
v TCP/IP Rexx Sockets
v TCP/IP Sockets Extended

Following are some examples of Communications Server TSO commands that use
the native MVS search order:
v DIG
v FTP (batch only)

Rule: Batch FTP jobs use //SYSTCPD if specified. If //SYSTCPD is not
specified, then the z/OS UNIX search order is used.

v LPR
v NETSTAT
v NSLOOKUP
v PING
v REXEC
v RPCINFO
v RSH
v TRACERTE

Following are some examples of Communications Server UNIX commands that use
the z/OS UNIX search order:
v dig
v dnsdomainname
v domainname
v ftp

Rule: The TSO FTP command also uses the z/OS UNIX search order.
v host
v hostname
v netstat
v nslookup
v ping

Chapter 14. The resolver 761

|
|
|

|

|
|

|

v rexec
v rpcinfo
v sendmail
v snmp
v traceroute

Following are some examples of Communications Server applications that use the
native MVS search order:
v CICS Listener
v LPD
v Miscellaneous server
v PORTMAP
v RSHD
v SMTP server
v TN3270E Telnet server

Following are some examples of Communications Server applications that use the
z/OS UNIX search order:
v CSSMTP
v FTP
v SNMP agent
v z/OS UNIX OPORTMAP
v z/OS UNIX OREXECD
v z/OS UNIX ORSHD

Search orders used in the z/OS UNIX environment
This information describes setting environment variables for configuration files,
and the search orders used in the z/OS UNIX environment for the different file
types shown in Table 37 on page 760. The z/OS UNIX socket functions utilize
various types of TCP/IP data sets and files. They include:
v Base resolver configuration files
v Translate tables
v Local host tables
v Protocol information
v Services information
v Host alias table

The particular file or table chosen can be either an MVS data set or z/OS UNIX
file, depending on the resolver configuration settings and the presence of given
files on the system.

Note: A program's first resolver service request initializes the resolver definitions
that will be used for all resolver requests. For long running programs, the
definitions can be modified by use of the MODIFY REFRESH operator
command. For command usage and syntax, see z/OS Communications Server:
IP System Administrator's Commands.

762 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Setting z/OS XL C/C++ environment variables for configuration
files

A z/OS XL C/C++ environment variable is an identifier used like a variable in a
program. In Table 37 on page 760, the following environment variables appear:

HOSTALIASES
The host aliases data set, file, or ddname.

RESOLVER_CONFIG
The resolver configuration data set, file, or ddname. The
RESOLVER_CONFIG environment variable is used by TCP/IP to include
the name of an MVS data set or z/OS UNIX file in the search order for
TCPIP.DATA.

RESOLVER_IPNODES
The IPNODES data set, file, or ddname.

X_SITE and X_ADDR
The HOSTS.SITEINFO and HOSTS.ADDRINFO data sets or ddnames
created by the MAKESITE TSO command. The X_SITE environment
variable influences how gethostbyname() resolves the network address of
the specified host name. The X_ADDR environment variable is used by
some TCP/IP functions, such as getnetbyaddr(), to include the name of an
MVS data set or z/OS UNIX file in the search order for the
HOSTS.ADDRINFO data set.

X_XLATE
The ASCII-EBCDIC translate table data set or ddname created by the
CONVXLAT TSO command. The X_XLATE environment variable is used
by TCP/IP to include the name of an MVS data set or z/OS UNIX file in
the search order for the STANDARD.TCPXLBIN data set.

Other environment variables that can be explicitly set by the resolver include the
following:

LOCALDOMAIN
Defines the domain origin. Once this environment variable is set, it
overrides any setting for DOMAIN, DOMAINORIGIN, or SEARCH found
in TCPIP.DATA

RESOLVER_TRACE
Defines the data set, file, or ddname into which the resolver trace output is
written.

MESSAGECASE
Determines whether messages are translated to all uppercase characters
before being sent to the console.

The method used to set an environment variable so that a z/OS C/C++ UNIX
application is able to retrieve the value depends on whether the z/OS UNIX
application is started from the z/OS shell or from JCL.

If the z/OS C/C++ UNIX application is to be started from the z/OS UNIX shell,
the export shell command can be used to set the environment variable. For
example, to set the value of RESOLVER_CONFIG to the file /etc/tcpa.data, you
can code the following export command:
export RESOLVER_CONFIG=/etc/tcpa.data

Chapter 14. The resolver 763

|
|

|
|

|
|

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|

|
|
|

|
|
|
|

|

If, instead of a file, you want to set RESOLVER_CONFIG to the data set
MVSA.PROD.PARMS(TCPDATA), you can specify the following export command.
Be sure to put the single quotation marks around the data set name. If you do not,
your user ID will be added as a prefix to the data set name when the resolver tries
to open the file.
export RESOLVER_CONFIG="//’MVSA.PROD.PARMS(TCPDATA)’"

If the z/OS UNIX application is to be started from JCL instead of from the z/OS
shell, the environment variable needs to be passed as a parameter in the JCL of the
application. For example, the following example shows the RESOLVER_CONFIG
variable set to pick up the TCPIP.DATA information from a file:
//OSNMPD PROC
//*
//* Procedure for running the SNMP agent
//*
//OSNMPD EXEC PGM=EZASNMPD,REGION=4096K,TIME=NOLIMIT,
// PARM=(’POSIX(ON) ALL31(ON)/’,
// ’ENVAR("RESOLVER_CONFIG=/etc/tcpa.data")/-d 0’)...

The following example shows the RESOLVER_CONFIG variable set to pick up the
TCPIP.DATA information from a partitioned data set:
//OSNMPD PROC
//*
//* Procedure for running the SNMP agent
//*
//OSNMPD EXEC PGM=EZASNMPD,REGION=4096K,TIME=NOLIMIT,
// PARM=(’POSIX(ON) ALL31(ON)/’,
// ’ENVAR("RESOLVER_CONFIG=//’’TCPA.MYFILE(TCPDATA)’’")/-d 0’)...

The following example shows the RESOLVER_CONFIG variable set to pick up the
TCPIP.DATA information from a DD card:
//OSNMPD PROC
//*
//* Procedure for running the SNMP agent
//*
//OSNMPD EXEC PGM=EZASNMPD,REGION=4096K,TIME=NOLIMIT,
// PARM=(’POSIX(ON) ALL31(ON)/’,
// ’ENVAR("RESOLVER_CONFIG=DD:TCPDATA")/-d 0’)
//TCPDATA DD DSN=TCPA.MYFILE(TCPDATA),DISP=SHR...

Tip: A ddname can also be specified as //DD:ddname as follows:
...
// ’ENVAR("RESOLVER_CONFIG=//DD:TCPDATA")/-d 0’))

The following example shows an alternate method of accessing environment
variables:
//OSNMPD PROC
//*
//* Procedure for running the SNMP agent
//*
//OSNMPD EXEC PGM=EZASNMPD,REGION=4096K,TIME=NOLIMIT,
// PARM=(’POSIX(ON) ALL31(ON)/’,
// ’ENVAR("_CEE_ENVFILE=DD:STDENV")/-d 0’)
//STDENV DD DSN=TCPA.MYFILE(TCPDATA),DISP=SHR

In this case, the environment variables will be read from the file specified on the
STDENV DD statement. If this file is an MVS data set, the data set must be

764 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|

|

|
|
|
|

|

allocated with RECFM=V. RECFM=F is not recommended, because RECFM=F
enables padding with blanks for the environment variables. See z/OS XL C/C++
Programming Guide for more information on specifying a list of environment
variables using the _CEE_ENVFILE environment variable.

Regardless of whether the z/OS UNIX application is started from the z/OS shell
or from JCL, the RESOLVER_CONFIG environment variable can also be set to
indicate that a ddname should be used. The following directs the resolver to read
its TCPIP.DATA statements from the ddname MYTCPIPD:
RESOLVER_CONFIG=DD:MYTCPIPD

For information on how to use a ddname when specifying what kind of file to use,
see z/OS XL C/C++ Programming Guide.

Base resolver configuration files
The base resolver configuration file contains TCPIP.DATA statements. In addition
to resolver directives, it is referenced to determine, among other things, the data
set prefix (DATASETPREFIX statement's value) to be used when trying to access
some of the configuration files.

The search order used to access the base resolver configuration file is as follows:
1. GLOBALTCPIPDATA

If defined, the resolver GLOBALTCPIPDATA setup statement value is used. For
a description of the GLOBALTCPIPDATA statement, see “The resolver and the
global TCPIP.DATA file” on page 735.
The search continues for an additional configuration file. The search ends with
the next file found.

2. The value of the environment variable RESOLVER_CONFIG
The value of the environment variable is used. This search will fail if the file
does not exist or is allocated exclusively elsewhere.

3. /etc/resolv.conf
4. //SYSTCPD DD card

The data set allocated to the ddname SYSTCPD is used. In the z/OS UNIX
environment, a child process does not have access to the SYSTCPD DD. This is
because the SYSTCPD allocation is not inherited from the parent process over
the fork() or exec function calls.

5. userid.TCPIP.DATA
userid is the user ID that is associated with the current security environment
(address space or task/thread)

6. SYS1.TCPPARMS(TCPDATA)
7. DEFAULTTCPIPDATA

If defined, the resolver DEFAULTTCPIPDATA setup statement value is used.
For a description of the DEFAULTTCPIPDATA statement, see “The resolver and
the global TCPIP.DATA file” on page 735.

8. TCPIP.TCPIP.DATA

Any TCPIP.DATA statements that have not been found will have their default
values, if any, assigned.

Translate tables
The translate tables (EBCDIC-to-ASCII and ASCII-to-EBCDIC) are referenced to
determine the translate data sets to be used.

Chapter 14. The resolver 765

|
|

|

|

The search order used to access this configuration file is as follows. The search
order ends at the first file found:
1. The value of the environment variable X_XLATE

The value of the environment variable is the name of the translate table
produced by the CONVXLAT TSO command.

2. userid.STANDARD.TCPXLBIN
userid is the user ID that is associated with the current security environment
(address space or task/thread).

3. hlq.STANDARD.TCPXLBIN
hlq represents the value of the DATASETPREFIX statement specified in the base
resolver configuration file (if found); otherwise, hlq is TCPIP by default.

4. If no table is found, the resolver uses a hardcoded default table that is identical
to the STANDARD member in the SEZATCPX data set.

Tip: Preallocating the STANDARD.TCPXLBIN data set using a JCL DD statement
stops the resolver from issuing dynamic allocations for the data set. This eliminates
the dynamic allocation messages (for example, IEF237I and IEF285I) from being
written to the job's output joblog.

Local host tables
By default, resolver first attempts to use any configured domain name servers for
resolution requests. If the resolution request cannot be satisfied, local host tables
are used. Resolver behavior is controlled by the following:
v TCPIP.DATA statements

The TCPIP.DATA resolver statements define if and how domain name servers
are to be used. The LOOKUP TCPIP.DATA statement can also be used to control
how domain name servers and local host tables are used. For more information
on TCPIP.DATA statements, see z/OS Communications Server: IP Configuration
Reference.

v How your application is written and compiled
If your application program uses the TCP/IP-provided C/C++ API and the XL
C/C++ RESOLVE_VIA_LOOKUP symbol was defined, only local host tables will
be used. For information on the use of the RESOLVE_VIA_LOOKUP symbol, see
z/OS Communications Server: IP Sockets Application Programming Interface Guide and
Reference and z/OS XL C/C++ Programming Guide.

The local host table supplies sitename information for, as one example, resolving
hostnames to host or network addresses. The local host table can also supply
address information, for example, for resolving addresses to hostname or network
names. There are different search orders used for selecting the local host table for
these different purposes. The search order to use is based on certain resolver setup
statements, the type of API invocation, and possibly the type of host address (IPv4
versus IPv6) being requested or being resolved.

IPv4-unique search order for sitename information: The resolver uses the
IPv4-unique search order for sitename information when the resolver setup
statement NOCOMMONSEARCH is specified (or left to default), and either the:
v getaddrinfo API is attempting to locate an IPv4 address.
v gethostbyname, sethostent, gethostent, or endhostent API is invoked.

If the COMMONSEARCH statement is specified, see “IPv6/common search order”
on page 767, where the resolver can use IPNODES to locate sitenames.

766 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|

The resolver uses the IPv4-unique search order for sitename information
unconditionally for getnetbyname API calls.

The IPv4-unique search order for sitename information is as follows. The search
ends at the first file found:
1. The value of the environment variable X_SITE

The value of the environment variable is the name of the MVS data set that
contains the sitename information. This data set is created by the TSO
MAKESITE command.

2. /etc/hosts
3. userid.HOSTS.SITEINFO

userid is the user ID that is associated with the current security environment
(address space or task/thread).

4. hlq.HOSTS.SITEINFO
hlq represents the value of the DATASETPREFIX statement specified in the base
resolver configuration file (if found); otherwise, hlq is TCPIP by default.

IPv4-unique search order for address information: The resolver uses the
IPv4-unique search order for address information when the resolver setup
statement NOCOMMONSEARCH is specified (or left to default), and either the
getnameinfo API is attempting to resolve an IPv4 address or the gethostbyaddr
API is invoked. If the COMMONSEARCH statement is specified, see
“IPv6/common search order,” where the resolver can use IPNODES to locate IPv4
and IPv6 addresses.

The resolver uses the IPv4-unique search order for address information
unconditionally for the setnetent, getnetent, endnetent, or getnetbyaddr APIs.

The IPv4-unique search order for address information is as follows. The search
ends at the first file found:
1. The value of the environment variable X_ADDR

The value of the environment variable is the name of the MVS data set that
contains the address information. This data set is created by the TSO
MAKESITE command.

2. /etc/hosts
3. userid.HOSTS.ADDRINFO

userid is the user ID that is associated with the current security environment
(address space or task/thread).

4. hlq.HOSTS.ADDRINFO
hlq represents the value of the DATASETPREFIX statement specified in the base
resolver configuration file (if found); otherwise, hlq is TCPIP by default.

IPv6/common search order: The resolver uses the IPv6/common search order
when it determines that any of the following conditions exist:
v The resolver setup statement COMMONSEARCH is specified (to have the

resolver use IPNODES to locate IPv4 addresses, IPv6 addresses, and sitenames),
and the getaddrinfo, gethostbyname, getnameinfo, gethostbyaddr, sethostent,
gethostent, or endhostent APIs are invoked.

v The resolver setup statement NOCOMMONSEARCH is specified (or left to
default), and the getaddrinfo API is attempting to locate an IPv6 address.

v The resolver setup statement NOCOMMONSEARCH is specified (or left to
default), and the getnameinfo API is attempting to resolve an IPv6 address.

Chapter 14. The resolver 767

|
|
|

|
|
|

Note: The IPv6/common search order is never used for the following API socket
calls:
v getnetbyname
v getnetbyaddr
v setnetent
v getnetent
v endnetent

The IPv6/common search order is as follows. The search ends at the first file
found:
1. GLOBALIPNODES value

If defined, the resolver GLOBALIPNODES setup statement value is used. For a
description of the GLOBALIPNODES statement, see “The resolver setup file”
on page 733.

2. The value of the environment variable RESOLVER_IPNODES
3. userid.ETC.IPNODES

userid is the user ID that is associated with the current security environment
(address space or task/thread).

4. hlq.ETC.IPNODES
hlq represents the value of the DATASETPREFIX statement specified in the base
resolver configuration file (if found); otherwise, hlq is TCPIP by default.

5. DEFAULTIPNODES
If defined, the resolver DEFAULTIPNODES setup statement value is used. For
a description of the DEFAULTIPNODES statement, see “The resolver setup file”
on page 733.

6. /etc/ipnodes

Protocol information
The protocol information supplies protocol related information for the socket calls
listed in Table 37 on page 760.

The search order used to access this configuration file is as follows. The search
ends at the first file found:
1. /etc/protocol
2. userid.ETC.PROTO

userid is the user ID that is associated with the current security environment
(address space or task/thread).

3. hlq.ETC.PROTO
hlq represents the value of the DATASETPREFIX statement specified in the base
resolver configuration file (if found); Otherwise, hlq is TCPIP by default.

Services information
The services information supplies the service information for the socket calls listed
in Table 37 on page 760.

The search order used to access this configuration file is as follows. The search
ends at the first file found:
1. /etc/services
2. userid.ETC.SERVICES

768 z/OS V1R12.0 Comm Svr: IP Configuration Guide

userid is the user ID that is associated with the current security environment
(address space or task/thread).

3. hlq.ETC.SERVICES
hlq represents the value of the DATASETPREFIX statement specified in the base
resolver configuration file (if found); Otherwise, hlq is TCPIP by default.

Host alias table
The host alias table supplies hostname alias information for the socket calls listed
in Table 37 on page 760. The format of the alias information is the alias name,
followed by a space, followed by the fully qualified domain name that corresponds
to the alias name. The domain name is written without a trailing dot, and the alias
name cannot contain dots. The search order used to access this configuration file
consists only of the value of the environment variable HOSTALIASES.

Search orders used in the native MVS environment
The native MVS environment socket functions utilize various type of TCP/IP data
sets, including:
v Base resolver configuration files
v Translate tables
v Local host tables
v Protocol information
v Services information

The particular file or table chosen depends on the resolver configuration settings
and the presence of given files on the system.

Note: A program's first resolver service request initializes the resolver definitions
that will be used for all resolver requests. For long running programs, the
definitions can be modified by use of the MODIFY REFRESH operator
command. For command usage and syntax, see z/OS Communications Server:
IP System Administrator's Commands.

Base resolver configuration files
The base resolver configuration file contains TCPIP.DATA statements. In addition
to resolver directives, it is referenced to determine, among other things, the data
set prefix (DATASETPREFIX statement's value) to be used when trying to access
some of the configuration files.

The search order used to access the base resolver configuration file is as follows:
1. GLOBALTCPIPDATA.

If defined, the resolver GLOBALTCPIPDATA setup statement value is used. For
a description of the GLOBALTCPIPDATA statement, see “The resolver and the
global TCPIP.DATA file” on page 735.
The search continues for an additional configuration file. The search ends with
the next file found.

2. //SYSTCPD DD card
The data set allocated to the ddname SYSTCPD is used.
Rule: Since TCPIP.DATA statements might need to be read and used multiple
times by the resolver, the FREE=CLOSE JCL parameter should not be used
when allocating SYSTCPD. To allow TCPIP.DATA statements to be changed
while still allocated for long running programs, consider using a member of an
MVS partitioned data set instead of an MVS sequential data set. For these long

Chapter 14. The resolver 769

|

running applications, the resolver MODIFY REFRESH command should then be
used to indicate that TCPIP.DATA statements have been changed.

3. userid/jobname.TCPIP.DATA
userid is the user ID that is associated with the current security environment
(address space or task/thread).
jobname is the name specified on the JOB JCL statement for batch jobs or the
procedure name for a started procedure.

4. SYS1.TCPPARMS(TCPDATA)
5. DEFAULTTCPIPDATA

If defined, the resolver DEFAULTTCPIPDATA setup statement value is used.
For a description of the DEFAULTTCPIPDATA statement, see “The resolver and
the global TCPIP.DATA file” on page 735.

6. TCPIP.TCPIP.DATA

Translate tables
The translate tables are referenced to determine the translate data sets to be used.

The search order used to access this configuration file is as follows. The search
order ends at the first file found:
1. userid/jobname.STANDARD.TCPXLBIN

userid is the user ID that is associated with the current security environment
(address space or task/thread).
jobname is the name specified on the JOB JCL statement for batch jobs or the
procedure name for a started procedure.

2. hlq.STANDARD.TCPXLBIN
hlq represents the value of the DATASETPREFIX statement specified in the base
resolver configuration file (if found); otherwise, hlq is TCPIP by default.

3. If no table is found, the resolver uses a hardcoded default table that is identical
to the STANDARD member in the SEZATCPX data set.

Tip: Preallocating the STANDARD.TCPXLBIN data set using a JCL DD statement
stops the resolver from issuing dynamic allocations for the data set. This eliminates
the dynamic allocation messages (for example, IEF237I and IEF285I) from being
written to the job's output joblog.

Local host tables
By default, resolver first attempts to use any configured domain name servers for
resolution requests. If the resolution request cannot be satisfied, local host tables
are used. Resolver behavior is controlled by the following:
v TCPIP.DATA statements

The TCPIP.DATA resolver statements define if and how domain name servers
are to be used. The LOOKUP TCPIP.DATA statement can also be used to control
how domain name servers and local host tables are used. For more information
on TCPIP.DATA statements, see z/OS Communications Server: IP Configuration
Reference.

v How your application is written and compiled
If your application program uses the TCP/IP-provided C/C++ API and the
RESOLVE_VIA_LOOKUP symbol was defined, only local host tables will be
used. For information on the use of the RESOLVE_VIA_LOOKUP symbol, see
z/OS Communications Server: IP Sockets Application Programming Interface Guide and
Reference.

770 z/OS V1R12.0 Comm Svr: IP Configuration Guide

The local host table supplies sitename information for, as one example, resolving
hostnames to host or network addresses. The local host table can also supply
address information, for example, for resolving addresses to hostname or network
names. There are different search orders used for selecting the local host table for
these different purposes. The search order to use is based on certain resolver setup
statements, the type of API invocation, and possibly the type of host address (IPv4
versus IPv6) being requested or being resolved.

IPv4-unique search order for sitename information: The resolver uses the
IPv4-unique search order for sitename information when the resolver setup
statement NOCOMMONSEARCH is specified (or left to default), and either the:
v getaddrinfo API is attempting to locate an IPv4 address.
v gethostbyname, GetHostNumber, GetHostResol, IsLocalHost, Resolve, sethostent,

gethostent, or endhostent API is invoked.

If the COMMONSEARCH statement is specified, see “IPv6/common search order”
on page 772, where the resolver can use IPNODES to locate sitenames.

The resolver uses the IPv4-unique search order for sitename information
unconditionally for getnetbyname API calls.

The IPv4-unique search order for sitename information is as follows. The search
ends at the first file found:
1. userid/jobname.HOSTS.SITEINFO

userid is the user ID that is associated with the current security environment
(address space or task/thread).
jobname is the name specified on the JOB JCL statement for batch jobs or the
procedure name for a started procedure.

2. hlq.HOSTS.SITEINFO
hlq represents the value of the DATASETPREFIX statement specified in the base
resolver configuration file (if found); otherwise, hlq is TCPIP by default.

IPv4-unique search order for address information: The resolver uses the
IPv4-unique search order for address information when the resolver setup
statement NOCOMMONSEARCH is specified (or left to default), and either the
getnameinfo API is attempting to resolve an IPv4 address or the gethostbyaddr or
GetHostString API is invoked. If the COMMONSEARCH statement is specified, see
“IPv6/common search order” on page 772, where the resolver can use IPNODES to
locate IPv4 and IPv6 addresses.

The resolver uses the IPv4-unique search order for address information
unconditionally for the setnetent, getnetent, endnetent, or getnetbyaddr APIs.

The IPv4-unique search order for address information is as follows. The search
ends at the first file found:
1. userid/jobname.HOSTS.ADDRINFO

userid is the user ID that is associated with the current security environment
(address space or task/thread).
jobname is the name specified on the JOB JCL statement for batch jobs or the
procedure name for a started procedure.

2. hlq.HOSTS.ADDRINFO
hlq represents the value of the DATASETPREFIX statement specified in the base
resolver configuration file (if found); otherwise, hlq is TCPIP by default.

Chapter 14. The resolver 771

IPv6/common search order: The resolver uses the IPv6/common search order
when it determines that any of the following conditions exist:
v The resolver setup statement COMMONSEARCH is specified (to have the

resolver use IPNODES to locate IPv4 addresses, IPv6 addresses, and sitenames),
and the getaddrinfo, gethostbyname, getnameinfo, gethostbyaddr,
GetHostNumber, GetHostResol, GetHostString, IsLocalHost, Resolve, sethostent,
gethostent, or endhostent APIs are invoked.

v The resolver setup statement NOCOMMONSEARCH is specified (or left to
default), and the getaddrinfo API is attempting to locate an IPv6 address.

v The resolver setup statement NOCOMMONSEARCH is specified (or left to
default), and the getnameinfo or Resolve API is attempting to resolve an IPv6
address.

Note: The IPv6/common search order is never used for the following API socket
calls:
v getnetbyname
v getnetbyaddr
v setnetent
v getnetent
v endnetent

The IPv6/common search order is as follows. The search ends at the first file
found:
1. GLOBALIPNODES value

If defined, the resolver GLOBALIPNODES setup statement value is used. For a
description of the GLOBALIPNODES statement, see “The resolver setup file”
on page 733.

2. userid/jobname.ETC.IPNODES
userid is the user ID that is associated with the current security environment
(address space or task/thread).
jobname is the name specified on the JOB JCL statement for batch jobs or the
procedure name for a started procedure.

3. hlq.ETC.IPNODES
hlq represents the value of the DATASETPREFIX statement specified in the base
resolver configuration file (if found); otherwise, hlq is TCPIP by default.

4. DEFAULTIPNODES
If defined, the resolver DEFAULTIPNODES setup statement value is used. For
a description of the DEFAULTIPNODES statement, see “The resolver setup file”
on page 733.

5. /etc/ipnodes

Protocol information
The protocol information supplies protocol related information for the socket calls
listed in Table 37 on page 760.

The search order used to access this configuration file is as follows. The search
ends at the first file found:
1. userid/jobname.ETC.PROTO

userid is the user ID that is associated with the current security environment
(address space or task/thread).

772 z/OS V1R12.0 Comm Svr: IP Configuration Guide

jobname is the name specified on the JOB JCL statement for batch jobs or the
procedure name for a started procedure.

2. hlq.ETC.PROTO
hlq represents the value of the DATASETPREFIX statement specified in the base
resolver configuration file (if found); Otherwise, hlq is TCPIP by default.

Services information
The services information supplies service information for the socket calls listed in
Table 37 on page 760.

The search order used to access this configuration file is as follows. The search
ends at the first file found:
1. //SERVICES DD card

The data set allocated to the ddname SERVICES is used.
2. userid/jobname.ETC.SERVICES

userid is the user ID that is associated with the current security environment
(address space or task/thread).
jobname is the name specified on the JOB JCL statement for batch jobs or the
procedure name for a started procedure.

3. hlq.ETC.SERVICES
hlq represents the value of the DATASETPREFIX statement specified in the base
resolver configuration file (if found); Otherwise, hlq is TCPIP by default.

Chapter 14. The resolver 773

|

774 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Chapter 15. Domain Name System

This topic describes the z/OS UNIX Domain Name System (DNS) name server,
which uses the Berkeley Internet Name Domain (BIND) software, the accepted
standard of DNS. BIND was developed at the University of California, Berkeley
and is currently maintained by the Internet Software Consortium (ISC). The name
server discussed in this topic is based on BIND 9.

The Domain Name System is a client/server model in which programs called name
servers contain information about host systems and IP addresses. Name servers
provide this information to clients called resolvers.

z/OS V1R2 Communications Server BIND 9.1 was the first implementation of
BIND 9 on the z/OS platform, which was a complete rewrite of the name server
and associated utilities. This allowed IPv6-type records in zone data. It also
introduced better transaction security among servers and clients, as well as zone
data authentication capability. It introduced the rndc utility to replace and
complement UNIX signals for name server local and remote control.

The BIND 9.2 name server was introduced in z/OS V1R4. It makes DNS
server-to-server and client-to-server IPv6 connections possible, adding new name
server configuration options for IPv6 connections and tuning. BIND 9.2 also
provides a new rndc utility with a larger set of commands than was available with
BIND 9.1. BIND 9.2 rndc is not compatible with BIND 9.1 rndc.

The configuration file for the name server has changed in both name and syntax
between BIND 4.9.3 and BIND 9. The dnsmigrate tool aids in converting a BIND
4.9.3 named.boot file into a BIND 9 named.conf file.

BIND 9 nsupdate utility enables client hosts and many DHCP servers to
dynamically and securely register their name and address mappings. The z/OS
BIND 9 name server is generally compatible with network DHCP servers.

This topic is not intended to be a comprehensive description of DNS or of BIND.
For more complete descriptions, see the latest edition of DNS and BIND by Paul
Albitz and Cricket Liu (O'Reilly & Associates, Inc.).

DNS and BIND overview
TCP/IP applications map fully qualified domain names to 32-bit IPv4 IP addresses
or 128-bit IPv6 addresses to identify network nodes. The z/OS BIND 9 name
server supports resource records for IPv6 address mapping. It also accepts IPv6
connections, depending on the z/OS TCP/IP stack setup and profile, and on the
name server configuration. While TCP/IP applications refer to host computers by
their IP addresses, it is easier to use host names. To enable the use of host names
in a network, the Domain Name System (DNS) translates host names to IP
addresses. Mapping must be consistent across the network to ensure
interoperability. DNS provides the host name-to-IP address mapping through
network server hosts called domain name servers. For detailed information about
name servers, see “Domain name servers” on page 777. DNS can also provide
other information about server hosts and networks such as the TCP/IP services
available at a server host and the location of domain name servers in a network.

© Copyright IBM Corp. 2000, 2011 775

DNS organizes the hosts in a network into domains. A domain is a group of hosts
that share the same name space in the domain hierarchy and are usually controlled
within the same organization. Domains are arranged in a hierarchy. A special
domain known as the root domain exists at the top of the hierarchy. The root
domain servers store information about server hosts in the root domain and the
name servers in the delegated, top-level domains, such as com (commercial), edu
(education), and mil (military). The name servers in the top-level domain, in turn,
store the names of name servers for their delegated domains, and so on.

The complete name of a host, also known as the fully qualified domain name
(FQDN), is a series of labels separated by dots or periods. Each label represents an
increasingly higher domain level within a network. The complete name of a host
connected to one of the larger networks generally has more than one subdomain,
as shown in the following examples:
host1.subdomain2a.subdomain2.rootdomain
user4720.eng.mit.edu

A domain name server requires the FQDN. The client resolver combines the host
name with the domain name to create the FQDN before sending the name
resolution request to the domain name server.

DNS also provides IP address-to-host name mapping. The DNS defines a special
domain called in-addr.arpa to translate IPv4 addresses to host names, and the ip6.int
and ip6.arpa domains for IPv6 address-to-host name translation. This kind of
mapping is useful for producing output (host names) that is easy to read. An
in-addr.arpa name is composed of the reverse octet order of an IP address
concatenated with the in-addr.arpa string. For example, a host named Host1 has
9.67.43.100 as an IP address. The in-addr.arpa domain translates the Host1 IP
address 9.67.43.100 to 100.43.67.9.in-addr.arpa.

For IPv6 reverse lookups, BIND 9 supports the bitstring and nibble formats.

A system administrator can name the host systems and domains in the local,
private network with any name you want, but to link with name servers in a
public network like the Internet, you need to determine which domain you want to
be in (which parent domain) and then contact the registrar in that domain to
register the names and IP addresses of your name servers. This ensures that
queries from outside the domain being defined can be answered by this name
server if need be.

Note: Contact the InterNetwork Information Center (InterNIC) for more
information about Internet registration. You can contact InterNIC by
pointing your Web browser at http://www.internic.net.

Domain names
The DNS uses a hierarchical naming convention for naming hosts. Each host name
is composed of domain labels separated by periods. Local network administrators
have the authority to name local domains within an intranet. Each label represents
an increasingly higher domain level within an intranet. The fully qualified domain
name of a host connected to one of the larger intranets generally has one or more
subdomains:
v host.subdomain.subdomain.rootdomain

v host.subdomain.rootdomain

776 z/OS V1R12.0 Comm Svr: IP Configuration Guide

http://www.internic.net

Domain names often reflect the hierarchy level used by network administrators to
assign domain names. For example, the domain name eng.mit.edu. is the fully
qualified domain name, where eng is the host, mit is the subdomain, and edu is the
highest level domain (root domain).

Figure 82 is an example of the DNS used in the hierarchy naming structure across
an intranet.

You can refer to hosts in your domain by host name only; however, a name server
requires a fully qualified domain name. The local resolver appends the domain
name before sending the query to the Domain Name Server for address resolution.

Domain name servers
Domain name servers are designated network nodes that maintain a database of
information about all nodes in some part of the domain name space, called a zone.
A name server is said to be authoritative for its zone. A zone consists of the
resources within a single domain (for example, commercial or .com) or subdomain
(for example, raleigh.ibm.com). Typically, a zone is administered by a single
organization or individual. The complete database is not kept by any one name
server on a network. A name server is authoritative only within its zone of
authority.

All host systems in a given zone share the same higher level domain name (for
example, host1.raleigh.ibm.com, host2.raleigh.ibm.com, host3.raleigh.ibm.com,
and so on). As system administrator, you create a zone of authority by listing all
the host systems in your zone in the database file of the name server that is
authoritative for the zone.

If a domain name server receives a query about a host for which it has information
in its database or in its cache, it performs the name resolution and returns all the
address records associated with the host to the client. Some hosts (for example,
routers or gateways between two or more networks) might have more than one IP
address.

Alternatively, the name server can query other name servers for information. This
process is called iterative resolution. The local name server successively queries
other name servers, each of which responds by referring the local name server to a
remote name server that is closer to the name server authoritative for the target
domain. Finally, the local name server queries the authoritative name server and

STATE SCOUTS USOYALE

BUSINESS

DIVISION REDCROSSMIT

ENG

(root)

EDU
GOV ORG

Figure 82. Hierarchical naming tree

Chapter 15. Domain Name System 777

gets an answer. If the information about a requested host name does not exist or if
a name server does not know where to go for the information, it sends a negative
response back to the client.

There are multiple name server modes in the DNS:
v Authoritative

– Master (primary)
– Secondary

v Caching-only servers
v Forwarders
v Stealth

A single server can perform multiple functions. For example, it can be a primary
server and a secondary server for different zones. The purpose of having these
different kinds of servers is to provide redundancy (in case of system failure), to
distribute the workload among multiple servers, to speed up the name-resolution
process, and to provide flexibility in network design. In addition to being an
authoritative or caching-only server, a name server can be defined to only contact a
specific set of name servers if queries cannot be resolved locally (through the use
of forwarders).

The following subtopics discuss authoritative servers, caching-only servers, and
forwarding.

Authoritative servers
An authoritative server is the authority for its zone. It queries and is queried by
other name servers in the DNS. The data it receives in response from other name
servers is cached. Authoritative servers are not authoritative for cached data.

There are two types of authoritative servers: master (primary) and secondary. Each
zone must have only one master name server, and it should have at least one
secondary name server for backup to minimize dependency on a particular node.
Calling a particular name server a master or secondary server is misleading. Any
given name server can take on either or both roles, as defined by the conf file.

The zone data updates and maintenance are reflected in the master name server.
The secondary name servers update their databases by contacting the master name
server at regular intervals or possibly (BIND 9) after being notified of an update by
the master name server. Both master and secondary name servers are authoritative
for a zone.

The zones of authority are arranged in a hierarchy based on the domain origin
components. A special zone known as the root exists at the top of the domain name
hierarchy in a network. The root zone contains a list of all the root servers. For
example (see Figure 82 on page 777), in the Internet, the root name servers store
information about nodes in the root domain, and information about the delegated
domains, such as com (commercial), edu (education), and mil (military). The root
name servers store the names of name servers for each of these domains, which in
turn store the names of name servers for their delegated subdomains.

TCP/IP applications contact a name server whenever it is necessary to translate a
domain name into an IP address, or when information is required about a domain.
The name server performs the translation if it has the necessary information. If it
does not have the necessary information, the name server can contact other name
servers, which in turn can contact other name servers. This process is called a

778 z/OS V1R12.0 Comm Svr: IP Configuration Guide

recursive query. Alternatively, a name server can simply return the address of
another name server that might hold the requested information. This is called a
referral response to a query. Name server implementations must support referrals,
but are not required to perform recursive queries. See “Resolvers” on page 780 for
more information about query responses.

Master name servers: A master name server maintains all the data for its zone.
Static resources are kept in database files called domain data files. For information
on creating domain data files, see “Step 4: Create the domain data files (master
name server only)” on page 787. Master name servers can also receive zone
updates dynamically.

Secondary name servers: A secondary name server acts as an alternate to the
master server if the master name server becomes unavailable or overloaded. The
secondary name server receives zone data directly from the master name server in
a process called zone transfer. Zone transfers, which only occur when data has
changed, are based on the refresh interval in the Start of Authority (SOA) resource
record or, for BIND 9 name servers only, on using the DNS Notify function. For a
description of the SOA resource record, see z/OS Communications Server: IP
Configuration Reference. A secondary server, like a master server, is authoritative for
a zone.

Caching-only servers
All name servers cache (store) the data they receive in response to a query. A
caching-only server, however, is not authoritative for any domain. Responses
derived from cached information are flagged in the response. When a caching-only
server receives a query, it checks its cache for the requested information. If it does
not have the information, it queries a local name server or a root name server,
passes the information to the client, and caches the answer for future queries. The
names and addresses of the root name servers are acquired from the servers listed
in the hints file, the name and file path of which are specified in the name server's
configuration file.

You can manually configure a name server to create a large cache of responses to
queries that are frequently requested and reduce the number of queries made to
master servers. The name server that you configure as a caching-only server stores
data for a period of time determined by the time-to-live (ttl) value, and the cached
information is lost if the name server is restarted. For more information, see
“Configuring a caching-only name server” on page 802.

Tip: As an alternative to manually configuring a caching-only server, you can use
the cache that the resolver creates. The resolver cache is enabled by default and
typically provides better system performance than using a caching-only name
server that you have configured manually. For more information about using,
configuring, and managing the resolver cache, see “Resolver caching” on page 744.

Forwarders
Normally, name servers answer queries from cached data or, if that does not
succeed, they attempt to contact other name servers identified in their data files as
authoritative for certain domains. However, name servers can also be configured to
contact special servers called forwarders before contacting the name servers listed in
their data files. If a forwarder cannot process the query and if the local name
server is not a forward-only name server, the local name server contacts the name
servers in its data files. A forward-only name server relies completely on its
forwarders. It does not try to contact other servers to find out information if the
forwarders do not give it an answer.

Chapter 15. Domain Name System 779

The forwarding function is useful for reducing the number of queries to servers on
the Internet and for creating a large cache of information on forwarders. It is also a
useful function for providing Internet access for local servers that, for one reason
or another, do not have access themselves.

Stealth server
A stealth server is a server that answers authoritatively for a zone, but is not listed
in that zone's NS records. Stealth servers can be used as a way to centralize
distribution of a zone, without having to edit the zone on a remote name server.
When the master file for a zone resides on a stealth server in this way, it is often
referred to as a hidden primary configuration. Stealth servers can also be a way to
keep a local copy of a zone for rapid access to the zone's records, even if all official
name servers for the zone are inaccessible.

Resolvers
Programs that query a name server are called resolvers. Because many TCP/IP
applications need to query the name server, a set of routines is usually provided
for application programmers to perform queries. On z/OS, these routines are
available in the resolver provided by z/OS Communications Server.

z/OS Communications Server provides programs for interactively querying a name
server:
v NSLOOKUP (TSO)
v onslookup/nslookup (z/OS UNIX)
v DIG (TSO)
v dig (z/OS UNIX)
v host

Note: The nsupdate program also makes queries to name servers as part of its
operations.

For information on these programs, see z/OS Communications Server: IP System
Administrator's Commands.

The BIND 9 onslookup and dig commands use the resolver initialization facilities
of the resolver provided by z/OS Communications Server, but use their own
resolver for any additional resolver facilities needed.

Resolver directives for nslookup
The onslookup program uses the following resolver directives (TCPIP.DATA
statements):
v domain/domainorigin
v search
v nameserver/nsinteraddr
v sortlist
v options debug/options ndots

Resolver directives for dig
The dig program uses the following resolver directives (TCPIP.DATA statements):
v domain/domainorigin
v search
v nameserver/nsinteraddr

780 z/OS V1R12.0 Comm Svr: IP Configuration Guide

v options ndots

Query Packets
Resolvers operate by sending query packets to a name server, either over the
network or to the local name server.

A query packet contains the following fields:
v Domain name
v Query type
v A query class

For information on valid query class (network class) and query type (data type)
values, see z/OS Communications Server: IP Configuration Reference. The name server
attempts to match the three fields of the query packet to its database. For
flexibility, the following wildcard query types are defined:

Type Description

ANY Indicates any record type for the domain name.

AXFR Indicates the query type used by secondary name servers to transfer
all records in the zone. (The query class is set to IN when using the
AXFR query type.)

MAILB Indicates any mailbox records for the domain name.

The name server can return the following query responses:

Response Description

Authoritative Is returned from a primary or secondary name server. The name
server contains all the domain data used to define the zone for the
specified query.

BADVERS The name server received a request that contained a EDNS0 version
that was not valid.

Nonauthoritative Is returned from a cache kept by a name server. The cache does not
contain the domain data used to define the zone for the specified
query.

Format Error The name server found an error in the query packet sent by the
resolver.

Name Error No resource records of any type (including wildcards) exist for the
domain name specified.

NXDOMAIN
(negative)

No records of the requested type were found for the domain name
specified.

Not-implemented The name server does not support the type of query requested.

NOTAUTH The name server is not authoritative for the zone.

NOTZONE A dynamic update failed because the name to be updated is not
contained within the given zone.

NXRRSET A dynamic update failed because the prerequisites were not satisfied.
The Resource Record set existed when the prerequiste stated it
should not.

Referral Contains the addresses of other name servers that might be able to
answer the query. A referral response is returned when a recursive
query is not supported, not requested, or cannot be answered
because of network connectivity.

Chapter 15. Domain Name System 781

Response Description

Refused The name server refuses to perform the specified operation. For
example, some root name servers limit zone transfers to a set
number of IP addresses.

YXDOMAIN DNAME mapping failed because the new name was too long.

YXRRSET A dynamic update failed because the prerequisites were not satisfied.
The Resource Record set did not exist when the prerequiste stated it
should.

Resource Records
Data from a name server is stored and distributed in a format known as a resource
record. Resource record fields are described in detail in z/OS Communications Server:
IP Configuration Reference. Each response from a name server can contain several
resource records, which can contain a variety of information. The format of a
response is defined in RFC 1035. It includes the following sections:
v A question section, echoing the query for which the response is returned.
v An answer section, containing resource records matching the query.
v An additional section, containing resource records that do not match the query,

but might provide useful information for the client. For example, the response to
a query for the host name of a name server for a specific zone includes the IP
address of that name server in the additional section.

v An authority section, containing information specific to the type of response
made to the query. If a referral is returned, this section contains the domain
names of name servers that could provide an authoritative answer. If a negative
response is returned indicating the name does not exist, this section contains a
Start Of Authority (SOA) record defining the zone of authority of the responding
name server.

Recommended reading
The latest edition of DNS and BIND by Paul Albitz and Cricket Liu (O'Reilly &
Associates, Inc.) gives a comprehensive description of DNS and BIND. The BIND 9
name server is based upon BIND 9.2.0.

For additional information about DNS in a sysplex, see TCP/IP in a Sysplex,
SG24-5235 (IBM Redbooks).

You can subscribe to a BIND users mailing list at https://lists.isc.org/mailman/
listinfo.

DNS protocols are described in various Request for Comments (RFC) papers and
Internet drafts. RFCs outline existing protocols, suggest new protocols, and
establish standards for the Internet protocol suite. Internet drafts are proposals,
techniques, and mechanisms that document Internet Engineering Task Force (IETF)
work-in-progress.

For information about obtaining RFCs, see Appendix G, “Related protocol
specifications,” on page 1555.

For a list of RFCs related to DNS, see “DNS-related RFCs” on page 827.

782 z/OS V1R12.0 Comm Svr: IP Configuration Guide

http://lists.isc.org/mailman/listinfo
http://lists.isc.org/mailman/listinfo

Performance issues
The BIND 9 name server supports multithreading and DNSSEC which creates
extra overhead. Multithreading might improve performance for large zones but can
be a disadvantage for small zones.

Because of the multithreading, BIND 9 name servers are able to answer queries
during zone transfers. BIND 9 name servers are also capable of Incremental Zone
Transfers. Incremental Zone Transfer allows only the changed information in a
zone to be sent to secondary name servers instead of the entire zone. If your name
servers employ dynamic update for frequent zone changes, the Incremental Zone
Transfer feature of BIND 9 might offer some performance advantages while
reducing network traffic.

The BIND 9 name server randomizes the UDP source port that is used for
processing recursive queries. Randomizing the port provides additional security
against DNS spoofing. When random ports are used, the CPU time used by BIND
9 can increase up to 50 percent for a recursive request. If you use the PORT or
PORTRANGE statement to reserve a large portion of the UDP ports, the BIND 9
name server consumes higher amounts of CPU time and might be unable to
process recursive requests. You can disable port randomization by coding
random-port-attempts 0 in the options statement. However, disabling port
randomization increases the exposure to DNS spoofing attacks. When using BIND
9 in environments that might be susceptible to spoofing attacks, you can use port
randomization to minimize this exposure or you can disable recursive queries in
the BIND 9 name server by coding recursion no in the options statement. In
environments with a limited number of UDP ports available to the BIND 9 name
server, recursive queries should not be used in conjunction with port
randomization.

The use of DNSSEC (authenticating DNS data with digital signatures) will have a
performance cost. The authentication process requires more CPU, and signing a
zone greatly increases the zone's size. DNS message sizes will also increase
between client and server, and between DNS servers. If the message size becomes
too large for UDP, the message will be sent by TCP, which is more resource
intensive. Some resolvers, including the z/OS resolver, support the Extension
Mechanisms for DNS (EDNS0) standards, which permit receipt of larger UDP
message sizes (the default is 512 bytes) and lessens the need to use TCP for larger
DNS messages. The z/OS resolver accepts UDP message sizes up to 3072 bytes in
length. The BIND 9 name server supports the EDNS0 mechanisms.

Since the BIND 9 name server is multithreaded, it can take advantage of any
additional processors you add to the system. The BIND 9 name server will detect
the number of logical CPUs configured for the system (if not running partitioned)
or LPAR (if running partitioned), and create additional worker threads accordingly.
For simply configured name servers that are small, are not using DNSSEC, or are
not kept busy, the overhead in managing the extra threads created on a
multiprocessor image can actually be disadvantageous. If you feel this might be
the case, you can override the number of worker threads created by using the -n
option when starting the name server. The number of logical CPUs detected (and
therefore, the number of worker threads created by default) is logged when the
name server is started.

Chapter 15. Domain Name System 783

Setting up and running the name server
This topic describes the tasks involved in configuring the name server and
verifying that the name server is working correctly.

Name server configuration files must exist in the z/OS UNIX file system. Before
configuring DNS, the TSO user ID from which the name server is started must
have the proper authority to access the name server configuration and zone files.
For a complete description of file permissions, see z/OS UNIX System Services
Planning.

Requirement: When you are starting the name server from a start procedure or
from the z/OS UNIX shell command line, ensure that the user is defined as a
superuser [UID(0)] or is permitted access to the BPX.SUPERUSER profile. For
instructions on how to set up permissions to BPX.SUPERUSER, see the steps for
setting up BPX.SUPERUSER in z/OS UNIX System Services Planning. Also see z/OS
UNIX System Services Planning for instructions on changing a superuser from
UID(0) to a unique nonzero UID.

Configuring a master (primary) name server
The name resolution process is an example of a client/server relationship in which
clients, through their resolvers, request a service (name resolution) from name
servers. For a general overview of name servers, see “Domain name servers” on
page 777.

The following summary lists the steps for configuring a master server or a
caching-only server:
1. Create a configuration file for BIND 9–DNS.
2. Specify port ownership.
3. Update the name server start procedure.
4. Create the domain data files (master name server only).
5. Create the hints (root server) file.
6. Create the loopback file.
7. Configure logging.
8. Ensure that the syslog daemon is running on your system.
9. Specify whether the name server is to run as swappable or nonswappable.

10. Start the name server.
11. Verify that the name server started correctly.
12. Verify that the name server can accept queries.

The difference between configuring a master (primary) name server and secondary
name server and caching-only servers is the creation of domain data files (the
database files containing host-to-address and address-to-host mappings). The
domain data files are maintained on the master name server, and the secondary
name server transfers this data to its own database. Examples of secondary,
caching-only, and forward-only configurations are in “Configuring a secondary
name server” on page 800, “Configuring a caching-only name server” on page 802,
and “Adding forwarding to your name server” on page 805.

Step 1: Create the configuration file for BIND 9–DNS
The sample BIND 9-DNS configuration file shipped in /usr/lpp/tcpip/samples/
named.conf is shown below. See the program directory for its location. All zone

784 z/OS V1R12.0 Comm Svr: IP Configuration Guide

data files referenced within the sample configuration file, with the exception of the
hints file, can be found in the samples directory. To obtain the hints file, follow the
instructions in “Step 5: Create the hints (root server) file” on page 790.
LICENSED MATERIALS - PROPERTY OF IBM
"RESTRICTED MATERIALS OF IBM"
5694-A01 (C) COPYRIGHT IBM CORP. 2001
#
(C) COPYRIGHT International Business Machines Corp. 1985, 1993
All Rights Reserved
US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
#
Licensed Materials - Property of IBM
#
#
NOTICE TO USERS OF THE SOURCE CODE EXAMPLES
#
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THE SOURCE CODE
EXAMPLES, BOTH INDIVIDUALLY AND AS ONE OR MORE GROUPS, "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE SOURCE CODE EXAMPLES, BOTH INDIVIDUALLY AND AS ONE OR MORE GROUPS,
IS WITH YOU. SHOULD ANY PART OF THE SOURCE CODE EXAMPLES PROVE DEFECTIVE
YOU ASSUME THE ENTIRE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.
#
Note: This file must be copied and renamed to /etc/named.conf and all
all zone files referenced below must be copied to /etc/dnsdata/ for
this file to function as intended. In addition, the default location
for the process id file is in /var/run/pid.file; if that directory
does not exist a different one can be configured with the option:
#
pid-file "path/file-name";
#
/etc/named.conf
#
conf file for name server
#

options {
directory "/etc/dnsdata";

};

logging {
category "queries" {

default_syslog;
};

};

zone "mycorp.com" in {
type master;
file "db.mycorp.v9";

};

zone "34.37.9.in-addr.arpa" in {
type master;
file "db.34.37.9.v9";

};

zone "0.0.127.in-addr.arpa" in {
type master;

Chapter 15. Domain Name System 785

file "db.loopback.v9";
};

zone "." in {
type hint;
file "db.cache";

};

Step 2: Specify port ownership
The name server uses a single port (53) for TCP and UDP sessions. A BIND 9
server can specify IP addresses to listen on and from which to send queries,
notifies, and zone transfers in its configuration file.

To specify port ownership when using the named start procedure for BIND 9, add
the following statements to the PROFILE.TCPIP data set:
PORT

53 TCP NAMED1
53 UDP NAMED1

Notes:

1. The jobname on the TCP and UDP port reservation statements requires a suffix
of 1 for BIND 9.

2. PORT 53 UDP can only be reserved for one jobname because of a TCP/IP
profile restriction.

3. Jobname/step is unpredictable if the name server is directly started from the
z/OS UNIX shell.

4. Whether started from an MVS procedure or the z/OS UNIX shell, the port can
be generically reserved to UNIX applications: PORT 53 TCP (also UDP) OMVS.

For more information on the PORT statement, see z/OS Communications Server: IP
Configuration Reference.

Note: In order to pick up changes in the PROFILE.TCPIP data set, stop and restart
TCP/IP. As an alternative to stopping the stack, use the VARY
TCPIP,,OBEYFILE command to reserve the ports while the stack is up.

Step 3: Update the name server start procedure (optional)
When choosing to start the name server from MVS, create a start procedure. This is
not necessary if the name server is started from the z/OS UNIX shell. Move the
sample start procedure, SEZAINST(NAMED), to a recognized PROCLIB. Specify name
server parameters and change the data set names as required to suit local
configuration. The conf file path can also be changed as shown in the sample start
procedure. If you want to have NAMED messages written out to SYSLOGD
instead of the system console (syslog), then you must start NAMED via
BPXBATCH.
//*
//* TCP/IP for MVS
//* SMP/E Distribution Name: EZANSPR9
//*
//* Licensed Materials - Property of IBM
//* This product contains "Restricted Materials of IBM"
//* 5694-A01 Copyright IBM Corp. 2001, 2009.
//* All rights reserved.
//* US Government Users Restricted Rights -
//* Use, duplication or disclosure restricted by
//* GSA ADP Schedule Contract with IBM Corp.
//* See IBM Copyright Instructions.

786 z/OS V1R12.0 Comm Svr: IP Configuration Guide

//*
//* NAMED can be started with a variety of parameters.
//* In this example, the "-c" parameter describes which
//* configuration file NAMED should be started with.
//*
//NAMED PROC C=’/etc/named.conf’
//NAMED EXEC PGM=BPXBATCH,REGION=0K,TIME=NOLIMIT,
// PARM=’PGM /usr/lpp/tcpip/sbin/named -c &C ’
//*
//* NAMED can use certain environmental variables, such
//* as NLSPATH (to determine the location of the message
//* catalog), and RESOLVER_CONFIG (to determine the location
//* of the file that contains the parameter TCPIPjobname).
//* These variables can be specified in a file defined
//* by STDENV.
//* An example of the contents of this file follows:
//*
//* RESOLVER_CONFIG=//’SYS1.TCPPARMS(TCPDATA2)’
//* or
//* RESOLVER_CONFIG=/etc/resolv.conf.tcp2
//*
//* Define STDENV with the name of the file that contains
//* the environmental variables to be used for this
//* invocation of NAMED.
//*
//*STDENV DD PATH=’/etc/named.env’,
//* PATHOPTS=(ORDONLY)
//*STDENV DD DSN=SAMPLE.NAMED(ENV&SYSCLONE),DISP=SHR
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=F,LRECL=132,BLKSIZE=132)
//SYSIN DD DUMMY
//SYSERR DD SYSOUT=*
//SYSOUT DD SYSOUT=*,DCB=(RECFM=F,LRECL=132,BLKSIZE=132)
//CEEDUMP DD SYSOUT=*

Step 4: Create the domain data files (master name server only)
The domain data files contain information about a domain, such as the IP
addresses and names of the hosts in the domain for which the master name server
is authoritative. The forward domain data file contains entries that provide forward
mapping (host names-to-IP addresses for each host system in the zone) as well as
additional information about system resources. The reverse domain data file
contains entries that provide reverse mapping (IP addresses-to-host names). A
separate reverse domain data file for each network (or subnet) in a domain can be
created.

Note: The TSO user ID from which the name server is started must have the
proper authority to access the name server configuration and zone files. For
a complete description of file permissions, see z/OS UNIX System Services
Planning.

Naming of domain data files is flexible. For convenience in maintaining the
database files, it is common to give them names such as db.extension, where
extension identifies the domain of the data contained within. This information uses
this convention. It also uses the suffix .bak to specify a secondary server backup
file.

Use the following to create domain data files:
v Control entries
v Resource records

Chapter 15. Domain Name System 787

v Special characters

Note: See z/OS Communications Server: IP Configuration Reference for more
information about these files.

The sample forward domain file, /usr/lpp/tcpip/samples/db.mycorp.v9, is listed
below. The file would be /etc/dnsdata/db.mycorp.v9.
; LICENSED MATERIALS - PROPERTY OF IBM
; "RESTRICTED MATERIALS OF IBM"
; 5694-A01 (C) COPYRIGHT IBM CORP. 2001
;
;
; (C) COPYRIGHT International Business Machines Corp. 1985, 1993
; All Rights Reserved
; US Government Users Restricted Rights - Use, duplication or
; disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
;
; Licensed Materials - Property of IBM
;
;
; NOTICE TO USERS OF THE SOURCE CODE EXAMPLES
;
; INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THE SOURCE CODE
; EXAMPLES, BOTH INDIVIDUALLY AND AS ONE OR MORE GROUPS, "AS IS" WITHOUT
; WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
; LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
; PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
; OF THE SOURCE CODE EXAMPLES, BOTH INDIVIDUALLY AND AS ONE OR MORE GROUPS,
; IS WITH YOU. SHOULD ANY PART OF THE SOURCE CODE EXAMPLES PROVE DEFECTIVE
; YOU ASSUME THE ENTIRE COST OF ALL NECESSARY SERVICING, REPAIR OR
; CORRECTION.
;
;
; /etc/dnsdata/db.mycorp.v9
; name server zone data
;
; Default TTL value
$TTL 86400 {1}
$ORIGIN com.
mycorp IN SOA ns1.mycorp admin.mycorp ({2}

1 ; Serial (incremented when database is changed)
10800 ; Refresh (slave will check every 3 hours)
3600 ; Retry (retry every hour after refresh failure)
604800 ; Expire (slave gives up retry after 1 week)
86400) ; Negative caching (NXDOMAIN/NXRRSET responses, 1 day){3}

;
$ORIGIN mycorp.com. {4}
; define domain nameservers

IN NS ns1 {5}
IN NS ns2

; example delagation of a subdomain
;intranet IN NS ns1.intranet
;intranet IN NS ns2.intranet
;ns1.intranet IN A 9.37.35.10
;ns2.intranet IN A 9.37.35.11

_http._tcp SRV 0 0 80 www.mycorp.com. {6}
SRV 10 0 8000 www2.mycorp.com. {6}

_http._tcp.w3 SRV 0 0 80 www.mycorp.com. {7}
SRV 10 0 8000 www2.mycorp.com. {7}

localhost IN A 127.0.0.1
ns1 IN A 9.37.34.10
ns2 IN A 9.37.34.11

gateway IN A 9.37.34.30 {8}
IN A 9.37.35.30

host1 IN A 9.37.34.1

788 z/OS V1R12.0 Comm Svr: IP Configuration Guide

host2 IN A 9.37.34.2
host3 IN A 9.37.34.3
host4 IN A 9.37.34.4

www2 IN A 9.37.34.5
www IN A 9.37.34.6
www IN A 9.37.34.7

;IPv6 addresses
www IN AAAA 3ffe:8050:201:1860:42::1 {9}
www IN A6 0 3ffe:8050:201:1860:42::1 {10}

mail IN CNAME ns1 {11}
ftp IN CNAME ns2

{1}
The rules for time-to-live values have been complicated somewhat in BIND v9. If

named finds a $TTL directive it follows TTL semantics defined in RFC 2308, which
states that records not explicitly setting a TTL inherit the TTL from the $TTL value.
If there is no $TTL set, it follows TTL semantics from RFCs 1034 and 1035, which
state that records with no explicit TTL inherit one from the previous record.
This implies that to follow RFC 1034/1035 semantics, the SOA RR must set its
TTL value. For simplicity, it is recommended that you always specify a $TTL
value. This line sets the default TTL for all records to 86400 seconds (one day).

{2}
The SOA (Start of Authority) record specifies the name server ns1 as the

authoritative name server for the domain mycorp.com. The mail address of the
person responsible for domain data is admin@mycorp.com. The numbers enclosed
in parentheses are parameters used to set different values for the zone.

{3}
The last SOA value represents length of time other servers should cache negative

responses from this zone. This line sets that value to 86400 seconds (1 day).

{4}
The control entry $ORIGIN appends the string mycorp.com. to all the

following host names that do not end with a dot (’.’).

{5}
The NS (Name Server) records specify the name servers in the zone. Note

that NS records do not distinguish between primary and secondary name servers.

{6}
The SRV records specify the location for the ’http’ service using the

’tcp’ protocol. The first record has a priority of 0, a weight of 0, uses
port 80 and the service is provided at host, www.mycorp.com. The second record
has a priority of 10 which is lower, a different port and target. A web client
capable of using SRV records requesting http://mycorp.com/ would be directed to
www.mycorp.com and www2.mycorp.com. The client would be responsible for
determining which site to connect to first based first on priority
and then on weight.

{7}
The SRV record also specifies the location for the ’http’ service using the

’tcp’ protocol. A web client capable of using SRV records requesting
http://w3.mycorp.com/ would also be directed www.mycorp.com and www2.mycorp.com.

{8}
These A (Address) records map the host name (gateway.mycorp.com) to the IP

addresses of the two networks to which it is connected.

{9}
The AAAA IPv6 record type sets the IPv6 address of www.mycorp.com to

3ffe:8050:201:1860:42::1.

{10}
The A6 IPv6 record type is an experimental way of specifying IPv6 addresses.

This record sets the address of www.mycorp.com to 3ffe:8050:201:1860:42::1. The ’0’
indicates that the address value is fully qualified (starts at bit 0). See the
most recent edition of DNS and BIND by Cricket Liu and Paul Albitz (O’Reilly and
Associates, Inc.) for more information on A6 records.

Chapter 15. Domain Name System 789

{11}
The CNAME record specifies that the name mail is an alias for the host name

ns1.mycorp.com.

The sample reverse domain file /usr/lpp/tcpip/samples/db.34.37.9.v9 is listed
below. Continuing the example, the file would be /etc/dnsdata/db.34.37.9.v9.
; LICENSED MATERIALS - PROPERTY OF IBM
; "RESTRICTED MATERIALS OF IBM"
; 5694-A01 (C) COPYRIGHT IBM CORP. 2001
;
; /etc/dnsdata/db.34.37.9.v9
;
; Default TTL value
$TTL 86400
$ORIGIN 37.9.in-addr.arpa.

34 IN SOA ns1.mycorp.com. admin.mycorp.com. (
1 10800 3600 604800 86400)

34 IN NS ns1.mycorp.com.
34 IN NS ns2.mycorp.com.
$ORIGIN 34.37.9.in-addr.arpa.
10 IN PTR ns1.mycorp.com.
11 IN PTR ns2.mycorp.com.

; Build similar reverse lookup records
$GENERATE 1-4 $ PTR host$.mycorp.com. {1}
; The following records are generated by the above $GENERATE directive.
;1 IN PTR host1.mycorp.com.
;2 IN PTR host2.mycorp.com.
;3 IN PTR host3.mycorp.com.
;4 IN PTR host4.mycorp.com.
5 IN PTR www2.mycorp.com.
6 IN PTR www.mycorp.com.
7 IN PTR www.mycorp.com.

20 IN PTR printserver.mycorp.com.

{1}
$GENERATE is a v9-specific directive that is useful for creating a series of

records that differ only by an iterator. This line prompts the name server to
create the records listed below upon zone load. For more information on
$GENERATE, refer to the z/OS Communications Server: IP Configuration Reference.

Note: Data files created locally for use by the name server are assumed to be in
code page IBM-1047. For systems using other code pages, use the iconv
command to translate from the local code page to code page IBM-1047. See
z/OS UNIX System Services Command Reference for more detailed information
about this command. Files read through a network connection (for example,
secondary data files) are converted to IBM-1047 by the name server before
they are written to the local file system.

FTP can also be used to convert the files to code page IBM-1047.

Step 5: Create the hints (root server) file
The hints file contains the names and IP addresses of the authoritative root domain
name servers. The root name servers contain the names of name servers in the
top-level domains such as com, edu, and mil. The name server uses root server
information when deciding which name server to contact when it receives a query
for a host outside its zone of authority and it does not have the data in its cache.

790 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Note: The hints file does not contain cached data nor does the name server
provide other hosts with the information contained in the hints file. A
forward-only server is the only type of name server that does not require a
hints file.

To obtain a hints file, point your Web browser at ftp://ftp.rs.internic.net and
retrieve the file named.root from the domain subdirectory. Update your hints file on
a regular basis.

The hints file in a BIND 9 config file is specified with a zone{} statement of type
'hints'.

An example of a hints file originally copied from ftp://ftp.rs.internic.net/
domain/named.root is listed below. Continuing the example, the file would be
/etc/dnsdata/db.cache.

; This file holds the information on root name servers needed to
; initialize cache of Internet domain name servers
; (e.g., reference this file in the
; zone "." { type hint; file "db.cache"; };
; in the configuration file of BIND domain name servers).
;
; This file is made available by InterNIC registration services
; under anonymous FTP as
; file /domain/named.root
; on server FTP.RS.INTERNIC.NET
; -OR- under Gopher** at RS.INTERNIC.NET
; under menu InterNIC Registration Services (NSI)
; submenu InterNIC Registration Archives
; file named.root
;
; last update: May 19, 1997
; related version of root zone: 1997051700
;
; formerly NS.INTERNIC.NET
;
. 3600000 IN NS A.ROOT-SERVERS.NET.
A.ROOT-SERVERS.NET. 3600000 A 198.41.0.4
;
; formerly NS1.ISI.EDU
;
. 3600000 NS B.ROOT-SERVERS.NET.
B.ROOT-SERVERS.NET. 3600000 A 128.9.0.107
;
; formerly C.PSI.NET
;
. 3600000 NS C.ROOT-SERVERS.NET.
C.ROOT-SERVERS.NET. 3600000 A 192.33.4.12
;
; formerly TERP.UMD.EDU
;
. 3600000 NS D.ROOT-SERVERS.NET.
D.ROOT-SERVERS.NET. 3600000 A 128.8.10.90
;
; formerly NS.NASA.GOV
;
. 3600000 NS E.ROOT-SERVERS.NET.
E.ROOT-SERVERS.NET. 3600000 A 192.203.230.10
;
; formerly. NS.ISC.ORG
;
. 3600000 NS F.ROOT-SERVERS.NET.
F.ROOT-SERVERS.NET. 3600000 A 192.5.5.241
;
; formerly NS.NIC.DDN.MIL

Chapter 15. Domain Name System 791

;
. 3600000 NS G.ROOT-SERVERS.NET.
G.ROOT-SERVERS.NET. 3600000 A 192.112.36.4
;
; formerly AOS.ARL.ARMY.MIL
;
. 3600000 NS H.ROOT-SERVERS.NET.
H.ROOT-SERVERS.NET. 3600000 A 128.63.2.53
;
; formerly NIC.NORDU.NET
;
. 3600000 NS I.ROOT-SERVERS.NET.
I.ROOT-SERVERS.NET. 3600000 A 192.36.148.17
;
; temporarily housed at NSI (InterNIC)
;
. 3600000 NS J.ROOT-SERVERS.NET.
J.ROOT-SERVERS.NET. 3600000 A 198.41.0.10
;
; housed in LINX, operated by RIPE NCC
;
. 3600000 NS K.ROOT-SERVERS.NET.
K.ROOT-SERVERS.NET. 3600000 A 193.0.14.129
;
; temporarily housed at ISI (IANA)
;
. 3600000 NS L.ROOT-SERVERS.NET.
L.ROOT-SERVERS.NET. 3600000 A 198.32.64.12
;
; temporarily housed at ISI (IANA)
;
. 3600000 NS M.ROOT-SERVERS.NET.
M.ROOT-SERVERS.NET. 3600000 A 198.32.65.12
; End of File

Step 6: Create the loopback file
The loopback file contains the loopback address. This is the address that a host
uses to route queries to itself. The preferred loopback address is 127.0.0.1,
although you can configure additional loopback interfaces in the PROFILE.TCPIP.
BIND 9 mode requires the availability to bind onto loopback address 127.0.0.1.

This guide uses the extension .loopback to specify the loopback file.

Note: In addition to creating the loopback file, add an address resource record
called localhost to the forward domain data file. This record supports proper
two-way resolution.

Use the following elements to create the loopback file:
v Control entries
v Resource records
v Special characters

Note: See z/OS Communications Server: IP Configuration Reference for more
information about these files.

The sample loopback file for BIND 9 shipped in /usr/lpp/tcpip/samples/
db.loopback.v9 is listed below. Continuing the example, the file would be
/etc/dnsdata/db.loopback.v9.
; LICENSED MATERIALS - PROPERTY OF IBM
; "RESTRICTED MATERIALS OF IBM"
; 5694-A01 (C) COPYRIGHT IBM CORP. 2001

792 z/OS V1R12.0 Comm Svr: IP Configuration Guide

;
; /etc/dnsdata/db.loopback.v9
;
; Default TTL value
$TTL 86400
0.0.127.in-addr.arpa. IN SOA ns1.mycorp.com. admin.mycorp.com. (

1
10800
3600
604800
86400)

0.0.127.in-addr.arpa. IN NS ns1.mycorp.com.
0.0.127.in-addr.arpa. IN NS ns2.mycorp.com.
1.0.0.127.in-addr.arpa. IN PTR localhost.

A separate loopback file is required for use with the IPv6 loopback address (::1).
The following shows an example named.conf configuration and the associated
zone file.
IPv6 loopback master zone simple definition in named.conf: zone
"1.0.ip6.arpa" { type master; file "loopback.v6"; };

loopback.v6 zone file (with implied domain origin from above master zone definition)

$TTL 86400
@ IN SOA ns1.mycorp.com. admin.mycorp.com. (

1
10800
3600
604800
7200)

NS ns1.mycorp.com.
PTR localhost.

Step 7: Configure logging
A wide variety of logging options for the name server can be configured with the
logging statement. Its channel phrase associates output methods, format options and
severity levels with a name that can then be used with the category phrase to select
how various classes of messages are logged.

Only one logging statement is used to define as many channels and categories as
are wanted. If there is no logging statement, the logging configuration will be:
logging {

category "default" { "default_syslog"; "default_debug"; };
};

In BIND 9, the logging configuration is only established when the entire
configuration file has been parsed. When the server is starting up, all logging
messages regarding syntax errors in the configuration file go to the default
channels. Therefore, if started from a procedure, the logging messages will be
written to syslogd. If started from z/OS UNIX, the logging messages may be
written to 'named.run' if started with the -d option, in addition to syslog.

All log output goes to one or more channels; you can make as many of them as
you want. Every channel definition must include a clause that says whether
messages selected for the channel go to a file, to a particular syslog facility, or are
discarded. It can optionally also limit the message severity level that will be
accepted by the channel (the default is info), and whether to include a
named-generated time stamp, the category name, the severity level, and the thread
ID (the default is to include all).

Chapter 15. Domain Name System 793

Messages written to logging files can be buffered according to the value on the
max-buffered-messages options statement. The default value is the maximum allowed
value of 35. Buffering messages to logging files will provide some amount of a
performance advantage. However, it might be misleading when viewing a logging
file while the name server is running, since the most recent logging information
might not have been written yet to the file.

The word null specified as the destination option for the channel will cause all
messages sent to it to be discarded; in that case, other options for the channel are
meaningless.

The file names the path name for the log file and can include limitations, both on
how large the file is allowed to become and how many versions of the file will be
saved each time the file is opened.

The size option for files is simply a hard ceiling on log growth. If the file ever
exceeds the size and the version is zero, then named will not write anything more
to it until the file is reopened, which will be done after the file is renamed or
erased. If version option value is 1 or more, the current file, when full, is renamed
with a suffix and another file is opened with the original name. In the latter case,
logging will continue in a round robin fashion using the current file name and the
suffixed file names. The default behavior is not to limit the size of the file. Note
that if debug is enabled, the logs can grow large very quickly and you might run
the risk of filling up your z/OS UNIX file system. Therefore, you should limit the
size of the file when debugging is enabled.

If you use the version log file option, then named will retain that many backup
versions of the file by renaming them when opening. For example, if you choose to
keep 3 old versions of the file lamers.log then just before it is opened lamers.log.1 is
renamed to lamers.log.2 , lamers.log.0 is renamed to lamers.log.1 , and lamers.log is
renamed to lamers.log.0 . No rolled versions are kept by default; any existing log
file is simply appended. The unlimited keyword is synonymous with 99 in current
BIND releases.

Example usage of the size and versions options:
channel "an_example_channel" {

file "example.log" versions 3 size 20m;
print-time yes;
print-category yes;
print-threadid yes;

};

The argument for the syslog clause is a syslog facility. See z/OS Communications
Server: IP Configuration Reference for more detailed parameter information.

The severity clause works like syslog's priorities, except that they can also be used
if you are writing straight to a file rather than using syslog . Messages which are
not at least of the severity level given will not be selected for the channel;
messages of higher severity levels will be accepted. Severity level decreases from
critical down to info, and further decreases from debug 1 down to debug 99.

If you are using syslog , then the syslog.conf priorities will also determine what
eventually passes through. For example, defining a channel facility and severity as
daemon and debug but only logging daemon.warning via syslog.conf will cause
messages of severity info and notice to be dropped. If the situation were reversed,
with named writing messages of only warning or higher, then syslogd would print
all messages it received from the channel.

794 z/OS V1R12.0 Comm Svr: IP Configuration Guide

The server can supply extensive debugging information when it is in debugging
mode. If the server's global debug level is greater than zero, then debugging mode
will be active. The global debug level is set by starting the named server with the
-d flag followed by a positive integer. All debugging messages in the server have a
debug level, and higher debug levels give more detailed output. The maximum
debug level is 99. Channels that specify a specific debug severity, for example:
channel "specific_debug_level" {

file "foo";
severity debug 3;

};

will get debugging output of level 3 or less any time the server is in debugging
mode, regardless of the global debugging level. Channels with dynamic severity use
the server's global level to determine what messages to print.

The print- options can be used in any combination.

If the following is turned on . . . Then the following is logged . . .

print-time date and time

print-category category of the message

print-severity severity level of the message

print-threadid the thread ID that is issuing the message

Note: print-time can be specified for a syslog channel, but is usually pointless since syslog
also prints the date and time.

The print- options are always printed in the following order: time, category,
severity, and thread ID. Here is an example:
Apr 24 09:28:05.848 queries: info: 0a923850: EZZ8828I client 127.0.0.1#20021:

query: host1.mycorp.com IN A

There are four predefined channels that are used for named's default logging as
follows:
channel "default_syslog" {

syslog daemon; // send to syslog’s daemon
// facility

severity info; // only send priority info
// and higher

};
channel "default_debug" {

file "named.run"; // write to named.run in
// the working directory
// Note: stderr is used instead
// of "named.run"
// if the server is started
// with the ’-f’ option.

severity dynamic // log at the server’s
// current debug level

};
channel "default_stderr" { // writes to stderr

file "<stderr>"; // this is illustrative only;
// there’s currently no way of
// specifying an internal file
// descriptor in the
// configuration language.

severity info; // only send priority info
// and higher

};

Chapter 15. Domain Name System 795

channel "null" {
null; // toss anything sent to

// this channel
};

The default_debug channel normally writes to a file named.run in the server's
working directory. For security reasons, when the -u command line option is used,
the named.run file is created only after named has changed to the new UID, and
any debug output generated while named is starting up and still running as root is
discarded.

Once a channel is defined, it cannot be redefined. Thus you cannot alter the
built-in channels directly, but you can modify the default logging by pointing
categories at channels you have defined.

There are many categories, so you can send the logs you want to see wherever you
want, without seeing logs you do not want. If you don't specify a list of channels
for a category, then log messages in that category will be sent to the default
category instead. If you don't specify a default category, the following "default
default" is used:
category "default" { "default_syslog"; "default_debug"; };

As an example, say you want to log security events to a file, but you also want to
keep the default logging behavior. You would specify the following:
channel "my_security_channel" {

file "my_security_file";
severity info;

};
category "security" {

"my_security_channel";
"default_syslog";
"default_debug";

};

To discard all messages in a category, specify the null channel:
category "xfer-out" { "null"; };
category "notify" { "null"; };

In the following example:
v Four channels have been defined to make it possible to browse and keep logs

for some categories separately. In theory, each category can log to one or more
different channels, but keeping the number of channels to a minimum is
recommended.

v Most existing categories have been specifically associated with one or more
channels to demonstrate logging flexibility. However, categories directed to the
main log only may be omitted and instead, covered by the default category. One
exception is the queries category, which requires a specific channel association to
enable queries logging.

v Every channel log entry will be prefixed with time stamp, category, severity, and
thread ID.

Note: The default for all print- options is yes.
v Every channel has been customized for maximum file size and for keeping 2

archived files in addition to the active log file. Make sure the disk has enough
space for the total maximum size of active and archived log files, and extra
space for any other growing logs or files.

796 z/OS V1R12.0 Comm Svr: IP Configuration Guide

v Every channel but transfer_log will log messages up to debug level 99 which is
the suggested detailed level to gather problem documentation but can fill up
logging files quickly. Lower debug levels (e.g. 11, info, error) may be used for
normal operation.

v - transfer_log is shown at debug level 7, where minimal zone transfer starting
and stopping activity is recorded. Increasing level to 8 and above will
considerably increase logging activity, mainly for large zones with one-answer
transfer format.

v "severity dynamic;" can also be set for any channel, in which case debug level is
determined by named -d start option value.

v The default_debug channel can be specified instead of one or more user defined
channels, in which case logging goes to "named.run" file in the named working
directory. No maximum file size will stop logging to named.run.

logging {
channel main_log {

file "/tmp/named_main.log" versions 2 size 20M;
print-time yes;
print-category yes;
print-severity yes;
print-threadid yes;

severity debug 99;
severity info;
};
channel security_log {

file "/tmp/named_security.log" versions 2 size 1M;
severity info;

severity debug 99;
};
channel query_log {

file "/tmp/named_query.log" versions 2 size 10M;
severity debug 99;
severity info;
};
channel transfer_log {

file "/tmp/named_transfer.log" versions 2 size 10M;
severity debug 7;

};

category client { main_log; };
category config { main_log; };
category database { main_log; };
category dispatch { main_log; };
category dnssec { security_log; main_log; };
category general { main_log; };
category network { main_log; };
category notify { main_log; };
category resolver { main_log; };
category security { security_log; main_log; };
category update { main_log; };
category queries { query_log;};
category lame-servers { query_log; main_log; };
category xfer-in { "transfer_log"; };
category xfer-out { "transfer_log"; };
category default { main_log; };
category unmatched { main_log; };

};

More detail about the available categories and brief descriptions of the types of log
information they contain can be found in the z/OS Communications Server: IP
Configuration Reference.

Chapter 15. Domain Name System 797

|
|
|

|
|

|
|
|

Step 8: Ensure that the syslog daemon is running on your
system
The name server uses the syslog daemon to log messages. To verify that the name
server starts correctly or to diagnose problems, the syslog daemon should be
running.

Guideline: Unless syslogd is running, no messages will be produced by NAMED
during name server initialization. This includes event logging and any syntax
errors that might be detected in the configuration file. Not performing this step
complicates problem determination, especially for failures at startup.

If your syslog daemon is not configured, see “Creating the syslog file” on page 806
for information regarding the syslog daemon.

Step 9: Specify whether the name server is to run as swappable
or nonswappable
You might want to run the name server in a swappable state, as it has in the past.
This is an optional step. Keep in mind that when an application makes an address
space nonswappable, it might convert additional real storage in the system to
preferred storage. Because preferred storage cannot be configured offline, allowing
the name server to run in a nonswappable state can reduce the installation's ability
to reconfigure storage in the future.

If you want to run the name server as swappable, you must have the
BPX.STOR.SWAP resource in the FACILITY class defined to RACF with no
universal access. To do this, enter the following commands from a RACF user ID.
RDEFINE FACILITY BPX.STOR.SWAP UACC(NONE)
SETROPTS RACLIST(FACILITY) REFRESH

If you want the name server to run in a nonswappable state, do one of the
following:
v Do not define the BPX.STOR.SWAP resource to RACF. Start the name server

from a user ID with a UID equal to 0.
v Define the BPX.STOR.SWAP resource to RACF and allow the appropriate users

at least READ access to the profile.

The latter method can be accomplished with the following set of commands:
RDEFINE FACILITY BPX.STOR.SWAP UACC(NONE)
PERMIT BPX.STOR.SWAP CLASS(FACILITY) ID(userid) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

Step 10: Start the name server
Your name server is ready to start. Start the name server using the following
methods:
v An authorized TSO ID can start a name server from the MVS operator's console

by starting the named start procedure. If the config file path is not /etc, specify
the correct path in the start procedure. See z/OS Communications Server: IP
Configuration Reference for start options. A sample start procedure is provided
with the product and is found in SEZAINST(NAMED9).

v A user ID with superuser authority [UID(0)] or a user ID permitted to the
BPX.SUPERUSER profile can start the name server from the shell, by starting
z/OS UNIX and issuing the named command along with any optional
parameters.

798 z/OS V1R12.0 Comm Svr: IP Configuration Guide

v It is also possible to start the server automatically when z/OS UNIX is started
by specifying the path and file name of the z/OS UNIX initialization shell script
in the /etc/init.options file using the -sc option:
-sc /etc/rc shell script = /etc/rc

The file /etc/rc is the default z/OS UNIX initialization shell script that is
executed when z/OS UNIX is started. Information such as the following can be
entered in /etc/rc:
Start name server
/usr/lpp/tcpip/sbin/named -c /named/production/named.conf &

Port 53 may be reserved for the name server in the PROFILE.TCPIP data set. For
directions on specifying port ownership, see “Step 2: Specify port ownership” on
page 786. The name server may only be started after TCP/IP is up. In rare
circumstances, the name server may complete initialization before all of the
stack's interfaces have been brought up. In this case, the name server will not be
listening on all desired interfaces. Eventually, the name server will scan the stack
interfaces again, and begin listening on all desired interfaces. The default time
period for this rescan is one minute. You can have the name server rescan the
interfaces at the interval you desire by specifying the "interface-interval" option
in the named.conf file.

v If you are starting the name server in a single stack environment, use the
AUTOLOG statement to start the name server automatically during initialization
with z/OS UNIX running. Insert the name of the named start procedure in the
AUTOLOG statement of the PROFILE.TCPIP data set.
AUTOLOG

NAMED
ENDAUTOLOG

The JOBNAME keyword should not be added to the AUTOLOG statement for
named.
If you are starting the name server in a multiple stack environment, use some
other automation outside of AUTOLOG to automatically start the name server,
since it is a generic server. For more information on the AUTOLOG statement,
see z/OS Communications Server: IP Configuration Reference.

Note: Named cannot be started from INETD.

Step 11: Verify that the name server started correctly
After starting the name server, ensure that no errors occurred when it was started.
Look at the syslog daemon output data set for name server messages. If startup is
successful, messages similar to the following are displayed:
Mar 26 ... mvsw named[...29]: EZZ9172I VM mode detected. Using 1 CPU(s) for -n option
Mar 26 ... mvsw named[...56]: EZZ9547I starting named, BIND 9.2.0 -c /etc/namedgm.conf
Mar 26 ... mvsw named[...56]: EZZ9095I STARTING NAMED, BIND 9.2.0
Mar 26 ... mvsw named[...56]: EZZ9217I Running non-swappable
Mar 26 ... mvsw named[...56]: EZZ9540I using 1 CPU
Mar 26 ... mvsw named[...56]: EZZ9126I loading configuration from ’/etc/namedgm.conf’
Mar 26 ... mvsw named[...56]: EZZ8842I the default for the ’auth-nxdomain’ option is now ’no’
Mar 26 ... mvsw named[...56]: EZZ9052I no IPv6 interfaces found
Mar 26 ... mvsw named[...56]: EZZ9046I listening on IPv4 interface VLINK1, 9.67.116.122#53
Mar 26 ... mvsw named[...56]: EZZ9046I listening on IPv4 interface TR1, 9.67.113.75#53
Mar 26 ... mvsw named[...56]: EZZ9046I listening on IPv4 interface loopback127, 127.0.0.1#53
Mar 26 ... mvsw named[...56]: EZZ9111I command channel listening on 9.67.113.75#953
Mar 26 ... mvsw named[...56]: EZZ9130I NAMED, BIND 9.2.0 IS RUNNING

To stop the name server from the z/OS UNIX shell, issue:
kill -TERM $(cat /etc/named.pid)

Chapter 15. Domain Name System 799

To stop the name server from the MVS console, issue the following:
p named1
(Use the name of the procedure that is currently active. This is
usually the proc name that was used to start the name server, followed
by a ’1’ due to extra forking steps on startup)

To reload the name server with a signal, issue the following command from the
z/OS UNIX shell:
kill -HUP $(cat bind9_pid_file)

where bind9_pid_file is derived from pid-file option in named v9 configuration file.

rndc can also be used to reload or stop the server. See “Remote Name Daemon
Control” on page 807 for more details on the rndc command.

Step 12: Verify the name server can accept queries
When the name server is up with no logged errors, ensure that it can accept
queries. Ensure that the name server can accept queries locally from both the MVS
and z/OS UNIX environments. In order to correctly set up these environments, see
“Understanding search orders of configuration information” on page 19 for
instructions.

After the resolver configuration is correct, test with the nslookup or dig command.
An example using nslookup follows.

Issue the following command from both the z/OS UNIX shell and the TSO ready
prompt. In the following example, the name 'host1.mycorp.com.' is used for the
search.

Note: Choose any name in the domain you have defined.
nslookup host1.mycorp.com

Using the sample files in this example, the following should be the result when the
command is issued:
$ nslookup host1.mycorp.com
Running nslookup version 9
Note: nslookup is deprecated and may be removed from future releases.
Consider using the `dig’ or `host’ programs instead. Run nslookup with
the `-sil[ent]’ option to prevent this message from appearing.
Allocated socket 5, type udp
Server: 9.42.106.2
Address: 9.42.106.2#53

Non-authoritative answer:
Name: host1.mycorp.com
Address: 9.37.34.1

Configuring a secondary name server
After setting up a working master name server, you can set up one or more
secondary name servers. This process is very similar as configuring a master name
server. The differences are in the conf file and the absence of the domain data files.

For example, see “Configuring a master (primary) name server” on page 784 to
configure a secondary server for the forward and reverse mapping zones. The
steps are identical to the steps for configuring a master name server, except for
step 1. For step 1, more information is included in the subtopics following the
steps.

800 z/OS V1R12.0 Comm Svr: IP Configuration Guide

1. Create the configuration file for BIND–DNS. See “Step 1: Create the
configuration file for BIND 9-DNS.”

2. See “Step 2: Specify port ownership” on page 786.
3. See “Step 3: Update the name server start procedure (optional)” on page 786.
4. See “Step 4: Create the domain data files (master name server only)” on page

787.
5. See “Step 5: Create the hints (root server) file” on page 790.
6. See “Step 6: Create the loopback file” on page 792.
7. See “Step 7: Configure logging” on page 793.
8. See “Step 8: Ensure that the syslog daemon is running on your system” on

page 798.
9. See “Step 9: Specify whether the name server is to run as swappable or

nonswappable” on page 798.
10. See “Step 10: Start the name server” on page 798.
11. See “Step 11: Verify that the name server started correctly” on page 799.
12. See “Step 12: Verify the name server can accept queries” on page 800.

The difference between configuring a master and secondary name server is the
creation of domain data files (the database files containing host-to-address and
address-to-host mappings). The domain data files are maintained on the master
name server, and the secondary name server transfers this data to its own
database.

For instructions to create the configuration file for a secondary name server, see
“Step 1: Create the configuration file for BIND 9-DNS.” All remaining steps are
identical to those in “Configuring a master (primary) name server” on page 784.

Step 1: Create the configuration file for BIND 9-DNS
This example illustrates the equivalent configuration for a v9 name server where
the sample configuration file, /usr/lpp/tcpip/samples/slave.conf (based on
named.conf), reflects the setup for a secondary name server. All zone data files
referenced within the sample configuration file, with the exception of the hints file,
can be found in the samples directory. To obtain the hints file, follow the
instructions in “Step 5: Create the hints (root server) file” on page 790.
LICENSED MATERIALS - PROPERTY OF IBM
"RESTRICTED MATERIALS OF IBM"
5694-A01 (C) COPYRIGHT IBM CORP. 2000
#
(C) COPYRIGHT International Business Machines Corp. 1985, 1993
All Rights Reserved
US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
#
Licensed Materials - Property of IBM
#
#
NOTICE TO USERS OF THE SOURCE CODE EXAMPLES
#
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THE SOURCE CODE
EXAMPLES, BOTH INDIVIDUALLY AND AS ONE OR MORE GROUPS, "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE SOURCE CODE EXAMPLES, BOTH INDIVIDUALLY AND AS ONE OR MORE GROUPS,
IS WITH YOU. SHOULD ANY PART OF THE SOURCE CODE EXAMPLES PROVE DEFECTIVE

Chapter 15. Domain Name System 801

YOU ASSUME THE ENTIRE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.
#
Note: This file must be copied and renamed to /etc/named.conf and all
all zone files referenced below must be copied to /etc/dnsdata/ for
this file to function as intended. Also note this example is
built on the assumption that there is a master server for the zones
at 9.37.34.10. In addition, the default location for the process
id file is in /var/run/pid.file; if that directory does not exist
a different one can be configured with the option:
#
pid-file "path/file-name";
#
/etc/named.conf
#
conf file for name server
#
options {
directory "/etc/dnsdata";

};

logging {
category "queries" {
default_syslog;

};
};

zone "mycorp.com" in {
type slave;
file "db.mycorp.bak";
masters { 9.37.34.10; };

};

zone "34.37.9.in-addr.arpa" in {
type slave;
file "db.34.37.9.bak";
masters { 9.37.34.10; };

};

zone "0.0.127.in-addr.arpa" in {
type master;
file "db.loopback.v9";

};

zone "." in {
type hint;
file "db.cache";

};

Configuring a caching-only name server
When you are configuring a name server, decide whether the name server has to
be authoritative for any data. If it does not, you can configure a special type of
name server called a caching-only name server. A caching-only name server can
improve performance by reducing the number of network flows required for
names or addresses that are frequently requested. This topic explains how to
manually configure a caching-only name server.

Tip: As an alternative to manually configuring a caching-only server, you can use
the cache that the resolver creates. The resolver cache is enabled by default and

802 z/OS V1R12.0 Comm Svr: IP Configuration Guide

typically provides better system performance than using a caching-only name
server that you have configured manually. For more information about using,
configuring, and managing the resolver cache, see “Resolver caching” on page 744.

To manually configure a basic caching-only name server, use the following steps.
More information for step 1 is included in the subtopics following the steps. All
remaining steps are identical to those described in “Configuring a master (primary)
name server” on page 784
1. Create the configuration file for BIND 9–DNS. See “Step 1: Create the

configuration file for BIND 9-DNS.”
2. See “Step 2: Specify port ownership” on page 786.
3. See “Step 3: Update the name server start procedure (optional)” on page 786.
4. See “Step 5: Create the hints (root server) file” on page 790.

Following is an example of a hints (root server) file for a cache-only server:
;
; Cache-only "hints" file
;
. 3600000 IN NS hostname
hostname. 3600000 A ipaddress

where hostname is the fully qualified host name of an authoritative name
server for the root ('.') domain and ipaddress is the IP address for the specified
hostname. How this file is configured depends on whether you are behind a
firewall or not. If behind a firewall, hostname should be the name of an
internal root name server if internal roots are being used. If you are behind a
firewall and not using internal roots, then requests are probably being
forwarded to a name server on a bastion host, which can resolve internal and
internet names. In the latter case, what is in the hints file is unimportant since
it will not be used, and if the name server does attempt to use it, the firewall
would block it from contacting the internet root name servers. If you are not
behind a firewall, follow the example in “Step 5: Create the hints (root server)
file” on page 790 and instructions on getting a recent copy of the internet root
name servers.

5. See “Step 6: Create the loopback file” on page 792.
6. See “Step 7: Configure logging” on page 793.
7. See “Step 8: Ensure that the syslog daemon is running on your system” on

page 798.
8. See “Step 9: Specify whether the name server is to run as swappable or

nonswappable” on page 798.
9. See “Step 10: Start the name server” on page 798.

10. See “Step 11: Verify that the name server started correctly” on page 799.
11. See “Step 12: Verify the name server can accept queries” on page 800.

The difference between configuring a master name server and configuring a
caching-only server is the creation of domain data files (the database files
containing host-to-address and address-to-host mappings). A caching-only name
server will only contain the loopback zone file and the hints file.

Step 1: Create the configuration file for BIND 9-DNS
The following sample configuration sets up an equivalent configuration for a BIND
9 name server where the sample configuration file, /usr/lpp/tcpip/samples/
caching.conf (based on named.conf), reflects the setup for a caching-only name
server. All zone data files referenced within the sample configuration file, with the

Chapter 15. Domain Name System 803

exception of the hints file, can be found in the samples directory. To obtain the
hints file, follow the instructions in “Step 5: Create the hints (root server) file” on
page 790.
LICENSED MATERIALS - PROPERTY OF IBM
"RESTRICTED MATERIALS OF IBM"
5694-A01 (C) COPYRIGHT IBM CORP. 2001
#
(C) COPYRIGHT International Business Machines Corp. 1985, 1993
All Rights Reserved
US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
#
Licensed Materials - Property of IBM
#
#
NOTICE TO USERS OF THE SOURCE CODE EXAMPLES
#
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THE SOURCE CODE
EXAMPLES, BOTH INDIVIDUALLY AND AS ONE OR MORE GROUPS, "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE SOURCE CODE EXAMPLES, BOTH INDIVIDUALLY AND AS ONE OR MORE GROUPS,
IS WITH YOU. SHOULD ANY PART OF THE SOURCE CODE EXAMPLES PROVE DEFECTIVE
YOU ASSUME THE ENTIRE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.
#
#
Note: This file must be copied and renamed to /etc/named.conf and all
all zone files referenced below must be copied to /etc/dnsdata/ for
this file to function as intended. In addition, the default location
for the process id file is in /var/run/pid.file; if that directory
does not exist a different one can be configured with the option:
#
pid-file "path/file-name";
#
/etc/named.conf
#
conf file for name server
#
options {

directory "/etc/dnsdata";
};

logging {
category "queries" {
default_syslog;

};
};

zone "0.0.127.in-addr.arpa" in {
type master;
file "db.loopback.v9";

};

zone "." in {
type hint;
file "db.cache";

};

804 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Configuring a stealth name server
A stealth server is a server that answers authoritatively for a zone, but is not listed
in that zone's NS records. Configure a master or secondary stealth server for a
zone like you would configure a visible master or secondary server for the zone,
except do not create an NS record for the stealth server in the master zone. The
named server configuration option also-notify may be used to notify stealth
secondary servers of a zone update. In order to configure a stealth server, follow
the steps in “Configuring a secondary name server” on page 800.

Adding forwarding to your name server
In order to use forwarding in any name server, update the conf file.

Add the following statement to the conf file in the options section:
options {

..............
forwarders {9.4.2.1;};
..............

};

where 9.4.2.1 is the IP address of the machine where queries should be
forwarded. This sends unresolved queries to 9.4.2.1 before trying to resolve the
query using root name servers (specified in the hints file) or other cached name
servers authoritative for or 'closer' to the authoritative name server.

For a name server to only use forwarders and not use the root servers, in addition
to the forwarders directive, also add the following directive to its conf file:
options {

..............
forward only;

};

A name server with this option can still answer queries from its cached data. The
cache is checked first and if the cache does not contain the answer, the query is
sent to the name servers in the forwarders list.

Configuring host resolvers: Name server considerations
If the name server will run on the host being configured, create a loopback file.
Specify the loopback address in the first name server directive of the resolver
configuration file so local clients can access the name server. See “Step 6: Create
the loopback file” on page 792 for loopback address considerations.

The name server and DNS utilities (for example, nslookup and z/OS UNIX dig)
use a private resolver that is different from the resolver used by other z/OS UNIX
socket programs. The name server has the following functional differences:
v z/OS UNIX nslookup does not use site tables (for example, /etc/hosts) for host

name resolution.
v Only the built-in translation table is used for BIND 9 and all DNS utilities (for

example, nslookup, dig, and so on).

For a complete discussion of resolver configuration files, see z/OS Communications
Server: IP Configuration Reference.

Configuring host resolvers: onslookup considerations
Programs that query a name server are called resolvers. Because many TCP/IP
applications need to query the name server, a set of routines is usually provided

Chapter 15. Domain Name System 805

for application programmers to perform queries. Under MVS, these routines are
available in the TCP/IP application programming interface (API) for each
supported language, Language Environment for z/OS UNIX C/C++ Sockets API
or z/OS UNIX assembler callable services API.

The nslookup command uses a private resolver that is different from the z/OS
UNIX resolver used by other z/OS UNIX socket programs. The onslookup
command has the following functional differences:
v The file /etc/hosts is required for host table lookup if name services do not

exist. Following is a sample /etc/hosts file:
#
z/OS UNIX Resolver /etc/hosts file on mvss18oe.
#
The format of this file is:
#
Internet Address Hostname Aliases # Comments
#
Items are separated by any number of blanks and/or tabs. A ’#’
indicates the beginning of a comment; characters up to the end of the
line are not interpreted by routines which search this file. Blank
lines are allowed in this file.

9.24.104.126 mvs18oe mvsoe # z/OS UNIX host
192.168.210.1 mvs18an # MVS host
192.168.210.8 mypcaa # gw host
9.24.104.79 mypc # A workstation

Note: The presence of /etc/hosts will prevent the z/OS UNIX resolver from
accessing prefix.HOSTS.SITEINFO and prefix.HOSTS.ADDRINFO data sets.
The use of /etc/hosts is not recommended unless it is used for purposes
other than onslookup.

v Only the built-in translation table is used.

If the z/OS UNIX name server will run on the host being configured, you need to
configure the first name server (or NsInterAddr) directive in the resolver
configuration file as the loopback address (127.0.0.1 or ::1) or any address in your
home list.

Creating the syslog file
If your syslog daemon is not configured, see “Configuring the syslog daemon” on
page 185 for information regarding the syslog daemon.

Syslog daemon (syslogd) is a server process that is typically started as one of the
first processes in a z/OS UNIX environment. Servers and stack components use
syslogd for logging purposes and can also send trace information to syslogd. The
named daemon logs messages to the syslog daemon. For BIND 9, specify the syslog
option in the channel phrase of the logging statement in the named.conf file in order
to use this function. Also for BIND 9, you can direct a category to the default_syslog
channel. For information about the syslog daemon, see “Configuring the syslog
daemon” on page 185.

If you will be using syslogd with BIND 9, see “Step 7: Configure logging” on page
793 for detailed information.

The name and location of your syslog file is specified in /etc/syslog.conf.

806 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|

BIND 9 security considerations
This topic describes BIND 9 security considerations.

Remote Name Daemon Control
Remote Name Daemon Control (rndc) is a tool that allows the system
administrator some degree of control over the name server. The functions available
are:
v Reload configuration file and zones.
v Reload the given zone.
v Schedule zone maintenance for the given zone.
v Reload the configuration file and load new zones, but do not reload existing

zone files even if they have changed. This is faster than a full reload, when there
is a large number of zones, because it avoids the need to examine the
modification times of the zone files.

v Write server statistics to the statistics file.
v Toggle query logging.
v Dump the current contents of the cache.
v Stop the server, making sure any recent changes made through dynamic update

or IXFR are first saved to the master files of the updated zones.
v Stop the server immediately. Recent changes made through dynamic update or

IXFR are not saved to the master files, but will be rolled forward from the
journal files when the server is restarted.

v Increment the server's debugging level by one.
v Set the server's debugging level to an explicit value.
v Set the server's debugging level to 0.
v Flush the server's cache.
v Display status of the server.

For more detail, see z/OS Communications Server: IP System Administrator's
Commands, the rndc man page, the rndc.conf man page, and the rndc-confgen man
page.

A configuration file is required, since all communication with the server is
authenticated with digital signatures that rely on a shared secret, and there is no
way to provide that secret other than with a configuration file. The default location
for the rndc configuration file is /etc/rndc.conf, but an alternate location can be
specified with the -c option. If the configuration file is not found, rndc will also
look in /etc/rndc.key. The rndc.key file is generated by running rndc-confgen -a.

The format of the configuration file is similar to that of named.conf, but limited to
only four statements:
v options
v key
v server
v include

These statements are what associate the secret keys to the servers with which they
are meant to be shared. The order of statements is not significant.

The options statement has three clauses:
v default-server

Chapter 15. Domain Name System 807

v default-key
v default-port

The default-server clause takes a host name or address argument and represents
the server that will be contacted if no -s option is provided on the command line.
The default-key clause takes the key name as its argument, as defined by a key
statement. The default-port clause specifies the port to which rndc should connect
if no port is given on the command line or in a server statement.

The key statement names a key with its string argument. The string is required by
the server to be a valid domain name, though it need not actually be hierarchical;
thus, a string like "rndc_key" is a valid name. The key statement has two clauses:
v algorithm
v secret

While the configuration parser will accept any string as the argument to algorithm,
currently only the string "hmac-md5" has any meaning. The secret is a base-64
encoded string.

Since the tool may be used remotely, rndc and the name server must communicate
using digital transaction signatures (TSIG). Therefore, rndc and the name server
must be configured with a shared-secret. There are two ways to configure a
shared-secret key. One way is to use the /etc/rndc.key file generated by the
rndc-confgen -a command. This file is shared between the name server and the
rndc utility. The other way is to generate a shared-secret TSIG key with the
HMAC-MD5 algorithm using the dnssec-keygen utility. The key must be
configured in the name server under the controls section, and in the rndc.conf file
on the key clause.

The server statement uses the key clause to associate the server with a key. The
argument to the server statement is a host name or address (addresses must
appear in double quotation marks). The argument to the key clause is the name of
the key as defined by the key statement. The port clause can be used to specify the
port to which rndc should connect on the given server.

The include statement can be used to insert the contents of another file within the
rndc configuration file (for example, to include the contents of a file that contains
sensitive key information).

A sample minimal configuration file is as follows:
key rndc_key {

algorithm "hmac-md5";
secret "c3Ryb25nIGVub3VnaCBmb3IgYSBtYW4gYnV0IG1hZGUgZm9yIGEgd29tYW4K";

};
options {

default-server localhost;
default-key rndc_key;

};

This file, if installed as /etc/rndc.conf, would allow the rndc reload command to
connect to 127.0.0.1 port 953 (the default port) and cause the name server to reload,
if a name server on the local machine were running with the following controls
statements and it had an identical key statement for rndc_key:
controls {

inet 127.0.0.1 allow { localhost; } keys { rndc_key; };
};

808 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Running the rndc-confgen program will conveniently create a rndc.conf file for
you, and also display the corresponding controls statement that you need to add to
named.conf. Alternatively, you can run rndc-confgen -a to set up a rndc.key file
and not modify named.conf at all.

Access Control Lists
Access Control Lists (ACLs) are address match lists that you can set up and
nickname for future use in allow-query, allow-recursion, blackhole, allow-transfer,
and so on. Using ACLs enables you to have finer control over who can access your
name server, without cluttering up your configuration files with huge lists of IP
addresses. It is a good idea to use ACLs, and to control access to your server.
Limiting access to your server by outside parties can help prevent spoofing and
DoS (Denial of Service) attacks against your server. Here is an example of how to
properly apply ACLs:
// Set up an ACL named "bogusnets" that will block RFC1918 space,
// which is commonly used in spoofing attacks.

acl bogusnets { 0.0.0.0/8; 1.0.0.0/8; 2.0.0.0/8; 192.0.2.0/24; 224.0.0.0/3;
10.0.0.0/8; 172.16.0.0/12; 192.168.0.0/16; };

// Set up an ACL called our-nets. Replace this with the real IP numbers.

acl our-nets { x.x.x.x/24; x.x.x.x/21; };

options {
...
...
allow-query { our-nets; };
allow-recursion { our-nets; };
...
blackhole { bogusnets; };
...

};
zone "example.com" {

type master;
file "m/example.com";
allow-query { any; };

};

This allows non-recursive queries for example.com from inside and outside nets,
except from bogusnets, and allows recursive queries from our-nets to outside nets
unless recursion no; is also specified in the configuration file.

For more information on how to use ACLs to protect your server, see AUSCERT
advisory AL-1999.004 at the Australian Computer Emergency Response Team Web
site.

chroot and setuid
It is possible to run BIND in a chrooted environment (chroot()) by specifying the
-t option. This can help improve system security by placing BIND in a sandbox,
which will limit the damage done if a server is compromised.

Another useful feature is the ability to run the daemon as a nonprivileged user (-u
user). We suggest running as a nonprivileged user when using the chroot feature.

Here is an example command line to load BIND in a chroot() sandbox,
/var/named, and to run named setuid to user 202:
<>/usr/local/bin/named -u 202 -t /var/named

Chapter 15. Domain Name System 809

http://www.auscert.org.au/

The chroot environment: In order for a chroot() environment to work properly in
a particular directory (for example, /var/named), you will need to set up an
environment that includes everything BIND needs to run. From BIND's point of
view, /var/named is the root of the filesystem. You will need /dev/null, and any
library directories and files that BIND needs to run on your system.

Using the setuid function: Prior to running the named daemon, use the touch
utility (to change file access and modification times) or the chown utility (to set the
user id and/or group id) on files to which you want BIND to write.

Dynamic update security
Access to the dynamic update facility should be strictly limited. For these reasons,
we strongly recommend that updates be cryptographically authenticated by means
of transaction signatures (TSIG). That is, the allow-update option should list only
TSIG key names, not IP addresses or network prefixes. Alternatively, the
update-policy option can be used.

Some sites choose to keep all dynamically updated DNS data in a subdomain and
delegate that subdomain to a separate zone. This way, the top-level zone
containing critical data such as the IP addresses of public web and mail servers
need not allow dynamic update at all.

General VIPA considerations
If any VIPA addresses are used for zone delegation in the name server zone data
files, ensure that IPCONFIG SOURCEVIPA is coded in PROFILE.TCPIP on the host
to which a delegation has been made and that the SOURCEVIPA address that is
used to respond to queries matches the VIPA used in the zone delegation. If this is
not done, recursive queries could fail (nslookup will fail with "No response from
server", dig will respond with, "no servers could be reached"). The UDP query
response packets will be discarded when they are received because the source IP
address of the response will not match the destination IP address of the request.
These addresses are required to match by the name server as a minimal security
check.

Special considerations when using dynamic VIPA
If you run a name server on a host that is using dynamic VIPA (DVIPA), you
might be required to do some additional configuration. Name servers running on a
host using DVIPA need to BIND the UDP port that the name server listens on
(usually 53) to the DVIPA, if you want DNS to make use of the DVIPA. This can
be done by using the BIND option on the UDP PORT statement in
PROFILE.TCPIP, or by using the MODDVIPA utility. If you do BIND the DNS UDP
port to the DVIPA, then all references to that name server must use the DVIPA
whether those references are from other name servers or from resolvers.

References to a name server could occur in a number of places, and should be
changed to use the DVIPA if BINDing a DNS UDP port to the DVIPA. This list is
not exhaustive, but is intended to aid you for some of the most common cases. In
general, you may need to change any place that references a name server by its IP
address when using DVIPAs.

Task Location

Delegating a DNS subdomain to a name
server running on a host using DVIPA

The 'A' record in the glue records for the
delegated (child) name server in the domain
data file of the delegating (parent) name
server

810 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Task Location

Designating a secondary name server when
master (primary) name server is running on
a host using DVIPA

The 'secondary' statement in the 'masters'
option of the 'zone' statement

Configuring resolvers 'NSINTERADDR' or 'nameserver' directive
of the resolver configuration file

Using a name server as the target of other
forwarding name servers when the target
name server resides on a host using DVIPA

'forwarders' directive in the 'forwarders{}'
option of the 'options{}' statement

Using a name server as an intranet root
name server when the root name server is
running on a host using DVIPA

'A' record of the intranet root name server in
the hints file on all name servers within the
intranet

Dynamic primary DNS movement using dynamic VIPA
To use DNS along with DVIPA takeover functionality to provide a high availability
environment, perform the following steps:
1. Define a DVIPA. For example:

VIPADYNAMIC
VIPADEFINE 255.255.255.192 10.134.61.190

2. Define VIPABACKUPs on all the members that will be backup servers. For
example:
VIPADYNAMIC
VIPABACKUP 50 10.134.61.190
ENDVIPADYNAMIC

3. Update /etc/resolv.conf and TCPDATA on all SYSPLEX members to point to
that address. For example:
...
NSINTERADDR 10.134.61.190...

4. Update all of the glue records (NS records and their corresponding A records),
in the sysplex name servers and the sysplex parent's name servers that point to
the sysplex name server, to use the dynamic VIPA.

After doing the above configuration, stack termination will cause the DVIPA to be
taken over, making DNS on the new DVIPA owning stack reachable after route
convergence completes (OMPROUTE recommended).

Querying name servers
This topic describes how to use the nslookup command to query the name server.
onslookup is an alias of nslookup in the z/OS UNIX environment.

Notes:

1. The z/OS UNIX nslookup command runs only from the z/OS shell. The
nslookup command can query the name server from TSO or the z/OS shell.
However, only the legacy TSO version of NSLOOKUP is available from TSO.
See z/OS Communications Server: IP System Administrator's Commands for detailed
information.

2. The host and dig commands are another way to query name servers from the
z/OS shell. For information on the host and dig commands, see z/OS
Communications Server: IP System Administrator's Commands.

Chapter 15. Domain Name System 811

nslookup command

The z/OS UNIX nslookup and TSO NSLOOKUP commands can be used to query
the name server to perform the following tasks:
v Identifying the location of name servers
v Examining the contents of a name server database
v Establishing the accessibility of name servers

Note: sortlist is not supported by nslookup

The z/OS UNIX nslookup and TSO NSLOOKUP commands have two modes of
operation: interactive mode and command mode. The address of the default name
server comes from the resolver configuration data. In the sample data below, the
default domain is raleigh.ibm.com, and the default name server is at 9.37.34.149. If
that name server fails to respond, the one at 9.37.34.7 is used.
domain raleigh.ibm.com
nameserver 9.37.34.149
nameserver 9.37.34.7

Entering the interactive mode
Interactive mode can be used to repetitively query one or more name servers for
information about various hosts and domains, to display that information on the
console, and, in some cases, to write response data to a file.

You can enter the interactive mode under the following conditions only:
v No arguments are supplied on command invocation or the -v option is specified;

the default name server is used.
v The first argument is a hyphen, and the second argument is the host name or

Internet address of a name server.

For a complete description of the z/OS UNIX and TSO nslookup interactive
modes, see z/OS Communications Server: IP System Administrator's Commands.

Entering the command line mode
The command line mode displays or stores the output from the query supplied as
part of the invocation string and then exits.

To enter the command line mode, provide a complete query with the z/OS UNIX
nslookup command invocation string.

For a complete description of the z/OS UNIX and TSO nslookup command line
modes, see z/OS Communications Server: IP System Administrator's Commands.

nslookup configuration
There are only two places to specify nslookup options: as command options, or
from the resolver configuration data set. Only a few of the options may be set in
the resolver configuration data set. The command options always have precedence
over any option configured in the resolver configuration data set.

Only the following options can be specified in the resolver configuration data set
for v9 nslookup:
v nameserver/nsinteraddr
v options ndots: n

v search
v domain/domainorigin

812 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Programs that query a name server are called resolvers. See Chapter 14, “The
resolver,” on page 731 for more detailed information. Because many TCP/IP
applications need to query the name server, a set of routines is usually provided
for application programmers to perform queries. Under MVS, these routines are
available in the TCP/IP application programming interface (API) for each
supported language, Language Environment for z/OS UNIX C/C++ Sockets API
or z/OS UNIX assembler callable services API.

The z/OS UNIX nslookup command uses a private resolver that is different from
the resolver used by other z/OS UNIX socket programs. The z/OS UNIX
nslookup command has the following functional differences:
v z/OS UNIX nslookup does not use SiteTables (for example, /etc/hosts) for host

name resolution.
v Only the built-in translation table is used for nslookup.

For a complete discussion of resolver configuration files, see Chapter 2, “IP
configuration overview,” on page 11.

If the name server will run on the host being configured, you need to configure the
first name server (or NsInterAddr) directive in the resolver configuration file as the
loopback address (127.0.0.1, ::1 or any address in your home list). If any VIPA
addresses are used with the NsInterAddr statement, ensure that IPCONFIG
SOURCEVIPA is coded in PROFILE.TCPIP. If it is not, UDP packets returned from
the VIPA address will have the physical interface address as the destination
address instead of the VIPA address that it sent. The UDP packet will be discarded
when it is received because the addresses do not match.

Diagnosing problems
This topic describes the following methods for diagnosing problems:
v Checking messages on the operators console
v Checking the syslog messages
v Using name server signals
v Using rndc to diagnose BIND 9 problems
v Checking name server logging files to diagnose BIND 9
v Using nslookup program
v Using the dig command

These methods are discussed in the subtopics below. In addition to these methods,
diagnosing problems for a dynamic zone can be done with nsupdate.

For DNS configuration firewall considerations, see “Split DNS” on page 817, and
the latest edition of DNS and BIND by Paul Albitz and Cricket Liu (O'Reilly &
Associates, Inc.).

Checking messages sent to the operators console
Messages displayed on the operators console indicate the status of your DNS.
Messages fall into the following categories:
v Name server initialization
v Name server initialization failure
v Name server initialization complete
v Name server termination
v Assertion failures (unexpected errors)

Chapter 15. Domain Name System 813

|
|
|
|
|
|
|
|

Regularly check console messages to identify problems.

Checking the syslog messages
Error messages may also be displayed in the syslog output file, which is pointed to
by the syslog configuration file. (/etc/syslog.conf is the default configuration
file.) For BIND 9, see “Step 7: Configure logging” on page 793. For the BIND 9
name server, initial startup messages go to syslog, later messages will be directed
to other defined or default logs according to logging statements found or implied
in the configuration file. For descriptions of the syslog file and the syslog daemon,
see “Configuring the syslog daemon” on page 185.

Using name server signals to diagnose BIND 9 DNS problems
You can use name server signals to send messages to a BIND 9 DNS name server.
These signals control various functions that can be used to diagnose problems.

The BIND 9 name server relies on a start option, rndc, or the configuration file to
define and alter the debug level. You can change the logging options in
named.conf to gather more information, and then issue the SIGHUP signal or 'rndc
reload' to have the new logging options take effect. However, the preferred method
is by using 'rndc trace level'.

For an explanation of the format of the dumped database or the name server
statistics file that can be generated with these signals, see publications like DNS
and Bind by Albitz and Liu.

Signals are issued with the z/OS UNIX kill command using the name server
process ID as a parameter. The file where the BIND 9 process ID is stored is
determined by the user. The file name is specified by the 'pid-file' option in the
named.conf file. See z/OS Communications Server: IP Configuration Reference for
further details.

Using rndc to diagnose BIND 9 problems
The rndc utility can be used to provide a variety of functions that can be helpful in
debugging name server problems. For example, the name server's cache can be
viewed using the dumpdb parameter and debug trace can be turned on or off
using the trace parameter. If you suspect your cache is corrupted, you can flush
the name server's cache with the flush parameter. For more information, see z/OS
Communications Server: IP System Administrator's Commands.

Checking name server logging files to diagnose BIND 9
Error, debug and informational messages can be written to the name server's
logging files. See “Step 7: Configure logging” on page 793 for more information.

Using nslookup to diagnose problems
The z/OS UNIX nslookup program lets you query other name servers with the
same query packet another name server would use. This is helpful in diagnosing
lookup problems in TCP/IP.

It is recommended that you use z/OS UNIX or TSO nslookup with each
NSINTERADDR used in TCPIP.DATA to ensure you receive the expected results.
Some name server clients, on other platforms, may require the address you specify
for the name server to match the source IP address in the response from the name
server. For example, if a static VIPA address is specified as the address of the name

814 z/OS V1R12.0 Comm Svr: IP Configuration Guide

server, and IPCONFIG SOURCEVIPA is not specified in PROFILE.TCPIP, then
nslookup on some platforms will discard the returned packet because it will have
the destination address of the physical interface instead of the VIPA interface. If
you wish to specify a dynamic VIPA (DVIPA) as the address of the name server,
then the name server must BIND the UDP port to the DVIPA. See z/OS
Communications Server: IP Configuration Reference for information on how to specify
the BIND parameter on the PORT statement in PROFILE.TCPIP. Zone delegation
using VIPA addresses also has special considerations and can cause name server
operation to fail in some situations if not configured properly. For more
information, see “General VIPA considerations” on page 810.

See z/OS Communications Server: IP System Administrator's Commands for more
detailed information on the z/OS UNIX nslookup command.

Using dig to diagnose problems
The dig command is an alternate and recommended choice for resource record
lookup. The dig response format is similar to the resource record (RR) definitions
in master zone files. The dig command will not attempt a reverse lookup on the
address provided for the server, which sometimes makes nslookup fail
initialization if reverse lookup fails. The dig command offers flexible options,
including toggling flags for checking response authority or authentication. It is the
only v9 lookup utility that can list the complete contents of a zone. This can be
accomplished with the -t AXFR option. For more detailed information on the z/OS
UNIX dig command, see z/OS Communications Server: IP System Administrator's
Commands.

Advanced BIND 9 name server topics
This topic includes more advanced BIND 9 name server topics.

Multiple TCP/IP stack (common INET) considerations
The BIND 9 name server is a generic server which does not have stack affinity. This
has certain implications.
v If you wish to run multiple BIND 9 name servers, you must divide the interfaces

between the name servers with the listen-on named.conf file option. For
example, you may want one stack serviced by one BIND 9 name server, and a
second stack serviced by a second BIND 9 name server. Each name server would
contain only the IP addresses of the assigned stack in its listen-on option.

v Any time a stack is brought up or a stack is brought down, the name server will
essentially restart. On the MVS console, you will see the NAMED Exiting,
NAMED Starting, and NAMED Running messages (messages EZZ9096I,
EZZ9095I, and EZZ9130I).

v Be aware, that once you start a TCP/IP stack, all of the adapters may not be
active immediately, and therefore will not be usable by the name server
immediately. When the name server is started manually or restarted
automatically by stack bring up or bring down, it immediately queries the
available TCP/IP stacks for active adapters. Often times, it will take some time
for all of the adapters to become active (this is independent of the name server).
The name server will re-query the stacks every minute, by default, for any
changes in the active/inactive status of adapters and then make use of them
once they are active. The one minute interval can be lengthened by the
interface-interval named.conf file option if desired, but this is not
recommended.

Chapter 15. Domain Name System 815

v By default, the name server will unpredictably choose one adapter from any of
the active stacks to use when it must communicate with other name servers. If
some adapters do not have the capability to route into the network, you might
see undesired results on name server queries. This unpredictable behavior can
be eliminated by making use of the query-source option in the named.conf file.
The query-source option should specify an adapter address that will always
have network routing capability. The query-source option then places a
dependency on the stack that owns that address to be active. If the owning
TCP/IP stack of the query-source option address is taken down, the name
server will end, since it will no longer have a way to communicate with the
network, and thus, other name servers.

v BIND 9 is restricted to listening on all IPv6 interfaces or none of them.
Therefore, if you want to run multiple BIND 9 name servers, you need to choose
one of them to answer all IPv6 queries. Use the listen-on-v6 named.conf option
with the value of any; to get BIND 9 to listen on your IPv6 interfaces.

Dynamic update
Dynamic update is the term used for the ability under certain specified conditions
to add, modify or delete records or RRsets in the master zone files. Dynamic
update is fully described in RFC 2136.

Dynamic update is enabled on a zone-by-zone basis, by including an allow-update
or update-policy clause in the zone statement. Preferably, use TSIG security
between the nsupdate utility and the targeted name server. BIND 9 name server
configuration processing messages will remind you when nsupdate authorization
is only based on client IP address.

Updating of secure zones (zones using DNSSEC) is modelled after the
simple-secure-update proposal, a work in progress in the DNS Extensions working
group of the IETF. (See http://www.ietf.org/html.charters/dnsext-charter.html for
information about the DNS Extensions working group.) SIG and NXT records
affected by updates are automatically regenerated by the server using an online
zone key. Update authorization is based on transaction signatures and an explicit
server policy. On z/OS, dynamic DNSSEC zones should use the RSA encryption
algorithm when creating the zone key, or they can use the DSA algorithm if the
'random-device' option is also specified in the named.conf file. Non-dynamic
DNSSEC zones can use any other supported encryption algorithm.

The zone files of dynamic zones must not be edited by hand. If the zone file of a
dynamic zone is edited by hand, corrupt .jnl files can result and all changes not
written to the zone file may be lost. The zone file on disk at any given time may
not contain the latest changes performed by dynamic update. The zone file is
written to disk only periodically, and changes that have occurred since the zone
file was last written to disk are stored only in the zone's journal (.jnl) file.
Depending on signal or rndc stop options, BIND 9 name server may or may not
update the zone file. Therefore, editing the zone file manually is unsafe even when
the server has been shut down.

Incremental zone transfers
The incremental zone transfer (IXFR) protocol is a way for secondary servers to
transfer only changed data, instead of having to transfer the entire zone. The IXFR
protocol is documented in RFC 1995.

When acting as a master server, BIND 9 supports IXFR for those zones where the
necessary change history information is available. These include master zones

816 z/OS V1R12.0 Comm Svr: IP Configuration Guide

maintained by dynamic update and secondary zones (to transfer to other
secondary servers) whose data was obtained by IXFR, but not manually
maintained master zones or secondary zones obtained by performing a full zone
transfer (AXFR).

When acting as a secondary server, after the initial full zone transfer, BIND 9 will
request IXFR by default when notified of a change by the zone master server. IXFR
updates are applied to the secondary zone database and also kept in a journal file
(*.jnl) associated with any existing backup file for the secondary zone.

Master and secondary servers can each have IXFR globally or partially disabled
through the use of the provide-ixfr and request-ixfr options under the general
options or the server statements of the BIND 9 configuration file.

Split DNS
Setting up different views, or visibility, of DNS space to internal and external
resolvers is usually referred to as a Split DNS setup. There are several reasons an
organization would want to set up its DNS this way.

One common reason for setting up a DNS system this way is to hide internal DNS
information from external clients on the Internet. There is some debate as to
whether or not this is actually useful. Internal DNS information leaks out in many
ways (via e-mail headers, for example) and most savvy attackers can find the
information they need using other means.

Another common reason for setting up a Split DNS system is to allow internal
networks that are behind filters or in RFC 1918 space (reserved IP space, as
documented in RFC 1918) to resolve DNS on the Internet. Split DNS can also be
used to allow mail from outside back in to the internal network.

Here is an example of a split DNS setup:

A company named Example, Inc. (example.com) has several corporate sites that
have an internal network with reserved Internet Protocol (IP) space and an external
demilitarized zone (DMZ), or outside section of a network, that is available to the
public.

Example, Inc. wants its internal clients to be able to resolve external host names
and to exchange mail with people on the outside. The company also wants its
internal resolvers to have access to certain internal-only zones that are not
available at all outside of the internal network.

In order to accomplish this, the company will set up two sets of name servers. One
set will be on the inside network (in the reserved IP space) and the other set will
be on bastion hosts, which are proxy hosts that can talk to both sides of its
network, in the DMZ.

The internal servers will be configured to forward all queries, except queries for
site1.internal, site2.internal, site1.example.com, and site2.example.com, to the
servers in the DMZ. These internal servers will have complete sets of information
for site1.example.com, site2.example.com, site1.internal, and site2.internal.

To protect the site1.internal and site2.internal domains, the internal name servers
must be configured to disallow all queries to these domains from any external
hosts, including the bastion hosts.

Chapter 15. Domain Name System 817

The external servers, which are on the bastion hosts, will be configured to serve
the public version of the site1 and site2.example.com zones. This could include
things such as the host records for public servers (www.example.com and
ftp.example.com), and mail exchange (MX) records (a.mx.example.com and
b.mx.example.com).

In addition, the public site1 and site2.example.com zones should have special MX
records that contain wildcard (*) records pointing to the bastion hosts. This is
needed because external mail servers do not have any other way of looking up
how to deliver mail to those internal hosts. With the wildcard records, the mail
will be delivered to the bastion host, which can then forward it on to internal
hosts.

Here's an example of a wildcard MX record:
* IN MX 10 external1.example.com.

Now that they accept mail on behalf of anything in the internal network, the
bastion hosts will need to know how to deliver mail to internal hosts. In order for
this to work properly, the resolvers on the bastion hosts will need to be configured
to point to the internal name servers for DNS resolution. Queries for internal host
names will be answered by the internal servers, and queries for external host
names will be forwarded back out to the DNS servers on the bastion hosts. In
order for all this to work properly, internal clients will need to be configured to
query only the internal name servers for DNS queries. This could also be enforced
using selective filtering on the network.

If everything has been set properly, Example, Inc.'s internal clients will now be able
to:
v Look up any hostnames in the site1 and site2.example.com zones.
v Look up any hostnames in the site1.internal and site2.internal domains.
v Look up any hostnames on the Internet.
v Exchange mail with internal and external people.

Hosts on the Internet will be able to:
v Look up any hostnames in the site1 and site2.example.com zones.
v Exchange mail with anyone in the site1 and site2.example.com zones.

Here is an example configuration for the setup that was just described. Note that
this is only configuration information; for information on how to configure your
zone files, see “Step 4: Create the domain data files (master name server only)” on
page 787.

Internal DNS server config:
acl internals { 172.16.72.0/24; 192.168.1.0/24; };

acl externals { bastion-ips-go-here; };

options {
...
...
forward only;
forwarders { // forward to external servers
bastion-ips-go-here;
};
allow-transfer { none; }; // sample allow-transfer (no one)
allow-query { internals; externals; }; // restrict query access

818 z/OS V1R12.0 Comm Svr: IP Configuration Guide

allow-recursion { internals; }; // restrict recursion
...
...

};

zone "site1.example.com" {
type master;
file "m/site1.example.com";
forwarders { }; // do normal iterative

// resolution (do not forward)
allow-query { internals; externals; };
allow-transfer { internals; };

};

zone "site2.example.com" {
type slave;
file "s/site2.example.com";
masters { 172.16.72.3; };
forwarders { };
allow-query { internals; externals; };
allow-transfer { internals; };

};

zone "site1.internal" {
type master;
file "m/site1.internal";
forwarders { };
allow-query { internals; };
allow-transfer { internals; }

};

zone "site2.internal" {
type slave;
file "s/site2.internal";
masters { 172.16.72.3; };
forwarders { };
allow-query { internals };
allow-transfer { internals; }

};

External (bastion host) DNS server config:
acl internals { 172.16.72.0/24; 192.168.1.0/24; };

acl externals { bastion-ips-go-here; };

options {
...
...
allow-transfer { none; }; // sample allow-transfer (no one)
allow-query { internals; externals; }; // restrict query access
allow-recursion { internals; externals; }; // restrict recursion
...
...

};

zone "site1.example.com" {
type master;
file "m/site1.foo.com";
allow-query { any; };
allow-transfer { internals; externals; };

};

zone "site2.example.com" {
type slave;
file "s/site2.foo.com";

Chapter 15. Domain Name System 819

masters { another_bastion_host_maybe; };
allow-query { any; };
allow-transfer { internals; externals; }

};

In the resolv.conf (or equivalent) on the bastion host(s):
search ...
nameserver 172.16.72.2
nameserver 172.16.72.3
nameserver 172.16.72.4

Implementing split DNS with views
The view statement is a powerful new feature of BIND 9 that lets a name server
answer a DNS query differently depending upon who is asking. It is particularly
useful for implementing split DNS setups without having to run multiple servers.

Each view statement defines a view of the DNS namespace that will be seen by a
subset of clients. A client matches a view if its source IP address matches the
address_match_list of the view's match-clients clause and its destination IP address
matches the address_match_list of the view's match-destinations clause. If not
specified, by default, both match-clients and match-destinations match all
addresses. A view can also be specified as match-recursive-only, which means that
only recursive requests from matching clients will match that view. The order of
the view statements is significant; A client request will be resolved in the context of
the first view that it matches.

Zones defined within a view statement will only be accessible to clients that match
the view. By defining a zone of the same name in multiple views, different zone
data can be given to different clients (for example, internal and external clients in a
split DNS setup.

Many of the options given in the options statement can also be used within a view
statement, and then apply only when resolving queries with that view. When no
view-specific value is given, the value in the options statement is used as a default.
Also, zone options can have default values specified in the view statement. These
view-specific defaults take precedence over those in the options statement.

Views are class specific. If no class is given, class IN is assumed. Note that all
non-IN views must contain a hint zone, since only the IN class has compiled-in
default hints.

If there are no view statements in the configuration file, a default view that
matches any client is automatically created in class IN, and any zone statements
specified on the top level of the configuration file are considered to be part of this
default view. If any explicit view statements are present, all zone statements must
occur inside view statements.

Following is an example of a typical split DNS setup implemented using view
statements:
view "internal" {

// This should match our internal networks.
match-clients { 10.0.0.0/8; };

// Provide recursive service to internal clients only.
recursion yes;

// Provide a complete view of the example.com zone
// including addresses of internal hosts.

zone "example.com" {
type master;

820 z/OS V1R12.0 Comm Svr: IP Configuration Guide

file "example-internal.db";
};

};
view "external" {

match-clients { any; };
// Refuse recursive service to external clients.

recursion no;
// Provide a restricted view of the example.com zone
// containing only publicly accessible hosts.

zone "example.com" {
type master;
file "example-external.db";

};
};

TSIG
This is a short guide to setting up Transaction SIGnatures (TSIG) based transaction
security in BIND. It describes changes to the configuration file as well as what
changes are required for different features, including the process of creating
transaction keys and using transaction signatures with BIND.

BIND primarily supports TSIG for server to server communication. This includes
zone transfer, notify, and recursive query messages. Resolvers on other platforms
which are based on newer versions of BIND 8 have limited support for TSIG.

TSIG might be most useful for dynamic update. A master server for a dynamic
zone should use access control to control updates, but IP-based access control is
insufficient. Key-based access control is far superior. The nsupdate program
supports TSIG through the -k and -y command line options.

Generate shared keys for each pair of hosts
A shared secret is generated to be shared between host1 and host2. An arbitrary
key name is chosen: "host1-host2.". The key name must be the same on both hosts.

Automatic generation: The following command will generate a 128-bit (16-byte)
HMAC-MD5 key. Longer keys are better, but shorter keys are easier to read. Note
that the maximum key length is 512 bits; keys longer than that will be digested
with MD5 to produce a 128 bit key.
dnssec-keygen -a hmac-md5 -b 128 -n HOST host1-host2.

The key is in the file Khost1-host2.+157+00000.private. Nothing directly uses this
file, but the base-64 encoded string following "Key:" can be extracted from the file
and used as a shared secret:
Key: La/E5CjG9O+os1jq0a2jdA==

The string "La/E5CjG9O+os1jq0a2jdA==" can be used as the shared secret.

Manual generation: The shared secret is simply a random sequence of bits,
encoded in base-64. Most EBCDIC strings are valid base-64 strings (assuming the
length is a multiple of 4 and only valid characters are used), so the shared secret
can be manually generated. Also, a known string can be run through mmencode on
another platform (such as Linux), or through a similar program, to generate
base-64 encoded data.

Copying the shared secret to both machines
This is beyond the scope of DNS. A secure transport mechanism should be used.
This could be secure FTP, ssh, telephone, etc.

Chapter 15. Domain Name System 821

Informing the servers of the key's existence
Imagine host1 and host2 are both servers. The following is added to each server's
named.conf file:
key host1-host2. {

algorithm hmac-md5;
secret "La/E5CjG9O+os1jq0a2jdA==";

};

The algorithm, hmac-md5, is the only one supported by BIND. The secret is the
one generated above. Since this is a secret, it is recommended that either
named.conf be non-world-readable, or the key directive be added to a
non-world-readable file that is included by named.conf.

At this point, the key is recognized. This means that if the server receives a
message signed by this key, it can verify the signature. If the signature succeeds,
the response is signed by the same key.

Instructing the server to use the key
Since keys are shared between two hosts only, the server must be told when keys
are to be used. The following is added to the named.conf file for host1, if the IP
address of host2 is 10.1.2.3:
server 10.1.2.3 {

keys { host1-host2. ;};
};

Multiple keys can be present, but only the first is used. This directive does not
contain any secrets, so it can be in a world-readable file. A world-readable file or
directory is one that anyone can read. For directories, assuming the directory is
also world-executable, world-readable means that anyone can list the files
contained inside the directory. Passwords and other sensitive data should never be
in world-readable files. For information about setting the other permissions that
make a file or directory world-readable or non-world-readable, see z/OS UNIX
System Services Command Reference.

If host1 sends a message that is a request to that address, the message will be
signed with the specified key. host1 will expect any responses to signed messages
to be signed with the same key. A similar statement must be present in host2's
configuration file (with host1's address) for host2 to sign request messages to
host1.

TSIG key based access control
BIND allows IP addresses and ranges to be specified in ACL definitions, and in
access control directives such as allow-query, allow-transfer, and allow-update. This
has been extended to allow TSIG keys also. An example of an allow-update
directive would be:
allow-update { key host1-host2. ;};

This allows dynamic updates to succeed only if the request was signed by a key
named "host1-host2.".

Errors
The processing of TSIG signed messages can result in several errors. If a signed
message is sent to a non-TSIG aware server, a FORMERR will be returned, since
the server will not understand the record. This is a result of misconfiguration, since
the server must be explicitly configured to send a TSIG signed message to a
specific server.

822 z/OS V1R12.0 Comm Svr: IP Configuration Guide

If a TSIG aware server receives a message signed by an unknown key, the response
will be unsigned with the TSIG extended error code set to BADKEY. If a TSIG
aware server receives a message with a signature that does not validate, the
response will be unsigned with the TSIG extended error code set to BADSIG. If a
TSIG aware server receives a message with a time outside of the allowed range,
the response will be signed with the TSIG extended error code set to BADTIME,
and the time values will be adjusted so that the response can be successfully
verified. In any of these cases, the message's rcode is set to NOTAUTH.

DNSSEC
Cryptographic authentication of DNS information is possible through the DNS
Security (DNSSEC) extensions, defined in RFC 2535. This topic describes the
creation and use of DNSSEC signed zones.

The set of dnssec- tools rely on a /dev/random device for the entropy it needs to
generate cryptographically strong keys. If RSA keys are used, only dnssec-keygen
requires random data. z/OS UNIX does not include such a device, but the tools
provide alternate methods of providing them with random data. The user can
specify a file containing random data or can provide random data via the
keyboard. To specify a file, use the -r random data file option on the tool command
line. The dnssec- tools use the timing between keystrokes as the source of entropy.
As such, TN3270 terminal emulation is not the ideal interface. Setting up a VT100
terminal session is a better solution. See “Configuring the z/OS UNIX Telnet
server” on page 649 for more information on setting up otelnetd.

To set up a DNSSEC secure zone, there are a series of steps which must be
followed. z/OS ships with several tools that are used in this process. In all cases,
the -h option prints a full list of parameters. Note that the keyset and signedkey
files created by some DNSSEC tools must be put in the name server working
directory before another DNSSEC tool is used for signing a master zone file.

There must also be communication with the administrators of the parent and/or
child zone to transmit keys and signatures. A zone's security status must be
indicated by the parent zone for a DNSSEC capable resolver to trust its data.

For other servers to trust data in this zone, they must be statically configured with
either this zone's zone key or the zone key of another zone above this one in the
DNS tree, using the trusted-keys statement in the configuration file.

Generating keys
The dnssec-keygen program is used to generate keys.

A secure zone must contain one or more zone keys. The zone keys will sign all
other records in the zone, as well as the zone keys of any secure delegated zones.
Zone keys must have the same name as the zone, a name type of ZONE, and must
be usable for authentication. On z/OS, you should use the RSA algorithm for
DNSSEC if the zone you will sign with the key will be a dynamic zone (that is,
one maintained with nsupdate). You can also use the DSA algorithm, provided you
have the 'random-device' option coded in the named.conf file.

The following command will generate a 768-bit RSA key for the child.example
zone:
dnssec-keygen -a RSA -b 768 -n ZONE child.example

Chapter 15. Domain Name System 823

Two output files will be produced: Kchild.example.+001+12345.key and
Kchild.example.+001+12345.private (where 12345 is an example of a key tag). The
key file names contain the key name (child.example.), algorithm (3 is DSA, 1 is
RSA, etc.), and the key tag (12345 in this case). The private key (in the .private file)
is used to generate signatures, and the public key (in the .key file) is used for
signature verification.

To generate another key with the same properties (but with a different key tag),
repeat the above command.

The public keys should be inserted into the zone file with $INCLUDE statements,
including the .key files.

Creating a key set
The dnssec-makekeyset program is used to create a key set from one or more
keys.

Once the zone keys have been generated, a key set must be built for transmission
to the administrator of the parent zone, so that the parent zone can sign the keys
with its own zone key and correctly indicate the security status of this zone. When
building a key set, the list of keys to be included and the TTL of the set must be
specified, and the desired signature validity period of the parent's signature may
also be specified.

The list of keys to be inserted into the key set may also include non-zone keys
present at the top of the zone. dnssec-makekeyset may also be used at other names
in the zone.

The following command generates a key set containing the
child.example.+001+12345 key and another key similarly generated, with a TTL of
3600 and a signature validity period of 10 days starting from now.
dnssec-makekeyset -t 3600 -e +8640 Kchild.example.+001+12345
Kchild.example.+001+23456

One output file is produced: keyset-child.example. This file should be transmitted
to the parent to be signed. It includes the keys, as well as signatures over the key
set generated by the zone keys themselves, which are used to prove ownership of
the private keys and encode the desired validity period.

Signing the child's key set
The dnssec-signkey program is used to sign one child's key set.

If the child.example zone has any delegations which are secure, for example,
grand.child.example, the child.example administrator should receive key set files
for each secure subzone. These keys must be signed by this zone's zone keys.

The following command signs the child's key set with the zone keys:
dnssec-signkey keyset-grand.child.example. Kchild.example.+001+12345
Kchild.example.+001+23456

One output file is produced: signedkey-grand.child.example.. This file should be
both transmitted back to the child and retained. It includes all keys (the child's
keys) from the key set file and signatures generated by this zone's zone keys.

Signing the zone
The dnssec-signzone program is used to sign a zone.

824 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Any signedkey files corresponding to secure subzones should be present, as well
as a signedkey file for this zone generated by the parent (if there is one). The zone
signer will generate NXT and SIG records for the zone, as well as incorporate the
zone key signature from the parent and indicate the security status at all
delegation points.

The following command signs the zone, assuming it is in a file called
zone.child.example. By default, all zone keys which have an available private key
are used to generate signatures.
dnssec-signzone -o child.example zone.child.example

One output file is produced: zone.child.example.signed. This file should be
referenced by named.conf as the input file for the zone.

Configuring servers
Data is not verified on load in BIND 9, so zone keys for authoritative zones do not
need to be specified in the configuration file. The public key for any security root
must be present in the configuration file's trusted-keys statement.

IPv6 support in BIND 9
BIND 9 fully supports all currently defined forms of IPv6 name to address and
address to name lookups.

For forward lookups, BIND 9 supports both A6 and AAAA records. The use of
AAAA records is recommended, as A6 records have been made experimental by
RFC 3363.

For IPv6 reverse lookups, BIND 9 supports the standard nibble label format, as well
as the experimental bitstring format. Both formats are used under the ip6.arpa
domain, although some resolvers and applications use the nibble format under the
deprecated ip6.int domain.

Address lookups using AAAA records
The AAAA record is a parallel to the IPv4 A record. It specifies the entire address
in a single record. For example:
$ORIGIN example.com.
host 3600 IN AAAA 3ffe:8050:201:1860:42::1

Address lookups using A6 records
A6 records are supported, but have been moved to experimental status by RFC
3363. The use of AAAA records is strongly recommended.

The A6 record can be used to form a chain of A6 records, each specifying part of
the IPv6 address. It can also be used to specify the entire record as follows:
$ORIGIN example.com.
host 3600 IN A6 0 3ffe:8050:201:1860:42::1

For more information on A6 records and A6 chaining, see RFC 2874.

Synthetic IPv6 responses
Synthetic IPv6 responses were previously enabled with the allow-v6-synthesis
option statement. This option is now obsolete.

Chapter 15. Domain Name System 825

Address to name lookups using nibble format
When looking up an address in nibble format, the address components are simply
reversed, just as in IPv4, and ip6.arpa. is appended to the resulting name. For
example, the following would provide reverse name lookup for a host with
address 3ffe:8050:201:1860:42::1.
$ORIGIN 0.6.8.1.1.0.2.0.0.5.0.8.e.f.f.3.ip6.arpa.
1.0.0.0.0.0.0.0.0.0.0.0.2.4.0.0 14400 IN PTR
host.example.com.

Address to name lookups using bitstring format
Bitstring labels can start and end on any bit boundary, rather than on a multiple of
4 bits as in the nibble format.

For example:
$ORIGIN \[x3ffe805002011860/64].ip6.arpa.
\[x0042000000000001/64] 14400 IN PTR
host.example.com.

Using DNAME for delegation of IPv6 reverse addresses
DNAME is supported, but is considered experimental.

In IPv6, the same host may have many addresses from many network providers.
Since the trailing portion of the address usually remains constant, DNAME can
help reduce the number of zone files used for reverse mapping that need to be
maintained.

For example, consider a host which has two providers (example.net and
example2.net) and therefore two IPv6 addresses. Since the host chooses its own 64
bit host address portion, the provider address is the only part that changes:
$ORIGIN example.com.
host A6 64 ::1234:5678:1212:5675
cust1.example.net.

A6 64 ::1234:5678:1212:5675
subnet5.example2.net.
$ORIGIN example.net.
cust1 A6 48 0:0:0:dddd::
ipv6net.example.net.
ipv6net A6 0 aa:bb:cccc::
$ORIGIN example2.net.
subnet5 A6 48 0:0:0:1::
ipv6net2.example2.net.
ipv6net2 A6 0 6666:5555:4::

This sets up forward lookups. To handle the reverse lookups, the provider
example.net would have:
$ORIGIN \[x00aa00bbcccc/48].ip6.arpa.
\[xdddd/16] DNAME ipv6-rev.example.com.

and example2.net would have:
$ORIGIN \[x666655550004/48].ip6.arpa.
\[x0001/16] DNAME ipv6-rev.example.com.

example.com needs only one zone file to handle both of these reverse mappings:
$ORIGIN ipv6-rev.example.com.
\[x1234567812125675/64] PTR host.example.com.

826 z/OS V1R12.0 Comm Svr: IP Configuration Guide

DNS-related RFCs
The following RFCs contain basic information about the DNS:

974 Mail Routing and the Domain System, C. Partridge

1033 Domain Administrators Operations Guide, M. Lottor

1034 Domain Names—Concepts and Facilities, P.V. Mockapetris

1035 Domain Names—Implementation and Specification, P.V. Mockapetris

2671 Extension Mechanisms for DNS (EDNS0), P.Vixie

3226 DNSSEC and IPv6 A6 aware server/resolver message size requirements, O.
Gudmundsson

Proposed standards
1995 Incremental Zone Transfer in DNS, M. Ohta

1996 A Mechanism for Prompt Notification of Zone Changes, P. Vixie

2136 Dynamic Updates in the Domain Name System, P. Vixie, S. Thomson, Y.
Rekhter, and J. Bound

2181 Clarifications to the DNS Specification, R. Bush Elz

2308 Negative Caching of DNS Queries, M. Andrews

2845 Secret Key Transaction Authentication for DNS (TSIG), P. Vixie, O.
Gudmundsson, D. Eastlake, 3rd, and B. Wellington

Proposed standards still under development
1886 DNS Extensions to support IP version 6, S. Thomson and C. Huitema

2065 Domain Name System Security Extensions, D. Eastlake, 3rd and C. Kaufman

2137 Secure Domain Name System Dynamic Update, D. Eastlake, 3rd

Other important RFCs about DNS implementation
1535 A Security Problem and Proposed Correction With Widely Deployed DNS

Software, E. Gavron

1536 Common DNS Implementation Errors and SUggested Fixes, A. Kumar, J. Postel,
C. Neuman, P. Danzig, and S. Miller

1982 Serial Number Arithmetic, R. Elz and R. Bush

Resource record types
1183 New DNS RR Definitions, C.F. Everhart, L. A. Mamakos, R. Ullmann, and P.

Mockapetris

1706 DNS NSAP Resource Records, B. Manning and R. Colella

1876 A Means for Expressing Location Information in the Domain Name System, C.
Davis, P. Vixie, T., and I. Dickinson

2052 A DNS RR for Specifying the Location of Services, A. Gulbrandsen and P. Vixie

2163 Using the Internet DNS to Distribute MIXER Conformant Global Address
Mapping, A. Allocchio

Chapter 15. Domain Name System 827

2168 Resolution of Uniform Resource Identifiers using the Domain Name System, R.
Daniel and M. Mealling

2230 Key Exchange Delegation Record for the DNS, R. Atkinson

DNS and the Internet
1101 DNS Encoding of Network Names and Other Types, P. V. Mockapetris

1123 Requirements for Internet Hosts - Application and Support Braden

1591 Domain Name System Structure and Delegation, J. Postel

2317 Classless IN-ADDR.ARPA Delegation, H. Eidnes, G. de Groot, and P. Vixie

DNS operations
1537 Common DNS Data File Configuration Errors, P. Beertema

1912 Common DNS Operational and Configuration Errors D. Barr

2010 Operational Criteria for Root Name Servers, B. Manning and P. Vixie

2219 Use of DNS Aliases for Network Services, M. Hamilton and R. Wright

Other DNS-related RFCs
1464 Using the Domain Name System To Store Arbitrary String Attributes, R.

Rosenbaum

1713 Tools for DNS Debugging A. Romao

1794 DNS Support for Load Balancing, T. Brisco

2240 A Legal Basis for Domain Name Allocation, O. Vaughan

2345 Domain Names and Company Name Retrieval, J. Klensin, T. Wolf, and G.
Oglesby

2352 A Convention For Using Legal Names as Domain Names, O. Vaughan

828 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Chapter 16. Policy-based networking

Businesses typically define goals for network behavior in human terms. Network
implementations provide a variety of application-transparent controls for priority
treatment of traffic, bandwidth management, security, and control of network
behavior. The link between the high-level business goals and network
implementations is defined as policy-based networking and is provided by
policies. Policies are usually defined in a centralized repository and are accessed by
nodes that need to make policy decisions (Policy Decision Point, or PDP) or
implement such decisions (Policy Enforcement Point, or PEP).

Policy types and infrastructure overview
To implement networking policies for your users, you must use the z/OS
Communications Server policy infrastructure. You can use the policy types
supported by the Policy Agent for any of the following purposes:
v Policy-based routing (See “Policy-based routing” on page 337)
v Quality of service (See Chapter 17, “Quality of service,” on page 873)
v Intrusion Detection Services (See Chapter 18, “Intrusion Detection Services,” on

page 897)
v IP filtering, and manual and dynamic virtual private network (VPN) tunnels,

collectively referred to as IPSec policies (See Chapter 19, “IP security,” on page
923)

v Application Transparent Transport Layer Security (AT-TLS, see Chapter 22,
“Application Transparent Transport Layer Security data protection,” on page
1193)

For more information about the policy types, see “Policy types” on page 843.

Based on the policy types that you want to implement, you must configure and
start one or more policy infrastructure components:
v TCP/IP stack

TCP/IP stacks implement most of the policy types. You need to start one or
more stacks per logical partition (LPAR).

v Syslog daemon (syslogd)
Syslogd acts as the central message logging facility for z/OS UNIX applications.
Syslogd is not specific to the policy infrastructure, but the policy infrastructure
depends on syslogd to provide a central logging facility to maintain an audit
trail. If you do not start syslogd, messages are lost. You should start one syslog
daemon per LPAR.

v Policy Agent
You must start Policy Agent to install and maintain policies in the TCP/IP stacks
in an LPAR. You need one Policy Agent per LPAR.

v Traffic regulation management daemon (TRMD)
TRMD formats and sends policy-related messages to your syslog daemon. You
need one TRMD per TCP/IP stack in an LPAR.

v Internet Key Exchange daemon (IKED)

© Copyright IBM Corp. 2000, 2011 829

IKED is used for negotiating and setting up dynamic VPN tunnels. If you are
not using dynamic VPN tunnels, you do not need to start IKED; otherwise, you
need one IKED per LPAR.

v Network security services daemon (NSSD)
NSSD can be used as the central certificate and key server for z/OS IKE
daemons, or as a network security server for selected non-z/OS platforms.
NSSD can be used independently of any z/OS networking policies, but is an
element of the overall z/OS networking policy infrastructure. Typically, you do
not need an NSSD on every LPAR; one NSSD per sysplex is more likely.

v Defense Manager daemon (DMD)
DMD provides support for short-term defensive filters. You can use DMD
without defining any IPSec filter policies, but typically you use DMD in addition
to IPSec filter policy. You need one DMD per LPAR.

v Network service level agreement performance monitor 2 (NSLAPM2)
NSLAPM2 is an SNMP subagent that provides QoS metrics through MIB
variables. You need one NSLAPM2 per TCP/IP stack in an LPAR.

For more information about syslogd, see “Configuring the syslog daemon” on page
185. For more information about the other policy infrastructure components, see
“Policy infrastructure components” on page 835.

To determine the policy infrastructure components that you need to start based on
which policy types you are implementing, see Table 38.

Table 38. Policy components needed per policy type

Policy
type Component

One or
more
instances
per LPAR

One instance per LPAR One instance per TCP/IP
stack in an LPAR

TCP/IP
stack

Policy
Agent

syslogd IKED NSSD DMD NSLAPM2 TRMD

QoS Required Required Required Optional

IDS Required Required Required Required

AT-TLS Required Required Required

IPSec
filters

Required Required Required Optional Required

IPSec
VPNs

Required Required Required Optional
(dynamic
VPNs)

Optional
(central key
and
certificate
server)

Required

Policy-
based
routing

Required Required Required

You can use the IBM Configuration Assistant for z/OS Communications Server for
assistance with setting up and configuring security, JCL procedures, and
configuration files for the following policy infrastructure components:
v Policy Agent, including policy definition files for QoS, IDS, AT-TLS, IPSec, and

policy-based routing

830 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

v IKED
v NSSD
v DMD

Configuration files and policy definition files
To operate correctly, the policy infrastructure depends on various configuration
files and policy definitions files.

The IBM Configuration Assistant for z/OS Communications Server enables flat-file
configuration of all supported policy types for z/OS. The IBM Configuration
Assistant for z/OS Communications Server is an optional GUI-based tool that
provides a guided interface for configuring TCP/IP policy-based networking
functions. You can use the Configuration Assistant to generate the Policy Agent
files.

The Configuration Assistant is available in either of the following forms:
v As a task in IBM z/OS Management Facility (z/OSMF)

z/OSMF provides a Web browser interface for a variety of z/OS system
management functions. When you invoke the Configuration Assistant in
z/OSMF, the Configuration Assistant runs natively in the z/OS system and you
can access it through a Web browser. To use the Configuration Assistant in
z/OSMF, your system must be z/OS V1R11 or later.

v As a standalone application that you can run on your workstation
You can download the Configuration Assistant from the z/OS Communications
Server product support Web page.

You can use the Configuration Assistant on your workstation and then later
migrate your work to the z/OSMF environment. For information about
transferring Configuation Assistant data to z/OSMF, see IBM z/OS Management
Facility Configuration Guide.

Table 39 lists the policy-related configuration and definition files, whether the files
can be created using the Configuration Assistant, and the default location of the
configuration files. You can manually edit all files listed in Table 39.

Table 39. Configuration files and policy definition files

Configuration file or policy
definition file

Can be created by the
Configuration Assistant? Default z/OS location

Configuration files

Policy agent Yes /etc/pagent.conf

syslogd No /etc/syslog.conf

IKED Yes /etc/iked.conf

NSSD Yes /etc/nssd.conf

Policy definition files

QoS Yes None

IDS Yes None

AT-TLS Yes None

IPSec Yes None

Policy-based routing Yes None

Chapter 16. Policy-based networking 831

|
|
|
|
|
|

|

|

|

|
|
|
|

|

http://www.ibm.com/software/network/commserver/zos/support/
http://www.ibm.com/software/network/commserver/zos/support/

Managing changes to configuration files and policy definition
files

Typically, you use a change management procedure when you install a set of new
or changed policies, or when you modify the configuration files for the Policy
Agent or other policy-related applications. A structure for storing and maintaining
the configuration files and policy definition files that are related to the general
policy infrastructure is provided by the Configuration Assistant, and you can use it
to manually create and edit the configuration files and policy definition files. The
structure is based on three location levels:
v Staging

The staging level is the location in which you manually edit your definitions, or
into which you upload definitions from the Configuration Assistant.

v Production
The production level is the location to which you copy your staging definitions
when you are ready to put your changes into production. This is the location
from which your Policy Agent and other policy infrastructure components read
their definitions.

v Backup and recovery
The backup and recovery level is the location to which you copy your existing
production definitions before you copy your staging definitions to your
production location. If the changes are in error, you can back out the changes by
copying your original production definitions from the recovery location to the
production location and restarting your policy infrastructure components.

Storing configuration files and policy definition files
You can store configuration files and policy definition files in the z/OS UNIX file
system or in traditional MVS data sets.

Some definitions are shared by all TCP/IP stacks on a z/OS image, and some
definitions are specific to individual TCP/IP stacks on a z/OS image.

For example, if you are using the z/OS UNIX file system to store your
configuration files and policy definition files, a directory structure for z/OS image
SYSA with TCP/IP stacks TCPIP1 and TCPIP2 might look as follows:
v Staging

Image-wide /etc/tcpip/POLTRANS/SYSA/

TCPIP1 /etc/tcpip/POLTRANS/SYSA/TCPIP1/

TCPIP2 /etc/tcpip/POLTRANS/SYSA/TCPIP2/
v Production

Image-wide /etc/tcpip/POLPROD/SYSA/

TCPIP1 /etc/tcpip/POLPROD/SYSA/TCPIP1/

TCPIP2 /etc/tcpip/POLPROD/SYSA/TCPIP2/
v Backup and recovery

Image-wide /etc/tcpip/POLBACK/SYSA/

TCPIP1 /etc/tcpip/POLBACK/SYSA/TCPIP1/

TCPIP2 /etc/tcpip/POLBACK/SYSA/TCPIP2/

832 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Similarly, you can use MVS partitioned data set (PDS) or partitioned data set
extended (PDSE) libraries to store the configuration files and policy definition files
as follows:
v Staging

Image-wide hlq.TCPPARMS.POLTRANS.SYSA

TCPIP1 hlq.TCPPARMS.POLTRANS.SYSA.TCPIP1

TCPIP2 hlq.TCPPARMS.POLTRANS.SYSA.TCPIP2
v Production

Image-wide hlq.TCPPARMS.POLPROD.SYSA

TCPIP1 hlq.TCPPARMS.POLPROD.SYSA.TCPIP1

TCPIP2 hlq.TCPPARMS.POLPROD.SYSA.TCPIP2
v Backup and recovery

Image-wide hlq.TCPPARMS.POLBACK.SYSA

TCPIP1 hlq.TCPPARMS.POLBACK.SYSA.TCPIP1

TCPIP2 hlq.TCPPARMS.POLBACK.SYSA.TCPIP2

You can maintain a number of members in each of these libraries, using your own
naming convention or the following suggested naming convention:
v LPAR-wide configuration files

CONF (configuration file)
v Stack-specific configuration and policy definition files

– TLSPOL (AT-TLS policy definitions)
– IDSPOL (IDS policy definitions)
– IPSPOL (IPSec policy definitions)
– QOSPOL (QoS policy definitions)
– PBRPOL (Policy-based routing policy definitions)

The following example shows the IKE daemon configuration file and the IPSec
policy definitions for stack TCPIP1 as members of PDS or PDSE libraries:
USER.LPAR1.POLTRANS.SYSA.IKED(CONF)
USER.LPAR1.POLTRANS.SYSA.TCPIP1(IPSPOL)

Steps for managing policy changes
As shown in Figure 83 on page 834, perform the following steps to activate
changes to your policies:

1. Transfer the policy flat file to the staging library

hlq.TCPPARMS.POLTRANS.SYSA.TCPIP1(xyz)

2. Back up the current production policy flat file

Copy hlq.TCPPARMS.POLPROD.SYSA.TCPIP1(xyz) to
hlq.TCPPARMS.POLBACK.SYSA.TCPIP1(xyz)

3. Copy the new policy flat file into production

Copy hlq.TCPPARMS.POLTRANS.SYSA.TCPIP1(xyz) to
hlq.TCPPARMS.POLPROD.SYSA.TCPIP1(xyz)

Chapter 16. Policy-based networking 833

Policy Agent reads the definitions from the production location, as shown by step
4 in Figure 83.

Tips:

v If the changes you make are in error, you can back out the changes by copying
your original production definitions from the recovery location to the production
location and restarting your policy infrastructure components.

v In your procedure to move objects from POLTRANS to POLPROD, you might
have to include a utility step to change location references from POLTRANS to
POLPROD.
Some configuration files might include references to other configuration file
locations or policy definition file locations. Those locations are initially the
POLTRANS location.

v You can override names suggested by the Configuration Assistant and choose to
use other names.
If you are using the Configuration Assistant, you are prompted for the base
location for a z/OS image. For each configuration file, policy definition file,
sample RACF job, sample JCL procedure, and so on, the Configuration Assistant
suggests a name to serve as the file name in the z/OS UNIX file system
directories, or as the member name in the PDS or PDSE libraries.

v Specifying an EBCDIC code page that matches your default country settings
makes it easier to browse the files with ISPF.
Most policy-related configuration files and all the policy definition files support
an optional Codepage parameter that you can use to indicate the EBCDIC code
page in which the contents are encoded. When you use the Configuration
Assistant, you specify the EBCDIC code page when you define the base location
for a z/OS image. The Configuration Assistant transfers configuration files and
policy definitions files to that z/OS image using the specified code page and
includes the Codepage option in the files. Following is an example of the initial
section of a Policy Agent configuration file that uses the Codepage option:
Configuration Assistant, 2008.11.25 09:33:12
Pagent Configuration for system MVS098
Target Codepage = IBM-278
TcpImage TCPCS ’USER1.TCPPARMS.MVS098.TCPCS(STKPAG)’ FLUSH NOPURGE 360
Codepage IBM-278
Loglevel 127 ## default 31

Figure 83. Activating changes to your policies

834 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

Policy infrastructure components
Based on the policy types that you want to implement, you must configure and
start one or more policy infrastructure components.

For more information about syslogd, see “Configuring the syslog daemon” on page
185.

TCP/IP stack
Most policy types are implemented by the TCP/IP stack. IPSec dynamic VPNs are
implemented by the IKE daemon.

As packets are sent or received, they are matched against policies of the
appropriate type as needed. In general, policy processing occurs at the following
layers in the stack:
v Application layer - AT-TLS
v IP layer - IPSec filtering and policy-based routing
v Transport layer - IDS and QoS

Some types of IDS checks are also performed at the IP layer in the stack.

When a matching policy is found, it is implemented against the packet. Depending
on the policy type and packet contents, this results in a wide variety of actions. For
example, the packet might be discarded, processed according to its priority, or
have its routing changed. For information about the policy action statements and
the kinds of processing that can be applied for each policy type, see the Policy
Agent and policy applications information in z/OS Communications Server: IP
Configuration Reference.

Policy Agent
Policy Agent can act in any of several roles, and provides various services, such as
managing dependent components of the policy infrastructure.

The term Policy Agent refers to any roles or services provided by Policy Agent. The
terms policy server and policy client refer to those specific roles, and the term import
requestor refers to the configuration file import service.

Policy Agent roles
The Policy Agent runs in the z/OS environment and can act in any of several
roles, depending on configuration options:
v The Policy Agent can act as a self-contained Policy Decision Point (PDP) on a

single system, installing policies in one or more z/OS Communications Server
stacks on that z/OS image, as shown by system SYSA in Figure 84 on page 836.

v The Policy Agent can act as a policy client, retrieving remote policies from the
policy server, as shown by system SYSB in Figure 84 on page 836. Each stack in
a Common INET (CINET) environment that is configured to the Policy Agent
acts as a separate policy client.

v The Policy Agent can act as a centralized policy server, providing PDP services
for one or more remote policy clients, as shown by system SYSC in Figure 84 on
page 836.

v A single Policy Agent can act as a policy client or a policy server, but not both.

Chapter 16. Policy-based networking 835

Policy Agent services
Policy Agent provides the following services:
v Reads and parses policy definitions, and provides those policies to one or more

TCP/IP stacks or policy clients. The Policy Agent actively participates in
maintaining the policies by monitoring the policy files, detecting changes, and
informing the TCP/IP stacks or policy clients about any changes.

v Imports policy through a passive service known as policy file import. The main
user of this service is the IBM Configuration Assistant for z/OS
Communications Server, through its Policy Data Import function.
For this configuration file import service, the Policy Agent reads and parses
policy definitions one time, and provides the policies to an import requestor. The
import requestor can import the policies into an existing configuration, or can
just verify that the policy definitions are without errors.

v Starts, monitors, stops, and restarts dependent components of the policy
infrastructure. You can instruct Policy Agent to manage the following
components:
– DMD
– IKED
– NSSD
– syslogd
– TRMD per stack on a system

Figure 84. Policy Agent roles

836 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Policy Agent policies
Policies can be defined in several different ways.

Table 40 shows the format you can use for different policy types.

Table 40. Policy formats

Policy type Text file format ¹ LDAP format

QoS Yes Yes ²

IDS Yes Yes ²

AT-TLS Yes No

IPSec Yes No

Policy-based routing Yes No

¹ The Configuration Assistant builds policy definitions only in text file format.

² The format of the LDAP schema for IDS and QoS policies was stabilized in z/OS V1R2.
Only IDS and QoS policies supported by that release are supported when you are using an
LDAP server to store IDS and QoS policies. For information about defining policies on an
LDAP server, see Appendix F, “Using an LDAP server for policy definitions,” on page
1519.

When acting as the Policy Decision Point (PDP) for a single system, Policy Agent
can read policy definitions from local configuration files, a central repository that
uses the Lightweight Directory Access Protocol (LDAP), or both. The Policy Agent
also installs policies in one or more z/OS Communications Server stacks. It can be
used to replace existing policies or to update them as necessary.

When acting as a policy server, Policy Agent also acts as a PDP for the local
system, and thus can read policies from local configuration files or an LDAP server
and install them in local stacks. However, it also reads policies from local
configuration files on behalf of policy clients. These policies are retrieved by policy
clients, but are not installed in the local stacks on the policy server.

Restriction: Dynamic monitoring for file updates using the -i startup option is not
supported for files read on behalf of policy clients.

When acting as a policy client, Policy Agent retrieves remote policies from the
policy server, and can also use local policies from configuration files or an LDAP
server. The choice of local or remote policies can be made separately for each
supported policy type (QoS, IDS, IPSec, Routing, or AT-TLS). The policy client
informs the policy server of its local capabilities, so that the policy server can
perform appropriate parsing of the policies. For example, the policy client might
not support the IPSec 3DES encryption algorithm, so the policy server needs to fail
IPSec policies that specify 3DES, even if the policy server itself does support 3DES.

If the policy client and policy server are at different release levels, you must be
careful when defining policies on the policy server.
v If the policy client is at a higher release level than that of the policy server, you

can define policies using the syntax and semantics of only the lower-level policy
server. You cannot use the capabilities that exist only in the higher release level,
such as new statements, parameters, or parameter values. Error checking might
also be unavailable for use; rules or restrictions might be added to or removed
from the higher release level.

Chapter 16. Policy-based networking 837

v If the policy server is at a higher release level than that of the policy client, you
cannot define policies using syntax and semantics that are available only in the
higher release level. The policy server cannot parse such policies on behalf of a
policy client at a lower release level, so the policies are reported as containing
errors.

v If the policy server is at a lower release level than that of the policy client, any
polices using syntax and semantics that were removed from the higher release
level are still parsed and returned from the policy server to the policy client.

As a general rule, configure policies based on the target system, not on the system
where the policies are defined.

For a table of statements, parameters, parameter values, and rules or restrictions
that are valid only for certain release levels, see z/OS Communications Server: IP
Configuration Reference.

The policy client can be configured with a backup as well as a primary policy
server. The policy client continually retries the connection to the primary policy
server (and the connection to the backup if a backup is configured) using the
connection retry values configured on the ServerConnection statement, until a
connection is successfully established.

For more information, see the following topics:
v “Policy-based routing” on page 337
v Chapter 17, “Quality of service,” on page 873
v Chapter 18, “Intrusion Detection Services,” on page 897
v Chapter 19, “IP security,” on page 923
v Chapter 22, “Application Transparent Transport Layer Security data protection,”

on page 1193

Restriction: You cannot define AT-TLS policies, IPSec policies, or routing policies
on LDAP servers.

Tip: Policies defined on an LDAP server use the configuration files and
mechanisms provided by the LDAP server product. The definition of the elements
of policies is known as the schema. z/OS Communications Server provides the
schema definition for policies that may be defined on an LDAP server in a set of
sample files. The sample files are provided in LDAP protocol version 3 format (see
“LDAP sample files” on page 1530 for the names of these samples). These sample
files must be installed on the LDAP server as the schema definition. Policy Agent
uses the z/OS Integrated Security Server LDAP Client library to communicate with
an LDAP server. See z/OS Integrated Security Services LDAP Server Administration
and Use for more information about LDAP. A copy of the LDAP definition files that
define the policy definitions for LDAP is available in z/OS Communications Server:
IP Configuration Reference.

Local policies are defined in Policy Agent configuration files, in the LDAP server,
or both. Remote policies are defined in Policy Agent configuration files on the
policy server. Policies from configuration files and the LDAP server are combined
into a single list. This requires unique policy object names per type (QoS, IDS,
IPSec, Routing, and AT-TLS). On a policy client, policies for a given type are
retrieved either locally or remotely, but not both.

838 z/OS V1R12.0 Comm Svr: IP Configuration Guide

For policies defined on the LDAP server, the distinguished name (DN) must be
unique, but the user-friendly name does not have to be unique (although it should
be). The Policy Agent appends a unique suffix if it is required to make LDAP
user-friendly names unique within the scope of policies defined on the LDAP
server. When policies from a configuration file are combined with LDAP-defined
policies, the LDAP user-friendly names must be unique with respect to the names
defined in the configuration file. Any policy objects of the same type (that is, QoS
or IDS) with duplicate names at this point are discarded by the Policy Agent and
an error is reported.

Configuration file import services
The IBM Configuration Assistant for z/OS Communications Server can request
that existing configuration files be imported for further changes and additions.
When the Policy Agent provides this configuration file import service, the IBM
Configuration Assistant is acting as an import requestor. These files are import
configuration files and the resulting policies are import policies. When the IBM
Configuration Assistant is acting as an import requestor, the required input values
are configured on its Import Policy Data panel:
v Host connection IP address and port for the Policy Agent
v Host connection user name and password to identify resources that this user can

access
v Indication of whether a secure connection (SSL) should be used

You configure the type of security for a connection (basic or secured) on the
ServicesConnection statement for the Policy Agent. For more details, see “Step 6:
Configure Policy Agent for configuration file import services” on page 860.

v Policy type to identify what type of policies to import
v Optional policy configuration file names (common file, stack-specific file, or

both)
v Import request name to identify the stack name

The import request name, user name, and policy type are used to identify
resources this user can access.
If no import configuration files are passed, the import request name is used to
match an existing TcpImage or PEPInstance statement to find the import
configuration file names for the input policy type.

Restrictions:

v The import requestor's port value must be the same as the port value defined on
the ServicesConnection statement.

v The import requestor's type of security (SSL or not) must match the type of
security configured on the ServicesConnection statement (secured or basic).

v The import configuration files are parsed only once. The import policies are not
installed in the TCP/IP stack, so the FLUSH and PURGE parameters and the
MODIFY REFRESH and MODIFY UPDATE commands do not apply to these
files. These files are not monitored for changes.

v You can define import policies only in configuration files. You cannot define
them on an LDAP server.

v The import request name, user name, and policy type are required for security
product authorization in the SERVAUTH class. For authorization details, see
“Step 1: Configure general information” on page 849.

For detailed configuration information, see “Step 6: Configure Policy Agent for
configuration file import services” on page 860.

Chapter 16. Policy-based networking 839

Additional QoS services
The Policy Agent supports QoS functions other than reading and installing
policies, such as sysplex distributor policy performance monitoring, and mapping
IPv4 Type of Service (ToS) byte or IPv6 Traffic Class values to outbound interface
and virtual LAN (VLAN) user priorities. The QoS specific Policy Agent functions
are further described in “QoS-specific Policy Agent functions” on page 876.

Policy API
A Policy API (PAPI) is provided to allow access to policy information by external
user applications. The PAPI interface can be used by policy performance
monitoring applications to retrieve policy performance data. For more information
on PAPI, see z/OS Communications Server: IP Programmer's Guide and Reference.

Traffic regulation management daemon
Intrusion Detection Services (IDS) support is available to detect and report on
network intrusion events. The Traffic Regulation Management (TRM) support has
been extended and incorporated into the IDS support. IDS policy regulates the
types of events to report and provides the definition of several types of events. IDS
policy may be defined for scans, attacks and traffic regulation for both TCP and
UDP ports.

IKE daemon
IPSec services include IP filtering and support for manual and dynamic VPN
tunnels. The Internet Key Exchange (IKE) daemon works with the stack to provide
IPSec support. IPSec policy can be defined for IP filtering (including manual VPN
tunnels), key exchange, and dynamic VPN tunnels.

Network security services daemon
A network security services daemon (NSSD) provides network security services for
one or more security disciplines, including IPSec. For the IPSec discipline, these
services include the IPSec certificate service and the IPSec remote management
service. For more information, see Chapter 20, “Network security services,” on
page 1149.

Tip: You do not define policies for NSSD.

Defense Manager daemon
The Defense Manager daemon (DMD) provides defensive filters, which are IP filter
rules to discard packets that are separate from IP security filters, and which are
typically installed for a short duration (for example, 30 minutes) to block a specific
attack or a pattern of attacks. For more information, see Chapter 21, “Defensive
filtering,” on page 1177.

Tip: You do not define policies for DMD.

SNMP Network SLAPM2 subagent
The z/OS CS Network SLAPM2 subagent (nslapm2) allows network
administrators to retrieve data and determine if the current set of Network
SLAPM2 policy definitions are performing as needed or if adjustments need to be
made. The Network SLAPM2 subagent supports the Network Service Level
Agreement Performance Monitor (NETWORK-SLAPM2) MIB. See
usr/lpp/tcpip/samples/slapm2.mi2 for more information about the Network
SLAPM2 MIB.

840 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

Sample policy infrastructure
Figure 85 shows the Policy Agent in a sample policy infrastructure.

The IBM Configuration Assistant for z/OS Communications Server performs the
following functions:
v GUI to build the configuration flat-files for IPSec, AT-TLS, IDS, Routing, and

QoS policies.
v Import requestor to request configuration file import services from the Policy

Agent. For details, see “Configuration file import services” on page 839.

Policy sample files
A set of sample files is shipped with z/OS CS that provides several functions. The
first sample file provides an example of policy definitions in a Policy Agent
configuration file.

/usr/lpp/tcpip/samples/pagent.conf
This file contains overall policy definition rules, syntax and semantics for
defining policies in a configuration file, and examples of such policy
definitions.

The next set of sample files provide sample IPSec policy definitions.

/usr/lpp/tcpip/samples/pagent_CommonIPSec.conf
This file contains sample common IPSec policy definitions. These can be
referenced and reused by multiple stack-specific IPSec configuration files.

/usr/lpp/tcpip/samples/pagent_IPSec.conf
This file contains sample stack-specific IPSec policy definitions. Some of
these refer to common definitions in /usr/lpp/tcpip/samples/
pagent_CommonIPSec.conf.

Figure 85. Sample policy infrastructure

Chapter 16. Policy-based networking 841

The following file provides sample AT-TLS policy definitions.

/usr/lpp/tcpip/samples/pagent_TTLS.conf
This file contains sample AT-TLS policy definitions. These definitions can
either be in a common or stack-specific AT-TLS file. If these definitions are
in a common AT-TLS file, they can be referenced and reused by multiple
stack-specific AT-TLS configuration files. If these definitions are in a
stack-specific AT-TLS file, they are used only by that specific stack.

The following file provides sample IDS policy definitions.

/usr/lpp/tcpip/samples/pagent_IDS.conf
This file contains sample IDS policy definitions. These definitions can
either be in a common or stack-specific IDS file. If these definitions are in a
common IDS file, they can be referenced and reused by multiple
stack-specific IDS configuration files. If these definitions are in a
stack-specific IDS file, they are used by only that specific stack.

The following file provides sample policy-based routing policy definitions.

/usr/lpp/tcpip/samples/pagent_Routing.conf
This file contains sample policy-based routing policy definitions. These
definitions can either be in a common or stack-specific routing file. If these
definitions are in a common routing file, they can be referenced and reused
by multiple stack-specific routing configuration files. If these definitions are
in a stack-specific routing file, they are used by only that specific stack.

The following files include sample C applications that can be used to develop
policy performance monitoring applications.

/usr/lpp/tcpip/samples/pagent/README
This file contains instructions for compiling and running the following
sample C applications.

/usr/lpp/tcpip/samples/pagent/pCollector.c
This file is a sample C application (pCollector) that uses the Policy API
(PAPI) interfaces to access policy performance data. It can be used as the
base for an application that provides near real-time policy performance
monitoring.

/usr/lpp/tcpip/samples/pagent/pCollector.h
This file is a header file for the pCollector sample application.

/usr/lpp/tcpip/samples/pagent/pLogReader.c
This file is a sample C application (pLogReader) that reads the policy
performance log file to access policy performance data. It can be used as
the base for an application that provides offline policy performance
monitoring.

This documentation refers to Version 1 through Version 4 when defining policies.
v Version 1 refers to policy definitions defined with the ServicePolicyRules and

ServiceCategories statements or LDAP objects.
v Version 2 through Version 4 refer to policy definitions defined with other policy

statements or LDAP objects.
v The primary difference between Version 2 and Version 3 is in the definition of

the LDAP schema.
v Version 4 is used with configuration file IDS and Routing policies.

842 z/OS V1R12.0 Comm Svr: IP Configuration Guide

For information about LDAP samples and schema definition files, see Appendix F,
“Using an LDAP server for policy definitions,” on page 1519.

Policy types
The Policy Agent supports the following types of policies. Each policy type is
referred to as a discipline.
v Quality of service (QoS) policies

– Differentiated Services (DS) policies
– Integrated Services (RSVP) policies
– Sysplex distributor (SD) policies

v Intrusion Detection Services (IDS) policies
– Scan policies
– Attack policies
– Traffic Regulation policies

v IP security (IPSec) policies
– IP filtering policies
– Key exchange policies
– Local dynamic VPN policies

v Application Transparent Transport Layer Security (AT-TLS) policies
v Policy-based routing (Routing) policies

For information about how IPv6 affects the Policy Agent and which types of
policies support IPv6, see z/OS Communications Server: IPv6 Network and Application
Design Guide.

These policy types are defined using different policy schemas. They use a common
rule, but have separate conditions and actions. None of the different policy types
can be mixed in a given policy object. All policy rules can contain time-related
information that indicates when the policy rule should be considered active or
inactive.

For the QoS, IDS, Routing, and AT-TLS types, active policy rules are installed in
the TCP/IP stack, so they can be applied as traffic filters, while inactive policy
rules exist only in the Policy Agent. For the IPSec type, both active and inactive IP
filtering policies are installed in the TCP/IP stack. However, only manual VPN
tunnels that are active as a result of a time condition are installed in the stack. For
the Routing policy type, active route tables are installed in the stack, while inactive
route tables exist only in the Policy Agent. Configured route tables are active when
they are referenced by an active Routing rule and its associated Routing action.

The Policy Agent supports all of the previously mentioned policy types, installing
them into one or more TCP/IP stacks as configured. However, policies to be
retrieved by policy clients are not installed in any stacks on the policy server.

QoS policy
Policy conditions consist of a variety of selection criteria that act as traffic filters.
Traffic can be filtered based on source and destination IP addresses, source and
destination ports, protocol, inbound and outbound interfaces, application name,
application specific data or application priority. Only packets that match the filter
criteria are selected to receive the accompanying action. Policy rules can refer to

Chapter 16. Policy-based networking 843

several policy actions, but only one policy action is executed per policy scope. A
given policy action may be referred to by several policy rules.

The type of policy defined is in general controlled by the policy scope value
defined for the policy action. SD policies are an exception. SD policies are a subset
of DS policies, so use the DS scope.

Although RSVP policies are installed into the TCP/IP stack, they are only used for
collecting policy statistics. For policy use and limit enforcement, these policies are
requested from the Policy Agent by the RSVP Agent, to apply to RSVP reservation
requests from RSVP applications.

IDS policy
Policy conditions primarily determine the portion of IDS function that is being
configured. A given IDS policy rule refers to a single IDS policy action. A given
IDS policy action may be referred to by several policy rules of the same IDS type.
See Chapter 18, “Intrusion Detection Services,” on page 897 for more details.

IPSec policy
Policy conditions consist of a variety of selection criteria that act as filters for IP
filtering rules. Traffic can be filtered based on source and destination IP addresses,
source and destination ports, protocol, direction, routing information, and security
class. For other types of IPSec policies, policy conditions contain information about
dynamic key exchange filters or dynamic VPN tunnels. For more details, see
Chapter 19, “IP security,” on page 923.

IP filter rules and key exchange rules can refer to one or more policy conditions. A
policy rule with a single policy condition is known as a simple rule, while one
with more conditions is known as a complex rule. Complex IP filter rules and key
exchange rules have their conditions evaluated according to Conjunctive Normal
Form (CNF), which means an ANDed set of ORed conditions. For details on CNF,
see “Policy object model overview” on page 1519.

Complex IP filter rules (rules that contain groupings, or sets, of individual
conditions) are split to produce multiple simple rules to be installed in the TCP/IP
stack. The conditions in the IpFilterRule statement that can make a filter rule
complex are:
v IpSourceAddr

If multiple source addresses (or address ranges) are specified in a rule, the rule
is considered complex. Multiple source addresses can be specified by referencing
a set or group of addresses from the rule (IpSourceAddrGroupRef).

v IpDestAddr
If multiple destination addresses (or address ranges) are specified in a rule, the
rule is considered complex. Multiple destination addresses can be specified by
referencing a set or group of addresses from the rule (IpDestAddrGroupRef).

v IpService
If multiple IpService statements are specified in a rule, the rule is considered
complex. Multiple IpService statements can be specified either inline or by
referencing a group of IpService statements (IpServiceGroupRef).

v IpService Direction
If the Direction parameter in an IpService statement is configured as
BiDirectional, the rule is considered complex.

844 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Complex key exchange rules are split to produce multiple simple rules. The IKE
daemon retrieves simple rules when necessary. The following conditions can make
a complex key exchange rule:
v LocalSecurityEndpoint Location

If multiple IP addresses (or address ranges) are specified in a local security
endpoint, the associated key exchange rule is considered complex. You can
specify multiple IP addresses by referencing a set or group of addresses from the
local security endpoint (LocationGroupRef).

v RemoteSecurityEndpoint Location
If multiple IP addresses (or address ranges) are specified in a remote security
endpoint, the associated key exchange rule is considered complex. You can
specify multiple IP addresses by referencing a set or group of addresses from the
remote security endpoint (LocationGroupRef).

For more details on these IPSec policy configuration statements and parameters,
see z/OS Communications Server: IP Configuration Reference.

The pasearch command displays IP filter rules and key exchange rules as complex
rules, and not split as installed in the TCP/IP stack or retrieved by the IKE
daemon.

For IP filter rules and key exchange rules, the condition level summaries are not
applicable and are always displayed as all zeros.

AT-TLS policy
Policy conditions consist of a variety of selection criteria that act as filters for
AT-TLS rules. Traffic can be filtered based on local addresses, remote addresses,
local port range, remote port range, job name, user identification, and direction.
For more details, see Chapter 22, “Application Transparent Transport Layer
Security data protection,” on page 1193.

AT-TLS policy rules can refer to one or more policy conditions. A policy rule with
a single policy condition is known as a simple rule, while one with more
conditions is known as a complex rule. Complex AT-TLS policy rules have their
conditions evaluated according to Conjunctive Normal Form (CNF), which means
an ANDed set of ORed conditions. For details on CNF, see “Policy object model
overview” on page 1519.

When AT-TLS rules are read and parsed, Policy Agent creates the rule as a
complex rule. For example, consider the following TTLSRule statement:
TTLSRule ttlsRule1
{

LocalAddrGroupRef addrGroup1
RemoteAddrGroupRef addrGroup2
LocalPortGroupRef portGroup1
RemotePortGroupRef portGroup2
Jobname jobABC
Userid user1
Direction Outbound
TTLSGroupActionRef ttlsAction7

}

IpAddrGroup addrGroup1
{

IpAddr
{

Addr 9.1.1.1

Chapter 16. Policy-based networking 845

}
IpAddr
{

Addr 10.1.1.1
}

}

IpAddrGroup addrGroup2
{

IpAddr
{

Addr 200.1.1.1
}
IpAddr
{

Addr 201.1.1.1
}

}

PortGroup portGroup1
{

PortRange
{

Port 21
}
PortRange
{

Port 23
}

}

PortGroup2
{

PortRange
{

Port 10
}
PortRange
{

Port 15
}

}

This rule is represented as a CNF rule with the following condition levels (levels
are ANDed together):
v Level 1 = local address 9.1.1.1 OR local address 10.1.1.1
v Level 2 = remote address 200.1.1.1 OR remote address 201.1.1.1
v Level 3 = local port 21 OR local port 23
v Level 4 = remote port 10 OR remote port 15
v Level 5 = job name jobABC, user ID user1, direction outbound

The pasearch command displays the AT-TLS policy as complex rules.

Policy-based routing policy
Policy conditions consist of a variety of selection criteria that act as filters for
policy-based routing (Routing) rules. Traffic can be filtered based on source
addresses, destination addresses, source port range, destination port range,
protocol, job name, security zone, and security label. For more details, see
“Policy-based routing” on page 337.

846 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Routing policy rules can refer to one or more policy conditions. A policy rule with
a single policy condition is known as a simple rule, and one with more conditions
is known as a complex rule. Complex routing policy rules have their conditions
evaluated according to Conjunctive Normal Form (CNF), which means an ANDed
set of ORed conditions. For details about CNF, see “Policy object model overview”
on page 1519.

When routing rules are read and parsed, Policy Agent creates the rule as a
complex rule. For example, consider the following RoutingRule statement:
RoutingRule rule1
{

TrafficDescriptorGroupRef tdGroup
IpSourceAddrGroupRef addrGroup
RoutingActionRef action1

}
TrafficDescriptor td1
{

SourcePortRange 1-5
DestinationPortRange 10
SecurityZone zone1
SecurityLabel label1
JobName jobABC1

}
TrafficDescriptor td2
{

SourcePortRange 6-9
DestinationPortRange 25
SecurityZone zone2
SecurityLabel label2
JobName jobABC2

}
TrafficDescriptorGroup tdGroup
{

TrafficDescriptorRef td1
TrafficDescriptorRef td2

}
IpAddrGroup addrGroup
{

IpAddr
{

Addr 9.1.1.1
}
IpAddr
{

Addr 10.1.1.1
}

}

This rule is represented as a CNF rule with the following condition levels (levels
are ANDed together):
v Level 1 = source address 9.1.1.1 OR source address 10.1.1.1
v Level 2 = (source port range 1-5 AND destination port range 10 AND job name

jobABC1 AND security zone zone1 AND security label label1) OR (source port
range 6-9 AND destination port range 25 AND job name jobABC2 AND security
zone zone2 AND security label label2)

The pasearch command displays the Routing policy as a complex rule.

Chapter 16. Policy-based networking 847

Steps for configuring the Policy Agent
Before you begin: You need to understand the hierarchy and relationships of the
different configuration files. A single file, the main configuration file, is specified
explicitly or by default when the Policy Agent is started. This main configuration
file points to other configuration files, as shown in Figure 86.

For more information about the Policy Agent search order, see z/OS Communications
Server: IP Configuration Reference.

You can specify statements in all configuration files using a variety of EBCDIC
code pages. Use the Codepage configuration statement in the main configuration
file to specify the code page to be used for all configuration files. The default code
page is IBM-1047.

The main configuration file contains TcpImage or PEPInstance statements that
define the TCP/IP stacks to be configured. The Policy Agent reads and installs
policies for this set of stacks. Each TcpImage or PEPInstance statement can
optionally specify the file name of an image-specific configuration file for that
stack. If this file name is not specified, the main configuration file is also the
image-specific configuration file for that stack. Thus, a single physical file can serve
as two distinct logical files.

The main configuration file can also contain statements that specify the file names
of one or more common configuration files for certain policy types. For example,
the CommonIDSConfig statement points to a file containing IDS configuration
statements that can be used for all configured stacks.

Common
IDS

Common
IPSec

Common
Routing

Common
AT-TLS

CommonIDSConfig
CommonIPSecConfig
CommonRoutingConfig
CommonTTLSConfig

TcpImage IMAGE1
TcpImage IMAGE2

IDSConfig
IPSecConfig
QOSConfig
RoutingConfig
TTLSConfig

IDSConfig
IPSecConfig
QOSConfig
RoutingConfig
TTLSConfig

Image
IDS

Image
IPSec

Image
QoS

Image
Routing

Image
AT-TLS

Image
IDS

Image
IPSec

Image
QoS

Image
Routing

Image
AT-TLS

Main
IMAGE1

IMAGE2

Figure 86. Policy Agent configuration files

848 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|
|
|

|
|

Each image-specific configuration file can contain statements that specify the file
names of image-specific configuration files for different policy types. For example,
the IPSecConfig statement points to a file containing IPSec configuration
statements to be used for the stack that is represented by the image configuration
file that contains the IPSecConfig statement. QoS policies can optionally be
configured directly in the image configuration file, without using a QOSConfig
statement.

The main configuration file on the policy server can also contain
DynamicConfigPolicyLoad statements that determine the configuration files used
when remote policy clients request policies. Each DynamicConfigPolicyLoad
statement can serve a single policy client or a group of policy clients. Both
common and policy client-specific configuration files can be specified for each
policy type.

Perform the following steps to configure the Policy Agent:

1. Configure general information.

2. Configure Policy Agent as a policy server.

3. Configure Policy Agent as a policy client.

4. Configure policies in Policy Agent configuration files.

5. Configure Policy Agent to use the LDAP server using the ReadFromDirectory
statement.

6. Configure Policy Agent for configuration file import services.

7. Configure Policy Agent for automatic monitoring of applications.

Step 1: Configure general information
Before defining policies, some basic operational characteristics of the Policy Agent
need to be configured. Follow these steps to configure these items.
1. Set the TZ and LIBPATH environment variables.

Use the TZ environment variable to specify the correct time zone. Use the
LIBPATH environment variable so that the required dynamic link library (DLL)
files can be located when you start the Policy Agent. For information about
how to specify these environment variables, see “Starting and stopping the
Policy Agent” on page 865. You can also refer to comments in the sample start
procedure that is shipped in SEZAINST(EZAPAGSP).

2. Specify the name of the main configuration file.
You can specify the name of the main configuration file using the -c start
option or the PAGENT_CONFIG_FILE environment variable, or you can use
the default file name /etc/pagent.conf. For information about the search order
that Policy Agent uses to locate the main configuration file, and for examples of
different ways to specify the main configuration file name, see “Starting and
stopping the Policy Agent” on page 865. You can also refer to comments in the
sample start procedure that is shipped in SEZAINST(EZAPAGSP).

3. Define the TcpImage or PEPInstance statements in the main Policy Agent
configuration file.
The PEPInstance statement is a synonym for TcpImage, and either can be used.
PEPInstance refers to policy enforcement point (PEP), the component of a
policy system that enforces policies, which for z/OS is the TCP/IP stack.
Results:

Chapter 16. Policy-based networking 849

|

|
|
|
|
|
|

|

|
|
|
|
|
|
|

v The refresh interval used for the main configuration file will be the smallest
of the values specified for the image-specific configuration files.

v When the main configuration file is an MVS data set, it is reread at each
refresh interval (which is the smallest of the individual stack refresh
intervals), regardless of whether it has actually been changed or not. Because
Policy Agent restarts all stack-related processing when the main
configuration file is reread, this effectively makes the refresh interval for all
stacks the same as this smallest configured interval.

v The TcpImage or PEPInstance statement and all its parameters have no effect
on policies defined for policy clients.

To install a common set of policies to a set of stacks served by a single Policy
Agent, do not specify image-specific configuration files for each image. In this
case, there is only one configuration file (the main one) and the policy
information contained in it is installed to all of the configured stacks. Different
refresh intervals can also be configured for each image, but would probably be
less useful in this case.
In either case, it is possible that TCP/IP stacks configured to the Policy Agent
are not started or even defined. The Policy Agent will fail when trying to
connect to those stacks and log appropriate error messages.
Rule: To dynamically add a TCP/IP stack to the Policy Agent configuration
and have active policies automatically installed, in addition to adding the
TcpImage statement to the configuration file, further action might be necessary
as follows:
v If the Policy Agent was started with the -i startup option, no further action is

necessary. Active policies will be automatically installed to the stack when it
becomes active.

v If the Policy Agent was not started with the -i startup option, do one of the
following:
– Issue the MODIFY REFRESH or MODIFY UPDATE command after the

stack becomes active. If you issue the MODIFY REFRESH or MODIFY
UPDATE command before the stack becomes active, policies will not be
automatically installed.

– Wait on the next update interval to check for configuration changes. If the
stack is not active, policies will not be automatically installed.

The Policy Agent does not end when any (or all) stacks end. When the stacks
are restarted, active policies are automatically reinstalled.
The TcpImage statement specifies a TCP/IP image and its associated
configuration file to be installed to that image. The following example installs
the policy control file /tmp/TCPCS.policy to the TCPCS TCP/IP image, after
flushing the existing policy control data:
TcpImage TCPCS /tmp/TCPCS.policy FLUSH

For information about the FLUSH, NOFLUSH, PURGE, and NOPURGE
parameters, see “FLUSH and PURGE considerations” on page 869.

4. Define the appropriate logging level.
The LogLevel statement is used to define the amount of information to be
logged by the Policy Agent. The default is to log only event, error, console, and
warning messages. This might be appropriate for a stable policy configuration,
but more information might be required to understand policy processing or
debug problems when first setting up policies or when making significant
changes. Specify the LogLevel statement with the appropriate logging level in
the main configuration file.

850 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Note: The maximum logging level (511) can produce a significant amount of
output, especially with large LDAP configurations. This is not a concern
if a z/OS UNIX log file is used, because Policy Agent uses a set of log
files with a finite size in a round-robin configuration (the number and
size of these files is controllable with the
PAGENT_LOG_FILE_CONTROL environment variable). But when using
the syslog daemon as the log file, the amount of log output produced
should be taken into consideration.

5. Provide the following security authorizations. Because the Policy Agent can
affect system operation significantly, the following security authorizations are
required.
v A user starting Policy Agent must be a superuser.
v Security product authority (for example, RACF(R)) is required to start the

Policy Agent. For sample commands needed to create the profile name and
permit users to it, see the EZARACF sample in SEZAINST.

6. If Policy Agent's PAPI clients, including the pasearch command, are not
defined as a superuser, to retrieve policies you must define security product
authority in the SERVAUTH class for that client. The security product authority
is always required in cases where the image name cannot be defined as a
superuser. Remote policy clients are never defined as a superuser on the policy
server, so security product authority is always required for them. These profiles
can be defined by image name and policy type (ptype = QoS, IDS, IPSec, TTLS,
or Routing). Using a wildcard for profile names is allowed.
EZB.PAGENT.sysname.image.ptype

where:
v sysname - System name defined in sysplex
v image - Tcp name, policy client name, or import request name for policy

information that is being requested
v ptype - Policy type that is being requested:

– QOS - Policy QoS
– IDS - Policy IDS
– IPSec - Policy IPSec
– TTLS - Policy AT-TLS
– Routing - Policy Routing

For details about the import request name, see “Configuration file import
services” on page 839.
Tip: You can specify a wildcard on segments of the profile name.
Rules:

v When you use policy clients, the image portion of the profile name on the
policy server must match or include the name of the policy clients. Configure
each policy client name using the ClientName parameter on the PolicyServer
statement, or use the default value for the ClientName parameter. For
information about specifying the client name on the PolicyServer statement,
see z/OS Communications Server: IP Configuration Reference.

v When you use import requestors, the image portion of the profile name on
the policy server must match or include the import request name. If you use
the IBM Configuration Assistant for z/OS Communications Server as the
import requestor, configure the import request name on the Import Policy
Data panel. For information about the import request name, see
“Configuration file import services” on page 839.

Chapter 16. Policy-based networking 851

Policy Agent checks all client requests to verify that the SERVAUTH class is
active and that the profiles exist for the images and policy types in the request.
If a client's request is for multiple images or policy types, and permission is
granted for only a subset of what is requested, Policy Agent returns only
information for the subset for which permission is granted. However, if
permission is denied for an entire request, including instances when only a
single image or policy type is requested, an error is returned to the client
indicating that permission is denied.
If the SERVAUTH class is not active or profiles are not active for the client's
request (image, policy type), an error is returned to the client indicating that
permission is denied.
See the EZARACF sample in SEZAINST for sample commands needed to
create the profile name and permit users to it.

Step 2: Configure Policy Agent as a policy server
If you want to use the Policy Agent as a policy server, perform these steps:
1. Define the port to which policy clients will connect.

If policy clients are to be used, the ClientConnection statement in the main
configuration file provides the port that Policy Agent listens on for remote
connections. You can use the default port (16310), but you must specify the
ClientConnection statement to use Policy Agent as a policy server.
Guideline: Reserve the port specified on the ClientConnection statement using
the PORT statement in the TCP/IP profile.
Restriction: The port value cannot match the port value that is configured on
the ServicesConnection statement.

2. Define a set of policy client matching statements that select the configuration
files to be used for policy clients.
When a policy client connects to the policy server, the
DynamicConfigPolicyLoad statements in the main configuration file are
evaluated to determine whether there is a match. The names are case sensitive
with regard to matching. When a matching statement is found, the parameters
identify both common and image-specific configuration files to be used for the
policy client. If no matching statement is found, a default image-specific file is
used. A matching statement (or default values) is bound to a policy client for
the life of that client, until one of the following events occur:
v The policy client disconnects from the policy server.
v The connection between the policy server and policy client ends.
v The associated DynamicConfigPolicyLoad statement is removed. In this case,

the policy client is bound to a different DynamicConfigPolicyLoad statement
(or to default values).

You can use a regular expression for the policy client name on the
DynamicConfigPolicyLoad statement to cause the statement to match multiple
policy clients. For a description of supported regular expressions on the
DynamicConfigPolicyLoad statement, see z/OS Communications Server: IP
Configuration Reference.
For example, the expression (.+)_(.+) matches any client name composed of one
or more characters, followed by an underscore, followed by one or more
characters. The default client names configured on the PolicyServer statement
on the policy client would match this expression.
You can use two different methods to substitute all or part of the client name in
parts of the image-specific file name.

852 z/OS V1R12.0 Comm Svr: IP Configuration Guide

v A single wildcard character (*) is replaced with the entire client name.
v If you use a regular expression as the DynamicConfigPolicyLoad statement

client name, you can use the symbolic replacement values $0 through $9 in
the image-specific file name. The value $0 represents the entire portion of the
client name that matched, while the values $1 through $9 represent portions
of the client name that match corresponding parenthesized sub-expressions
in the regular expression. Using the regular expression (.+)_(.+) as an
example, and a policy client name of SYS123_TCPIP2, the values of the
possible replacement variables are as follows:
– The value * is replaced with SYS123_TCPIP2
– The value $0 is replaced with SYS123_TCPIP2
– The value $1 is replaced with SYS123
– The value $2 is replaced with TCPIP2

In this example, the value $0 is the same as the value *, but this does not
hold true for all regular expressions. If you want to use the entire client
name as a replacement value, specify the value *.

The matching hierarchy used is as follows:
a. Exact match between the policy client name and the

DynamicConfigPolicyLoad statement.
b. Regular expression match between the policy client name and the

DynamicConfigPolicyLoad statement. The longest matching regular
expression is chosen. If multiple statements match with the same length
clientname parameter, the statement chosen is based on alphabetical order.

c. No matching statement. A default file is used based on the policy type, as
follows:

Policy type Default file

AT-TLS /etc/pagent_remote.ttls

IDS /etc/pagent_remote.ids

IPSec /etc/pagent_remote.ipsec

QoS /etc/pagent_remote.qos

Routing /etc/pagent_remote.routing
The following example shows the DynamicConfigPolicyLoad statement
matching by using a regular expression to simulate a simple wildcard, and the
resulting configuration files that are used, using IPSec policies.
DynamicConfigPolicyLoad Rem.*
{

PolicyType IPSec
{

CommonPolicyLoad //’ETC.COMMON.IPSEC’
PolicyLoad //’ETC.IPSEC(*)’

}
}

DynamicConfigPolicyLoad Remote.*
{

PolicyType IPSec
{

PolicyLoad /etc/*.ipsec
}

}

DynamicConfigPolicyLoad Remote5
{

Chapter 16. Policy-based networking 853

PolicyType IPSec
{

CommonPolicyLoad /user10/common_remote.ipsec
PolicyLoad /user10/pagent_remote5.ipsec

}
}

The resulting configuration files used for a variety of policy clients are shown
in Table 41:

Table 41. Configuration files used for various policy clients

Policy client
name Matching statement Common IPSec configuration file Image IPSec configuration file

Remote1 Remote.* None /etc/Remote1.ipsec

Remote5 Remote5 /user10/common_remote.ipsec /user10/pagent_remote5.ipsec

Rem42 Rem.* //'ETC.COMMON.IPSEC' //'ETC.IPSEC(REM42)'

remote5 Not applicable None /etc/pagent_remote.ipsec

The following example shows the DynamicConfigPolicyLoad statement
matching by using a more complex regular expression, and the resulting
configuration files that are used, using IDS policies. The regular expression
matches two strings separated by an underscore character. Each string must
begin with an uppercase alphabetic character and end with a numeric character.
DynamicConfigPolicyLoad ^([A-Z].+[0-9]+)_([A-Z].+[0-9]+)$
{

PolicyType IDS
{

CommonPolicyLoad //’ETC.COMMON.IDS’
PolicyLoad //’ETC.$1($2)’

}
}

The resulting configuration files used for a variety of policy clients are shown
in Table 42:

Table 42. Configuration files used for various policy clients

Policy client name Matching statement
Common IDS
configuration file Image IDS configuration file

SYS42_TCPIP2 ^([A-Z].+[0-9]+)_([A-Z].+[0-
9]+)$

//'ETC.COMMON.IDS' //'ETC.SYS42(TCPIP2)'

Remote1_Image5 ^([A-Z].+[0-9]+)_([A-Z].+[0-
9]+)$

//'ETC.COMMON.IDS' //'ETC.REMOTE1(IMAGE5)'

SYS123_TCPIP Not applicable None /etc/pagent_remote.ids

Rule: The policy client names and DynamicConfigPolicyLoad statement names
are case sensitive, but MVS data set names are not. Therefore, be careful when
defining MVS data set configuration files that include a wildcard that is to be
substituted with the policy client name. For example, the policy client names
client42 and Client42, if used as a substitution variable in an MVS data set
name, would result in the same configuration file being used for both policy
clients.

3. Configure one or more user IDs on the policy server system to match the user
IDs of the policy clients.
Each policy client uses a unique client name, but also must present valid
credentials to the policy server. Valid credentials include a user ID and
password or a user ID and PassTicket (if secure signon is enabled).

854 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Rule: The password defined for the user ID must match the password
configured using the AuthBy Password parameter on the PolicyServer
statement on the policy client.
A SAF user ID representing a policy client must be defined to the security
product. The user ID must be defined with an OMVS segment. When RACF is
used as the security product, define the SAF user ID with the following
command:
ADDUSER client PASSWORD(password) DFLTGRP(OMVSGRP) OMVS(UID(x) HOME(’/home/client’))

Each policy client does not need to use a unique user ID, although that is a
configuration option. The user ID is used for two purposes on the policy
server:
v User authentication when the policy client connects to the policy server
v Access to SERVAUTH profiles to determine which policies the client can

access
4. Permit Policy Agent to the BPX.DAEMON FACILITY class profile.

For information about the use of the BPX.DAEMON profile, see
“BPX.DAEMON FACILITY class profile” on page 43. If you decide to use this
profile, permit the Policy Agent user ID to it. When RACF is used as the
security product, permit the user ID with the following command:
PERMIT BPX.DAEMON CLASS(FACILITY) ID(userid) ACCESS(READ)

5. If you want to use PassTicket security for policy clients, configure PTKTDATA
class profiles.
Policy clients can be configured to use either a password or a PassTicket on the
PolicyServer statement, used when they connect to the policy server. For
information about the secured signon function and PassTickets, see z/OS
Security Server RACF Security Administrator's Guide. If you choose to use
PassTickets, define the appropriate profiles in the PTKTDATA class to contain
the application key used to generate and validate the PassTicket. When RACF
is used as the security product, define the profiles with the following
command:
RDEFINE PTKTDATA profile SSIGNON(KEYMASKED(key)) UACC(UPDATE)

The application name used by Policy Agent is PAGENT, so you need to define
a profile with this name. The application key defined in the profiles must be
the same on the policy client and policy server.

6. If you want to use secure connections between policy clients and the policy
server, configure AT-TLS rules on the policy server to enable SSL connections
from the policy clients.
If policy clients use SSL connections, you must define AT-TLS rules on the
policy server for communications between the policy client and server to be
secured using AT-TLS. AT-TLS processing for a stack is enabled by specifying
the TTLS parameter on the TCPCONFIG statement in the TCP/IP profile.
Specific AT-TLS policy is configured in Policy Agent configuration files. For
details about enabling AT-TLS and configuring AT-TLS policy, see Chapter 22,
“Application Transparent Transport Layer Security data protection,” on page
1193.
Rules:

v Define AT-TLS policy such that only cipher suites requiring TLS encryption
are exchanged with policy clients. Failure to restrict the cipher suites to those
requiring encryption might result in sensitive information flowing in the
clear across an untrusted network.

v Define AT-TLS policy for each stack through which policy server and policy
client communication can flow.

Chapter 16. Policy-based networking 855

v If some policy clients use SSL and others do not use SSL, define AT-TLS
policy to select only those policy clients that use SSL.

Result: If you choose not to use SSL for your policy client to policy server
connections, sensitive information flows in the clear on the connections.
Sensitive information includes, but is not limited to, the following:
v The password sent from the policy client to the policy server for

authentication (if you are using password credentials)
v Policy information sent from the policy server to the policy client, such as:

– Passwords
– Certificate labels
– IPSec keys for IKE tunnels that use pre-shared keys
– IPSec keys for manual tunnels

Requirement: The policy server acts as the server during an SSL handshake. To
act in the server role of an SSL handshake, the policy server must have access
to a private key and certificate verifying its ownership of that private key. For
information about creating and managing keys and certificates for servers
utilizing AT-TLS, see Appendix B, “TLS/SSL security,” on page 1461.
An example of the AT-TLS policy statements used to enable AT-TLS for the
policy server is as follows:
TTLSRule PolicyServerRule
{

LocalPortRange 16310
JobName PAGENT
Direction Inbound
TTLSGroupActionRef PolicyServerGroup
TTLSEnvironmentActionRef PolicyServerConn

}

TTLSGroupAction PolicyServerGroup
{

TTLSEnabled On
}

TTLSEnvironmentAction PolicyServerConn
{

TTLSKeyRingParms
{

Keyring PAGENT/keyring
}
TTLSCipherParmsRef RequireEncryption
HandshakeRole SERVER

}

TTLSCipherParms RequireEncryption
{

V3CipherSuites TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
V3CipherSuites TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
V3CipherSuites TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA
V3CipherSuites TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA
V3CipherSuites TLS_RSA_WITH_3DES_EDE_CBC_SHA
V3CipherSuites TLS_DHE_RSA_WITH_AES_256_CBC_SHA
V3CipherSuites TLS_DHE_DSS_WITH_AES_256_CBC_SHA
V3CipherSuites TLS_DH_RSA_WITH_AES_256_CBC_SHA
V3CipherSuites TLS_DH_DSS_WITH_AES_256_CBC_SHA
V3CipherSuites TLS_RSA_WITH_AES_256_CBC_SHA
V3CipherSuites TLS_DHE_RSA_WITH_AES_128_CBC_SHA
V3CipherSuites TLS_DHE_DSS_WITH_AES_128_CBC_SHA
V3CipherSuites TLS_DH_RSA_WITH_AES_128_CBC_SHA
V3CipherSuites TLS_DH_DSS_WITH_AES_128_CBC_SHA
V3CipherSuites TLS_RSA_WITH_AES_128_CBC_SHA

856 z/OS V1R12.0 Comm Svr: IP Configuration Guide

V3CipherSuites TLS_DHE_RSA_WITH_DES_CBC_SHA
V3CipherSuites TLS_DHE_DSS_WITH_DES_CBC_SHA
V3CipherSuites TLS_DH_RSA_WITH_DES_CBC_SHA
V3CipherSuites TLS_DH_DSS_WITH_DES_CBC_SHA
V3CipherSuites TLS_RSA_WITH_DES_CBC_SHA
V3CipherSuites TLS_RSA_WITH_RC4_128_SHA
V3CipherSuites TLS_RSA_WITH_RC4_128_MD5
V3CipherSuites TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5
V3CipherSuites TLS_RSA_EXPORT_WITH_RC4_40_MD5

}

Rule: The LocalPortRange value on the TTLSRule statement must include the
value specified on the ClientConnection statement in the policy server main
configuration file.

7. If you use secure connections between any policy clients and the policy server,
permit Policy Agent to the EZB.INITSTACK.sysname.tcpname SERVAUTH class
profile.
Because AT-TLS policies are used to enable SSL connections from policy clients,
Policy Agent must be permitted to the EZB.INITSTACK.sysname.tcpname
SERVAUTH class profile if any policy clients use SSL. For more details, see
“TCP/IP stack initialization access control” on page 1194. When RACF is used
as the security product, permit Policy Agent to the profile with the following
command:
PERMIT EZB.INITSTACK.sysname.tcpname CLASS(SERVAUTH) ID(userid) ACCESS(READ)

Step 3: Configure Policy Agent as a policy client
If you want to use the Policy Agent as a policy client, perform the following steps:
1. Define the parameters needed to connect to the policy server using the

ServerConnection statement in the main configuration file:
v Specify the host name (or IP address) and port of a primary and an optional

backup server.
v If you want to use a secure connection to the policy server, specify

parameters for a secure SSL connection. For details, see “Add SSL to Policy
Agent connections” on page 864.

Requirement: Connectivity to the policy server is required for all images on the
policy client that need to connect to the policy server.

2. Define the policy server parameters to be used for each image on the
PolicyServer statement in the image configuration files:
v When the policy client connects to the policy server, the policy client needs

to supply a user ID and authentication information (password or PassTicket).
Specify these parameters on the PolicyServer statement. The user ID must be
defined on the policy server system. For information about the PTKTDATA
class profiles that are needed when a PassTicket is specified on the
PolicyServer statement, see step 5 on page 855 in “Step 2: Configure Policy
Agent as a policy server” on page 852.

v The policy server determines what configuration files to load based on a
matching DynamicConfigPolicyLoad statement in its configuration. Specify
the client name that the policy server is to use for matching. If this parameter
is not specified, the default value is the policy client's system name
concatenated to the image name with an intervening underscore character
(_). For example, if the client's system name is SYS42 and the image name for
this policy client is TCPIP2, the default client name presented to the policy
server is SYS42_TCPIP2.

v Specify the types of policies to be retrieved from the policy server. You can
specify one or more policy types. You can also specify parameters for each

Chapter 16. Policy-based networking 857

policy type (FLUSH, NOFLUSH, PURGE, or NOPURGE). These parameters
have the same meaning as the corresponding parameters on the TcpImage or
PEPInstance statement.
For each policy type specified, the corresponding xxxConfig statement for
that type is ignored in the local configuration. For example, if PolicyType
IPSec is specified on the PolicyServer statement, the IPSecConfig statement is
ignored. This is true even if the primary and backup policy servers cannot be
reached. You can use local or remote policy for each policy type, but not
both.

Step 4: Configure policies in Policy Agent configuration files
Policies can be defined in any referenced Policy Agent configuration file. For more
information, see the appropriate information for each policy type:
v Policy-based routing (See “Policy-based routing” on page 337)
v Quality of Service (See Chapter 17, “Quality of service,” on page 873)
v Intrusion Detection Services (See Chapter 18, “Intrusion Detection Services,” on

page 897)
v IP filtering, and manual and dynamic VPN tunnels, collectively referred to as

IPSec policies (See Chapter 19, “IP security,” on page 923)
v Application Transparent Transport Layer Security (See Chapter 22, “Application

Transparent Transport Layer Security data protection,” on page 1193)

Step 5: Configure Policy Agent to use the LDAP server using
the ReadFromDirectory statement

The ReadFromDirectory statement in the Policy Agent configuration file initializes
the Policy Agent as an LDAP client. The policies are downloaded from the LDAP
server, along with the policies specified in the Policy Agent configuration files.

When configuring the ReadFromDirectory statement, first specify the name (or
IPv4 address) and port of the primary server and the same for the backup server
(if one is used).

Notes:

1. The LDAP client library used to connect to the LDAP server does not support
IPv6.

2. When using the z/OS LDAP server, the server listens on a separate port for
SSL connections. This means that you should specify the correct port
depending on whether or not SSL is used.

Next, configure other connection attributes. The Policy Agent (as an LDAP client)
must log in to the LDAP server. The userid and password for logging in must be
configured on the ReadFromDirectory statement.The userid is also known as
Distinguished Name for userid, and it is in the form of an LDAP DN. If the userid
and password are not specified, the Policy Agent uses anonymous login to connect
to the server.

The LDAP server can be configured with only LDAP protocol version 3. To use
LDAP protocol version 3, you can set LDAP_ProtocolVersion to 3 on the
ReadFromDirectory statement. This is the default value. This statement also
configures the version of the schema to be retrieved from the server.

Finally, configure attributes to indicate how to search the LDAP server for policies.
Policy roles allow one or more roles, or role-combinations, to be assigned to policy

858 z/OS V1R12.0 Comm Svr: IP Configuration Guide

rules using the ibm-policyRoles attribute. These roles represent the intended usage
of the policy rules. For example, a role of "East Coast WAN" might be used to
represent policies for the wide area network on the US East coast for an enterprise.
Policy role values are not standardized; they are simply values used to assign roles
to policies. When an entity that requires policies (such as Policy Agent) requests
policies from an LDAP server, it can filter out policy rules that do not match the
roles that it plays. Although similar to policy keywords, which also allow search
scoping, policy roles are a bit more sophisticated. Specifically, role-combinations
are allowed, which take the form of a specification like "roleA && roleB", meaning
both roleA AND roleB. Since the ibm-policyRoles attribute is multi-valued, a form
of CNF/DNF logic can be used for policy roles: the roles in a role-combination are
ANDed, and the roles or role-combinations specified on different values of this
attribute are ORed.

For the Version 1 schema, a base DN to start the search, and a selector tag value are
configured. The selector tag is used to match against the SelectorTag attribute in
the policy objects. For Version 1, the Policy Agent also automatically includes the
stack name when searching for policies; this value is matched against the
TcpImageName attribute in the policy objects. For the Version 2 schema, a base DN
to start searching is also configured. This DN can specify a single LDAP object, a
policy group, or an LDAP subtree containing many objects. For filtering the search,
three keywords can be configured:
v SearchPolicyKeyword matches against the ibm-policyKeywords attribute in any

policy object.
v SearchPolicyGroupKeyword matches against the ibm-policyGroupKeywords

attribute in policy group objects.
v SearchPolicyRuleKeyword matches against the ibm-policyRuleKeywords

attribute in policy rule objects.

Optionally, specify parameters for a secure SSL connection. For details, see “Add
SSL to Policy Agent connections” on page 864.

The example that follows this list does the following:
v Connects to the LDAP server at IP address 9.100.1.1, using the default port 389.
v Specifies a userid and password to log in to the server.
v Specifies LDAP protocol version 3.
v Specifies schema version 3.
v Starts searching at the DN ou=policy, o=IBM, c=US object/subtree.
v Only selects policy objects that contain either the "POLICY" or "EASTERN"

keywords.
ReadFromDirectory
{
LDAP_Server 9.100.1.1
LDAP_DistinguishedName cn=root, o=IBM, c=US
LDAP_Password 4qr56jb
LDAP_ProtocolVersion 3
LDAP_SchemaVersion 3
SearchPolicyBaseDN ou=policy, o=IBM, c=US
SearchPolicyKeyword POLICY
SearchPolicyKeyword EASTERN
}

Chapter 16. Policy-based networking 859

Step 6: Configure Policy Agent for configuration file import
services

If you connect an import requestor to the Policy Agent to provide configuration
file import services, perform the following steps:
1. Define the port and TCP/IP image name to which import requestors will

connect.
If import requestors are to be used, the ServicesConnection statement in the
main configuration file provides the port and TCP/IP image name that the
Policy Agent listens on for remote connections. An import requestor is one type
of services requestor provided for by the ServicesConnection statement. The
Policy Agent listens for services requestor connections on only one TCP/IP
image. You can specify the image name to be used, or use the name specified
(or specified by default) on the TCPIPUSERID statement or TCPIPJOBNAME
statement in TCPIP.DATA. If the default TCP/IP image cannot be determined,
the Policy Agent uses the image name INET. In any case, the image name
might or might not match an image name specified on a TcpImage statement:
v If the specified name does not match any TcpImage statement, the Policy

Agent generates an internal TcpImage statement with default values to
represent the TCP/IP image. This means that you can specify a maximum of
only 7 (instead of 8) TcpImage or PEPInstance statements.

v In a single stack (INET) environment, the Policy Agent uses the active
TCP/IP image to listen for services connection requests.

Rule: The ServicesConnection statement is required for any Policy Agent that
accepts connections from an import requestor.
Guideline: Reserve the port specified on the ServicesConnection statement
using the PORT statement in the TCP/IP profile.
Restriction: The port value cannot match the port value configured on the
ClientConnection statement.

2. Optionally configure secure connections from the import requestors.
By default, the ServicesConnection statement defines a basic, unsecure
connection. You can define a secure connection instead, and specify the level of
tracing and the TLS/SSL key ring to use. You must specify the name of a SAF
key ring. Key ring files created by the System SSL gskkyman utility are not
supported. When you configure a secure connection, Policy Agent
automatically creates an AT-TLS policy for the connection, and the import
requestor must also specify that the connection is to be secured. You must
enable the TTLS parameter on the TCPCONFIG statement in the TCP/IP
profile for the generated AT-TLS policy to be effective.
Following is an example of a ServicesConnection statement for a secure
connection:
ServicesConnection
{

Port 17000
ImageName TCPIP1
Security Secure
Trace 14
Keyring PAGRING

}

Following is the AT-TLS policy generated from this ServicesConnection
statement:
TTLSRule TTLS_RULE_______________GENERATED
{

LocalPortRange 17000
JobName PAGENT

860 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|

|

Direction Inbound
TTLSGroupActionRef TTLS_GROUP_ACTION_______GENERATED
TTLSEnvironmentActionRef TTLS_ENVIRONMENT_ACTION_GENERATED

}

TTLSGroupAction TTLS_GROUP_ACTION_______GENERATED
{

TTLSEnabled On
Trace 14

}

TTLSEnvironmentAction TTLS_ENVIRONMENT_ACTION_GENERATED
{

HandshakeRole SERVER
TTLSKeyRingParms
{

Keyring PAGRING
}

}

The Policy Agent installs this generated policy in the TCP/IP image specified
explicitly or by default on the ServicesConnection statement. This generated
policy uses a priority value that is lower than any specified AT-TLS policies, so
it is installed as the last policy in the TCP/IP image. If local or remote AT-TLS
policies are configured, the Policy Agent installs those policies before installing
the generated policy. If you configure AT-TLS policies on a policy server, those
policies must be successfully retrieved before the Policy Agent is able to accept
connections from services requestors. Accepting connections from services
requestors can be affected by problems or delays in retrieving the AT-TLS
policies from the policy server.
If you change the ServicesConnection statement, the generated policy is
uninstalled or reinstalled as follows:
v If you change the Port, Trace or Keyring parameters, the Policy Agent

regenerates and reinstalls the policy.
v If you change the ImageName parameter, the Policy Agent uninstalls the

generated policy from the previous image and installs the policy on the new
image.

v If you change the Security parameter value from Secure to Basic, the Policy
Agent uninstalls the generated policy.

If you delete the ServicesConnection statement, the Policy Agent uninstalls the
generated policy.

3. To restart the listen for services requestor connections and, if required, to
reinstall the generated AT-TLS policy, issue the MODIFY SRVLSTN command.
For information about when you might use the MODIFY command for Policy
Agent, see z/OS Communications Server: IP System Administrator's Commands.

Step 7: Configuring Policy Agent to automatically monitor
applications

You can use the Policy Agent to automatically start, stop, and monitor a set of
related applications. Policy Agent starts the applications and monitors them to
ensure that they remain active. If Policy Agent determines that any applications
have not started or have stopped, it continues to try to start or restart the
applications, up to a configurable retry limit within a configurable retry period.

To configure the Policy Agent for automatic monitoring, perform the following
steps:

Chapter 16. Policy-based networking 861

1. Decide what applications you want to monitor.
You can use the Policy Agent to monitor any or all of the following
applications:
v Defense Manager daemon (DMD)
v Internet Key Exchange daemon (IKED)
v Network security services daemon (NSSD)
v Syslog daemon (SYSLOGD)
v Traffic Regulation Management daemon (TRMD)
Determine which of these applications you currently use, or want to start
using, in your environment, and for each application, determine whether you
want the Policy Agent to start, stop, and monitor the application.
Requirements:

v To start the application, you must use a cataloged procedure that accepts a
number of variables that are provided by the Policy Agent. A sample
procedure is included in SEZAINST(EZAPOLPR).

v If you want to manually start, restart, or stop the application, you must use
MODIFY commands that are directed to the Policy Agent. If you issue the
commands directly to the application itself, Policy Agent is not aware of the
action and the monitoring logic will probably not produce the expected
results.

Results:

v If you start the Policy Agent after you have already started an application to
be monitored, Policy Agent starts monitoring the application if it was
originally started with the same job name that is configured to the Policy
Agent. If the application needs to be restarted later, it is restarted using the
cataloged procedure configured to the Policy Agent. This might not be the
same procedure that was originally used to start the application.

v If you start the Policy Agent after you have already started an application to
be monitored, but the application does not use the same job name that is
configured to the Policy Agent, then the Policy Agent is not able to detect
that the application is active. The Policy Agent will try to start another
instance of the application, which is likely to fail.

Tip: If you configure applications to be monitored by the Policy Agent, ensure
those applications are not running before starting the Policy Agent. However,
you probably want to start syslogd before starting the Policy Agent, so you
should ensure that Policy Agent is configured with the correct syslogd job
name.

2. Configure the applications that you want to monitor using the
AutoMonitorApps statement.
You can configure applications that you want to monitor that are or are not
associated with a particular TCP/IP stack. You can specify the cataloged
procedure used to start each application, the job name for the application, and
other application-specific parameters on the AutoMonitorApps statement.
Perform the following steps to configure the applications that you want to
monitor:
a. Specify the AutoMonitorApps statement in the main Policy Agent

configuration file.
v Use the AppName parameter to specify each application that is not

associated with a particular TCP/IP stack. All supported applications
except TRMD fall into this category.

862 z/OS V1R12.0 Comm Svr: IP Configuration Guide

v Use the TcpImageName and AppName parameters to specify each
application that is associated with a particular TCP/IP stack. TRMD is
the only application that falls into this category.

b. Use the ProcName parameter for each AppName parameter on the
AutoMonitorApps statement to specify the cataloged procedure that is used
to start each application. Because all key data is passed to the procedure as
variables, you can use a single procedure for all configured applications.
You can also use a unique procedure for one or more applications.

c. Use the Jobname parameter for each AppName parameter on the
AutoMonitorApps statement to specify the job name for each application.

d. Use the StartParms parameter for each AppName parameter on the
AutoMonitorApps statement to specify start parameters for each
application.

e. Use one or more EnvVar parameters for each AppName parameter on the
AutoMonitorApps statement to specify application-specific parameters, such
as time zone or configuration file name. You can specify any or all
environment variables that are accepted by the specific application.

Following is an example of the AutoMonitorApps statement:
AutoMonitorApps
{

AppName IKED
{

Procname POLPROC
}
AppName TRMD
{

TcpImageName TCPIP1
{

Procname POLPROC
Jobname TRMD1

}
TcpImageName TCPIP3
{

Procname POLPROC
Jobname TRMD3

}
}

}

This example shows how to specify parameters for two types of applications:
v An application without stack affinity, meaning that a single copy of the

application runs regardless of how many TCP/IP stacks are running. This
example uses IKED as such an application.

v An application with stack affinity, meaning that one instance of the
application runs on each TCP/IP stack. This example uses TRMD as such an
application.

3. Configure global monitoring parameters using the AutoMonitorParms
statement.
Use the AutoMonitorParms statement in the main Policy Agent configuration
file to specify global monitoring parameters, such as the monitor time interval
and retry limits.
v Use the MonitorInterval parameter to specify the monitor interval in seconds.
v Use the RetryLimitCount and RetryLimitPeriod parameters to specify how

many times within a given time period Policy Agent should try to start or
restart an application. If the application fails to successfully start or restart
after the retry limit has been reached, Policy Agent stops trying until the

Chapter 16. Policy-based networking 863

application is manually started using the MODIFY
procname,MON,START,application command.

Add SSL to Policy Agent connections
The Secure Sockets Layer (SSL) protocol begins with a handshake. During the
handshake, the client authenticates the server, the server optionally authenticates
the client, and the client and server agree on how to encrypt and decrypt
information.

Server Authentication: When using SSL to secure communications, the SSL
authentication mechanism known as server authentication is used. With server
authentication, the server must have a digital certificate that authenticates the
server to the Policy Agent client. The server supplies the client with the certificate
during the initial SSL handshake. If the client validates the server's certificate, a
secure communication channel is established between the server and the Policy
Agent client.

For server authentication to work, the server must have a private key and
associated server certificate in the server key ring file.

To conduct commercial business on the Internet, you might use a widely known
Certificate Authority (CA), such as VeriSign, to get a high assurance certificate. For
a relatively small private network within your own enterprise or group, you can
issue your own certificates, called self-signed certificates, for your own use.

Client Authentication: When using SSL Client Authentication, the client passes a
digital certificate to the server as part of the SSL handshake. To pass
authentication, the Certificate Authority (CA) that signed the client certificate must
be considered trusted by the server.

Self-signed Server Certificates: Normally, a server certificate should be obtained
from a known CA. However, for testing, an installation might use a self-signed
server certificate. Because the clients will not know about the issuer of the
self-signed server certificate, in most cases it is necessary to add the server's
self-signed certificate to the client's signer certificates.

The gskkyman utility is used to create public/private key pairs and certificate
requests, receive certificate requests into a key ring, and manage keys in a key
ring. The gskkyman utility is documented in z/OS Cryptographic Services System SSL
Programming. The gskkyman utility is shipped with z/OS in System SSL, which is
part of the cryptographic services base element of z/OS. For detailed instructions
on setting up certificates and key rings, see Appendix B, “TLS/SSL security,” on
page 1461.

The set of SSL protocol cipher specifications to be allowed for the secure session
can be set for the policy server connection.

Rule: Define AT-TLS policy on the policy server such that only cipher suites
requiring TLS encryption are exchanged with policy clients. Failure to restrict the
cipher suites to those requiring encryption might result in sensitive information
flowing in the clear across an untrusted network.

For the list of cipher suites supported and the default order used if none is
specified, see z/OS Cryptographic Services System SSL Programming.

864 z/OS V1R12.0 Comm Svr: IP Configuration Guide

The Policy Agent connection to LDAP can be secured using SSL by tailoring the
following parameters on the ReadFromDirectory statement. This allows for
protection of policy retrieval from an LDAP server.
v LDAP_SSLKeyringFile
v LDAP_SSLKeyringPassword
v LDAP_SSLName

The policy client connection to the policy server can be secured using SSL by
tailoring the following parameters on the ServerConnection statement. This allows
for protection of policy retrieval from the policy server.
v ServerSSLKeyring
v ServerSSLKeyringPassword
v ServerSSLKeyringStashFile
v ServerSSLName
v ServerSSLV3CipherSuites

You can secure the connection used by services requestors by tailoring the
following parameters on the ServicesConnection statement. This provides
protection of policy retrieval by import requestors, such as the IBM Configuration
Assistant.
v Security Secure
v Keyring

For more detail about these parameters, see z/OS Communications Server: IP
Configuration Reference. Additional information about the concepts of cryptography
and SSL can be found at the following Web sites:
v http://httpd.apache.org/docs/2.0/ssl/ssl_intro.html
v http://www.verisign.com/repository/crptintr.html

Starting and stopping the Policy Agent
You can start the Policy Agent from the z/OS shell, as a started task, or in some
cases by using the TCP/IP AUTOLOG statement (see “AUTOLOG
considerations”). If you use the shell, the Policy Agent should be started in a
background shell session, by specifying a trailing & on the command line.

AUTOLOG considerations
If a procedure in the AUTOLOG list also has a PORT statement reserving a TCP or
UDP port but does not have a listening connection on that port, TCP/IP
periodically attempts to cancel that procedure and start it again.

Guideline: Do not use AUTOLOG to start the Policy Agent if any listening
connections are used. The Policy Agent is unlike typical servers, and performs
functions outside the realm of listening for connections from other applications.
Sometimes during normal operation of the Policy Agent, listening connections are
unavailable for short periods of time. When listening connections are unavailable,
it is possible that the AUTOLOG timer could restart the Policy Agent.

Policy Agent optionally listens on one or more of the following ports:
v The pagentQosListener port (usually defined in the /etc/services file as port

1700). This happens only when the PolicyPerfMonitorForSDR statement is
configured for a given TCP/IP stack.

Chapter 16. Policy-based networking 865

|
|

|

http://httpd.apache.org/docs/2.0/ssl/ssl_intro.html
http://www.verisign.com/ssl/ssl-information-center/how-ssl-security-works/index.html

v The port defined or specified by default on the ClientConnection statement,
which is used to listen for remote policy client connections on all TCP/IP stacks.

v The port defined or specified by default on the ServicesConnection statement,
which is used to listen for services requestor connections on a single TCP/IP
stack. For information about the ServicesConnection statement and specifying
which stack to use to listen for these connections, see z/OS Communications
Server: IP Configuration Reference.

If you want to start Policy Agent with AUTOLOG, you must do one of the
following:
v Ensure that none of the listening ports used by Policy Agent are reserved by the

PORT statement in the TCP/IP profile.
v Add the NOAUTOLOG parameter to the PORT statement in the TCP/IP profile.

For example:
PORT
1700 TCP PAGENT NOAUTOLOG
16310 TCP PAGENT NOAUTOLOG
16311 TCP PAGENT NOAUTOLOG

In addition, when the PolicyPerfMonitorForSDR statement is being used, if the
pagentQosCollector port (usually defined in the /etc/services file as port 1701) is
reserved in the PORT list it should always be specified with the NOAUTOLOG
parameter, because this port is never used as a listening port. For example:
PORT
1701 TCP PAGENT NOAUTOLOG

Tip: When Policy Agent is not listening on any ports, you can use the autostart
feature of AUTOLOG as previously described. However, the monitoring and
automatic restart features of AUTOLOG are unavailable because AUTOLOG must
listen to a TCP or UDP connection.

If you fail to take one of the above actions, Policy Agent will be periodically
canceled and restarted by TCP/IP.

Specifying environment variables
The Policy Agent requires access to one or more DLLs at run time. The LIBPATH
environment variable needs to be set to include the /usr/lib directory, which
normally includes all the required DLLs.

For policy time specifications to be properly acted upon, the TZ environment
variable needs to be set to local time. You can set the LIBPATH and TZ
environment variables as follows:
v When starting from the z/OS shell:

Export the LIBPATH and TZ environment variables before starting the Policy
Agent. This is best accomplished in /etc/profile or in .profile in the HOME
directory. For example, if you are in the Eastern time zone in the United States:
export LIBPATH=/usr/lib
export TZ=EST5EDT

v When starting as a started task, use either of the following methods:
– Specify LIBPATH and TZ using the ENVAR parameter on the PARM

statement in the started procedure. For example:
// PARM=(’ENVAR("LIBPATH=/usr/lib","TZ=EST5EDT")/’)

– Export the LIBPATH and TZ environment variables in a file specified with the
STDENV DD statement. For example:

866 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|

|

|

// PARM=’ENVAR("_CEE_ENVFILE=DD:STDENV")/’
//STDENV DD PATH=’/etc/pagent.env’,PATHOPTS=(ORDONLY)

In the /etc/pagent.env file:
LIBPATH=/usr/lib
TZ=EST5EDT

The use of the STDENV DD statement works well when you want to specify
more than one environment variable; there is a JCL limit of 100 characters on
the PARM parameter. Language Environment recommends a variable record
format for the STDENV file.

You can also set the TZ environment variable for all applications in the CEEPRMxx
PARMLIB member. You should define the TZ environment variable for all three LE
option sets (CEEDOPT, CEECOPT, and CELQDOPT). For example:
CEECOPT(ALL31(ON), ENVAR(’TZ=EST5EDT’))
CEEDOPT(ALL31(ON), ENVAR(’TZ=EST5EDT’))
CELQDOPT(ALL31(ON), ENVAR(’TZ=EST5EDT’))

For more information on specifying run-time options, see z/OS Language
Environment Programming Guide. For details on setting the LIBPATH and TZ
environment variables, see z/OS UNIX System Services Command Reference.

Main configuration file search order
Although the /etc/pagent.conf is the default configuration file, a specific search
order is used when starting the Policy Agent. The following order is used:
1. File or data set specified with the -c startup option
2. File or data set specified with the PAGENT_CONFIG_FILE environment

variable
3. /etc/pagent.conf

The syntax for a z/OS UNIX file is different than the syntax for an MVS data set.
The following examples use the PAGENT_CONFIG_FILE environment variable:
v PAGENT_CONFIG_FILE=/dir/file

v PAGENT_CONFIG_FILE=//'mvs.dataset.name'

Other considerations when starting the Policy Agent
If the Policy Agent cannot successfully parse the start options, log output is written
to the syslog daemon (syslogd).

At initialization, the Policy Agent creates a z/OS UNIX file called
/tmp/tcpname.Pagent.tmp. This occurs for every TCP/IP stack defined on a
TcpImage statement.

In this z/OS UNIX file, tcpname is the name of a TCP/IP stack from a TcpImage
statement. During TCP/IP stack initialization, the TCP/IP stack will attempt to
modify a file by this name to notify the Policy Agent that the stack has been
reactivated. This causes the Policy Agent to automatically attempt to reinstall the
existing policies to this stack.

To ensure that only one Policy Agent is started, the Policy Agent uses the
following enqueue:
v Enqueue name is TCP_TCPI
v Resource name is TCPIP.PAGENT

Chapter 16. Policy-based networking 867

|

|

|
|
|
|

|
|
|

|
|
|

|

|
|

|

|

|

When starting from the shell, note that the Policy Agent executable file resides in
the /usr/lpp/tcpip/sbin directory. There is also a link from the /usr/sbin
directory. Make sure your PATH statement contains either the /usr/sbin or
/usr/lpp/tcpip/sbin directory.

For example, the following command starts Policy Agent with these characteristics:
pagent -c /u/user10/pldap.conf -l SYSLOGD &

v Policy Agent uses the configuration file /u/user10/pldap.conf
v Policy Agent logs output to the syslog daemon (SYSLOGD). Note that

"SYSLOGD" must be specified in uppercase to obtain this behavior

Use the S PAGENT command on an MVS console or SDSF to start the Policy
Agent as a started task. A sample procedure is shipped in member EZAPAGSP in
SEZAINST.

Stopping the Policy Agent
You can stop the Policy Agent by:
v Using the operator command STOP
v Using the kill command in the z/OS shell
v Using the operator command CANCEL. Use the CANCEL command only as a

last resort if the STOP or kill commands do not completely stop the Policy
Agent.

Result: When the Policy Agent is shut down normally (KILL or STOP), if the
PURGE option is configured, all QoS, IDS, and AT-TLS policies are purged from
this stack. IPSec and Routing policies are not automatically purged.

The following kill command with the TERM signal will enable Policy Agent to
clean up resources properly before terminating itself:
kill -s TERM pid

where pid is the Policy Agent process ID.

The Policy Agent process ID can be obtained using the following z/OS UNIX
command:
ps -A

It can also be obtained from the /tmp/pagent.pid file. The /tmp/pagent.pid file is
a temporary file created by the Policy Agent. It contains the process ID of the
current invocation of the Policy Agent. This temporary file is deleted when the
Policy Agent is stopped.

Refreshing policies
The MODIFY command may be used to interactively cause the Policy Agent to
reread the configuration information and, if requested, download objects from the
LDAP server. In addition to this, the Policy Agent will also accept SIGHUP signals
to perform the refresh function. See the z/OS Communications Server: IP System
Administrator's Commands for more detailed information on the MODIFY command.

Restriction: The import configuration files are parsed only once. The import
policies are not installed in the TCP/IP stack, so the MODIFY REFRESH and
MODIFY UPDATE commands do not apply to these files.

868 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

FLUSH and PURGE considerations
The FLUSH/NOFLUSH and PURGE/NOPURGE parameters can be configured for
each policy type supported by the Policy Agent.

Restriction: The import configuration files are parsed only once. The import
policies are not installed in the TCP/IP stack, so the FLUSH and PURGE
parameters do not apply to these files.

These parameters determine whether or not policies are deleted from the
associated TCP/IP stack under certain conditions, as detailed in Table 44 on page
870.

Table 43 shows where you configure these parameters for each type of local or
remote policy.

Table 43. Where Policy Agent FLUSH and PURGE are configured

Policy type Statement where configured

Local Routing policies Not configurable (always support FLUSH
and NOPURGE)

Local IDS policies IDSConfig or TcpImage/PEPInstance

Local IPSec policies Not supported

Local QoS policies TcpImage/PEPInstance

Local AT-TLS policies TTLSConfig or TcpImage/PEPInstance

Remote policies (all types except IPSec and
Routing)

PolicyServer or TcpImage/PEPInstance

Import policies Not supported

Results:

v IPSec policies do not use these parameters. Instead, IPSec functions as though
the FLUSH and NOPURGE parameters are always specified, with the exception
that the FLUSH parameter has no effect when the MODIFY REFRESH command
is entered.

v Parameters specified on the TcpImage/PEPInstance statement are overridden by
parameters configured on other statements.

Table 44 on page 870 shows the results of using the FLUSH and PURGE
parameters.

Chapter 16. Policy-based networking 869

|
|

Table 44. How Policy Agent FLUSH and PURGE are used

Event IPSec policies Routing policies Other policies

Policy Agent start
(FLUSH defined)

All policies are
replaced in the
TCP/IP stack.

All policies are
deleted and reloaded
into the TCP/IP
stack.

All policies are
deleted and reloaded
into the TCP/IP
stack.

Policy Agent start
(NOFLUSH defined)

All policies are
replaced in the
TCP/IP stack.

All policies are
deleted and reloaded
into the TCP/IP
stack.

All changed policies
are updated in the
TCP/IP stack.
Deleted policies are
not removed from
the TCP/IP stack.

Policy Agent
termination (PURGE
defined)

TCP/IP stack policies
are unchanged.

TCP/IP stack policies
are unchanged.

All policies are
removed from the
TCP/IP stack.

Policy Agent
termination
(NOPURGE defined)

TCP/IP stack policies
are unchanged.

TCP/IP stack policies
are unchanged.

TCP/IP stack policies
are unchanged.
Deleted policies are
not removed from
the TCP/IP stack.

Policy Agent update
(FLUSH defined)

If there are any
changed or deleted
policies, then all
policies are replaced
in the TCP/IP stack.

Any changed policies
are replaced in the
TCP/IP stack, and
then all deleted
policies are removed
from the TCP/IP
stack.

Any changed policies
are replaced in the
TCP/IP stack, and
then all deleted
policies are removed
from the TCP/IP
stack.

Policy Agent update
(NOFLUSH defined)

If there are any
changed or deleted
policies, then all
policies are replaced
in the TCP/IP stack.

Any changed policies
are replaced in the
TCP/IP stack, and
then all deleted
policies are removed
from the TCP/IP
stack.

Any changed policies
are replaced in the
TCP/IP stack.
Deleted policies are
not removed from
the TCP/IP stack.

Policy Agent refresh
(FLUSH defined)

If there are any
changed or deleted
policies, then all
policies are replaced
in the TCP/IP stack.

If there are any
changed or deleted
policies, then all
policies are deleted
and reloaded into the
TCP/IP stack.

If there are any
changed or deleted
policies, then all
policies are deleted
and reloaded into the
TCP/IP stack.

Policy Agent refresh
(NOFLUSH defined)

If there are any
changed or deleted
policies, then all
policies are replaced
in the TCP/IP stack.

If there are any
changed or deleted
policies, then all
policies are deleted
and reloaded into the
TCP/IP stack.

Any changed policies
are replaced in the
TCP/IP stack.
Deleted policies are
not removed from
the TCP/IP stack.

Rules:

v The TCP/IP stack results do not apply for policy client or import requestor
policies configured on the policy server.

v The PURGE and NOPURGE parameters have no effect on policy client or import
requestor policies configured on the policy server.

870 z/OS V1R12.0 Comm Svr: IP Configuration Guide

||

||||

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

Result: When a TCP/IP stack is recycled, the result is the same as if the FLUSH
parameter was specified; all active policies are reinstalled into the stack.

Switching between local and remote policies
If you dynamically switch from local policies to remote policies by adding the
PolicyServer statement or a new PolicyType parameter within that statement, the
FLUSH and PURGE parameters that are specified on the PolicyServer statement (or
that are configured by default from the TcpImage statement) take effect, if the
parameters are supported by the policy type.

Likewise, if you dynamically switch from remote policies to local policies by
removing the PolicyServer statement or a PolicyType parameter from within that
statement, the FLUSH and PURGE parameters that are specified on the xxxConfig
statement (or that are configured by default from the TcpImage statement) take
effect, if the parameters are supported by the policy type.

When the NOFLUSH parameter is used due to one of these dynamic switches, the
result is that both the local and remote policies exist in the configuration; existing
policies are not deleted when NOFLUSH is in effect, as shown in Table 44 on page
870.

The following examples show how switching between local and remote policies
works:
v Switching from local IDS to remote IDS policies:

1. The TcpImage statement is configured with the FLUSH parameter.
2. The IDSConfig statement is not configured with the FLUSH or NOFLUSH

parameters, so the TcpImage FLUSH value is used.
3. The local IDS policies are read and installed.
4. The PolicyServer statement is added with a PolicyType parameter for IDS

that specifies the NOFLUSH value.
5. The remote IDS policies are retrieved and installed.
6. Because the NOFLUSH parameter is in effect (from the PolicyServer

statement), the local IDS policies are not deleted; both the local and remote
IDS policies exist.

v Switching from remote AT-TLS to local AT-TLS policies:
1. The TcpImage statement is configured with the NOFLUSH parameter.
2. The TTLSConfig statement is configured with the FLUSH parameter.
3. The PolicyServer statement is configured with a PolicyType parameter for

AT-TLS that specifies the FLUSH value.
4. The remote AT-TLS policies are retrieved and installed.
5. The PolicyType parameter for AT-TLS is removed from the PolicyServer

statement.
6. The local IDS policies are read and installed.
7. Because the FLUSH parameter is in effect (from the TTLSConfig statement),

the remote AT-TLS policies are deleted; only the local policies exist.

Result: Because the IPSec and Routing policy types always use the FLUSH value,
the local and remote policies never exist at the same time.

Chapter 16. Policy-based networking 871

Verifying that policies are correctly defined and functioning properly
To verify that policies are correctly defined and functioning properly, consider the
following points:
v Are the policies defined correctly to the LDAP server?

See the documentation appropriate for the LDAP server which you are using.
LDAP servers usually allow you to install multiple files (LDIF), each containing
different objects in the LDAP hierarchy. Structural objects higher in the directory
tree must be installed before objects that are contained below them. Check for
any error messages as each LDIF is installed. Some LDAP servers interpret two
consecutive blank lines as end of file. Ensure that all of the objects in the LDIF
have been installed by the LDAP server.

v Are the policies defined correctly to the Policy Agent?
When starting the Policy Agent, first check for any error messages issued to the
console. Message EZZ8434I indicates something is wrong with the Policy Agent
environment. Message EZZ8438I indicates a syntax or semantic error in the
policy definitions. Messages EZZ8439I and EZZ8440I indicate a problem with
the LDAP server configuration or the server itself. For more information on
diagnosing Policy Agent problems, see z/OS Communications Server: IP Diagnosis
Guide. Use the UNIX pasearch command to display policy definitions. The
output from this command indicates whether or not policy rules are active, and
shows the parsed results of the policy definition attributes. One thing to note is
that the Policy Agent is designed to ignore unknown attributes, so misspelled
attributes will result in default values being used. The pasearch output can be
used to verify that policies are correctly defined.

v Are the import policies defined correctly for configuration file import services?
The import configuration files are parsed only once and always start with new
policies. Any syntax or semantic errors in the import policy definitions are
reported to the import requestor, and result in message EZZ8438I being issued.
For more information about diagnosing Policy Agent problems, see z/OS
Communications Server: IP Diagnosis Guide.

872 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Chapter 17. Quality of service

Applications and users of TCP/IP networks have different requirements for the
service they receive from those networks. A network that treats all traffic as best
effort does not meet the needs of such users. Service differentiation is a mechanism
to provide different service levels to different traffic types based on their
requirements and importance in an enterprise network. For example, it might be
critical to provide Enterprise Resource Planning (ERP) traffic better service during
peak hours than that of FTP or web traffic. The overall service provided to
applications or users, in terms of elements such as throughput and delay, is termed
Quality of service (QoS). Network service providers that need to provide different
QoS levels express their business goals in Service Level Agreements (SLAs). There are
two types of service in TCP/IP networks that relate to QoS. The first is
Differentiated Services, which provides QoS to broad classes of traffic or users, for
example all outbound web traffic accessed by a particular subnet. The second is
Integrated Services, which provides end-to-end QoS to an application, by reserving
resources along a data path. For z/OS Communications Server, Integrated Services
is largely provided by the RSVP Agent, which implements the Resource
ReserVation Protocol.

Workload distribution also relates to QoS, in terms of the throughput and delay
characteristics of a given server in a sysplex. The ability to dynamically monitor
server performance and affect sysplex workload distribution is an important part
of the overall QoS of a sysplex. Also important is the ability to limit the set of
target systems considered for sysplex routing based on network selection criteria,
such as source subnet.

Differentiated Services policies
Policies for Differentiated Services (DS) are used to select and control DS traffic for
selected IP servers, such as FTP server traffic. The policy administrator selects the
IP traffic to be controlled by defining policy rules. These policy rules include
several attributes that can be specified to identify the traffic to be managed. These
attributes fall into 2 categories, general attributes and application specified
attributes. General attributes can be used to identify the IP traffic of most IP
applications using a variety of information, such as:
v The source or destination IPv4 or IPv6 addresses or subnets
v The source and destination ports used by the application
v The IP protocol the application is using (TCP or UDP)
v The network interface selected for the outgoing traffic
v The jobname of the application

Application specified attributes allow policy administrators to identify outgoing
application IP traffic based on information that is provided and defined by an
application. For example, the IBM HTTP Server provides the TCP/IP stack with
the URI (Universal Resource Identifier) associated with any outgoing data being
sent to a client. This allows the policy administrator to define rules that identify
traffic related to specific URIs and policy actions with unique DS controls for this
traffic. For example, an installation can define a policy that specifies preferential
treatment of outgoing traffic related to the servicing of any URIs beginning with
/product/placeorder. For more information on defining policy rules for the IBM HTTP

© Copyright IBM Corp. 2000, 2011 873

Server based on URIs, see z/OS HTTP Server Planning, Installing, and Using and the
policy configuration file topic in z/OS Communications Server: IP Configuration
Reference.

Any IP application using the TCP protocol can provide application specified
attributes using extensions to the sendmsg() socket API. For more information, see
the programming interfaces appendix in the z/OS Communications Server: IP
Programmer's Guide and Reference. Application provided attributes can be specified
in 2 forms:
v Application defined data: This allows applications to provide free-form text data

that can be used to classify the application's outgoing traffic in terms that should
be familiar to the application's administrator (for example, URIs are provided by
the IBM HTTP server).

v Application specified priority: This allows applications to associate an
application priority on the outgoing IP traffic. This application priority in itself
does not automatically cause the application's traffic to get preferential
treatment. In order to make use of these application specified priorities the
policy administrator needs to define policy rules that map these priorities to
policy actions that will govern the outgoing traffic of each priority level.

Applications can pass both application defined data and application specified
priorities to the TCP/IP stack. When both are specified, the administrator is free to
use either or both criteria in their service policy rules. However, it is strongly
recommended that any policy rules defined using the application specified
attributes should also include at least one general attribute that uniquely identifies
the application instance. For example, when defining rules for the HTTP server
using URIs, you can help further identify the application by specifying the source
port for the server or the HTTP Server's jobname. This will help insure that
unauthorized applications cannot exploit policy actions intended for the HTTP
Server.

Several aspects of connection and throughput control can be specified with DS
policies, including the following:
v TCP connection limits
v Maximum and minimum TCP connection rates, TCP maximum delay
v Committed access bandwidth (mean rate and peak rate) control/enforcement,

also known as token bucket traffic shaping
v IPv4 type of service (ToS) byte or IPv6 traffic class setting, and mapping to

zSeries Queued Direct I/O (QDIO) device priorities and VLAN user priorities.

The above DS service attributes are enforced by the TCP/IP stack in which the DS
policies are installed. For additional information on the enforcement of these
attributes, see z/OS Communications Server: IP Configuration Reference.

Token bucket traffic shaping is defined using the following parameters:
v DiffServInProfileRate is the average or mean rate that is desired to be

transmitted over time. For example, 256 kilobits per second.
v DiffServInProfileTokenBucket is the burst size. This is how much data is allowed

to be sent from the application to TCP/IP and still be allowed to be transmitted
at the mean rate. It is suggested, if the application is not policing itself, that this
burst size be at least one second's worth of data. Otherwise, if the application is
sending large amounts of data at one time to TCP/IP, TCP/IP will slow that
application down via congestion windows, and the mean rate may not be
achieved.

874 z/OS V1R12.0 Comm Svr: IP Configuration Guide

v DiffServInProfilePeakRate is the highest rate that is allowed to be transmitted for
a shorter interval of time. For example, though a customer may only want on
average 256 Kb of data per second, they may allow a peak of 512 Kb of data for
1/4 second. The peak rate is used to control the spacing of outbound packets on
the transmission line. By having a smaller peak rate, there will be longer spacing
between packets, and thus less burstiness of traffic and increased efficiency.
Higher peak rates result in shorter spacing and increased burstiness, which can
result in lower link utilization. However, some applications may require it, such
as real time or video data.

v DiffServInProfileMaxPacketSize is the amount of data that will be policed at the
peak cell rate. For example, if the peak rate is 512 Kb per second, and the
maximum packet size is 120 Kb, TCP/IP will only allow about 10 packets of size
1492 bytes to be transmitted every .23 seconds. Again, if an application is
sending large amounts of data at one time to TCP/IP, TCP/IP will enforce the
peak rate, and anytime more than 10 packets are sent within .25 seconds,
TCP/IP will begin to slow this TCP connection. The peak rate can be achieved
over a longer period of time if the maximum packet size is entered in larger
multiples of packets. However, this will cause greater burstiness as described
above. For example, if the maximum packet size is entered as 240 Kb, TCP/IP
will allow 20 packets in a .23 second range before enforcing slowdown.
Note that the peak rate cannot be enforced without mean rate policing.
However, you can enforce mean rate without peak rate. Also, setting of these
parameters depends on the type of applications and the network that carries it.

Integrated Services policies
Integrated Services (RSVP) policies are used to set limits on certain parameters
requested by RSVP applications. These applications interact with the RSVP Agent
to establish resource reservations along a network path, using the RSVP API
(RAPI). The reservation requests are in the form of an entity known as a Traffic
Specification, or Tspec, which consists of the following values:
v Token bucket mean rate (r)
v Token bucket depth (b)
v Peak rate (p)
v Minimum policed unit (m)
v Maximum packet size (M)

RSVP policies can be used to limit the values requested for (r) and (b), as well as
limiting the total number of RSVP reserved flows. The RSVP service attributes are
enforced by the RSVP agent which gets RSVP policies from the Policy Agent. For
additional information on the enforcement, see z/OS Communications Server: IP
Configuration Reference or RFC 1363.

Sysplex distributor policies
Sysplex distributor (SD) policies are used to specify a set of SD target nodes for a
given set of traffic. For example, all traffic destined to a given port or application
from a specified subnet can be assigned one group of SD target nodes, while traffic
for the same port or application from another subnet can be assigned to a different
group of target stacks. These policies be can used in conjunction with other sysplex
distributor controls to assist in load balancing. For more information, see “Policy
interactions” on page 481.

Chapter 17. Quality of service 875

QoS-specific Policy Agent functions
In addition to supporting the various types of policies, the Policy Agent performs
functions related to the sysplex distributor. The Policy Agent can be configured to
collect network QoS performance data relevant to SD on behalf of policies defined
for a target port or application, and assign a default QoS weight fraction to such
policy traffic. This weight is then used by SD (in conjunction with weights
assigned by the Workload Manager) to assist in load balancing decisions. This
function is performed by the Policy Agent on SD target nodes within the sysplex.

The Policy Agent also supports load distribution by service level. Performance data
is kept for each Policy Action (service level) that a target's DVIPA port or
application supports. A Policy Action weight fraction is generated. If available, this
weight is used (instead of the default QoS weight fraction) in conjunction with the
Workload Manager weight to assist in load distribution decisions for traffic
assigned to this service level. If the Policy Action weight fraction is unavailable,
the sysplex distributor will continue to use the default QoS weight fraction.

Another function related to policy performance is the performance collection
function. When so configured, the Policy Agent collects policy performance data
from the stack and caches it. This performance data is then made available to user
applications through the Policy API (PAPI), for near real-time performance
monitoring applications. The data are also optionally logged to a performance log
file for offline performance monitoring. Sample C applications are provided to
show how to use the PAPI interfaces to access performance data, and how to
access and read the performance log file.

Policy performance data collected is affected by the FLUSH or NOFLUSH
parameter on the Policy Agent TcpImage statement that defines the corresponding
stack that is collecting the data. When FLUSH is specified, policies are deleted at
the following times:
v When a new TcpImage statement is processed for the first time, including Policy

Agent starting. This should not be a concern in most cases.
v When a MODIFY REFRESH command is entered.

As a result, all previously collected metrics start again from 0 when the policies are
reinstalled. Conversely, policies are never deleted when NOFLUSH is specified, so
performance metrics are never reset to 0.

Sysplex distributor policy performance monitoring and policy performance
collection are similar in some respects but distinctly different in others:
v Sysplex distributor policy performance monitoring is actively performed by the

Policy Agent. This performance monitoring is only used to assist with load
balancing in a sysplex distributor environment.

v Policy performance collection is performed without regard to whether or not the
Policy Agent is running in a sysplex distributor environment. Also, the Policy
Agent does not actively participate in performance monitoring, only making the
performance data available to user applications that perform the actual
monitoring.

Policy performance data might not immediately change when changes are made to
policy definitions. Some of the performance metrics are average values, and some
are smoothed over several sampling intervals. As a result, when making changes to
policies, some period of time will need to elapse before a new steady state is
achieved.

876 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Another function supported by the Policy Agent is to map IPv4 type of service
(ToS) byte or IPv6 traffic class values to outbound interface priority values for
outbound traffic. The ToS byte is also referred to as the Differentiated Services (DS)
byte as an alternative definition (see RFC 2474). Note that outbound interface
priority values are only meaningful for QDIO interfaces. A set of mappings can be
defined to cover various ToS byte or traffic class values and map them to an
appropriate interface priority. All outbound packets over the associated interfaces
with a given ToS byte or traffic class value will then be assigned the corresponding
priority value. ToS byte or traffic class values can also be mapped to Virtual LAN
(VLAN) user priorities for propagation over LANs directly connected through the
OSA-Express feature.

Note: Coding the virtual LAN (VLAN) user priority causes a frame to be sent out
based on the IEEE 802.1Q specification, which establishes a standard method
for tagging Ethernet frames with VLAN priority and membership
information. Specifically, a VLAN priority-tagged frame is used to convey
packet priority to the switches; it has a value of NULL for VLANID. A full
VLAN-tagged frame contains both the priority and non-null VLANID. If
you have switches in your network that do not support the IEEE 802.1Q
standard or that are not properly configured for these types of frames, the
frames might be dropped by the switch.

Sysplex distributor policy performance monitoring
configuration

Before activating the sysplex distributor policy performance monitoring function,
see “Policy interactions” on page 481 for information on workload balancing and
policy interactions with sysplex distributor.

The following example illustrates how to activate the policy performance
monitoring function for sysplex distributor.

Note: This function is activated on SD target servers and is used to monitor the
performance of outbound traffic being serviced by the target servers. The
goal is to detect TCP traffic that exceeds defined thresholds for dropped
packets or time-outs, and derive a default QoS weight fraction for the target
server. This default QoS weight fraction is then used to reduce the WLM
weight assigned to the target servers, so that the SD distributing stack can
take QoS performance into account.

The following statements apply to the example in this topic:
v The policy performance monitoring sampling interval is 60 seconds.
v Policy Agent assigns a loss ratio weight fraction of 25% when the TCP loss ratio

(dropped packets to total packets) starts to exceed 2%.
v The loss ratio weight fraction is increased to 50% when the loss ratio starts to

exceed 4%, continuing in this manner up to the maximum loss ratio weight
fraction of 95%.

v In a similar manner, a TCP timeout weight fraction of 50% is assigned when the
timeout ratio starts to exceed 5%, increasing up to a maximum timeout weight
fraction of 100%.

v The loss ratio weight fraction and TCP timeout weight fraction are added
together to form a single default QoS weight fraction for the target server, up to
a maximum of 100%. When the Traffic Regulation policy connection limit

Chapter 17. Quality of service 877

reaches constrained threshold (90%), the default QoS weight fraction is set to
100% and forces SD to route requests to other target nodes with better routing
weights.

v The default QoS weight fraction is used at the SD distributing stack to reduce
the WLM weight. For example, if the WLM weight is 40, a weight fraction of
50% results in the weight being reduced to 20.

v The traffic to be monitored must be represented by at least one Differentiated
Services policy defined for the target application (in this example a policy is
defined for Telnet).

v An additional Policy Action weight fraction is calculated for a target's
DVIPA/Port if there are any active connections to the target using that service
level.
The Policy Action weight fraction is calculated as the largest of three fractions:
– The number of active connections to this target DVIPA/Port will be compared

with the maximum connections allowed for this Policy action.
- When the number of active connections reaches 50% of maximum

connections, then the Policy Action weight fraction will be set to MAX
(50%, current calculated value).

- When the number of active connections reaches 65% of maximum
connections, then the Policy Action weight fraction will be set to MAX
(85%, current calculated value).

- When the number of active connections reaches 80% of maximum
connections, then the Policy Action weight fraction will be set to 100%.

– The throughput rate for this timer interval will be calculated and compared to
the DiffServ mean rate of this Policy action. If the throughput rate is greater
than 85% of the DiffServ mean rate, the average throughput rate per
connection will be calculated. If the throughput rate per connection is less
than the DiffServ min rate, the minimum throughput requirement per
connection is not being met and the Policy Action weight fraction will be set
to 100%.

– The default QoS weight fraction.
v Only one policy rule and policy action are defined here.

As a result, only Telnet QoS performance information is monitored by the Policy
Agent for sysplex distributor to route incoming Telnet connections to this target
node relative to other target nodes which presumably can also accept Telnet
requests.
PolicyPerfMonitorForSDR enable
{

samplinginterval 60
LossRatioAndWeightFr 20 25
TimeoutRatioAndWeightFr 50 50
LossMaxWeightFr 95
TimeoutMaxWeightFr 100
MaxConnWeightFr 50 65 80

}

policyAction telnetGold
{
MinRate 500 # Provide minimum rate of 500 Kbps.
OutgoingTOS 10100000 # the TOS value of outgoing telnet packets.
}

policyRule targetelnet
{

878 z/OS V1R12.0 Comm Svr: IP Configuration Guide

ProtocolNumberRange 6
SourcePortRange 23
policyactionreference telnetGold
}

Policy performance collection configuration
The following example shows how to activate the policy performance collection
function. Policy performance data for all active policies is maintained by the
TCP/IP stack. This function allows this data to be collected and made available for
policy performance monitoring applications. The following statements apply to the
example in this topic:
v Performance data is collected for both rules and actions. Action data is an

aggregate of the data for the rules that refer to the action. For policies that have
a single action per rule, the performance data will be the same for both the rule
and action.

v The default minimum sampling interval is 30 seconds. This is the minimum
value accepted for the acceptableCachedTime parameter on the PAPI
papi_get_perf_data() function that gets performance data.

v Performance data will be logged to the file /u/user10/perflog, based on a
sampling interval of 60 seconds.

v The number of performance log files maintained is 10, each of which is the
default 300 kilobytes in size. In this example, the log files will be named
assuming a stack name of TCPCS:
/u/user10/perflog.TCPCS
/u/user10/perflog.TCPCS.1
/u/user10/perflog.TCPCS.2...
/u/user10/perflog.TCPCS.9

v Each performance data record is 232 bytes, so a file size of 300 kilobytes can
contain 1324 records. Since 10 files are maintained, the total set of log files can
contain 13240 records. Assuming that 50 policy rules and actions exist in the
configuration, this means that the set of log files will wrap in approximately 4.4
hours, according to the following formula:
number of records (13240) / number of policies (50) = number of refresh cycles (264)

number of refresh cycles (264) * refresh interval in minutes (1) = 264 minutes worth of data

PolicyPerformanceCollection Enable
{
DataCollection Rule Action
LogSamplingInterval 60
PerformanceLogFile /u/user10/perflog
NumberOfLogFiles 10
}

IPv4 type of service or IPv6 traffic class mapping
configuration

There are two mappings provided by the SetSubnetPrioTosMask statement:
v IPv4 type of service (ToS) or IPv6 traffic class to device priority

Quality of service (QoS) support in z/OS Communications Server allows the
IPv4 ToS byte, also known as the Differentiated Services (DS) field, or the IPv6
traffic class to be set for outbound IP packets according to defined policies
managed by the z/OS Communications Server UNIX Policy Agent. When IP
packets are sent out over QDIO devices, the ToS/DS or traffic class value is
mapped to a QDIO priority value. Device priority values are 1-4, where 1 is the
highest priority.

Chapter 17. Quality of service 879

v IPv4 ToS or IPv6 traffic class to VLAN user priority
ToS/DS or traffic class values can be mapped to user priorities for directly
attached LANs using the OSA-Express feature in QDIO mode. VLAN user
priority values are 0-7, where 7 is the highest priority. This allows assigned user
priorities to be propagated through such networks, resulting in no loss of
priority information for data being served by z/OS.

See z/OS Communications Server: IP Configuration Reference for more detail on these
statements.

The following example shows a mapping of various ToS byte or traffic class values
to associated interface priority values. Note that the mapping can be applied to
individual interfaces or all interfaces:
v The first example defines a mapping for a specific interface. Note that the

specified interface must be a valid interface specified in the HOME list. The
second example shows a different mapping for all other interfaces.

v The subnet mask defines the bits in the ToS byte or traffic class that are
significant. These examples use the leftmost 3 bits.

v The first example shows a set of mappings defining the complete set of ToS byte
or traffic class values and the device and VLAN user priorities to be assigned for
each value.

v The second example shows a set of mappings defining the complete set of ToS
byte or traffic class values and the device priority to be assigned for each value.

SetSubnetPrioTosMask
{

SubnetAddr 10.10.1.5
SubnetTosMask 11100000
PriorityTosMapping 1 11100000 7
PriorityTosMapping 1 11000000 7
PriorityTosMapping 2 10100000 6
PriorityTosMapping 2 10000000 5
PriorityTosMapping 2 01100000 5
PriorityTosMapping 3 01000000 3
PriorityTosMapping 4 00100000 2
PriorityTosMapping 4 00000000 0

}
SetSubnetPrioTosMask
{

SubnetTosMask 11100000
PriorityTosMapping 1 11100000
PriorityTosMapping 1 11000000
PriorityTosMapping 1 10100000
PriorityTosMapping 1 10000000
PriorityTosMapping 2 01100000
PriorityTosMapping 2 01000000
PriorityTosMapping 3 00100000
PriorityTosMapping 4 00000000

}

Options for configuring QoS
You configure QoS using a set of configuration statements and parameters coded
into a flat file, which is parsed by the Policy Agent to establish the QoS policy for
each TCP/IP stack. In a complex environment, this file can become large. For this
reason, there are two alternatives for creating the Policy Agent files.

880 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Option 1: Use the IBM Configuration Assistant for z/OS
Communications Server

The IBM Configuration Assistant for z/OS Communications Server, an optional
GUI-based tool, provides a guided interface for configuring TCP/IP policy-based
networking functions. You can use the Configuration Assistant to generate the
Policy Agent files.

The Configuration Assistant is available in either of the following forms:
v As a task in IBM z/OS Management Facility (z/OSMF)

z/OSMF provides a Web browser interface for a variety of z/OS system
management functions. When you invoke the Configuration Assistant in
z/OSMF, the Configuration Assistant runs natively in the z/OS system and you
can access it through a Web browser. To use the Configuration Assistant in
z/OSMF, your system must be z/OS V1R11 or later.

v As a standalone application that you can run on your workstation
You can download the Configuration Assistant from the z/OS Communications
Server product support Web page.

You can use the Configuration Assistant on your workstation and then later
migrate your work to the z/OSMF environment. For information about
transferring Configuation Assistant data to z/OSMF, see IBM z/OS Management
Facility Configuration Guide.

Through a series of wizards and online help panels, you can use the Configuration
Assistant to create QoS configuration files for any number of z/OS images with
any number of TCP/IP stacks per image. Using the Configuration Assistant, there
are four types of reusable objects:
v Traffic descriptors that define the local application by describing the TCP traffic

with ports or identifying the application using its job name.
v Priority levels that define the level of network priority or type of service (ToS).
v Traffic shaping levels that define settings to enforce specific traffic thresholds.
v Requirement maps that map traffic descriptors to priority levels and traffic

shaping levels. A single requirement map should contain a complete set of QoS
requirements that will govern the level of service for multiple IP traffic types.

For each TCP/IP stack, you select a requirement map that provides QoS for the
stack.

The Configuration Assistant comes with a number of IBM-supplied traffic
descriptors, priority levels, traffic shaping levels and requirement maps that are
easily applied, or you can use the IBM-supplied definitions as the basis for your
own set of reusable objects.

The Configuration Assistant can dramatically reduce the amount of time that is
required to create QoS policy files, contributing to ease of configuration and
maintenance. Because of the inherently complex nature of z/OS, using the GUI can
help you ensure that you have a consistent and easily manageable interface for
implementing QoS.

This information primarily describes option 2, manual configuration. However, if
you are using the Configuration Assistant, reading this information will help you
understand security concepts and the relationship between Policy Agent and QoS
function.

Chapter 17. Quality of service 881

|

|
|

|

|

|

|
|
|
|

|
|
|

|

|

|

http://www.ibm.com/software/network/commserver/zos/support/
http://www.ibm.com/software/network/commserver/zos/support/

Option 2: Manual configuration
You can manually create the QoS policy configuration files by coding all of the
required statements in a file. There are a large number of configuration options
provided by QoS policy statements that permit advanced users to carefully
fine-tune QoS policy on a per-stack basis. This information describes the procedure
for creating a QoS policy by manually creating and editing the configuration files.
For details about the QoS policy statements, see z/OS Communications Server: IP
Configuration Reference.

Specifying the QoS configuration file based on Policy Agent
role

The Policy Agent can act as a policy server, a policy client, or neither. For more
information on these different roles, see “Policy types and infrastructure overview”
on page 829. Regardless of which option is used to configure QoS policies, the
resulting configuration files need to be specified using different statements,
depending on the role of the Policy Agent.
v If you are using the Policy Agent as a policy client that retrieves QoS policies

from the policy server, specify the configuration files using the
DynamicConfigPolicyLoad statement on the policy server.

v If you are using the Policy Agent as a policy client, but the policy client does not
retrieve QoS policies from the policy server, specify the configuration files using
the QOSConfig statement on the policy client, or configure the QoS policies
directly in the image file specified on the TcpImage statement.

v If you are not using a policy client/policy server environment, specify the
configuration files using the QOSConfig statement on the single Policy Agent, or
configure the QoS policies directly in the image file specified on the TcpImage
statement.

When specifying configuration files, keep in mind where the files should exist,
based on the role of the Policy Agent.

Defining policies in a Policy Agent configuration file
Configure the following statements in the configuration file to define policies:
v PolicyAction
v PolicyRule

See z/OS Communications Server: IP Configuration Reference for more information
about these statements.

The following subtopics contain examples of these tasks.

Note: These examples are for illustrative purposes only. The policies deliberately
use a wide variety of attributes, and they do not necessarily represent
real-world usage. Some examples show continued and indented statements
that were modified to fit within the margin and therefore are not an actual
representation of proper syntax.

Differentiated Services policy examples
The goal of this Differentiated Services policy is to map a subset of the traffic
outbound from an FTP server.

882 z/OS V1R12.0 Comm Svr: IP Configuration Guide

This policy is identified as a Differentiated Services policy by the PolicyScope
DataTraffic attribute on the PolicyAction statement, as well as the use of several
DS-only attributes.

The following statements apply to the example in this topic:
v The policy rule selects traffic originated by ports in the range 20-21 (FTP

outbound data connection uses port 20) from the source address 200.50.23.11.
v The policy rule is active on weekdays between 6 a.m. and 10 p.m. local time,

between the dates 7/1/2000 and 7/1/2005..
v The policy action specifies that the ToS byte be set to '10000000' for traffic that

conforms to this policy.
v The action establishes a token bucket traffic conditioner with a mean rate of 256

kilobits per second, a peak rate of 512 kilobits per second, and a burst size of 64
kilobytes. Any traffic that exceeds these specifications will be sent as best effort,
with an accompanying ToS byte of '00000000'.

PolicyRule diffServ
{

ProtocolNumberRange 6
SourceAddressRange 200.50.23.11
SourcePortRange 20-21
PolicyActionReference tokenbucket
PolicyRulePriority 10
ConditionTimeRange 20000701000000:20050630235959
DayOfMonthMask 1111111111111111111111111111111
DayOfWeekMask 0111110
TimeOfDayRange 06:00-22:00

}
PolicyAction tokenbucket
{

PolicyScope DataTraffic
OutgoingTOS 10000000
DiffServInProfileRate 256 # 256 Kbps
DiffServInProfileTokenBucket 512 # 512 Kbits
DiffServInProfilePeakRate 512 # 512 Kbps
DiffServInProfileMaxPacketSize 120 # 120 Kbits
DiffServOutProfileTransmittedTOSByte 00000000
DiffServExcessTrafficTreatment BestEffort

}

The goal of this policy is to ensure that outgoing data that match the specified
attributes will be assigned a QoS service level defined in action "interactive1".

The following statements apply to the example in this topic:
v This rule will only match traffic on TCP connections (protocol 6) with a source

port of 80 (i.e. HTTP server) and application defined data beginning with the
string "/catalog".

v Since we are dealing with HTTP traffic, this rule is basically indicating that all
outgoing traffic associated with a URI that begins with "/catalog" should be
managed using the DS characteristics specified in the "interactive1" policy action.

PolicyRule web-catalog # web catalog traffic
{

protocolNumberRange 6
SourcePortRange 80
ApplicationData /catalog
policyActionReference interactive1

}

PolicyAction interactive1

Chapter 17. Quality of service 883

{
policyScope DataTraffic
outgoingTOS 10000000

}

RSVP policy example
The goal of this RSVP policy is to establish limits on resource reservations
requested by RSVP applications using the RSVP API (RAPI) interface. The policy is
identified as an RSVP policy by the PolicyScope attribute on the PolicyAction
statement, as well as the use of RSVP-only attributes.

The following statements apply to the example in this topic:
v The policy rule selects traffic from source ports in the range 8000 to 8001, with a

protocol ID of 6 (TCP).
v The DataTraffic policy action specifies that the ToS byte be set to 01100000 for

differentiated services traffic that conforms to this policy. Essentially, any traffic
sent by the target application without an RSVP reservation in place will use this
policy action. Once an RSVP reservation is in place, the RSVP action gets used.

v The RSVP policy action specifies that the ToS byte be set to 01100000 while an
RSVP reservation is in place. It also limits the type of RSVP service requested by
RSVP applications to Controlled Load. Applications requesting Guaranteed
service are downgraded to using Controlled Load service. In addition, the action
limits the mean rate and token bucket size to 50000 bytes per second and 6000
bytes, respectively. These values are requested by RSVP applications in the traffic
specification, or Tspec.

v The action also limits the number of active RSVP flows that map to this policy
to 10.

PolicyRule intserv
{

SourcePortRange 8000 8001
ProtocolNumberRange 6
PolicyActionReference intserv1
PolicyActionReference intserv2

}
PolicyAction intserv1
{

PolicyScope DataTraffic
OutgoingTOS 01100000

}
PolicyAction intserv2
{

PolicyScope RSVP
OutgoingTOS 01100000
FlowServiceType ControlledLoad
MaxRatePerFlow 400 # 50000 bytes/second
MaxTokenBucketPerFlow 48 # 6000 bytes
MaxFlows 10

}

Sysplex distributor policy example
The goal of this sysplex distributor policy is to limit the number of SD target
stacks for inbound Telnet traffic. The policies are identified as SD policies by the
ForLoadDistribution TRUE attribute on the PolicyRule statement. The
corresponding policy on the target is also shown.

The following statements apply to the example in this topic:

884 z/OS V1R12.0 Comm Svr: IP Configuration Guide

v Separate policies are defined on the sysplex distributor distributing and target
stacks.

v The policy rules select incoming Telnet connection requests.
v The selected target stack will be based on WLM information and QoS

information if activated at the target stacks.
v The rule (disttelnet) is coded on the distributing stack to select inbound traffic

destined to the Telnet server.
v The rule (targtelnet) is coded on the target stack to select outbound data from

the Telnet server.
v If none of the specified target stacks is available to service incoming requests

(either the node is down or the Telnet server is not active), then sysplex
distributor will distribute the requests to any available target stack.
Result: If the OutboundInterface 0.0.0.0 statement (for IPv4) and the
OutboundInterface :: statement (for IPv6) are not present, and the defined target
stacks are not available, sysplex distributor rejects the request.

policyAction telnetGold
{

MinRate 500 # Provide minimum rate of 500 Kbps.
OutgoingTOS 10100000 # the TOS value of outgoing telnet packets.
outboundinterface 129.100.11.1
outboundinterface 129.100.21.1
outboundinterface 129.200.12.1
outboundinterface 129::1B0D:13F0
outboundinterface 0.0.0.0
outboundinterface ::

}

policyRule disttelnet
{

ProtocolNumberRange 6
DestinationPortRange 23
PolicyRulePriority 20
policyactionreference telnetGold
ForLoadDistribution TRUE

}

policyRule targtelnet
{

ProtocolNumberRange 6
SourcePortRange 23
PolicyRulePriority 20
policyactionreference telnetGold
ForLoadDistribution FALSE

}

Notes:

1. The ApplicationName attribute is only valid for a target rule and should not be
coded on a distributor rule because the application name determined for
inbound traffic (which is always the case on a distributor) will always be the
stack's TCP jobname.

2. If you are using Telnet with multiple stacks in conjunction with the sysplex
distributor, see Chapter 11, “Accessing remote hosts using Telnet,” on page 549
for more information.

Defining policies using LDAP
For information about defining QoS policies using LDAP, see “Defining QoS
policies using LDAP” on page 1533.

Chapter 17. Quality of service 885

RSVP
Resource ReSerVation Protocol (RSVP) is a protocol that provides a mechanism to
reserve resources in support of Integrated Services. The z/OS UNIX RSVP agent
provides the following services on behalf of applications that want to use
Integrated Services:
v An RSVP API (RAPI) that allows applications to explicitly request RSVP

services. Using RAPI, applications indicate their intent to send or receive data,
describe the characteristics of the data traffic and request that RSVP reserve
resources along the data path to provide a given QoS to one or more traffic
flows. For more information about RAPI, see z/OS Communications Server: IP
Programmer's Guide and Reference.

v Mapping of IP ToS settings to RSVP traffic, using policies defined for RSVP.
v Establishment of resource reservations on ATM interfaces by use of reserved

SVC connections.

Note: Resource reservations cannot be made on interfaces other than ATM for
outbound traffic on z/OS. However, RSVP-capable routers in the network
can still reserve resources, and the ToS byte can be set for RSVP traffic to
provide further means of prioritizing traffic.

v Support for VIPA addresses as well as real IP addresses.
v Communication with other RSVP agents on hosts and routers in the network to

communicate application resource reservation requests.

Network administrators can use the z/OS UNIX Policy Agent to define
RSVP-specific policies. These policies can be used to limit the parameters of
application-requested resource reservations, provide ToS mappings for RSVP traffic,
and limit the number of traffic flows that can use RSVP services simultaneously.

RSVP is designed to be implemented on both end systems (hosts) and routers.
Different functions are provided by RSVP in these two environments. The z/OS
RSVP agent is supported as a host RSVP implementation only. It can communicate
with router RSVP implementations, but is not itself supported as such. For more
information about RSVP, see RFC 2205.

Configuring the RSVP agent
To configure the RSVP agent, update the configuration file to specify RSVP agent
operational parameters using the LogLevel, TcpImage, Interface and RSVP
statements. See z/OS Communications Server: IP Configuration Reference for detailed
information about the statements.

To start the RSVP agent, you must first authorize the RSVP Agent using the
security product. See SEZAINST(EZARACF) for SAF considerations for started
tasks.

The following is an example of an RSVP configuration file.

This example:
v Runs the RSVP Agent on the stack selected using the standard resolver search

order, because a TcpImage statement is not configured.
v Disables RSVP processing on interface 10.11.12.13, while enabling it for all other

interfaces.

886 z/OS V1R12.0 Comm Svr: IP Configuration Guide

v Disables traffic control on interface 200.1.1.1. This means that no reservations
will be made on this interface.

v Allows a maximum of 50 active RSVP flows per interface.
Interface 10.11.12.13 Disabled
{}
Interface 200.1.1.1 Enabled
{
TrafficControl Disabled
}
Interface Others Enabled
{}
Rsvp All Enabled
{
MaxFlows 50
}

Starting and stopping RSVP
RSVP can be started from the z/OS shell or as a started task.

The RSVP agent uses the following search order to locate the configuration file
(highest priority is listed first):
v z/OS UNIX file or MVS data set specified by the -c startup option. The syntax

for a z/OS UNIX file is '/dir/file', and the syntax for an MVS data set is
"//'MVS.DATASET.NAME'".

v z/OS UNIX file or MVS data set specified with the RSVPD_CONFIG_FILE
enviroment variable.

v /etc/rsvpd.conf z/OS UNIX file.
v 'hlq.RSVPD.CONF' MVS data set.

Note: If this file is not present, RSVP is enabled on all network interfaces with
default parameters.

When starting from the shell, note that the RSVP executable file resides in the
/usr/lpp/tcpip/sbin directory. There is also a link from the /usr/sbin directory.
Make sure your path statement (in the profile) contains either the /usr/sbin or
/usr/lpp/tcpip/sbin directory.

Use the S RSVPD command on an MVS console or SDSF to start RSVP as a started
task. A sample procedure is shipped in member EZARSVPP in SEZAINST.

RSVP can be stopped using the cancel command (C RSVPD) or using the kill
command in the z/OS shell. The following kill command with the TERM signal
will enable RSVP to clean up resources properly before terminating itself:
kill -s TERM pid

where pid is the RSVP process ID.

The RSVP process ID can be obtained using the following z/OS UNIX command:
ps -A

It can also be obtained from the /tmp/rsvpd.pid.imagename file. See z/OS
Communications Server: IP Configuration Reference for more information.

Chapter 17. Quality of service 887

SNMP Network SLAPM2 (nslapm2) performance monitor
The SLAPM2 subagent provides information about defined service policies and
performance data for applications that are mapped to those policies. Statistics are
retrieved by this subagent and monitored for possible Network SLAPM2
performance deviations. For more information about the Network-SLAPM2 MIB,
see usr/lpp/tcpip/samples/slapm2.mi2.

Configuring the Network SLAPM2 subagent
The z/OS CS Network SLAPM2 subagent allows network administrators to
retrieve data and determine if the current set of Network SLAPM2 policy
definitions are performing as needed or if adjustments need to be made. Before
starting the Network SLAPM2 subagent, some basic operational characteristics of
the Network SLAPM2 subagent need to be configured using the following steps:
1. Configure the Network SLAPM2 subagent security authorization.

For the subagent to retrieve performance monitor data from the Policy Agent,
the Network SLAPM2 subagent must have superuser authority or security
product authority in the SERVAUTH class.
These profiles can be defined by TCP/IP stack and policy type as follows,
where sysname is the system name defined in the sysplex, TcpImage is the TCP
name for policy information that is being requested, and ptype is the policy
type (QOS) that is being requested:
EZB.PAGENT.sysname.TcpImage.ptype

Wildcarding is allowed on segments of the profile name.
If SERVAUTH class is absent (not RACLIST) or profiles are absent for the
subagent's request (TcpImage and policy type), permission is denied and data is
not returned.
If SERVAUTH class is active, profiles are present for the subagent's request
(TcpImage and policy type), and an MVS user is defined for all profiles,
permission is granted and data is returned.
If SERVAUTH class is active, profiles are present for the subagent's request
(TcpImage and policy type), and an MVS user is not defined for all profiles,
permission is refused and data is not returned.
For the sample commands needed to create the profile name and permit users
to it, see the EZARACF sample in SEZAINST.

2. Configure the Policy Agent as follows:
v Configure QoS policy rules and QoS policy actions in Policy Agent. The

Network SLAPM2 subagent only keeps statistics for active QoS policies. For
details, see “Steps for configuring the Policy Agent” on page 848.

v Configure PolicyPerformanceCollection in Policy Agent. The
PolicyPerformanceCollection statement for rules needs to be enabled to
retrieve performance monitoring information from Policy Agent for the
Network SLAPM2 Subagent. For details on the PolicyPerformanceCollection
statement, see “Policy performance collection configuration” on page 879.

3. Configure and start the SNMP agent. For details, see “Step 1: Configure the
SNMP agent” on page 1334.

Starting and stopping the Network SLAPM2 subagent
Before you start the Network SLAPM2 subagent, the following applications need
to be be started and initialized:

888 z/OS V1R12.0 Comm Svr: IP Configuration Guide

v Policy Agent - For details, see “Starting and stopping the Policy Agent” on page
865.

v SNMP agent - For details, see “Start the SNMP agent” on page 1345.

The Network SLAPM2 subagent can be started from the z/OS shell or as a started
task.
v When starting from the shell:

The Network SLAPM2 subagent executable file (nslapm2) resides in
/usr/lpp/tcpip/bin. There is also a link from /bin. Make sure your PATH
statement (in the profile) contains either /bin or /usr/lpp/tcpip/bin.
The Network SLAPM2 subagent requires access to one or more DLLs at run
time. The LIBPATH environment variable needs to be set to include the /usr/lib
directory, which normally includes all the required DLLs.
Export the LIBPATH environment variable before starting the subagent. This is
best accomplished in /etc/profile or in .profile in the HOME directory. For
example:
export LIBPATH=/usr/lib

Following is an example command:
nslapm2 -d 3 -t 1800 -c special -P 5000

The command above starts the Network SLAPM2 subagent with the following
characteristics:
– Connect to the SNMP agent using a community name of special and a port of

5000.
– The debugging level is set to 3, to log the following debugging messages to

syslogd:
- Trace Network SLAPM2 subagent error and system console messages
- Trace Network SLAPM2 subagent warning messages

– The MIB table cache time is set to 30 minutes.
v When starting as a started task:

Use the S NSLAPM2 command on an MVS console or SDSF. A sample
procedure is shipped in member EZAPAGSB in SEZAINST.
– Specify LIBPATH using the ENVAR parameter on the PARM statement in the

started procedure. For example:
// PARM=(’POSIX(ON) ALL31(ON)’,
// ’ENVAR("LIBPATH=/usr/lib")/’)

– Export the LIBPATH environment variable in a file specified with the
STDENV DD statement. For example:
//STDENV DD PATH=’/etc/nslapm2.env’,PATHOPTS=(ORDONLY)

In the /etc/nslapm2.env file:
LIBPATH=/usr/lib

For more information on specifying run-time options, see z/OS Language
Environment Programming Guide. For details on setting the LIBPATH environment
variable, also see z/OS UNIX System Services Command Reference.

The Network SLAPM2 subagent can be stopped using the stop command (P
NSLAPM2), or using the kill command in the z/OS shell. For example, the
following kill command with the TERM signal, where pid is the nslapm2 process
ID, enables the Network SLAPM2 subagent to clean up resources properly before
terminating itself:
kill -s TERM pid

Chapter 17. Quality of service 889

The nslapm2 process ID can be obtained using the following z/OS UNIX
command:
ps -A

Verification
To verify that policies are correctly defined and functioning properly, consider the
following points:
v Are the policies installed in the TCP/IP stacks?
v Is the expected traffic mapping to the correct policies?
v Are the sysplex distributor policy functions working correctly?
v Does anything need to be tuned?

The following subtopics provide more details about these considerations.

Verifying that the policies are installed in the TCP/IP stacks
Use the Netstat SLAP/-j command to display QoS policy statistics. This command
displays statistics for only active (installed) QoS policies, so it can be used to verify
the correct policies are installed, even if all the statistics are 0. Since the Policy
Agent can install policies on multiple stacks, issue this command on each stack to
verify the correct set of QoS policies is installed.

Verifying that the expected traffic is mapping to the correct
QoS policies

While connections are active, use the Netstat ALL/-A command to display details
about the active connections. One piece of information displayed is the policy rule
name. If this name is blank, then the traffic is not mapped to any active rule. Also,
use the Netstat SLAP/-j command to display QoS policy statistics. The output
shows the time that each policy was last mapped to traffic, and accumulated
statistics for each policy. Monitor these values over time to verify that new traffic is
mapping as expected.

Note: The values displayed by the Netstat SLAP/-j commands can wrap around to
0. If some of the values do not seem correct (for example, total out bytes less
than total out bytes in profile), then wrapping has probably occurred.

Verifying that the sysplex distributor policy functions are
working correctly

To verify that the distributor is using the expected service levels when deciding
how to distribute traffic to each DVIPA/Port target, use the Netstat VDPT/-O
DETAIL command on the distributing stack. The following QoS related information
will be displayed for each DVIPA/Port target:
v WLM weight unmodified by QoS
v Modified WLM/QoS aggregate weight, identified by *DEFAULT*
v Modified WLM/QoS service level weights, identified by service level name

To verify that active connections distributed to DVIPA/Port targets are using the
expected service level, use the Netstat VCRT DETAIL command on the distributing
stack. This will display the following policy related information:
v PolicyRule: the policy rule that the distributor used in selecting the policy action

for this connection.

890 z/OS V1R12.0 Comm Svr: IP Configuration Guide

v PolicyAction: the policy action that this connection is currently using. If
PolicyAction is specified by *NONE*, then the distributor is using the
DEFAULT fraction to distribute this connection.

See z/OS Communications Server: IP Diagnosis Guide for more information.

Monitoring performance and tuning policies
Poor performance, such as low throughput, long response times, and so on, might
be suddenly and consistently experienced by a certain set of users or applications.
Also, traps might be generated by the Network SLAPM2 subagent. When this
happens, the problem might be the way the QoS policy is defined for the
corresponding set of users or applications.

For example, the IPv4 ToS/DS or IPv6 traffic class value might be set incorrectly to
a lower QoS level than is intended, for example, medium or low priority instead of
high priority. It is important to remember that given a fixed amount of network
resources, changing some traffic demand from a lower to higher QoS level will
mean that other traffic demands will be affected. Therefore, use care to ensure that
in attempting to meet one set of QoS requirements, different or worse problems do
not result.

Another cause for poor performance might be in the way the bandwidth allocation
defined via the DiffServ token bucket parameters, or TCP maxrate or minrate, is
not adequate to accommodate the traffic demand. Yet another possibility might be
that either network or the server capacity is not adequate to handle the traffic
demand. This is evident when a majority of users or applications do not have their
QoS requirements met. When this happens, the network planning process must be
revisited.

For more information, see “Using the Network SLAPM2 MIB to monitor policies.”

Using pasearch
Use the pasearch command to display policy details. This command displays both
active (installed in the stack) and inactive policies. Various parameters can be
specified to filter the results, for example to display only policies for certain stacks,
only QoS policies, only policy names, or only a single policy specified by name.
See z/OS Communications Server: IP System Administrator's Commands for the
complete syntax and sample output for pasearch.

Using the Network SLAPM2 MIB to monitor policies
The Network SLAPM2 subagent provides information about service policies and
performance data for applications mapped to those policies through the
slapm2PolicyRuleStatsTable.

Note: The Network SLAPM2 subagent can be used to monitor Differentiated
Services policies.

slapm2PolicyRuleStatsTable
Provides statistics on a per policy rule basis.

The Network SLAPM2 subagent also supports performance monitoring using the
slapm2PRMonTable object. Entries are created in the monitor table to establish the
desired criteria for monitoring. The following level of monitoring is provided:

Chapter 17. Quality of service 891

Aggregate
Monitoring is performed based on the aggregate of all TCP or UDP
applications that are mapped to one or more service policies.

Three types of monitoring are provided for measuring application performance:

TCP round-trip time
The current TCP round-trip time of applications are compared to the
threshold values established in the monitor table entry. If the current rates
exceed the high threshold or go below the low threshold, an SNMP trap is
sent if traps are enabled.

TCP packets retransmit ratio
The current TCP packets retransmit ratios of applications are compared to
the threshold values established in the monitor table entry. If the current
rates exceed the high threshold or go below the low threshold, an SNMP
trap is sent if traps are enabled.

Average accept queue delay
The current average accept queue delay of applications are compared to
threshold values established in the monitor table entry. If the current rates
exceed the high threshold or go below the low threshold, an SNMP trap is
sent if traps are enabled.

For more details about how to make the various monitoring calculations, see the
NETWORK-SLAPM2-MIB in the sample file slapm2.mi2 in the
/usr/lpp/tcpip/samples directory.

When SNMP traps are enabled, and a not achieved trap is sent as described above, a
corresponding okay trap is sent when the traffic once again conforms to the
boundaries established in the monitor table entry.

For example, suppose the slapm2PRMonTcpRttDelayHigh value is set to 2 seconds
and the slapm2PRMonTcpRttDelayLow value is set to 1 second. If the TCP
round-trip delay rises above 2 seconds, a not achieved trap is sent. If the TCP
round-trip delay then drops below 1 second, an okay trap is sent to indicate the
problem has been resolved. However, if the row becomes inactive before
conforming to the established boundaries, an okay trap is never sent, since this
removes monitoring for this entry.

The following traps are used to monitor table administration:

Policy deleted
A slapm2PolicyRuleDeleted trap is sent when an entry is deleted from the
slapm2PolicyRuleStatsTable, if slapm2PolicyDeletedTrapEnabled is
enabled(1).

Monitor deleted
A slapm2PolicyRuleMonDeleted trap is sent when a slapm2PRMonEntry is
deleted, if the value of slapm2PolicyDeletedTrapEnabled is enabled(1).

Creating monitor table entries and enabling SNMP traps
Several MIB objects are used when establishing monitor table entries and when
configuring whether and how often traps are sent. To establish monitor table
entries, set the following MIB object variables. Most of these objects have default
values, so you might be able to achieve the desired monitoring using only a subset
of the objects.

892 z/OS V1R12.0 Comm Svr: IP Configuration Guide

slapm2PRMonTcpRttDelayHigh, slapm2PRMonTcpRttDelayLow
Establishes the threshold values for the average TCP round-trip time. The
minimum and maximum rates are in units of milliseconds.

slapm2PRMonTcpReXmitHigh, slapm2PRMonReXmitLow
Establishes the threshold values for the TCP packets retransmit ratio. The
minimum and maximum rates are in tenths of a percent units.

slapm2PRMonTcpAcceptQDelayHigh, slapm2PRMonTcpAcceptQDelayLow
Establishes the threshold values for the average accept queue delay. The
minimum and maximum rates are in units of milliseconds.

slapm2PRMonRowStatus
This object allows entries to be created and deleted in the
slapm2PRMonTable.

In addition, the following MIB objects are used to control the generation of traps:

slapm2PRMonTrapEnable
Indicates whether slapm2PolicyRuleMonNotOkay and
slapm2PolicyRuleMonOkay notifications should be generated for this
conceptual row.

slapm2PRMonTrapFilter
The purpose of this object is to suppress excessive
slapm2PolicyRuleMonNotOkay notifications. A monitored quantity must
exceed its high threshold for the number of consecutive intervals indicated
by this object for a notification to be generated. The length of the intervals
is specified by the slapm2PolicyMonInterval object.

Creating the monitor table index
When you create monitor table entries, specify the appropriate index value. The
index is composed of the following:
v slapm2PRMonOwnerIndex
v slapm2PolicyRuleIndex

The OwnerIndex is expressed in the following format, where character is in ASCII
decimal form:
length.character.character...

For example, the value u1 is expressed as 2.117.31. The PolicyRuleIndex that maps
to the policy name value is the index into the slapm2PolicyRuleTable.

The Network SLAPM2 subagent creates an entry in the slapm2PolicyRuleTable to
represent a policy rule. The index value for this entry is arbitrary and assigned by
the subagent. Corresponding entries in the other MIB tables, including the monitor
table, contain the index value that maps to the entry in the name table.

To assist you in creating the index for the monitor table entries, note that the index
value used in the slapm2PolicyRuleStatsTable entries consist of the last value used
in the monitor table index, namely the PolicyRuleIndex. Thus, you can walk
through the policy statistics table using the following command:
osnmp -v walk slapm2PolicyRuleStatsTable

Then, cut and paste the index value from the PolicyRuleStatsTable and add an
OwnerIndex of your choosing at the beginning of the index.

For the above example, the complete index using an OwnerIndex of u1 is:

Chapter 17. Quality of service 893

2.117.31.3
| +--- name table index value (PolicyRuleIndex)
+----------- length + "u1" (OwnerIndex)

Monitor table examples
If you are going to change any of the monitor table object values for an existing
table entry or row, you must take the row out of service to make the changes. To
do this, set the value of slapm2PRMonRowStatus to 2. After your changes are
made, set the row status to a value of 1 to put it back in service.

The following examples show how to create monitor table entries to monitor.
v This example assumes SNMP version 1 security and no SNMPD.CONF file.

1. Enable traps. The snmptrap.dest file should contain the IP address and
protocol of an entity to receive traps:
/etc/snmptrap.dest contains: 9.67.191.5 UDP
/etc/pw.src contains: public 0.0.0.0 0.0.0.0

In this example, use the osnmp command running in the background to
receive traps:
osnmp trap > /tmp/trap.output &

2. Change status to notInService:
osnmp set slapm2PRMonRowStatus.index 2

3. Enable monitoring for slapm2PolicyRuleMonNotOkay and
slapm2PolicyRuleMonOkay (traps):
osnmp set slapm2PRMonTrapEnable.index 1

4. If desired, change default thresholds:
– TCP round-trip, where l is the lower boundary and h is the upper

boundary:
osnmp set slapm2PRMonTcpRttDelayLow.index l
osnmp set slapm2PRMonTcpRttDelayHigh.index h

– TCP retransmit ratio, where l is the lower boundary and h is the upper
boundary:
osnmp set slapm2PRMonTcpReXmitDelayLow.index l
osnmp set slapm2PRMonTcpReXmitDelayHigh.index h

– Accept Queue delay ratio, where l is the lower boundary and h is the
upper boundary:
osnmp set slapm2PRMonAcceptQDelayLow.index l
osnmp set slapm2PRMonAcceptQDelayHigh.index h

5. Make row active:
osnmp set slapm2PRMonRowStatus.index 1

v Evaluate the following fields to determine why the
slapm2PolicyRuleMonNotOkay trap was generated:
– If the maxTcpRttDelayExceeded bit in the previous slapm2PRMonStatus is off,

indicating below the high threshold, and the bit in the current
slapm2PRMonStatus is on, indicating above the high threshold, this indicates
that at the end of this monitor interval this is a rising quantity and the
threshold has exceeded its high threshold. Evaluate the
slapm2PRMonTcpRTTCurrentDelay to determine the average round-trip time
over the most recent interval for all outgoing TCP packets affected by this
policy rule.

– If the maxTcpReXmitRatioExceeded bit in the previous slapm2PRMonStatus is
off, indicating below the high threshold, and the bit in the current
slapm2PRMonStatus is on, indicating above the high threshold, this indicates

894 z/OS V1R12.0 Comm Svr: IP Configuration Guide

that at the end of this monitor interval this is a rising quantity and the
threshold has exceeded its high threshold. Evaluate the
slapm2PRMonTcpCurrentTcpReXmit to determine the TCP retransmit ratio
over the most recent interval for all outgoing TCP packets affected by this
policy rule.

– If the maxAcceptQueueDelayExceeded bit in the previous
slapm2PRMonStatus is off, indicating below the high threshold, and the bit in
the current slapm2PRMonStatus is on, indicating above the high threshold,
this indicates that at the end of this monitor interval this is a rising quantity
and the threshold has exceeded its high threshold. Evaluate the
slapm2PRMonAcceptQCurrentDelay to determine the smoothed average
accept queue delay over the most recent interval for all flows affected by this
policy rule.

v Evaluate the following fields to determine why the slapm2PolicyRuleMonOkay
trap was generated:
– If the maxTcpRttDelayExceeded bit in the previous slapm2PRMonStatus is on,

indicating above the low threshold, and the bit in the current
slapm2PRMonStatus is off, indicating below the low threshold, this indicates
that at the end of this monitor interval this is a falling quantity and the
threshold has fallen below its low threshold. Evaluate the
slapm2PRMonTcpRTTCurrentDelay to determine the average round-trip time
over the most recent interval for all outgoing TCP packets affected by this
policy rule.

– If the maxTcpReXmitRatioExceeded bit in the previous slapm2PRMonStatus is
on, indicating above the low threshold, and the bit in the current
slapm2PRMonStatus is off, indicating below the low threshold, this indicates
that at the end of this monitor interval this is a falling quantity and the
threshold has fallen below its low threshold. Evaluate the
slapm2PRMonTcpCurrentTcpReXmit to determine the TCP retransmit ratio
over the most recent interval for all outgoing TCP packets affected by this
policy rule.

– If the maxAcceptQueueDelayExceeded bit in the previous
slapm2PRMonStatus is on, indicating above the low threshold, and the bit in
the current slapm2PRMonStatus is off, indicating below the low threshold,
this indicates that at the end of this monitor interval this is a falling quantity
and the threshold has fallen below its low threshold. Evaluate the
slapm2PRMonAcceptQCurrentDelay to determine the smoothed average
accept queue delay over the most recent interval for all flows affected by this
policy rule.

Chapter 17. Quality of service 895

896 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Chapter 18. Intrusion Detection Services

It is becoming increasingly important to not just protect systems from attacks but
to detect patterns of usage that might indicate impending attacks. Many attacks
follow a sequence of information gathering, unauthorized access to resources
(information, applications, storage) and denial of service. It can be difficult, or at
times, impossible to determine the originator of denial of service attacks.
Correlating information gathering activities with access violation may help identify
an intruder before they succeed.

Intrusion Detection Services provides support for:
v Scan detection and reporting
v Attack detection, reporting and prevention
v Traffic regulation for TCP connections and UDP receive queues

Each of these is described in detail.

Intrusion Detection Services (IDS) policies are used to specify what events are to be
detected under what circumstances and what action to take. All IDS policies
support logging events to a specified message priority level in syslogd and/or the
system console. Most IDS policies support discarding packets when a specified
limit is reached. Most IDS policies support writing statistics records to the INFO
message level of Syslogd on a specified time interval, optionally only if exceptional
events have occurred. All IDS policies support tracing all or part of the triggering
packet to an IDS specific CTRACE facility, SYSTCPIS. IDS assigns a correlator
value to each event. Messages written to the system console and syslogd and
records written to the IDS trace all use this correlator. A single detected event may
involve multiple packets. The correlator value identifies which messages and
packets are related to each other. Each IDS policy has additional attributes that are
specified either in conditions or in the action.

Scan policies
Scans are recognized as the result of multiple information gathering events from a
single source IP within a defined period of time. Scanning in and of itself is not
harmful. However, many serious attacks, especially access violation attacks, are
preceded by information gathering scans. Because scans by their nature must use
reliable source IP addresses, they can be interesting events to monitor.

The IDS support defines a scanner as a source host that accesses multiple unique
resources (ports or interfaces) over a specified period of time. The number of
unique resources (Threshold) and the time period (Interval) can be specified via
policy. Two categories of scans are supported:
v Fast scan

– many resources rapidly accessed in a short time period (usually less than 5
minutes and program driven)

v Slow scan
– different resources intermittently accessed over a longer period of time (many

hours). This could be a scanner trying to avoid detection.

Sample scanners:

© Copyright IBM Corp. 2000, 2011 897

v Source host A has a program that loops through all low ports and tries to
connect to each port on target host X (fast scan). Note: each port is considered a
unique resource.

v Source host B manually does pings to each interface on target host X and then
tries to access well-known ports on target host X (most likely a slow scan) .
Note: each interface accessed by the ping is considered a unique resource and
each port accessed is considered a unique resource.

Not a scanner:
v Source host C starts 20 connections to port 23 . Since these connections are to the

same port, only one unique resource has been accessed. Therefore, host C is not
considered a scanner.

Certain scans may not be detected by IDS:
v source host E issues pings to addresses 9.1.1.1 through 9.255.255.255. Since host

X only collects data for the pings directed to X's interfaces, this is not detected
by host X as a scan. Network IDS may detect this as wide scan.

Scan policy provides the ability to:
v Control the parameters that define a scan:

– Fast scan time interval
– Slow scan time interval
– Fast scan threshold
– Slow scan threshold
– Exclude well-known legitimate scanners via an exclusion list
– Specify a sensitivity level by port or portrange (to reduce performance

impacts)
– Notify the installation of a detected scan via console message or syslogd

message
– Trace potential scan packets

The individual packets used in a scan can be categorized as normal, possibly
suspicious or very suspicious. To control the performance impact and analysis load
of scan monitoring, it will be useful to have a mechanism for adjusting our interest
level in potential scan events. For information gathering we will provide sensitivity
levels of High, Medium and Low to control recognizing countable events for
normal, possibly suspicious and very suspicious packets.

The following table shows how the policy-specified sensitivity affects the counting
of scan events. The event suspicion level is determined by the stack.

Sensitivity (from
policy) Normal event

Possibly suspicious
event Very suspicious event

Low count

Medium count count

High count count count

To help reduce or eliminate false positives, IDS will allow policy-specified source
IP addresses, subnet masks, and (optionally) source port numbers to be excluded

898 z/OS V1R12.0 Comm Svr: IP Configuration Guide

from scan detection. For UDP and TCP port scans, scan detection can be limited to
specified destination port ranges. The sensitivity (high, medium and low) may be
specified by these port ranges.

Another way IDS will reduce false positives is by counting only unique events
from a specific source IP address within a scan interval. An event is considered
unique if the IP Protocol, Destination IP Address and Destination Port (UDP, TCP)
or Type (ICMP) have not been seen before within this scan interval.

IDS scan policy supports a fast scan interval and threshold and a slow scan
interval and threshold. A fast scan will be recognized if more than the fast scan
threshold-specified unique events are received. A slow scan will be recognized if
more than the slow scan threshold-specified unique events are received. Counting
of scan events will be done on an internal interval no greater than half of the fast
scan interval to avoid missing scans that occur within the fast scan interval but
spread across two reporting intervals. Within an internal interval, once the number
of unique events reaches the slow scan threshold, IDS knows that a scan has been
detected and it is not necessary to continue to save information about additional
related events in storage. This saves both storage and processing overhead. These
events, however, are traced if requested by policy using the trace data parameter in
the action.

Note: When system resources are constrained, IDS might temporarily suspend
scan detection.

Scan events come from the categories listed below. Any countable scan event will
count against an origin source IP address. The total number of countable events
from all categories is compared to the policy thresholds. When an origin source IP
address has exceeded the policy-defined fast or slow threshold an event may be
sent to the TRMD for logging to SYSLOG. Additionally, a console message may be
issued and the packet may be logged to the IDS packet trace depending on the
notification options in the action. When an origin source IP address has exceeded
the policy-defined fast or slow threshold an event will be sent to the TRMD for
logging to SYSLOG or console. Once a scan event is logged for a particular source
IP address, no further scan events will be reportable within the specified fast
interval. The intervals and thresholds for fast and slow scan are global, that is,
only one definition of them is allowed across all event categories.
v ICMP Scans

ICMP requests (Echo, Information, Timestamp, Subnet Mask) are used to map
network topology. Any request sent to a subnet base or broadcast address will
be treated as a very suspicious event. Echo Requests (ping) and Timestamp
Requests are very common and will be treated as normal events when they do
not include the IP Options for Record Packet Route or Record Timestamp. These
options are intended to be used only with ICMP Echo Request packets. The
stack ignores them on any other type of packet. The other types of requests are
uncommon and will be treated as possibly suspicious events.

Request type Destination address Event classification

any subnet base or broadcast very suspicious

Information or Subnet Mask single host possibly suspicious

Echo with IP Option Record Route
or Record Timestamp

single host possibly suspicious

Echo or Timestamp single host normal

Chapter 18. Intrusion Detection Services 899

v UDP Port Scans
Because UDP is stateless, the stack is unable to differentiate between a client
port and a server port. A scanner sending messages to many ephemeral ports
looks very similar to a DNS server sending replies to many clients on ephemeral
ports. TCP/IP configuration allows UDP ports to be RESERVED, therefore
restricting a port so that it cannot be used. Any datagram received for a
restricted port will be treated as a highly suspicious event. Datagrams received
for unbound but unrestricted ports will be treated as possibly suspicious events
and datagrams received for bound ports will be treated as normal events. Event
generation can also be scoped to specific port ranges.

Socket state Event Event classification

Restricted (RESERVED to no one) recv any packet very suspicious

Unbound, not restricted recv any packet possibly suspicious scanner
or application temporarily
down

Bound recv any packet normal

v TCP Port Scans
Because TCP is a stateful protocol, there are many different events that may be
classified as normal, possibly suspicious or highly suspicious. The identified
conditions are listed in the table that follows. TCP/IP configuration allow TCP
ports to be RESERVED, therefore restricting a port so that it cannot be used.
Event generation can also be scoped to specific port ranges.

Socket state Event Event classification

Any state recv unexpected flags
(that is, SYN+FIN)

very suspicious

Restricted (RESERVED to no one) recv any packet very suspicious

Unbound, not restricted recv any packet possibly suspicious
scanner or application
temporarily down

Listen recv standalone SYN no event (classification
deferred)

Half open connection recv ACK normal - connection
handshake completed

Half open connection recv RST possibly suspicious peer
covering tracks

Half open connection final time out very suspicious peer
abandoned handshake

Any connected state seq# out of window normal perhaps duplicate
packet

Any connected state recv standalone SYN normal perhaps peer
reboot

Any connected state final timeout possibly suspicious peer
abandoned connection

900 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Attack policies
An attack can be a single packet designed to crash or hang a system. An attack can
also consist of multiple packets designed to consume a limited resource causing a
network, system or application to be unavailable to its intended users (that is,
denial of service). IDS attack policy allows you to turn on attack detection for one
or more categories of attacks independently of each other. In general, the types of
actions that can be specified for an attack policy are event logging, statistics
gathering, packet tracing and discarding of the attack packets.

Most attack checking is done for inbound packets destined for this stack. The IDS
categories of attacks are:
v Malformed packets events

There are numerous attacks designed to crash a system's protocol stack by
providing incorrect or partial header information. These packets are always
discarded when received regardless of IDS policy. The source IP address is rarely
reliable for these attacks.
You can use IDS policy to provide notification of malformed packet attacks.

v Inbound fragment restrictions
Many attacks are the result of fragment overlays in the IP or transport header.
This support allows you to protect your system against future attacks by
detecting fragmentation within the first 88 bytes of a datagram.
Guideline: Examine packets flagged by this attack type to determine whether
the packets are legitimate traffic. Although fragmentation within the first 88
bytes of a datagram is suspicious, it is does not violate any RFC specifications.
You can use IDS policy to provide notification of a packet that results from a
datagram being fragmented in the first 88 bytes, as well as to discard the packet.
Tip: Initially use the NoDiscard action and evaluate any packets flagged by this
attack type. If legitimate traffic in your network is being flagged as suspicious
because it is fragmented in the first 88 bytes, you should not use the Discard
action.

v IP protocol restrictions
While there are 256 possible valid IP protocols, only a handful are in common
usage today. This support allows you to protect your system against future
attacks by prohibiting those protocols that you are not actively and intentionally
using.
You can use IDS policy to provide notification of a packet with a restricted IP
protocol, as well as to discard the packet.

v IP option restrictions
As with IP protocols, there are 256 possible IP options, with only a small
number currently in common use. This support allows you to prevent misuse of
options you are not intentionally using. Note that checking for restricted IP
options is performed on all inbound packets, even those forwarded to another
system.
You can use IDS policy to provide notification of a packet with a restricted IP
option, as well as to discard the packet.

v UDP perpetual echo
Some UDP applications unconditionally respond to every datagram received. In
some cases, such as Echo, CharGen or TimeOfDay, this is a useful network
management or network diagnosis tool. In other cases it may be polite
application behavior to send error messages in response to incorrectly formed
requests. If a datagram is inserted into the network with one of these

Chapter 18. Intrusion Detection Services 901

|
|
|

|
|
|
|

applications as the destination and another of these applications spoofed as the
source, the two applications will respond to each other continually. Each inserted
datagram will result in another perpetual echo conversation between them. This
support allows you to define the application ports that exhibit this behavior.
You can use IDS policy to provide notification of a perpetual echo packet, as
well as to discard the packet.

v ICMP redirect restrictions
ICMP redirect packets can be used to modify your routing tables. The
IGNOREREDIRECT statement in the TCPIP profile disables ICMP Redirects. You
can use IDS policy to provide notification of attempts to modify your routing
tables in this manner.
You can also use IDS policy to disable ICMP Redirects. ICMP Redirect packets
will be ignored or discarded if either IGNOREREDIRECT is specified in the
TCPIP profile or if IDS policy is active for ICMP redirect attacks and the
associated policy action requests that the packet be discarded.

v Outbound raw restrictions
Most network attacks require the ability to craft packets that would not normally
be built by a proper protocol stack implementation. This support allows you to
detect and prevent many of these crafting attempts so that your system is not
used as the source of attacks on other systems. As part of this checking, you can
restrict the IP protocols allowed in an outbound RAW packet. It is recommended
that you restrict the TCP protocol (6) on the outbound raw rule.
You can use IDS policy to provide notification of an outbound raw packet that is
considered an attack, as well as to discard the packet.

v Flood events
Two types of floods are currently detected:
– TCP SYN floods

A popular denial of service attack is to flood a public server with connection
requests from incorrect or nonexistent source IP addresses. The intent is to
use up the available slots for connection requests and thereby deny legitimate
access from completing. z/OS CS provides protection from this attack
regardless of IDS policy.

– Interface floods
If a large number of discards are occurring in proportion to the number of
inbound packets, a malicious user might be attempting a denial of service
attack. If this percentage of discards for an interface exceeds a specified
percentage, this is considered an interface flood. The default percentage of
discards used is 10%. You can override this default by specifying the interface
flood percentage parameter.
To prevent the false detection of an interface flood condition when there is a
low volume of inbound traffic on an interface, to qualify as a flood, a
minimum number of discards must occur in a one minute period. The default
minimum is 1000 discards per minute. You can override this default by
specifying the interface flood minimum discard parameter.
When an interface flood condition is reported for an interface, the discard rate
for the interface is evaluated for each subsequent 1-minute interval. An
interface flood condition end is reported when the number of discards for the
1-minute interval falls below the interface flood minimum discard parameter
value or the discard percentage falls below 50% of the interface flood
percentage parameter value.
If the interface flood continues for more than 5 minutes, an interface flood
continues record is logged at 5 minute intervals while the interface flood

902 z/OS V1R12.0 Comm Svr: IP Configuration Guide

conditions exist, if logging was requested by policy. This log data contains
additional information about the discarded packets for the interface.
Because it can be difficult to distinguish between a malicious user trying to
flood a system, unusual spikes in traffic, and problems that can be caused by
setup problems, it is possible for an interface flood condition to be reported
when the source of the problem is not actually a flood. For example, if
enough storage is not configured to handle the inbound traffic, a large
percentage of the inbound packets might be discarded and cause the interface
flood percentage to be exceeded.

You can use IDS policy to provide notification of an attack so that you may
address the situation with your network administrators and service providers in
a timely manner. Notification of a flood can include flood start and flood end
event messages and tracing of the first 100 packets discarded due to the flood.

For each attack category (for example, restricted IP protocol) the single highest
priority rule is mapped at policy change.

One or more notification options can be specified in the action to provide the
desired documentation of detected attacks.

For IDS attack policy the notification options enable attack events to be logged to
syslogd and the system console. Note that the console messages provide a subset
of the information provided in the syslogd messages. For all attack categories
except flood, a single packet triggers an event. To prevent message flooding to the
system console, you can specify the maximum number of console messages to be
logged per attack category within a 5-minute interval with the maximum event
message parameter. If you specify logging to the console in your IDS policy, you
should specify a maximum event message; there is no default if LDAP policy is
used. To prevent message flooding to syslogd, a maximum of 100 event messages
per attack category will be logged to syslogd within a 5-minute interval.

For IDS attack policy the statistics action provides a count of the number of attack
events detected during the statistics interval. The count of attacks is kept
separately for each category of attack (for example, malformed) and a separate
statistics record is generated for each. If you want to turn on statistics for attacks, it
is recommended that you specify exception statistics. With exception statistics, a
statistics record will only be generated for the category of attack if the count of
attacks is nonzero. If normal statistics is requested, a record will be generated
every statistics interval regardless of whether an attack has been detected during
that interval or not. An exception to this recommendation is when you want to
provide overrides to the interface flood parameters (interface flood minimum
percentage parameter and interface flood minimum discard parameter). In this
case, run for a period with normal statistics to collect data to help determine the
appropriate policy parameter values. When you determine the policy values, the
previous recommendation to specify exception statistics applies.

For IDS attack policy, the trace data and trace record size parameters indicate
whether packets associated with attack events are to be traced. For all attack
categories except flood, a single packet triggers an event and the packet is traced.
To prevent trace flooding, a maximum of 100 attack packets per attack category
will be traced within a 5 minute interval. For the flood category, the first 100
packets discarded during a SYN flood will be traced. In the case of an interface
flood, the flood is detected on an interface basis and the trace limit is applied on
an interface basis.

Chapter 18. Intrusion Detection Services 903

For IDS attack policy, you can specify that packets associated with attack events
should be discarded. It is applicable to all attack categories. However, malformed
and flood packets are always discarded regardless of this setting.

An action can be unique to a specific category of attack (for example, malformed)
or shared by one or more categories of attacks. If an action is shared, statistics data
is still kept separately for each type of attack. Also, the maximum console message
limit is enforced individually for each category of attack.

Traffic Regulation policies
IDS Traffic Regulation (TR) policies are used to limit memory resource
consumption and queue delay time during peak loads.

TR TCP
IDS TR policies for TCP ports limit the total number of connections an application
has active at one time. This can be used to limit the number of address spaces
created by forking applications such as FTPD and otelnetd. A fair share algorithm is
also provided based on the percentage of remaining available connections already
held by a source IP address.

The percentage is applied against the number of available connections for the port.
Therefore, as fewer connections become available, each host is allowed fewer new
connections. The percentage is applied against the number of available
connections, rather than the total number of connections allowed, in order to allow
access to a larger number of different hosts when resources are low.

When a host requests a connection, the number of connections it currently holds
for the port is compared to the percentage applied to the connections currently
available for the port. If the number currently held is less than the percentage of
currently available connections, the host is allowed to open an additional
connection. If equal or greater, the host is not allowed to open further connections
until more connections are freed up. All connection requesters for the port are
regulated by this mechanism. If a host does not currently have any connections
open on the port and unused connections are available, a host will always be
allowed at least 1 connection. Multi-user source IP addresses may be allowed a
larger number of connections by specifying a QoS policy with a higher number of
connections (MaxConnections) than allowed by the TR policy. TR will honor the
QoS differentiated services policy if the port is not in a constrained state. A QoS
exception is made only when QoS differentiated service policy is applied for the
specific source server port and specific outbound client destination IP address; if
either of these attributes specify a range or are null, the QoS exception will not be
made.

TR TCP generates a Constrained Event when a port reaches about 90% of its
Connection Limit. An Unconstrained Event is generated when the port falls below
about 88% of its limit. An IDS correlator is assigned for the duration of each
constrained state. If tracing is requested in the policy, the first 100 packets that
exceed the limit in each constrained state are traced along with the correlator. TR
TCP also generates events for each connection allowed because of a QoS override
policy and for each connection denied for exceeding either the application's
connection limit or the percent available limit.

To prevent possible flooding of syslog, TR TCP limits the number of connection
refused, would have been refused, or QOS exception log records written in a five

904 z/OS V1R12.0 Comm Svr: IP Configuration Guide

minute interval. For a listening port, a maximum of 100 of these log records are
written within a five minute interval. Globally, TR TCP writes a maximum of 1000
of these log records within a five minute interval. If a log record was not written
due to these limits, the count of refused or would have been refused connection
log records that were not logged is recorded in the EZZ8660I TRMD TCP connection
log records suppressed log message after the five minute interval ends. Similarly,
the count of QOS exception records that were not written is recorded in the
EZZ8661I TRMD TCP QOS exception log records suppressed log message.

Guideline: TR TCP is intended for use with long-running servers, which typically
use well-known ports or ports that are reserved for TCP applications. You should
not use TR TCP to monitor transitory listeners; doing so can result in high storage
usage. An example of a transitory listener is an FTP data connection that lasts only
as long as it takes to move one file and typically uses ports above 1023.

TR UDP
Previously, control over UDP based applications consisted of application priority
management and the TCP/IP profile parameter UDPQueueLimit ON | OFF.
Inbound datagrams for bound UDP ports are accepted and queued until the queue
limit is reached or buffer memory is exhausted. If UDPQueueLimit is set to OFF,
any single bound port under a flood attack or with a stalled application could
consume all available buffer storage. It is recommended that UDPQueueLimit
always be set to ON. This limits the amount of storage that can be consumed by
inbound datagrams for any single bound port. Sockets that use the Pascal API,
have a limit of 160 KB in any number of datagrams. Sockets that use other APIs,
have a limit of 2000 datagrams or 2880 KB.

IDS TR policies for UDP ports specify one of four abstract queue sizes for specified
bound IP addresses and ports. The four abstract sizes are VERY_SHORT, SHORT,
LONG and VERY_LONG. The actual queue sizes associated with these abstract
values are internal values subject to change. Most UDP applications have timeout
values based on human perceptions of responsiveness. These values tend to stay
constant while system processing speeds and network delivery speeds continue to
advance rapidly. This may require the physical sizes of these queues to change
over time. The initial implementation uses the values of 16, 256, 2048 and 8192
(2**4, 2**8, 2**11, 2**13) for the number of datagrams and an average datagram size
of 2 KB to calculate the byte sizes (32 KB, 512 KB, 4 MB, 16 MB). For performance
reasons, sockets that use the Pascal API will only enforce the byte limit. Sockets
that use other APIs will enforce both limits. Sockets without a policy specified for
their port will use the existing UDPQueueLimit mechanism.

For applications that can process datagrams at a rate faster than the average arrival
rate, the queue acts as a speed matching buffer that shifts temporary peak
workloads into following valleys. The more that the application processing rate
exceeds the average arrival rate and the larger the queue, the greater the variation
in arrival rates that can be absorbed without losing work. Very fast applications
with very bursty traffic patterns may benefit from LONG or VERY_LONG queue
sizes.

For applications that consistently receive datagrams at a higher rate than they are
able to process them, the queue acts to limit the effective arrival rate to the
processing rate by discarding excess datagrams. In this case the queue size only
influences the average wait time of datagrams in the queue and not the percentage
of work lost. In fact, if the wait time gets too large, the peer application may have

Chapter 18. Intrusion Detection Services 905

given up or retransmitted the datagram before it is processed. Slow applications
with consistently high traffic rates may benefit from SHORT queue sizes.

In general, client side applications will tend to have lower system priority giving
them lower datagram processing rates. They also tend to have much lower
datagram arrival rates. Giving them SHORT or VERY_SHORT queue sizes may
reduce the risk to system buffer storage under random port flood attacks with little
impact on percentage of datagrams lost.

TR UDP generates a Constrained Event when a port reaches about 90% of its
Queue Limit. An Unconstrained Event is generated when the port falls below
about 88% of its limit. An IDS correlator is assigned for the duration of each
constrained state. If tracing is requested in the policy, the first 100 packets that
exceed the limit in each constrained state are traced along with the correlator.

Options for configuring IDS
You configure IDS using a set of configuration statements and parameters coded
into a flat file, which is parsed by the Policy Agent to establish the IDS policy for
each TCP/IP stack. In a complex environment, this file can become large. For this
reason, there are two alternatives for creating the Policy Agent files.

Option 1: Use the IBM Configuration Assistant for z/OS
Communications Server

The IBM Configuration Assistant for z/OS Communications Server, an optional
GUI-based tool, provides a guided interface for configuring TCP/IP policy-based
networking functions. You can use the Configuration Assistant to generate the
Policy Agent files.

The Configuration Assistant is available in either of the following forms:
v As a task in IBM z/OS Management Facility (z/OSMF)

z/OSMF provides a Web browser interface for a variety of z/OS system
management functions. When you invoke the Configuration Assistant in
z/OSMF, the Configuration Assistant runs natively in the z/OS system and you
can access it through a Web browser. To use the Configuration Assistant in
z/OSMF, your system must be z/OS V1R11 or later.

v As a standalone application that you can run on your workstation
You can download the Configuration Assistant from the z/OS Communications
Server product support Web page.

You can use the Configuration Assistant on your workstation and then later
migrate your work to the z/OSMF environment. For information about
transferring Configuation Assistant data to z/OSMF, see IBM z/OS Management
Facility Configuration Guide.

Through a series of wizards and online help panels, you can use the Configuration
Assistant to create IDS configuration files for any number of z/OS images with
any number of TCP/IP stacks per image. Using the Configuration Assistant, there
are two types of reusable objects:
v Traffic descriptors that define the IP traffic type, such as TCP or UDP.
v Requirement maps that contain attack protection, scan protection, and traffic

regulation. For scan protection and traffic regulation, traffic descriptors are used
to identify the local applications that are provided the protection and regulation.

906 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|
|

|

|

|

|
|
|
|

|
|
|

http://www.ibm.com/software/network/commserver/zos/support/
http://www.ibm.com/software/network/commserver/zos/support/

A single requirement map should contain a complete set of IDS requirements
that will govern the level of IDS for a TCP/IP stack.

For each TCP/IP stack, you select a requirement map that provides IDS for the
stack. The Configuration Assistant comes with a number of IBM-supplied traffic
descriptors and a default requirement map that are easily applied, or you can use
the IBM-supplied definitions as the basis for your own set of reusable objects.

The Configuration Assistant can dramatically reduce the amount of time that is
required to create IDS policy files, contributing to ease of configuration and
maintenance. Because of the inherently complex nature of z/OS security, using the
GUI can help you ensure that you have a consistent and easily manageable
interface for implementing IDS.

This information primarily describes option 2, manual configuration. However, if
you are using the Configuration Assistant, reading this information will help you
understand security concepts and the relationship between Policy Agent and IDS
function.

Option 2: Manual configuration
You can manually create the IDS policy configuration files by coding all of the
required statements in a file. There are a large number of configuration options
provided by IDS policy statements that permit advanced users to carefully
fine-tune IDS policy on a per-stack basis. This information describes the procedure
for creating an IDS policy by manually creating and editing the configuration files.
For details about the IDS policy statements, see z/OS Communications Server: IP
Configuration Reference.

Specifying the IDS configuration file based on Policy Agent
role

The Policy Agent can act as a policy server, a policy client, or neither. For more
information on these different roles, see “Policy types and infrastructure overview”
on page 829. Regardless of which option is used to configure IDS policies, the
resulting configuration files need to be specified using different statements,
depending on the role of the Policy Agent.
v If you are using the Policy Agent as a policy client that retrieves IDS policies

from the policy server, specify the configuration files using the
DynamicConfigPolicyLoad statement on the policy server.

v If you are using the Policy Agent as a policy client, but the policy client does not
retrieve IDS policies from the policy server, specify the configuration files using
the IDSConfig statement on the policy client.

v If you are not using a policy client/policy server environment, specify the
configuration files using the IDSConfig statement on the single Policy Agent.

When this information refers to configuration files, keep in mind where the files
should exist, based on the role of the Policy Agent.

Chapter 18. Intrusion Detection Services 907

|

|

|

Defining IDS policies
IDS policies are stored in a Policy Agent IDS configuration file, a server that
supports LDAP, or both. IDS policies are processed by Policy Agent and installed
into a z/OS Communications Server TCP/IP stack. Before creating IDS policies,
you should be familiar with the information about running Policy Agent, the IDS
configuration file, and LDAP in Chapter 16, “Policy-based networking,” on page
829.

A conservative approach to defining IDS policy will avoid unexpected application
outages and excessive rule processing. The examples here describe policies
provided in the sample files shipped with the system. (See “Policy sample files” on
page 841.)

IDS policy definition considerations
IDS policies can be defined with different condition type values.

Tip: Condition type is configured in the IDS configuration file with the
ConditionType statement, and in the LDAP configuration with the
ibm-idsConditionType attribute.

Each IDS policy must define exactly one condition type. Specification of other
additional conditions beyond those in the following list will cause the rule to not
be found. The supported condition types are as follows:

SCAN GLOBAL
This policy is searched by only condition type. The single highest priority
scan global rule is mapped at policy change and cached. The policy defines
the FastScan and SlowScan parameters as well as reporting and tracing
actions to take when a scan is detected. The Limit and Statistics actions are
ignored.

SCAN EVENT
These policies are searched by condition type and a protocol condition of
ICMP, TCP or UDP. For protocols TCP and UDP the policy search includes
local destination port and bound IP address as well. For ICMP, the single
highest priority scan event rule is mapped at policy change and cached.
The TCP and UDP rules are mapped when a potentially countable event
occurs. If the event is associated with a bound socket, the rule is cached.
The policies associated with these rules define the sensitivity level to use
for counting events towards the scan thresholds and source exclusion list
to use for the mapped events. Packet tracing occurs if the action associated
with the scan global rule activates tracing and the sensitivity indicates that
the event is countable.

ATTACK
There are several attack types. The conditions supported on each are
defined in the following list. For each attack type, the single highest
priority rule is mapped at policy change and cached. The reporting, tracing
and statistics actions are supported for all attack types.

Tip: Discard is configured in the IDS action in the IDS configuration file as
ActionType ATTACK DISCARD, and in the LDAP configuration using the
ibm-idsTypeActions:LIMIT attribute.

Other supported actions are defined for each attack type. The supported
attack types are:

908 z/OS V1R12.0 Comm Svr: IP Configuration Guide

MALFORMED_PACKET
This policy is searched by only condition type and attack type.
Malformed packets are always discarded by the stack, even if no
discard was requested by the policy.

FLOOD
This policy is searched by only condition type and attack type.
Flood packets are always discarded by the stack, even if no discard
was requested by the policy.

ICMP_REDIRECT
This policy is searched by only condition type and attack type.
ICMP redirect packets are discarded if this policy specifies discard
or the TCPIP profile specifies IGNOREREDIRECT.

IP_FRAGMENT
This policy is searched by only condition type and attack type. If
this policy specifies discard, datagrams that are fragmented within
the first 88 bytes are discarded.

RESTRICTED_IP_OPTIONS
This policy is searched by only condition type and attack type.
This attack type condition is expected to be ANDed with a list of
conditions defining the IP options to disallow. IP option 0 (end of
list) and 1 (NO-OP) cannot be disallowed and are ignored if
specified. If this policy specifies discard, packets containing a
disallowed option are discarded.

RESTRICTED_IP_PROTOCOL
This policy is searched by only condition type and attack type.
This attack type condition is expected to be ANDed with a list of
conditions defining the IP protocols to disallow. If no IP protocols
are specified, the rule will not accomplish anything. IP protocols 1
(ICMP), 6 (TCP), and 17 (UDP) cannot be disallowed and are
ignored if specified. If this policy specifies discard, packets
containing a disallowed protocol are discarded.

OUTBOUND_RAW
This policy is searched by only condition type and attack type.
This attack type condition can optionally be ANDed with a list of
conditions defining the IP protocols to disallow. If this policy
specifies discard, any packet written to a RAW socket that has a
source IP address not in the stack's home list, that is fragmented by
the application, that specifies one of the ICMP reply types or that
specifies a disallowed protocol are discarded.

PERPETUAL_ECHO
This policy is searched by only condition type and attack type. A
list of local UDP ports and a list of remote UDP ports is also
necessary. Each of the port lists is limited by the stack to the first
20 ports specified. The inbound packet's destination port is always
checked against the local port list. The source port is checked
against the appropriate port list, based on whether the source IP
address is in the stack's home list. If this policy specifies discard,
UDP packets with both ports in checked port lists are discarded.

When defining the policy in LDAP, this attack type condition must
be specified in a complex rule using CNF and multiple condition
levels. The attack type condition is at one of the condition levels.
There must be a list of conditions defining the local port list at a

Chapter 18. Intrusion Detection Services 909

second level. There must be a list of conditions defining the remote
port list at a third level. The negated flag is ignored by the stack
on port list conditions.

TR These policies can optionally be ANDed with any combination of
conditions defining protocol (TCP or UDP), local destination port or local
destination IP address. TCP rules are mapped when a local application
does a listen on a socket or when an inbound connection handshake
completes. UDP rules are mapped when an inbound packet arrives at a
local bound socket. UDP TR policy supersedes the TCPIP PROFILE setting
of UDPQUEUELIMIT for covered ports. Mapped rules are cached and
associated with the bound socket.

For TCP, the policy defines the total number of allowed connections, the
percentage of remaining available connections any single source IP can
acquire and whether these limits are applied globally across all
applications using this port number or applied individually to each
application using an instance of this port number. For UDP, the policy
defines which of the four available queue sizes is applied to each
application using this port number. TR actions define the reporting,
statistics and tracing actions for covered ports. If the policy specifies action
LIMIT, connections or packets that exceed the limits are discarded.

Notes:

1. For TCP, a total connection limit or percentage available limit of zero,
with an action of LIMIT effectively quiesces the application.

2. For TCP, a local host IP address cannot be specified in any condition if
a TR TCP limit scope value of PORT is specified.

3. For UDP, a policy for a port without an action of LIMIT effectively
makes the application unlimited.

4. Each LDAP IDS TR action must specify at least one ibm-idsTypeActions
attribute.

IDS scan policy example
The goal of scan policy is to detect all scanners with potentially malicious intent
while avoiding large numbers of false positives. You can make this process more
efficient by reserving all unused low ports in the TCPIP profile. This will allow
you to use the low sensitivity setting on scans for these ports. As you investigate
the scans detected, you will initially find your own network management tools.
These can be explicitly excluded. If you include UDP ephemeral ports in a high
sensitivity policy, you will discover that your DNS servers show up as scanners.
You can explicitly exclude these as well. To activate scan policy, a scan global rule
and at least one scan event rule must be defined.

The following scan rules are defined:
v Scan Global

Defines a global set of parameters for detecting scans, and also defines reporting
parameters for scan events.
– A Fast Scan is defined as 5 unique events in 2 minutes from a single source IP

address.
– A Slow Scan is defined as 10 unique events in 480 minutes (8 hours).
– The first 200 bytes of the packet associated with each countable event will be

traced.

910 z/OS V1R12.0 Comm Svr: IP Configuration Guide

– When a scan is detected an event will be written to syslog warning level,
along with a detailed list of all the unique events included in the scan.

– No message will be written to the console.
– Statistics records will not be written to syslog.

v Scan Event Low
Defines a set of traffic for which low sensitivity scan detection will be
performed. Inbound traffic to all TCP and UDP ports between 1 and 1023 will be
monitored. It is recommended that unused low ports be RESERVED in the
TCPIP Profile.

v Scan Event Medium
Defines a set of traffic for which medium sensitivity scan detection will be
performed. ICMP inbound traffic will be monitored.

IDS configuration file example:

##
##
Scan Policies
##

#---
Scan - IDSRule
#---
IDSRule ScanEventLowTcp-rule
{
ConditionType ScanEvent
Priority 2
IDSScanEventConditionRef ScanTcpLowCondition
IDSActionRef ScanEventLow-action

}
IDSRule ScanEventLowUdp-rule
{
ConditionType ScanEvent
Priority 2
IDSScanEventConditionRef ScanUdpLowCondition
IDSActionRef ScanEventLow-action

}
IDSRule ScanEventMedium-rule
{
ConditionType ScanEvent
Priority 2
IDSScanEventCondition
{
Protocol Icmp

}
IDSActionRef ScanEventMedium-action

}
IDSRule ScanGlobal-rule
{
ConditionType ScanGlobal
Priority 2
IDSActionRef ScanGlobal-action
IDSScanGlobalCondition # inline condition
{
FSinterval 2
SSInterval 480

}
}

#---
Scan - IDSScanEventCondition
#---
IDSScanEventCondition ScanTcpLowCondition
{
Sensitivity Low
Protocol Tcp
LocalPortRange 1 1023

}
IDSScanEventCondition ScanUdpLowCondition
{

Chapter 18. Intrusion Detection Services 911

Sensitivity Low
Protocol 17 # Udp
LocalPortRange 1 1023

}

#---
Scan - IDSAction
#---
IDSAction ScanEventLow-action
{
ActionType ScanEvent count

}
IDSAction ScanEventMedium-action
{
ActionType ScanEvent count

}
IDSAction ScanGlobal-action
{
ActionType ScanGlobal
IDSReportSet ScanGlobalReportSet
{
TypeActions Log
LogDetail Yes
TraceData RecordSize
TraceRecordSize 200

}
}

If you are using LDAP to define policy, see “IDS scan policy example” on page
1542.

IDS attack policy examples
The goal of attack policy is to help protect your system from both known and
unknown attacks and to give you timely notification when attacks do occur.
Malformed packet policy covers many known attacks designed to cause system
crashes. These packets are always discarded and rarely have legitimate source
address information. Many malformed packet attacks use fragmentation to overlay
header fields. The IDS fragment restriction policy is intended to protect you from
unknown attacks of this type by disallowing fragmentation in the first 88 bytes of
any datagram. Unless you know you need ICMP redirect, you should disallow it
with policy. There are several types of flood attacks. IDS can identify TCP SYN
floods. IDS policy should be used to notify you when a flood occurs. You will need
to work with your network administrators and service providers to track the flood
backwards, one physical hop at a time, to locate the sources.

The IP protocol restrictions and IP option restrictions provide additional protection
against future unknown attacks. The philosophy behind them is to disallow
anything that you do not have a known reason to allow. The outbound raw policy
is intended to help you detect someone using your system as the base for an
attack. It looks for several behaviors associated with spoofed packets.

Attack rules define the set of conditions that define what constitutes an attack for a
given attack type. The highest priority rule of each attack type is used. The action
associated with an attack rule defines reporting and logging options for a detected
attack.

The following types of attack rules are defined:
v Malformed Packet: Various types of known attacks based on malformed packets.
v Flood: TCP SYN flood and interface flood attacks.
v ICMP Redirect: Disallows ICMP redirect receipts.
v IP Fragment: Disallows fragmentation within first 88 bytes of datagrams.

912 z/OS V1R12.0 Comm Svr: IP Configuration Guide

v IP Protocol: Defines disallowable IP protocols.
– Uses complex conditions to disallow everything except ICMP, TCP and UDP.

v Outbound Raw Restrictions: Validity checking for outbound packets using RAW
sockets.
– Uses complex conditions to disallow everything except ICMP, UDP, IGMP and

OSPFIGP.
v Several reusable Protocol conditions are defined that can be shared between the

IP Protocol Restriction rule and the Outbound Raw rule.
v A single reusable attack action is defined and shared among all the attack rules.

– Events are written to syslog ALERT level.
– Events are not written to the system console.
– The first 200 bytes of packets associated with an attack are traced.
– Statistics are evaluated every 60 minutes and only written if an attack

occurred.
– Limit was not specified, so packets associated with IP Protocol Restrictions, IP

Fragment Restriction and Outbound Raw Restrictions will not be deleted.
IDS configuration file example:

##
##
Attack Policies
##

#---
Attack - IDSRule
#---
IDSRule AttackMalformed-rule
{
ConditionType Attack
Priority 2
IDSAttackCondition
{
AttackType MALFORMED_PACKET

}
IDSActionRef Attack-action

}
IDSRule AttackFlood-rule
{
ConditionType Attack
Priority 2
IDSAttackCondition AttackFloodCondition
{
AttackType FLOOD
IfcFloodPercentage 10
IfcFloodMinDiscard 1000

}
IDSActionRef Attack-action

}
IDSRule AttackICMPRedirect-rule
{
ConditionType Attack
Priority 2
IDSAttackCondition
{
AttackType ICMP_REDIRECT

}
IDSActionRef Attack-action

}
IDSRule AttackIpFragment-rule
{
ConditionType Attack
Priority 2
IDSAttackCondition
{
AttackType IP_FRAGMENT

}

Chapter 18. Intrusion Detection Services 913

IDSActionRef Attack-action
}
IDSRule AttackIPProt-rule
{
ConditionType Attack
Priority 2
IDSAttackCondition
{
AttackType RESTRICTED_IP_PROTOCOL
ProtocolGroupRef IpProtRestrictedGroup

}
IDSActionRef Attack-action

}
IDSRule AttackOutboundRaw-rule
{
ConditionType Attack
Priority 2
IDSAttackCondition
{
AttackType OUTBOUND_RAW
ProtocolGroupRef IpProtOutboundRawGroup

}
IDSActionRef Attack-action

}

#---
Attack - IDSAction
#---
IDSAction Attack-action
{
ActionType Attack nodiscard
IDSReportSetRef LogExceptStatReportSet

}

#---
IDSReportSet
#---
IDSReportSet LogExceptStatReportSet
{
TypeActions Log
TypeActions Statistics
LoggingLevel 1
StatType Exception
TraceData RecordSize
TraceRecordSize 200

}

#---
IPProtocol
#---
IpProtocolRange IpProt2to5
{

IpProtocol 2 5
}
IpProtocolRange IpProt7to16
{

IpProtocol 7 16
}
IpProtocolRange IpProt18to255
{

IpProtocol 18 255
}
IpProtocolRange IpProt3to16
{
IpProtocol 3 16

}
IpProtocolRange IpProt18to88
{
IpProtocol 18 88

}
IpProtocolRange IpProt90to255
{
IpProtocol 90 255

}
IpProtocolGroup IpProtRestrictedGroup

914 z/OS V1R12.0 Comm Svr: IP Configuration Guide

{
IpProtocolRangeRef IpProt2to5
IpProtocolRangeRef IpProt7to16
IpProtocolRangeRef IpProt18to255

}
IpProtocolGroup IpProtOutboundRawGroup
{
IpProtocolRangeRef IpProt3to16
IpProtocolRangeRef IpProt18to88
IpProtocolRangeRef IpProt90to255

}

If you are using LDAP to define policy, see “IDS attack policy example” on page
1545.

Traffic Regulation policy examples
The goal of Traffic Regulation (TR) policy is to protect your system from usage
spikes. A phased approach to determine the correct policy for your system is
recommended.

To gather baseline statistics, an installation will first need to run in normal statistics
mode, with the traffic regulation daemon (TRMD) running. In normal statistics
mode, the following information is provided for the port on a policy defined
interval:
v Total number of connections requested during the interval
v Total number of connections closed during the interval
v The IP address of the host that requested a connection during the interval and

held the highest number of concurrent connections during the interval, and the
highest number of concurrent connections held by this IP address

v A suggested value for TotalConnections based on this interval
v A suggested value for Percentage based on this interval

While the baseline statistics records provide suggested policy values for the
interval, the installation should evaluate data from multiple intervals. The values
suggested are those that would avoid denying any of the connections in the
interval. Choose lower values if the interval represents a workload larger than you
want to allow.

After the installation determines the policy values to use, try running with the Log
and Nolimit actions specified. Specifying the Nolimit action basically tests out the
policy. The connections that would have been denied (if the Limit action was
specified) are logged, but the connection is allowed to occur. After the installation
is satisfied with the experimental policy, the policy action can be set to Limit.

The following traffic regulation TCP rules are defined:
v TRTcp-rule: Defines TCP baseline statistics gathering for the low port range.

This temporary rule provides statistical reports to determine normal traffic
patterns for several applications. After the baseline values are determined, this
rule should be replaced by rules that include the specific conditions to be
regulated.

v TRTcpWeb-rule: Defines application limits and host percentage limits for a single
application.
– This rule enforces set limits.
– The rule has a higher priority than the TR TCP rule.

Chapter 18. Intrusion Detection Services 915

– The rule is limited to a single server application that is bound to a specific IP
address.

IDS configuration file example:

##
##
TR Policies
##

#---
TR - IDSRule
#---
IDSRule TRTcpWeb-rule
{

ConditionType TR
Priority 7
IDSTRConditionRef TRTcpWebCondition
IDSActionRef TRTcpLimit-action

}
IDSRule TRTcp-rule
{

ConditionType TR
Priority 2
IDSTRConditionRef TRTcpCondition
IDSActionRef TRTcpLog-action
IpTimeConditionRef Time1

}

#---
TR - IDSTRCondition
#---
IDSTRCondition TRTcpWebCondition
{

Protocol Tcp
LocalPortRange 80
LocalHostAddr 10.14.243.87
TRtcpTotalConnections 1000
TRtcpPercentage 10
TRtcpLimitScope PORT_INSTANCE

}
IDSTRCondition TRTcpCondition
{

Protocol Tcp
LocalPortRange 1:1023

}

#---
TR - IDSAction
#---
IDSAction TRTcpLimit-action
{

ActionType TR LIMIT
IDSReportSet TRTcpLimitReportSet
{

TypeActions Log
TypeActions Statistics
StatType Exception

}
}
IDSAction TRTcpLog-action
{

ActionType TR NOLIMIT
IDSReportSetRef LogStatReportSet

}

#---

916 z/OS V1R12.0 Comm Svr: IP Configuration Guide

IDSReportSet
#---
IDSReportSet LogStatReportSet
{

TypeActions Log
TypeActions Statistics

}

#---
IPTimeCondition
#---
IpTimeCondition Time1
{

TimeOfDayRange 1-22
DayOfWeekMask 0111110

}

If you are using LDAP to define policy, see “IDS TCP traffic regulation policy
example” on page 1550.

The following traffic regulation UDP rule is defined:
v TR UDP: Defines UDP queue size for the low port range.

– This rule provides statistics reports to determine normal traffic patterns for
several applications while monitoring queue sizes.

IDS configuration file example:

##
##
TR Policies
##

#---
TR - IDSRule
#---
IDSRule TRUdp-rule
{

ConditionType TR
Priority 2
IDSTRConditionRef TRUdpCondition
IDSActionRef TRUdpLogLimit-action

}

#---
TR - IDSTRCondition
#---
IDSTRCondition TRUdpCondition
{

Protocol Udp
LocalPortRange 1-1023
TRUdpQueueSize Long

}

#---
TR - IDSAction
#---
IDSAction TRUdpLogLimit-action
{

ActionType TR LIMIT
IDSReportSetRef LogStatReportSet

}

#---
IDSReportSet
#---
IDSReportSet LogStatReportSet

Chapter 18. Intrusion Detection Services 917

{
TypeActions Log
TypeActions Statistics

}

If you are using LDAP to define policy, see “IDS UDP traffic regulation policy
example” on page 1553.

Verification
To verify that policies are correctly defined and functioning properly, consider the
following points:
v Are the policies active?
v Is the expected traffic mapping to the correct policies?
v Are the IDS Policy functions working correctly?

The following subtopics provide more details about these considerations.

Are the correct policies active?
Check your LDAP server log or command output for errors encountered when
your policies were loaded into LDAP. Some LDAP servers treat consecutive blank
lines in an LDIF file as end of file; ensure that all of the policy objects in your
LDIF files are acknowledged by LDAP.

Check your Policy Agent log file for errors while processing your policy.

Use the pasearch command to verify that the intended policies are active and have
the expected attributes for the target stack.

Is the expected traffic mapping to the correct policies?
Use the netstat -k SUMmary command to ensure that the intended policy has been
mapped for each of the Attack types, Scan-Global type and the Scan-Event type for
protocol ICMP. See z/OS Communications Server: IP System Administrator's Commands
for more information on the netstat command.

These IDS functions each select the single highest priority policy for their
respective types at each policy change.

Use the netstat -k PROTOcol TCP and netstat -k PROTOcol UDP commands to
ensure that the intended Scan-Event and TR policies have been mapped to the
intended local sockets.

These IDS functions select the highest priority policy for the Protocol, local Port
and local IP address when there is relevant activity against the socket.

For TCP this usually entails either a listen or the completion of an inbound
connection handshake. For UDP this usually entails either a bind or an inbound
datagram. Scan policies are also selected on some inbound error paths.

Are the IDS policy functions working correctly?
IDS policies that include IDS actions with statistics, log, or syslog set cause the
stack to make log record information available to TRMD. If TRMD is running you
may run the IDS report generator TRMDSTAT against the appropriate log files to
produce reports on the area of interest.

918 z/OS V1R12.0 Comm Svr: IP Configuration Guide

TRMD
TRMD runs as an APF-authorized program. The user ID associated with TRMD
must be defined with a UID of 0, or must be permitted to become a superuser by
having READ access to the BPX.SUPERUSER resource in the FACILITY class. See
the EZARACF member of SEZAINST for sample RACF commands for TRMD.

Use the -p start option or the resolver configuration file to determine the stack that
TRMD uses. Ensure that you specify the -p start option or that the
RESOLVER_CONFIG environment variable is correctly set before starting TRMD.
A separate instance of TRMD must be run for each TCP/IP stack.

The Log records written by TRMD contain two timestamps:
v A timestamp generated when the event was detected by the stack. This

timestamp is generated by the stack and is always Coordinated Universal Time
(UTC).

v A timestamp that is generated when the syslogd record ID is created. This
timestamp is dependent on the setting of the TZ environment variable at the
time that TRMD is started. If you want this timestamp to be based on UTC, then
ensure that the TZ environment variable is properly set (for example, export
TZ=0) before starting TRMD.

You can set the TZ environment variable in the following ways:
v When starting TRMD from the z/OS shell:

Export the TZ environment variable before starting TRMD; you should do this
in /etc/profile or in .profile in the HOME directory. For example, if you are in
the Eastern time zone in the United States:
export TZ=EST5EDT

v When starting TRMD as a started task, use either of the following methods:
– Specify TZ using the ENVAR parameter on the PARM statement in the started

procedure. For example:
// PARM=’ENVAR("TZ=EST5EDT")/’

– Export the TZ environment variable in a file specified with the STDENV DD
statement. For example:
// PARM=’ENVAR("_CEE_ENVFILE=DD:STDENV")/’
//STDENV DD PATH=’/etc/trmd.env’,PATHOPTS=(ORDONLY)

Place the following statement in the /etc/trmd.env file:
TZ=EST5EDT

The use of the STDENV DD statement works well when you want to specify
more than one environment variable; there is a JCL limit of 100 characters on
the PARM parameter. Language Environment recommends a variable record
format for the STDENV file.

You can also set the TZ environment variable for all applications in the CEEPRMxx
PARMLIB member. You should define the TZ environment variable for all three LE
option sets (CEEDOPT, CEECOPT, and CELQDOPT). For example:
CEECOPT(ALL31(ON), ENVAR(’TZ=EST5EDT’))
CEEDOPT(ALL31(ON), ENVAR(’TZ=EST5EDT’))
CELQDOPT(ALL31(ON), ENVAR(’TZ=EST5EDT’))

For more information on specifying run-time options, see z/OS Language
Environment Programming Guide. For details on setting the TZ environment variable,
see z/OS UNIX System Services Command Reference.

Chapter 18. Intrusion Detection Services 919

|
|

|

|

|
|
|

|

|

|
|

|

|
|

|
|

|

|

|
|
|
|

|
|
|

|
|
|

|
|
|

If running multiple instances of TRMD, consider using the syslogd -u option when
starting syslogd. The -u option causes the jobname of the application writing the
log record to be included in the log record.

The TCP/IP stack must be running before TRMD can be started.

TRMD can be started from the z/OS shell or as a started task.

Running TRMD as a started task
A sample procedure is shipped in member EZATRMDP in SEZAINST. Follow the
instructions in the sample member to define your environment.

The offset from Coordinated Universal Time (UTC) of the syslog time in the
timestamp of TRMD messages is determined by the TZ environment variable. If
the timestamp is required in UTC and has not been set by the TZ environment
variable, specify the following in the TRMD procedure:
// PARM=(’POSIX(ON) ALL31(ON)’,
// ’ENVAR("LIBPATH=/usr/lib"’,
// ’"TZ=0")/-d 1’)

To start TRMD as a started task, use the S TRMD command from the MVS console
or SDSF. TRMD issues a fork, and in some cases the job name will be the original
job name with a number appended. For example, S TRMD might result in the
TRMD started task running under the job name TRMD1, whereas S TRMDTASK
would result in the TRMD started task running under the job name TRMDTASK.
Use the D A,TRMD* command to verify the job name that TRMD is running
under.

If running as a started task, issue P jobname to stop TRMD.

To automatically start TRMD when the TCP/IP stack is started, add TRMD to the
AUTOLOG statement in the TCP/IP profile as follows:
AUTOLOG

TRMD JOBNAME TRMD
ENDAUTOLOG

Running TRMD from the z/OS UNIX shell
Ensure that you specify the -p start option or that the RESOLVER_CONFIG
environment variable is correctly set before starting trmd.

The offset from Coordinated Universal Time (UTC) of the syslog time in the
timestamp of TRMD messages is determined by the TZ environment variable. If
the timestamp is to appear in Coordinated Universal Time (UTC), change the TZ
specification in /etc/profile or export TZ="0" before starting TRMD.

After the proper environment is set up, issue the following to start TRMD:
trmd

Stopping TRMD
To stop TRMD, issue the following kill command :
kill -s TERM pid

where pid is the TRMD process ID

920 z/OS V1R12.0 Comm Svr: IP Configuration Guide

To obtain the TRMD process ID, issue the following z/OS UNIX command:
ps -A

Debug options can also be specified when starting TRMD. See z/OS Communications
Server: IP Configuration Reference for more information.

TRMDSTAT
Trmdstat is a utility program that runs from the z/OS UNIX shell. Trmdstat reads
a log file, analyzes the log records generated by TRMD, and provides summary or
detailed reports based on the options specified.

The following reports can be requested:
v Overall summary of logged connection events
v IDS summary of logged events
v Reports of logged connection events
v Reports of logged intrusions defined in the ATTACK policy
v Reports of logged intrusions defined in the TCP policy
v Reports of logged intrusions defined in the UDP policy
v Reports of statistics events

See z/OS Communications Server: IP System Administrator's Commands for the
TRMDSTAT command and samples of the reports generated by TRMDSTAT.

Defensive filtering
An external security information and event manager, by analyzing and correlating
messages from multiple sources and systems in the network, can take action to
block attacks by installing defensive filters in your TCP/IP stack. A defensive filter
is a rule to discard packets, and is separate from IP security filters. Filter
processing matches a defensive filter rule to data traffic based on any combination
of IP source or destination address, protocol, source or destination port, or
direction of flow. Filter processing checks defensive filters before IP security filters.

The z/OS UNIX ipsec command is used to add and manage defensive filters.
Defensive filters are typically added as an automated action that results from the
analysis of the external security information and event manager. However, you can
also add a defensive filter by manually issuing the ipsec command. The Defense
Manager Daemon (DMD) is an integral part of managing the defensive filters.

Figure 30 on page 145 shows an overview of defensive filtering and the DMD.

For more information about defensive filters and the DMD, see Chapter 21,
“Defensive filtering,” on page 1177.

Chapter 18. Intrusion Detection Services 921

922 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Chapter 19. IP security

This topic contains a description of IP filtering, IPSec-protected traffic, and
preparing and configuring a z/OS system for IP security. Various business
configurations are explained, including host-to-host, host-to-gateway,
gateway-to-gateway, and gateway-to-host.

Terms and concepts for IP security
The following terms and concepts are used in this information:

3DES Also known as triple DES, this encryption method uses three DES
operations on a single data block with three different keys. Provides
greater security than single DES.

Active Used in three ways:
v Describes the filter policy that is in effect (default or Policy Agent).
v Describes the state of the rules or actions that are defined in Policy

Agent. These rules or actions can be active or inactive due to a time
condition.

v Describes the state of a manual tunnel installed in the TCP/IP stack. A
manual tunnel can be active (available for use) or inactive (not available
for use).

Active IPSec policy
The policy that is in effect, either the default filter policy or the IP security
filter policy.

Advanced Encryption Standard (AES)
A symmetric block cipher that can encrypt (encipher) and decrypt
(decipher) information. IP security for z/OS Communications Server
supports AES with a 128-bit key length.

AES Cipher Block Chaining (CBC) (AES_CBC) mode
The AES algorithm using the CBC mode. IP security for z/OS
Communications Server supports AES_CBC with a 128-bit or 256-bit key
length.

AES Galois Counter Mode (GCM)
The AES algorithm using Galois Counter Mode and with a 16-byte
integrity check value (ICV). Galois Counter Mode is a combined-mode
algorithm that performs both encryption and authentication
simultaneously. IP security for z/OS Communications Server supports
AES_GCM with a 128-bit or 256-bit key length.

AES Galois Message Authentication Code (GMAC)
The AES algorithm using Galois Counter Mode to encode authentication
data in either AH or ESP headers. AES_GMAC functions as a
combined-mode algorithm; however, it provides authentication without
encryption. IP security for z/OS Communications Server supports
AES_GMAC with a 128-bit or 256-bit key length.

AES Extended Cipher Block Chaining (XCBC)
The AES algorithm using the XCBC mode to encode authentication data in
either AH or ESP headers, with 128-bit keys and hash truncation to 96 bits.

© Copyright IBM Corp. 2000, 2011 923

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

Asymmetric encryption
Also known as public/private key encryption, this type of encryption is
performed between two parties using pairs of encryption and decryption
keys.

Authentication Header (AH)
An IP protocol (51) used with an IPSec Security Association to provide
authentication of IP packets.

Autoactivation
The process by which a dynamic tunnel is activated when IP security
policy is installed into the TCP/IP stack, either as the result of a user
action, or the result of TCP/IP or the IKED initialization.

Certificate authority
A trusted third party that verifies information that is contained in an X.509
digital certificate.

Certificate revocation list (CRL)
A time-stamped list of revoked certificates that is signed by a certificate
authority.

Child Security Association
The IKEv2 name for a phase 2 Security Association.

Command-line activation
The process of activating a tunnel through the use of the ipsec command.
Both manual and dynamic tunnels can be activated from the z/OS UNIX
command line.

CRLDistributionPoints
An optional x.509 certificate extension that identifies one or more locations
where the CRL for a certificate resides.

Data encryption standard (DES)
A block cipher with 64-bit blocks and a 56-bit key.

Default IP filter policy
Used until the IP security filter policy is installed by Policy Agent. The
default IP filter policy includes both the filter rules you define in the
TCP/IP profile and the implicit default filter rules that the stack generates.
The implicit default filter rules deny all traffic that does not match any
configured filter rule.

Dynamic tunnel
An IPSec tunnel whose security parameters are negotiated and whose
encryption keys are generated dynamically using IKE.

Elliptic curve digital signature algorithm (ECDSA)
The algorithm that is used to authenticate a remote security endpoint using
ECDSA with either SHA2-256 on the P-256 curve, SHA2-384 on the P-384
curve, or SHA2-521 on the P-521 curve.

Encapsulating Security Payload (ESP)
An IP protocol (50) used with an IPSec Security Association to provide
authentication and encryption of IP packets.

Hashed message authentication code (HMAC)
A one-way hash function that combines the contents of a message and a
secret key to produce a hash value; used for authentication.

HMAC_MD5
HMAC using the MD5 algorithm.

924 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|

|
|

|
|
|

|
|
|
|

HMAC_SHA1
HMAC using a SHA1 algorithm that encodes authentication data in AH or
ESP headers, using a 160-bit hash value and 96-bit integrity check value
(ICV).

HMAC_SHA2
HMAC using a SHA2 algorithm that encodes authentication data in AH or
ESP headers and that is qualified by the length of key and hash truncation.
The algorithm can have 256-bit keys and hash truncation to 128 bits,
384-bit keys and hash truncation to 192 bits, or 512-bit keys and hash
truncation to 256 bits.

IKE negotiation
A process by which two communicating IKE-enabled peers agree on a set
of parameters that are used to protect traffic between them. This set of
parameters is collectively known as a Security Association. One peer acts
as the initiator of the negotiation, the other as the responder.

IKE Security Association
The IKEv2 name for a phase 1 Security Association.

IKE tunnel
A tunnel that protects IKE phase 2 messages.

Internet Key Exchange (IKE)
A protocol for the secure generation and management of encryption keys
over an existing IP network. There are two versions, commonly referred to
as IKE version 1.0 (IKEv1) and IKE version 2.0 (IKEv2).

Internet Security Association and Key Management Protocol (ISAKMP)
Defines IKEv1 procedures and packet formats to establish, negotiate,
modify, and delete Security Associations.

IP filter rule
A configured rule that defines the action applied to an IP traffic pattern
that is encompassed by the rule. The possible actions include permit, deny,
and permit with IPSec protection.

IP filter table
An ordered list of IP filter rules. When IP filtering is active on a host, the
table is consulted for each IP packet that is sent or received. The action of
the matching IP filter rule is enforced by the TCP/IP stack.

IPSec A suite of protocols and standards defined by the Internet Engineering
Task Force (IETF) for secure communication over an existing IP network.

IPSec tunnel
A tunnel that protects IP traffic between two endpoints using one or both
of the IPSec protocols. Manual and dynamic tunnels are both instances of
an IPSec tunnel.

IP security filter policy
The policy that is installed by the Policy Agent. It includes the filter rules
you define in the Policy Agent configuration files and an implicit deny all
rule that is generated by Policy Agent.

IP traffic pattern
The set of IP traffic attributes that can be used as input to an IP filter table
query. Typically, this includes IP source address, IP destination address,
source port, destination port, protocol, and direction (inbound or
outbound).

Chapter 19. IP security 925

|
|
|
|

|
|
|
|
|
|

|
|

|
|

|

Manual tunnel
An IPSec tunnel whose security parameters and encryption keys are
statically configured and must be manually managed by a security
administrator.

Message authentication code (MAC)
A tag derived from the contents of a message and a secret key. The tag can
be used to authenticate the integrity of a message as well as the source of
the message.

Message digest algorithm 5 (MD5)
A MAC algorithm that produces a 128-bit hash value.

NAT traversal (NATT)
Traversal of IPSec traffic through a NAT device.

Network address port translation (NAPT)
A technique where multiple internal IP addresses are translated into a
single public IP address. As part of this translation process, the TCP and
UDP ports in the packets are translated. NAPT is sometimes referred to as
port address translation (PAT) or IP masquerade.

Network address translation (NAT)
Network address translation is a broad term that encompasses both a
one-to-one address translation function, translating a single internal IP
address to a single public IP address, and the NAPT function.

Network security services (NSS)
Services performed in support of security enforcement or management.

NSS client
Requests network security services from an NSS server. The z/OS IKE
daemon can act as an NSS client for a TCP/IP stack.

NSS server
Provides network security services for one or more NSS clients.

On-demand
The process by which a dynamic tunnel is activated by outbound traffic
flow without user intervention.

Phase 1
The first stage of an IKE negotiation, in which an ISAKMP Security
Association is established between two IKEv1-enabled peers, or in which
an IKE Security Association is negotiated between two IKEv2-enabled
peers. A phase 1 Security Association refers to IKEv1 ISAKMP SAs, as well
as to IKEv2 IKE SAs.

Phase 2
The second stage of an IKE negotiation, in which an IPSec Security
Association is established between two IKEv1-enabled peers, or in which a
child Security Association is negotiated between two IKEv2-enabled peers.
A phase 2 Security Association refers to IKEv1 IPSec SAs, as well as to
IKEv2 child SAs.

Rivest Shamir Adleman (RSA)
An asymmetric key encryption method, in which the key that is used to
encrypt data is different than the key that is used to decrypt the data. RSA
can be used for encryption, or to authenticate a digital signature.

926 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|
|
|
|
|

|
|
|
|
|

Secure hash algorithm 1 (SHA1)
A MAC algorithm similar to MD5, but more secure. This algorithm
produces a 160-bit hash value.

Secure hash algorithm 2 (SHA2)
A MAC algorithm similar to SHA1, but more secure. This algorithm
produces a 256-bit, 384-bit or 512-bit hash value.

Security Association (SA)
An agreement between two IPSec-enabled hosts that describes the type of
data to protect and the methods that are used to protect the data. IKE
creates a phase 1 Security Association to protect IKE messages (also known
as the ISAKMP Security Association or the IKE Security Association), and a
phase 2 Security Association to protect data traffic (also known as the
IPSec Security Association or the child Security Association).

Symmetric encryption
Encryption that is performed between two parties sharing the same
encryption key. Also known as secret key encryption.

Transport mode encapsulation
A process used to construct IPSec packets by inserting one or more
additional IPSec headers between the IP header to be protected and the IP
payload of the packet to be protected.

Tunnel
A secure logical connection or channel that is defined by a collection of
Security Associations that define the security parameters protecting traffic
between two endpoints.

Tunnel activation
The process by which a tunnel becomes active or usable. For dynamic
tunnels, this process involves initiating an IKE negotiation.

Tunnel mode encapsulation
A process used to construct IPSec packets by creating a new IP header with
an IP payload consisting of the entire IP packet being protected, and then
inserting one or more additional IPSec headers between the new IP header
and its IP payload (that is, the original IP packet).

UDP encapsulation
A process used to construct IPSec packets by first applying tunnel mode
encapsulation or transport mode encapsulation to an IP packet to be
protected by the ESP protocol, and then inserting a UDP header between
the IP header and the ESP header.

Virtual private network (VPN)
A logical network of connected network nodes that communicate through
secure channels (tunnels), typically by using the IPSec protocols (AH and
ESP).

X.500 distinguished name
A collection of X.509 values, such as common name, host name,
organization, organizational unit, and so on, that is stored in an X.509
digital certificate. An X.500 distinguished name is used as a globally
unique identifier for the owner.

X.509 digital certificate
A set of information in the X.509 standard containing various attributes
about an entity, including identity information and a public key that is
used for encrypted communications with that entity.

Chapter 19. IP security 927

|
|

|
|
|

|
|
|
|
|
|

Terminology conventions for IP security
The following terminology conventions are used throughout this information when
referring to z/OS IP security:

IP security
The z/OS Communications Server function.

IPSec The protocol suite.

ipsec The action associated with an IP filter action, or the z/OS UNIX System
Services command.

IPSEC The statement in the TCP/IP profile.

IPSECURITY
The parameter on the IPCONFIG statement in the TCP/IP profile.

NAT The general network address translation function. NAT encompasses both
one-to-one address translation and network address port translation.

NAPT Network address port translation. This term is used when information is
specific only to this form of NAT.

Commands used to administer IP security
The following commands are used to administer IP security. For more information
on these commands, see z/OS Communications Server: IP System Administrator's
Commands.

certbundle
Use the z/OS UNIX System Services certbundle command to create a
certificate bundle file that contains certificate and CRL information.

ipsec Use the z/OS UNIX System Services ipsec command to display
information about active filters and Security Associations, and to control
aspects of Security Association negotiation. The ipsec command is used to:
v Display filters that are active in the stack
v Revert to default IP filter policy, as defined in the TCP/IP profile
v Reload IP security policy, as defined in the Policy Agent configuration

files
v Activate Security Association negotiations
v Display existing phase 1 Security Associations
v Display existing phase 2 Security Associations
v Display remote port mappings used with NAT traversal configurations
v Display network security configuration information for the active stacks

on the local system
v Display information for each NSS IPSec client that is currently connected

to the NSS server
v Refresh existing phase 1 Security Associations
v Refresh existing phase 2 Security Associations
v Deactivate existing phase 1 Security Associations
v Deactivate existing phase 2 Security Associations
v Test for a filter rule match for a given set of IP traffic characteristics

928 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|

|
|

|
|

Authority to use the ipsec command is controlled through RACF. There are
two distinct types of SERVAUTH profiles that define access to the ipsec
command, one for display capabilities and one for control capabilities.

Tip: Many of the tasks, examples, and references in this information
assume that you are using the z/OS Security Server (RACF). References to
RACF apply to any other SAF-compliant security products that contain the
required support. If you are using another security product, read the
documentation for that product for instructions on task performance.

For the steps to configure access control to the ipsec command, see
Appendix E, “Steps for preparing to run IP security,” on page 1505.

For detailed syntax and usage, and how to control access of the ipsec
command, see z/OS Communications Server: IP System Administrator's
Commands.

pasearch
Use the pasearch command to display Policy Agent information that is
defined in the Policy Agent configuration files, including IP security and
other types of policies. The options that are related to IP security include
the ability to view IP security policy rules and actions, both active and
inactive, for any TCP/IP stack for which policies have been defined and
that is IPSECURITY-enabled.

If the user of the pasearch command is not a superuser, authority is
controlled through RACF.

For detailed syntax and usage of the pasearch command, see z/OS
Communications Server: IP System Administrator's Commands.

MODIFY
Use the MODIFY console command to have:
v The IKE daemon reread the IKED configuration file
v Policy Agent reread the Policy Agent configuration files

For detailed syntax and usage of the MODIFY command, see z/OS
Communications Server: IP System Administrator's Commands.

Netstat
Use the Netstat command to display the following:
v IPSECURITY enablement for a particular stack (Netstat CONFIG/-f)
v SecurityClass (SECCLASS) for a specific interface (Netstat

DEVLINKS/-d)

For detailed syntax and usage of the Netstat command, see z/OS
Communications Server: IP System Administrator's Commands.

Overview of using IP security
z/OS Communications Server provides the ability to control and monitor network
traffic on one or more TCP/IP stacks on a z/OS system. IP security for z/OS
Communications Server supports IP filtering, IPSec, and Internet Key Exchange
(IKE). IP security for z/OS Communications Server supports two versions of the
IKE protocol: IKEv1 and IKEv2. See “Dynamic key management - IKE and IPSec
negotiations” on page 974 for more information.

IP security policy can be used for the following:
v Protect a secure host on an internal network from unwanted network traffic

Chapter 19. IP security 929

|
|
|
|
|
|

v Provide protection for traffic between partner companies over connected
networks

v Allow secure sending of data over the Internet by providing IPSec virtual
private network (VPN) support

These features are implemented in the IP layer on a per packet basis, and thus are
available to any network application without requiring any special modifications.
Applications can also implement their own additional security features as
necessary, on top of the underlying IP security.

IP security policy is enabled, enforced, managed, and monitored through a
coordinated effort of several z/OS Communications Server components:
v Policy Agent

The Policy Agent is used to configure IP security on a z/OS system. It reads the
configuration files that contain the IP security policy configuration statements,
checks them for errors, and installs them into the IKE daemon and the TCP/IP
stack.

v Internet Key Exchange daemon (IKED)
The Internet Key Exchange daemon is responsible for retrieving IP security
policy from Policy Agent, and dynamically managing keys that are associated
with dynamic IPSec VPNs. This daemon also provides network management
capabilities for IP security aspects of local TCP/IP stacks.

v Network Security Services daemon (NSSD)
The Network Security Services daemon provides the NSS server functionality. It
provides the NSS IPSec certificate service to perform digital signature creation
and verification operations on behalf of NSS IPSec clients. The NSS IPSec
certificate service is used by the IKED during phase 1 negotiations when digital
signature authentication is required.

v TCP/IP stack
The stack maintains a list of currently active IP filters and IPSec Security
Associations, actively filters network traffic, controls encryption and decryption
of network data, and maintains counters that are associated with an IPSec
Security Association lifetime.

v Traffic Regulation Manager daemon (TRMD)
The Traffic Regulation Manager daemon is responsible for logging IP security
events that are detected by the stack, including IP filter events, updates to IP
security policy, and the creation, deletion, and refresh of IPSec Security
Associations.

v System logging daemon (syslogd)
The system logging daemon manages the logging of messages and events for all
of the other components, including where the log messages are written.

These components provide a combination of technologies that form the basis of IP
security:
v IP filtering
v IP filter logging
v Data encryption and authentication

FIPS 140 and IP security
The Internet Key Exchange daemon (IKED), the network security services daemon
(NSSD), and the TCP/IP stack components perform a wide variety of

930 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|
|
|
|
|

|

|
|

cryptographic operations for IP Security. The IKED and the NSSD manage
cryptographic keys and digital signatures and perform hashes for authentication.
The IKED and the TCP/IP stacks perform encryption and decryption of messages
that flow over the IPSec tunnels. Architectural enhancements to the IKE protocols
periodically introduce new cryptographic algorithms for performing hashes and
encryption.

Federal Information Processing Standards (FIPS) document 140 (FIPS 140) provides
a higher degree of assurance of the integrity of cryptographic operations by
placing restrictions on the cryptographic components and the operations
performed by these components. Weaker algorithms are forbidden and all the
operations must be performed by cryptographic modules that are contained within
a well defined cryptographic boundary.

You can configure the IKED, the NSSD, and the TCP/IP stack components to
operate in FIPS 140 mode. When you do, you restrict the cryptographic algorithms
they support, and you modify their interactions with each other and with the other
hardware and software components of the z/OS system related to cryptography,
such as Integrated Cryptographic Services Facility (ICSF) and System SSL.

In FIPS 140 mode, the IKED, the NSSD and the TCP/IP stacks enforce the
following restrictions on the cryptographic algorithms that can be used for IP
security:
v You cannot use the DES encryption algorithm.
v You cannot use the HMAC-MD5, HMAC-MD5-96, AES128-XCBC, and

AES128-XCBC-96 algorithms for authentication or pseudo-random function.
v You cannot use Diffie-Hellman groups 1, 2, and 5.
v You cannot use certificates for RSA signature authentication that have key

lengths less than 1024 bits.
v You cannot use pre-shared keys whose length is less than half the key size of the

chosen HowToAuthMsgs (IKEv1) or PseudoRandomFunction (IKEv2) algorithm.

When the FIPS 140 mode is configured for a TCP/IP stack, the Policy Agent
enforces some of the FIPS 140-related restrictions when it parses the IP security
policy files. Other restrictions are enforced when dynamic tunnels are being
activated, after the FIPS 140 mode of all of the relevant software components (the
IKED and the NSSD) is known.

You configure FIPS 140 mode independently for each of the IKED, the NSSD and
the TCP/IP stack components. FIPS 140 mode must also be configured in ICSF and
System SSL. If you use FIPS 140 mode in some components and not others, the
resulting system might not operate in FIPS 140 mode. The components that are
configured to use FIPS 140 mode can only use cryptographic services from
components that are also operating in FIPS 140 mode, so the FIPS 140 mode
mismatch can cause functional problems.
v If a TCP/IP stack is configured to use FIPS 140 mode, but the IKED is not, the

IKED does not perform any dynamic VPN tunnel activations for the stack. The
IKED performs many cryptographic operations on behalf of the stack during
tunnel activation.
Rule: Whenever the stack is configured for FIPS 140 mode, also configure FIPS
140 mode for the IKED.

v If the IKED and the TCP/IP stacks it supports are configured to use FIPS 140
mode, but the NSSD is not, the IKED cannot use the NSS IPSec certificate
service for its stacks. Because the IKED must use the NSS IPSec certificate

Chapter 19. IP security 931

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|

|

|
|

|

|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|

|
|
|

service to create and verify digital signatures for IKEv2 tunnels, this FIPS 140
mode mismatch prevents activation of any IKEv2 tunnels that use digital
signature authentication.
Rule: Whenever the IKED is configured for FIPS 140 mode, also configure FIPS
140 mode for the NSSD.

v If you have a sysplex that is configured for Sysplex Wide Security Associations
(SWSA), and the distributor stack is not configured to use FIPS 140 mode, then
it will not be able to successfully distribute tunnels to target stacks that are
configured in FIPS 140 mode.
Rule: Whenever you have target stacks that are configured in FIPS 140 mode,
first configure FIPS 140 mode for the distributing stack.

When possible, you should enable FIPS 140 mode for the IKED, the NSSD, and the
TCP/IP stacks all at once. If you must implement FIPS 140 support in stages,
enable FIPS 140 mode in the components in the following order:
1. Configure FIPS 140 mode in the NSSD. If the NSSD is configured in FIPS 140

mode and the IKED and the TCP/IP stacks are not, the IKED still uses the NSS
IPSec certificate service provided by the NSSD. Note that the NSSD creates and
verifies signatures only for certificates that conform to FIPS 140 restrictions,
even if the IPSec client is not operating in FIPS 140 mode.

2. Configure FIPS 140 mode in the IKED. When the NSSD and the IKED are both
in FIPS 140 mode, but the stacks are not, dynamic VPN tunnels can be
activated and data can flow, as long as those tunnels follow the FIPS 140
cryptographic algorithm restrictions.

3. If you are using SWSA in a sysplex, configure FIPS 140 mode in the distributor
stack of the sysplex.

4. Configure FIPS 140 mode in all other TCP/IP stacks.

Enabling FIPS 140 mode on a system can affect performance. For example, you
might have to change from using a weak encryption algorithm to using one that
requires more processing to perform. Even if no algorithm changes are necessary,
the IKED, the NSSD, and the TCP/IP stacks perform their cryptography operations
in a different way when FIPS 140 mode is enabled than when it is not enabled,
because FIPS 140 imposes additional self-verification requirements and access
restrictions, and because hardware accelerated implementations of some
cryptographic operations might not be available in FIPS 140 mode.

Steps for configuring IP security to support FIPS 140 mode
To configure IP security to support FIPS 140 mode, perform the following steps for
each system and stack that needs to use FIPS 140 mode. If you are using Sysplex
Wide Security Associations (SWSA), perform these steps first on your distributor
and backup stacks, and then on each of your target stacks.
1. Ensure that Integrated Cryptographic Services Facility (ICSF) is started and that

FIPS 140 mode is enabled for ICSF.
Tip: You do not need to create TKDS data sets in order for IP security to use
ICSF.
For more information about enabling FIPS 140 mode for ICSF, see z/OS
Cryptographic Services ICSF Administrator's Guide.

2. Ensure that one of the following conditions are true:
v The SAF class CRYPTOZ is not active.
v No SAF profile exists for the FIPSEXEMPT.SYSTOK-SESSION-ONLY resource

in the CRYPTOZ class.

932 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|

|
|

|
|
|
|

|
|

|
|
|

|
|
|
|
|

|
|
|
|

|
|

|

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|

|
|

|
|

|

|

|
|

v The IKED, the NSSD, and the TCP/IP stacks that are configured in FIPS 140
mode have no access (NONE) to the SAF resource FIPSEXEMPT.SYSTOK-
SESSION-ONLY in the CRYPTOZ class.
Tip: A single z/OS system can support multiple TCP/IP stacks, and you can
configure some TCP/IP stacks with FIPS 140 support and others without
FIPS 140 support. The stacks that are configured in FIPS 140 mode must have
no access to the SAF resource FIPSEXEMPT.SYSTOK-SESSION-ONLY in the
CRYPTOZ class.

3. Ensure that System SSL FIPS 140 support is available and configured. For more
information, see the information about System SSL and FIPS 140-2 in z/OS
Cryptographic Services System SSL Programming.

4. If you are using network security services (NSS), configure NSS to support FIPS
140.
You can configure FIPS 140 by specifying Yes as the FIPS140 value in the NSS
configuration file (for example, nssd.conf). In the Configuration Assistant,
configure the FIPS 140 option in the Advanced Server Settings for NSS in the
NSS perspective.
After you have configured FIPS 140, restart the NSS daemon if it was active.
Tip: If TCP/IP is enabled for FIPS 140 but the NSSD is not, then the NSSD
cannot provide NSS certificate services to the TCP/IP stack.

5. Configure IKE to support FIPS 140.
You can configure FIPS 140 by specifying Yes as the FIPS140 value in the IKED
configuration file (for example, iked.conf). In the Configuration Assistant,
configure the FIPS 140 option in the Advanced IKE Daemon Settings in the
IPSec perspective.
After you have configured FIPS 140, restart the IKE daemon if it was active.
Tip: If TCP/IP is enabled for FIPS 140 but the IKED is not, then the IKED will
not negotiate dynamic VPN tunnels for that TCP/IP stack.

6. Configure the TCP/IP stack to support FIPS 140.
You can configure FIPS 140 by specifying FIPS140 Yes on the IpFilterPolicy
statement in the IPSec policy file for the stack. In the Configuration Assistant,
configure the FIPS 140 option in the Advanced Stack Settings in the IPSec
perspective.
After you have configured FIPS 140, restart the stack if it was active.

Configuring IP security
You configure z/OS IP security using an extensive set of configuration statements
and parameters coded into a flat file, which is parsed by the Policy Agent to
establish the set of IP security requirements for each TCP/IP stack. IBM provides
two alternatives for creating the Policy Agent configuration files:
v “Configuring IP security using the IBM Configuration Assistant for z/OS

Communications Server”
v “Configuring IP security using manual configuration” on page 934

Configuring IP security using the IBM Configuration Assistant for
z/OS Communications Server
The IBM Configuration Assistant for z/OS Communications Server, an optional
GUI-based tool, provides a guided interface for configuring TCP/IP policy-based
networking functions. You can use the Configuration Assistant to generate the
Policy Agent and IKE daemon configuration files.

The Configuration Assistant is available in either of the following forms:

Chapter 19. IP security 933

|
|
|

|
|
|
|
|

|
|
|

|
|

|
|
|
|

|

|
|

|

|
|
|
|

|

|
|

|

|
|
|
|

|

|

|
|

|

v As a task in IBM z/OS Management Facility (z/OSMF). z/OSMF provides a
Web browser interface for a variety of z/OS system management functions.
When invoked in z/OSMF, the Configuration Assistant runs natively in the
z/OS system and is accessed by your system administrators through a Web
browser. To use the Configuration Assistant in z/OSMF, your system must be
running z/OS V1R11 or later.

v As a stand-alone application that you can run on your workstation. You can
download the Configuration Assistant from the z/OS Communications Server
product support Web page.

It is possible to use the Configuration Assistant on your workstation, and then
later migrate your work to the z/OSMF environment. Information on transferring
Configuation Assistant data to z/OSMF is provided in IBM z/OS Management
Facility Configuration Guide.

Through a series of wizards and online help panels, you can use the Configuration
Assistant to create IP security configuration files for any number of z/OS images
with any number of TCP/IP stacks per image. Using the Configuration Assistant,
there are four types of reusable objects:
v Traffic descriptors that define the IP traffic type, such as TCP or UDP
v Security levels that define the different ways to protect data, such as the

encryption level
v Requirement maps that map traffic descriptors to security levels

A single requirement map should contain a complete set of security
requirements that will govern the level of security for multiple IP traffic types.

v Address groups that define a set of addresses to be used in an IP filter rule

For each TCP/IP stack, you create a set of connectivity rules that indicate the data
endpoints and indicate which requirement map will govern security between the
data endpoints.

The Configuration Assistant comes with a number of IBM-supplied traffic
descriptors, security levels, and requirement maps that are easily applied to an
existing network topology, or the IBM-supplied definitions can be used as the basis
for your own set of reusable objects.

The Configuration Assistant can dramatically reduce the amount of time that is
required to create IP security policy files, contributing to ease of configuration and
maintenance. Because of the inherently complex nature of z/OS security, use of the
GUI is encouraged to ensure that you have a consistent and easily manageable
interface for implementing IP security.

This information primarily describes option 2, manual configuration. However, if
you are using the Configuration Assistant, reading this information will help you
understand security concepts and the relationship between Policy Agent and IP
security function.

Configuring IP security using manual configuration
You can manually create the IP security policy configuration files by coding all of
the required statements in a z/OS UNIX file or MVS data set. There are a large
number of configuration options provided by IP security policy statements that
permit advanced users to carefully fine-tune IP security policy on a per-stack basis.
This information describes the procedure for creating an IP security policy by
manually creating and editing the configuration files. There are examples that step
through the process of creating a configuration file that includes zones

934 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|

|

|

|
|
|
|

|

|

|

|

|

http://www.ibm.com/software/network/commserver/zos/support/
http://www.ibm.com/software/network/commserver/zos/support/

corresponding to various security models. For details about the configuration
statements and parameters, see the Policy Agent and policy applications topic in
z/OS Communications Server: IP Configuration Reference.

Specifying the IP security configuration file based on Policy
Agent role
The Policy Agent can act as a policy server, a policy client, or neither. For more
information on these different roles, see “Policy types and infrastructure overview”
on page 829. Regardless of which option is used to configure IP security policies,
the resulting configuration files need to be specified using different statements,
depending on the role of the Policy Agent.
v If you are using the Policy Agent as a policy client that retrieves IP security

policies from the policy server, specify the configuration files using the
DynamicConfigPolicyLoad statement on the policy server.

v If you are using the Policy Agent as a policy client, but the policy client does not
retrieve IP security policies from the policy server, specify the configuration files
using the IPSecConfig statement on the policy client.

v If you are not using a policy client/policy server environment, specify the
configuration files using the IPSecConfig statement on the single Policy Agent.

When this information refers to configuration files, keep in mind where the files
should exist, based on the role of the Policy Agent.

IP filtering
IP filtering controls the flow of network traffic. An administrator can deny or allow
any given network packet into or out of a z/OS system with an IP security policy.

Filter rules and actions
The IP security policy enables a z/OS system to classify any IP packet that comes
across a network interface and take specific action according to a predefined set of
rules. The set of properties that identify a packet, together with the action to be
performed on it, is known as an IP filter rule. The rule can be used to filter out
unwanted packets from the network stream, while allowing others. The collection
of all filter rules comprise the IP filter table. The IP filter table contains all of the IP
filter rules in the order in which they were configured. IP filter rules are
configured using the IpFilterRule statement in an IP security policy configuration
file. For more details about the IpFilterRule statement, see z/OS Communications
Server: IP Configuration Reference.

For example, a simple filter table might have the following set of rules:
1. Allow Telnet traffic from IP address A.
2. Allow FTP traffic from IP address B and IP address C.
3. Allow any traffic from subnet D, but ensure that it is encrypted.
4. Allow encrypted traffic from any location if the remote IKE identity is a

corporate email address.
5. Allow outbound connections to anywhere.
6. Deny anything that does not match the previous rules.

This set of rules would be considered to be a filter table consisting of six rules.

The filter table that is configured for a particular installation reflects the security
needs for that site. The rules can be restrictive or permissive, as the security policy

Chapter 19. IP security 935

allows. Normally the rules would deny anything not explicitly permitted, a
configuration known as a default-deny policy, in which rules are added as
necessary to allow only crucial network traffic. In a default-deny environment, the
absence of any IP filter rules essentially isolates the system from the network. The
alternative, a default-allow policy, allows all network traffic in the absence of any
configured rules. Specific rules can be added as needed to deny unwanted or
potentially malicious traffic. A default-deny policy is considered to be much more
secure.

Rule: A z/OS Communications Server TCP/IP stack that is configured for IP
security follows a default-deny policy by default, in the absence of any configured
filter rules.

IP filter tables can grow very complex, and in many implementations are difficult
to maintain. However, the configuration mechanism that is provided by IP security
enables you to attach meaningful descriptors to rules, hosts, and other configured
items, which makes keeping track of complex filter tables an easier task.

To protect data between hosts, hosts must agree on what type of traffic to protect,
and how to protect that traffic. These IP traffic pattern definitions are stored in the
locally configured security policy and installed in the IP filter table, which is
consulted for each IP packet that enters or leaves the system. When a packet
matches one of the rules in the IP filter table, the policy determines what action is
taken for that packet. IP filter actions are configured using the
IpGenericFilterAction statement in an IP security policy configuration file. For
more details about the IpGenericFilterAction statement, see z/OS Communications
Server: IP Configuration Reference.

On a z/OS stack that has IPCONFIG IPSECURITY configured (and perhaps also
has IPCONFIG6 IPSECURITY configured) and an active IP security policy, there
are three possible actions:
v Deny the packet.
v Permit the packet.
v Permit the packet with IPSec protection.

If the action that is associated with the filter rule is an ipsec action, the packet is
subject to the application of IPSec authentication and encryption before it is
received or sent. Any packet that matches a filter rule with an ipsec action is
processed using the IPSec protocols, either Authentication Header (AH),
Encapsulating Security Payload (ESP), or both, depending on the locally configured
policy. z/OS IP security requires that data authentication be done if the filter rule
specifies an ipsec action.

Filtering criteria in an IP packet
IP packets match IP filters based on a number of selection criteria. There are five
primary pieces of information that are gathered from the IP packet, commonly
referred to as a 5-tuple:
v Source address

An IP packet can be filtered based on the source address located in the IP
header of the packet.

v Destination address
An IP packet can be filtered based on the destination address located in the IP
header of the packet. For IPv6 packets that contain a type 0 or type 2 routing

936 z/OS V1R12.0 Comm Svr: IP Configuration Guide

header, the stack performs IP filtering using the final destination address of the
packet based on the routing header contents, not on the destination address in
the IP header.

v Protocol
An IP packet can be filtered based on the protocol in the IP header of the packet.

v Source port
If the protocol in an IP packet is TCP or UDP, the packet can be filtered based
on the source port in the TCP/UDP header of the data portion of the packet.

v Destination port
If the protocol in an IP packet is TCP or UDP, the packet can be filtered based
on the destination port in the TCP/UDP header of the data portion of the
packet.

Additional filtering criteria based on protocol
Following are some additional filtering criteria that are based on protocol:
v ICMP type and code

If the protocol in an IP packet is ICMP or ICMPv6, the packet can be filtered
based on the ICMP type and code located in the ICMP header of the data
portion of the packet.
Guideline: Typically, if an ICMP error is generated for a packet that arrived over
a Security Association, and there is no matching rule for the ICMP error, z/OS
Communications Server attempts to send the ICMP packet over the same
Security Association that carried the original packet. If you want to disable this
processing, you must code a rule that covers ICMP errors.

v OSPF type
If the protocol in an IP packet is OSPF, the packet can be filtered based on the
OSPF type located in the OSPF header of the data portion of the packet.

v Mobility header type
If the protocol in an IP packet is IPv6 mobility header, the packet can be filtered
based on the mobility header type located in the mobility header of the data
portion of the packet.

Additional filtering criteria based on network attributes
Some filtering criteria are inferred from the external characteristics of the IP traffic,
rather than being found in the actual IP packet. The following additional attributes
are used to distinguish IP packets:
v Direction

The direction of an IP packet is either inbound or outbound.
v Routing

The routing attribute of an IP packet is either local or routed. IP packets are
considered local if either of the following is true:
– The packet is inbound and the destination address in the IP packet exists on

the IPSECURITY stack.
– The packet is outbound and the source address in the IP packet exists on the

IPSECURITY stack.

Otherwise the IP packet is considered routed.
v Security class

Each non-virtual interface on a z/OS system is assigned a security class. The
security class of an IPv4 interface is determined by the SECCLASS parameter

Chapter 19. IP security 937

that is coded on the LINK statement or the DYNAMICXCF parameter of the
IPCONFIG statement in the TCP/IP profile. The security class of an IPv6
interface is determined by the SECCLASS parameter that is coded on the
INTERFACE statement or the DYNAMICXCF parameter of the IPCONFIG6
statement in the TCP/IP profile. The value of SECCLASS is a number in the
range 1-255. If SECCLASS is not specified for an interface, the interface has a
default security class of 255.
Each IP packet entering or leaving the system inherits the security class of the
interface that it traverses:
– For inbound traffic, this is the interface on which the packet arrived.
– For outbound traffic, this is the interface over which the packet is sent.
The value for SECCLASS has no inherent meaning. A SECCLASS of 255 is no
more or less secure than a SECCLASS of 1. You can optionally assign a
SECCLASS value either to uniquely identify an interface, or to group interfaces
with similar security requirements, based on site policy. Consequently, this
attribute can be used as an additional criterion for IP filtering. Security class can
be used to define broad filter rules that encompass all of the IP traffic that uses a
group of interfaces without explicit knowledge of network addressing, or to
ensure that an IP packet arrived on a valid interface.
For example, as shown in Figure 87, consider a z/OS system with three physical
interfaces that are assigned the following security classes:
I1: SECCLASS 10
I2: SECCLASS 20
I3: SECCLASS 20

All IP packets from NET1 and NET2 have the same security class (10), and all IP
packets from NET3 and NET4 have the same security class (20). Even though
each interface on the z/OS system can reach multiple networks, you can
configure a single IP filter rule that matches all of the IP traffic from NET3 and
NET4 without explicitly identifying any attributes of the IP packets, other than
security class. For instance, if NET3 and NET4 are trusted internal networks in
which you want to allow all network traffic, you can configure one IP filter rule
permitting all traffic with a security class of 20, without regard to IP address.

Router

z/OS

I1

I2

I3
NET 2

NET 1 NET 3

NET 4

Figure 87. Using SECCLASS to identify interfaces

938 z/OS V1R12.0 Comm Svr: IP Configuration Guide

An IP filter using security class as a criterion is not limited to scenarios in which
the IP addresses are ignored. To counter IP address spoofing, IP filter rules can
take into account both security class and IP address. IP address spoofing
involves the creation of an IP packet whose source address has been modified to
reflect an address other than that of the originator. Because routers ignore the
source address when making routing decisions, the modified IP packet can still
reach its destination. An IP packet whose source IP address has been spoofed is
usually not legitimate and is often used in a malicious manner. IP filtering can
counter an attempt to spoof a source IP address by ensuring that an IP packet
arrived on a valid network interface. For instance, any inbound packet that has a
source address of an internal network node, but entered the system though an
external interface, is probably spoofed and should be denied.
Rule: The SecurityClass parameter cannot be used on an IpFilterRule statement
with a dynamic ipsec action. The IKE protocols do not provide for the
negotiation of SecurityClass, and therefore it cannot be used as a selection
criterion for a Security Association. The SecurityClass parameter can be
configured only for an IpFilterRule statement that has an action of permit, deny,
or manual ipsec. Coding a SecurityClass parameter with a value other than 0 on
a dynamic ipsec rule is considered a configuration error.
Guidelines:

– If there are multiple interfaces by which a packet can reach its destination, the
SECCLASS values for the interfaces and the filter rules should be consistent.
If a packet could reach its intended destination by traversing one of a number
of interfaces, the SECCLASS values and the related filter rules should account
for the possibility of alternate routing.

– If the same IPv6 link-local address exists in multiple LANs in your network
and you want to define filter rules to distinguish these IP addresses, configure
different SECCLASS values for the interfaces onto these LANs to make the
filter rules unique. However, if you are using dynamic IPSec for link-local
addresses, you cannot use SECCLASS values to make the filter rules unique,
so you must ensure that there are no overlapping or duplicate link-local
addresses.

For more details about the SecurityClass parameter on the IpService statement,
the SECCLASS parameter on the LINK and INTERFACE statements, and the
SECCLASS keyword on the DYNAMICXCF parameter of the IPCONFIG and
IPCONFIG6 statements, see z/OS Communications Server: IP Configuration
Reference.

v Remote IKE identity
For traffic that is protected by IPSec, the remote IKE identity can be used as a
filtering criterion. This is particularly useful in cases where a client is roaming or
mobile and does not have a fixed IP address, but has a known authenticated IKE
identity.
Filter rules with a remote IKE identity often have wildcard IP addresses that are
not very specific, because mobile users can connect from a variety of locations.
Guidelines:

– Consider placing filter rules with a remote IKE identity near the bottom of
your IP filter policy, so that other traffic has optimal filter searching. Because
the wildcard IP addresses are not very specific for these rules, much IP traffic
needs to be compared against these rules to test whether the traffic matches
the rule.

– Consider whether the mobile client's traffic might intersect with other filter
rules; for example, when a mobile user occasionally brings their laptop into
the office. If you choose to permit the user to continue to establish their IPSec

Chapter 19. IP security 939

connection while in the office, then you should order the remote identity filter
rules in your IP filter policy so that they precede the office network filter
rules.

IP traffic patterns
The information that is gathered from an IP packet can be used to identify a
specific type of network traffic, based on common Internet protocols. For example:
v Web traffic to a server consists of TCP packets inbound to and outbound from

port 80.
v TN3270E Telnet server traffic consists of TCP packets inbound to and outbound

from port 23.
v IKE traffic consists of UDP packets inbound from and outbound to port 500. In

addition, if NAT traversal is enabled, IKE traffic can use UDP port 4500.
v Ping (IPv4) consists of ICMP packets outbound with type 8, code 0 (echo

request), and inbound with type 0, code 0, (echo reply).
v Ping (IPv6) consists of ICMPv6 packets outbound with type 128, code 0 (echo

request), and inbound with type 129, code 0, (echo reply).

The IpService statement groups these attributes into definitions of common traffic
patterns that can subsequently be incorporated in an IP filter rule. The sample
configuration file /usr/lpp/tcpip/samples/pagent_CommonIPSec.conf provides
definitions for many of the common traffic patterns that are seen on a typical z/OS
server.

For more details about the IpService statement, see z/OS Communications Server: IP
Configuration Reference.

Routed traffic and fragmented packets
Fragmented packets are problematic for IP security implementations because
transport layer headers (UDP, TCP, and so on) are not present in every fragment.
For some packet fragments, the transport layer selector values (for example, UDP
ports, ICMP type and code) are indeterminate, which complicates IP packet
filtering. In the case of IPv6, a fragment's IP protocol value might also be
indeterminate.

Tip: z/OS Communications Server filters fragmented packets only for routed
traffic. For all local traffic, z/OS Communications Server performs filtering on the
fully assembled packet.

Because some packet fragments do not contain the transport layer header and
cannot be filtered based on transport layer selector values, z/OS Communications
Server enforces the following restriction for routed traffic.

Restriction: All routed traffic between two endpoints must be filtered in the same
manner without regard to TCP or UDP port, ICMP or ICMPv6 type and code, or
OSPF and MIPv6 type.

Guideline: To perform more granular filtering for this traffic, enforce a
port-specific filtering policy, or a type-specific and code-specific filtering policy, at
the final destination for this IP traffic.

z/OS Communications Server supports the specification of Opaque for matching
indeterminate IPv6 protocol values in packet fragments. Packets that have an
indeterminate value match filter rules only when Opaque or Any is specified.

940 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

z/OS Communications Server also supports explicit matching on fragmented
packets. The IpService policy object's fragment specification can be used to match
any fragmented packet, even if the packet's selector values are known. Explicit
matching can be used to deny all fragmented packets in situations in which they
are not part of normal traffic patterns and are considered to be a security risk.

Conditionally controlling IP filters
When IP filters from IP security policy files are installed into the stack, they are
always active by default. Depending on the business need, this might not always
be desirable. For instance, you might want to restrict certain types of IP traffic to a
specific time, day, or week. IP security provides this flexibility by allowing you to
specify a time condition for an IP filter rule. The IpTimeCondition statement
specifies when an IP filter or a manual IPSec tunnel is active. You can prescribe not
only what traffic is allowed, but when that traffic is allowed, in a way that is not
disruptive and without having to edit the IP security policy files.

For more details about the IpTimeCondition statement, see z/OS Communications
Server: IP Configuration Reference.

Special considerations when using IP security for IPv6
This topic describes considerations for using IP security for IPv6.

Neighbor discovery and multicast listener discovery
For IPv6, TCP/IP uses the neighbor discovery protocol, which provides the
following functions:
v Address resolution (neighbor solicitations and neighbor advertisements to

perform ARP functions for IPv6)
v Duplicate address detection (neighbor solicitations and neighbor advertisements

to ensure unique IP addresses)
v Router discovery (router solicitations and router advertisements to keep track of

neighboring routers)
v Neighbor unreachability detection (to keep track of the reachability of neighbors)

TCP/IP also uses multicast listener discovery (MLD), which notifies routers that
nodes are ready to receive multicast packets.

Neighbor discovery and MLD are implemented using ICMPv6 packets.

When the stack is enabled for IP security for IPv6, TCP/IP performs IP filtering for
these packets and denies these packets by default. You must consider these packets
when configuring filter rules for IPv6. For example, if you configure permit rules
for IPv6 TCP or UDP traffic over an OSA-Express QDIO interface, but do not
configure permit rules for the neighbor discovery address resolution flows over the
interface, the traffic will not succeed because the stack denies the ICMPv6 neighbor
solicitation and neighbor advertisement packets during address resolution. Also,
you must configure permit filter rules for neighbor solicitation and neighbor
advertisement packets, so that the stack can perform duplicate address detection
(and learn about valid duplicate addresses).

In addition, for the stack to be able to learn about neighbors, you must configure
permit filter rules for outbound router solicitations and inbound router
advertisements. Similarly, for the stack to be able to perform the MLD listener

Chapter 19. IP security 941

function, you must configure permit filter rules for outbound MLD listener reports
and inbound MLD listener query packets.

For example filter rules to permit neighbor discovery and MLD packets, see the
TCP/IP sample profile and policy sample.

Guideline: Configure permit rules for neighbor discovery and MLD packets.

Result: z/OS Communications Server does not apply IPSec protection for
outbound neighbor discovery or MLD packets, but does apply permit and deny
actions for these packets. If such an outbound packet matches an IP filter rule that
specifies an IPsec action, the stack permits the packet but does not encapsulate it.

Stateless address autoconfiguration
If you use autoconfiguration, your IPv6 addresses might not be predictable. To
configure IP filter rules for dynamic Security Associations with autoconfigured
IPv6 addresses, you need to specify the IP addresses using wildcards.

Manual Security Associations typically use specific IP addresses for the endpoints.
You can use wildcards for the security endpoint addresses so that the data
endpoints and security endpoints are considered identical. Alternatively, you can
use predictable IPv6 addresses for the security endpoints. You can obtain
predictable IPv6 addresses by configuring full 128-bit IPv6 addresses on your
INTERFACE statements, by specifying the INTFID keyword on your INTERFACE
statements, or by using VIPAs.

IPv6-specific protocols
The protocol number for ICMPv6 (58) is different from the protocol number for
IPv4 ICMP (1); remember this when configuring IPv6 filter rules. Also, you can
configure filter rules for IPv6 fragments using protocol IPv6Frag (44). For more
considerations regarding fragmented IPv6 packets, see “Routed traffic and
fragmented packets” on page 940.

IPv6 address types
You can configure IP filter rules for any valid IPv6 address, including multicast
addresses, link-local addresses, IPv4-mapped addresses, IPv4-compatible addresses,
and so on.

You can configure IPSec tunnels for link-local and global addresses. For multicast
addresses, you can configure manual tunnels but not dynamic tunnels. You cannot
configure IPSec tunnels for IPv4-mapped addresses or IPv4-compatible addresses.

IPv6 extension headers
If an IPv6 packet contains an extension header that is a type 0 or type 2 routing
header, the stack performs IP filtering using the final destination address of the
packet based on the routing header contents, rather than using the destination
address in the IP header.

Considerations for IPv6 OSPF security
IPv4 OSPF authentication is implemented within the IPv4 OSPF protocol. However,
IPv6 OSPF security (both authentication and encryption) is implemented using
IPsec. Because OSPF uses both multicast messages and unicast messages, it is not
possible to use dynamic tunnels for OSPF traffic. Instead, manual tunnels must be

942 z/OS V1R12.0 Comm Svr: IP Configuration Guide

used. The IBM Configuration Assistant for z/OS Communications Server
automates the process of creating IPv6 OSPF tunnels. Following is a description of
the process of manually creating the IPv6 OSPF tunnel definitions.

It is expected that the same manual tunnel is to be used for all link-local unicast
and multicast traffic. Additional tunnels might be used for IPv6 OSPF virtual links.

Because multicast traffic is one-to-many, the manual tunnel must use the same
Security Parameter Index (SPI) and keys for inbound and outbound traffic.
Whatever SPI values and keys are used must be coordinated with all IPv6 OSPF
peers on the LAN segment. Also, because this manual tunnel is to be used to
protect traffic with various source and destination addresses, you must specify
any6 for the local and remote security endpoint locations. The following example
uses AH authentication using the SHA algorithm, and ESP encryption using the
DES algorithm.
IpManVpnAction tunnel-ipv6ospf-internal
{

LocalSecurityEndpointAddr any6
RemoteSecurityEndpointAddr any6
HowToAuth AH HMAC_SHA1

AuthOutboundSa 2700 0xa66e1b72e58a367ebd39d62daef84d5d9222cfe1
AuthInboundSa 2700 0xa66e1b72e58a367ebd39d62daef84d5d9222cfe1

HowToEncrypt DES
EncryptOutboundSa 2701 0x3e6dcf72459ef551
EncryptInboundSa 2701 0x3e6dcf72459ef551

HowToEncap transport
}

For the filter rules, you first need to create an IP service to describe the OSPF
traffic. To distinguish the traffic, you specify the OSPF protocol, and the
SECCLASS of the interfaces on which the traffic will flow. For the purpose of this
example, assume that the interfaces for the LAN segment that is being protected
are defined with SECCLASS 10.
IpService service-ipv6ospf-internal
{

Protocol ospf
Direction bidirectional
Routing local
SecurityClass 10

}

You now need to define three filter rules to match the OSPF traffic. The first filter
rule matches all link-local unicast traffic on the LAN segment:
IpFilterRule ipv6ospf-unicast-internal
{

IpSourceAddr fe80::/10
IpDestAddr fe80::/10
IpServiceRef service-ipv6ospf-internal
IpGenericFilterActionRef ipsec-nolog
IpManVpnActionRef tunnel-ipv6ospf-internal

}

The remaining two filter rules are for the OSPF link-local multicast traffic. The first
rule matches outbound multicast traffic, which has a link-local unicast source
address and a link-local multicast destination address. The second rule matches
inbound multicast traffic, which has a remote (destination) address that is
link-local unicast, and a local (source) address that is link-local multicast. These
rules are as follows:

Chapter 19. IP security 943

|

IpFilterRule ipv6ospf-outbound-multicast-internal
{

IpSourceAddr fe80::/10
IpDestAddr ff02::/16
IpServiceRef service-ipv6ospf-internal
IpGenericFilterActionRef ipsec-nolog
IpManVpnActionRef tunnel-ipv6ospf-internal

}
IpFilterRule ipv6ospf-inbound-multicast-internal
{

IpSourceAddr ff02::/16
IpDestAddr fe80::/10
IpServiceRef service-ipv6ospf-internal
IpGenericFilterActionRef ipsec-nolog
IpManVpnActionRef tunnel-ipv6ospf-internal

}

Virtual links
You can also configure IPsec protection for IPv6 OSPF virtual links. You can use
the following method to configure manual tunnels for IPv6 OSPF virtual links.

Guideline: Because virtual links use global unicast addresses, you should use
dynamic tunnels for IPv6 OSPF virtual links whenever possible. Dynamic tunnels
provide numerous benefits over manual tunnels.

Because the virtual link addresses are not known beforehand, you must specify the
security endpoint addresses for the manual tunnel with a wildcard value. The
Security Association does not protect multicast traffic, so the inbound and
outbound SPI values and keys do not need to be identical. Whatever SPI values
and keys you use must be coordinated with the virtual link peer.
IpManVpnAction tunnel-ipv6ospfvirt-internal
{

LocalSecurityEndpointAddr any6
RemoteSecurityEndpointAddr any6
HowToAuth AH HMAC_SHA1

AuthOutboundSa 2702 0xf5c58a6e6f0761b68f424f39257f0ea89a4be3b4
AuthInboundSa 2703 0x39a341ed1b7127b7905df2411ed0770854b54d10

HowToEncrypt DES
EncryptOutboundSa 2704 0xb9571d20fe98ecca
EncryptInboundSa 2705 0xfeba84c113fb40ed

HowToEncap transport
}

Only one filter rule is needed for the virtual link. For this example, the same IP
service used for the link-local traffic is used, which restricts this filter rule to OSPF
traffic flowing over interfaces with SECCLASS 10. Because the virtual link
addresses are not known beforehand, the filter rule addresses are specified with a
wildcard value to include all global unicast addresses. If you have more specific
information about the address prefixes for the virtual link endpoints, you can use
this to further restrict the addresses on the filter rule.
IpFilterRule ipv6ospf-virtual-internal
{

IpSourceAddr 4000::/3
IpDestAddr 4000::/3
IpServiceRef service-ipv6ospf-internal
IpGenericFilterActionRef ipsec-nolog
IpManVpnActionRef tunnel-ipv6ospfvirt-internal

}

944 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

Default IP filter policy and IP security policy
Policy Agent provides IP filter policy to the stack, as defined by the IP security
policy configuration files. For the stack to be enabled for IP security for IPv4, the
TCP/IP profile must have IPCONFIG IPSECURITY coded. For the stack to be
enabled for IP security for IPv6, the TCP/IP profile must also have IPCONFIG6
IPSECURITY coded. For the stack to receive configured policy, the Policy Agent
must be active. IP filter policy is installed when Policy Agent and the stack are
active. If Policy Agent is not active when an IPSECURITY-enabled stack initializes,
the stack cannot be provided with IP filter rules from that policy. Therefore, in the
interest of network security, the stack provides a default IP filter policy when an IP
filter policy is unavailable from Policy Agent. The default IP filter policy effectively
denies all network traffic, with the exception of some select ICMP and ICMPv6
messages that are necessary for internal stack function. These deny rules are not
explicitly coded, but rather are always implicitly added at any time that the default
IP filter policy is in effect. The default IP filter policy can be in effect at times other
than stack initialization. Default IP filter policy is in effect in all of the following
cases:
v An IPSECURITY-enabled TCP/IP stack has been started but Policy Agent has

not been started, or an IPSECURITY-enabled TCP/IP stack has been started but
Policy Agent has not completely initialized.

v An IPSECURITY-enabled TCP/IP stack and Policy Agent have been started, but
no IP security configuration file exists.

v An IPSECURITY-enabled TCP/IP stack and Policy Agent have been started, but
the IP security configuration file contains errors.

v An IPSECURITY-enabled TCP/IP stack and Policy Agent have been started, but
no IpFilterPolicy statement exists in either IP security configuration file.

v An IPSECURITY-enabled TCP/IP stack and Policy Agent have been started, and
IP filter policy has been provided to the stack, but the stack is using the default
IP filter policy because the ipsec -f default command was issued.

This default behavior ensures that network security is not compromised in the
event that IP filter policy is not installed, and is consistent with a secure
default-deny policy. However, you can modify the default IP filter policy by coding
an IPSECRULE statement (for IPv4) or IPSEC6RULE statement (for IPv6) in the
TCP/IP profile. The IPSECRULE and IPSEC6RULE statements describe the
attributes of the IP traffic that is allowed when the default policy is active. Because
the default behavior is to deny all network traffic, IPSECRULE and IPSEC6RULE
statements are always permit rules that denote exceptions to the default-deny
policy.

It is also important to note that neither the default IP filter policy nor a modified
default IP filter policy provides authentication and encryption capabilities such as
those provided by a complete IP security policy; it only offers the stack the ability
to perform simple IP filtering in the absence of an IP security policy.

Modifying the default IP filter policy
The default IP filter policy is in effect when the IP security policy, as configured in
the Policy Agent, is not available. The default IP filter policy denies all network
traffic, unless you modify the TCP/IP profile.

Two IP filters are created by the default IP filter policy, one denying IPv4 inbound
traffic and the other denying IPv4 outbound traffic. If IP security for IPv6 is also
enabled, the stack also creates two similar filters, one denying IPv6 inbound traffic

Chapter 19. IP security 945

and the other denying IPv6 outbound traffic. For example, assuming that the
default IP filter policy is active, the following sample of the ipsec -f display
command shows that SYSDEFAULTDENYRULE was added to the filter table:
ipsec -f display

CS V1R12 ipsec Stack Name: TCPCS Tue Feb 16 09:50:02 2010
Primary: Filter Function: Display Format: Detail
Source: Stack Profile Scope: Current TotAvail: 8
Logging: On Predecap: Off DVIPSec: No
NatKeepAlive: 0 FIPS140: No
Defensive Mode: Inactive

FilterName: SYSDEFAULTRULE.1
FilterNameExtension: 1
GroupName: n/a
LocalStartActionName: n/a
VpnActionName: n/a
TunnelID: 0x00
Type: Generic
DefensiveType: n/a
State: Active
Action: Permit
Scope: Local
Direction: Outbound
OnDemand: n/a
SecurityClass: 0
Logging: All
Protocol: All
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: n/a
SourceAddress: 0.0.0.0
SourceAddressPrefix: 0
SourceAddressRange: n/a
SourceAddressGranularity: n/a
SourcePort: n/a
SourcePortRange: n/a
SourcePortGranularity: n/a
DestAddress: 0.0.0.0
DestAddressPrefix: 0
DestAddressRange: n/a
DestAddressGranularity: n/a
DestPort: n/a
DestPortRange: n/a
DestPortGranularity: n/a
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2010/02/16 09:44:37
UpdateTime: 2010/02/16 09:44:37
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 49
LifetimeExpires: n/a
AssociatedStackCount: n/a

946 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

FilterName: SYSDEFAULTRULE.1
FilterNameExtension: 2
GroupName: n/a
LocalStartActionName: n/a
VpnActionName: n/a
TunnelID: 0x00
Type: Generic
DefensiveType: n/a
State: Active
Action: Permit
Scope: Local
Direction: Inbound
OnDemand: n/a
SecurityClass: 0
Logging: All
Protocol: All
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: n/a
SourceAddress: 0.0.0.0
SourceAddressPrefix: 0
SourceAddressRange: n/a
SourceAddressGranularity: n/a
SourcePort: n/a
SourcePortRange: n/a
SourcePortGranularity: n/a
DestAddress: 0.0.0.0
DestAddressPrefix: 0
DestAddressRange: n/a
DestAddressGranularity: n/a
DestPort: n/a
DestPortRange: n/a
DestPortGranularity: n/a
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2010/02/16 09:44:37
UpdateTime: 2010/02/16 09:44:37
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 94
LifetimeExpires: n/a
AssociatedStackCount: n/a

FilterName: SYSDEFAULTRULE.2
FilterNameExtension: 1
GroupName: n/a
LocalStartActionName: n/a
VpnActionName: n/a
TunnelID: 0x00
Type: Generic
DefensiveType: n/a
State: Active
Action: Permit
Scope: Local
Direction: Outbound
OnDemand: n/a

Chapter 19. IP security 947

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

SecurityClass: 0
Logging: All
Protocol: All
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: n/a
SourceAddress: ::
SourceAddressPrefix: 0
SourceAddressRange: n/a
SourceAddressGranularity: n/a
SourcePort: n/a
SourcePortRange: n/a
SourcePortGranularity: n/a
DestAddress: ::
DestAddressPrefix: 0
DestAddressRange: n/a
DestAddressGranularity: n/a
DestPort: n/a
DestPortRange: n/a
DestPortGranularity: n/a
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2010/02/16 09:44:37
UpdateTime: 2010/02/16 09:44:37
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 5
LifetimeExpires: n/a
AssociatedStackCount: n/a

FilterName: SYSDEFAULTRULE.2
FilterNameExtension: 2
GroupName: n/a
LocalStartActionName: n/a
VpnActionName: n/a
TunnelID: 0x00
Type: Generic
DefensiveType: n/a
State: Active
Action: Permit
Scope: Local
Direction: Inbound
OnDemand: n/a
SecurityClass: 0
Logging: All
Protocol: All
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: n/a
SourceAddress: ::
SourceAddressPrefix: 0
SourceAddressRange: n/a

948 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

SourceAddressGranularity: n/a
SourcePort: n/a
SourcePortRange: n/a
SourcePortGranularity: n/a
DestAddress: ::
DestAddressPrefix: 0
DestAddressRange: n/a
DestAddressGranularity: n/a
DestPort: n/a
DestPortRange: n/a
DestPortGranularity: n/a
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2010/02/16 09:44:37
UpdateTime: 2010/02/16 09:44:37
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 4
LifetimeExpires: n/a
AssociatedStackCount: n/a

FilterName: SYSDEFAULTDENYRULE
FilterNameExtension: 1
GroupName: n/a
LocalStartActionName: n/a
VpnActionName: n/a
TunnelID: 0x00
Type: Generic
DefensiveType: n/a
State: Active
Action: Deny
Scope: Both
Direction: Outbound
OnDemand: n/a
SecurityClass: 0
Logging: None
Protocol: All
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: n/a
SourceAddress: 0.0.0.0
SourceAddressPrefix: 0
SourceAddressRange: n/a
SourceAddressGranularity: n/a
SourcePort: n/a
SourcePortRange: n/a
SourcePortGranularity: n/a
DestAddress: 0.0.0.0
DestAddressPrefix: 0
DestAddressRange: n/a
DestAddressGranularity: n/a
DestPort: n/a
DestPortRange: n/a
DestPortGranularity: n/a
OrigRmtConnPort: n/a
RmtIDPayload: n/a

Chapter 19. IP security 949

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

RmtUdpEncapPort: n/a
CreateTime: 2010/02/16 09:44:37
UpdateTime: 2010/02/16 09:44:37
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 0
LifetimeExpires: n/a
AssociatedStackCount: n/a

FilterName: SYSDEFAULTDENYRULE
FilterNameExtension: 2
GroupName: n/a
LocalStartActionName: n/a
VpnActionName: n/a
TunnelID: 0x00
Type: Generic
DefensiveType: n/a
State: Active
Action: Deny
Scope: Both
Direction: Inbound
OnDemand: n/a
SecurityClass: 0
Logging: None
Protocol: All
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: n/a
SourceAddress: 0.0.0.0
SourceAddressPrefix: 0
SourceAddressRange: n/a
SourceAddressGranularity: n/a
SourcePort: n/a
SourcePortRange: n/a
SourcePortGranularity: n/a
DestAddress: 0.0.0.0
DestAddressPrefix: 0
DestAddressRange: n/a
DestAddressGranularity: n/a
DestPort: n/a
DestPortRange: n/a
DestPortGranularity: n/a
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2010/02/16 09:44:37
UpdateTime: 2010/02/16 09:44:37
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 0
LifetimeExpires: n/a

950 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

AssociatedStackCount: n/a

FilterName: SYSDEFAULTDENYRULE
FilterNameExtension: 3
GroupName: n/a
LocalStartActionName: n/a
VpnActionName: n/a
TunnelID: 0x00
Type: Generic
DefensiveType: n/a
State: Active
Action: Deny
Scope: Both
Direction: Outbound
OnDemand: n/a
SecurityClass: 0
Logging: None
Protocol: All
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: n/a
SourceAddress: ::
SourceAddressPrefix: 0
SourceAddressRange: n/a
SourceAddressGranularity: n/a
SourcePort: n/a
SourcePortRange: n/a
SourcePortGranularity: n/a
DestAddress: ::
DestAddressPrefix: 0
DestAddressRange: n/a
DestAddressGranularity: n/a
DestPort: n/a
DestPortRange: n/a
DestPortGranularity: n/a
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2010/02/16 09:44:37
UpdateTime: 2010/02/16 09:44:37
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 0
LifetimeExpires: n/a
AssociatedStackCount: n/a

FilterName: SYSDEFAULTDENYRULE
FilterNameExtension: 4
GroupName: n/a
LocalStartActionName: n/a
VpnActionName: n/a
TunnelID: 0x00
Type: Generic
DefensiveType: n/a
State: Active
Action: Deny
Scope: Both

Chapter 19. IP security 951

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Direction: Inbound
OnDemand: n/a
SecurityClass: 0
Logging: None
Protocol: All
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: n/a
SourceAddress: ::
SourceAddressPrefix: 0
SourceAddressRange: n/a
SourceAddressGranularity: n/a
SourcePort: n/a
SourcePortRange: n/a
SourcePortGranularity: n/a
DestAddress: ::
DestAddressPrefix: 0
DestAddressRange: n/a
DestAddressGranularity: n/a
DestPort: n/a
DestPortRange: n/a
DestPortGranularity: n/a
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2010/02/16 09:44:37
UpdateTime: 2010/02/16 09:44:37
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 0
LifetimeExpires: n/a
AssociatedStackCount: n/a

8 entries selected

Use IPSECRULE and IPSEC6RULE for permit rules that denote exceptions to the
default-deny policy. When the default IP filter policy is active, these permit rules
appear in the default IP filter table before the SYSDEFAULTDENYRULE entries.
Typically, these exceptions are few in number and are used for administrative
access to the system in the event that IP security policy is unavailable. For
instance, a sample default set of permit rules might include entries to provide the
following:
v Administrative access
v Basic network services, such as DNS and OSPF routing advertisements
v Use of ping to test for server availability

IPSECRULE and IPSEC6RULE entries are coded in the IPSEC block of the TCP/IP
profile. They describe the attributes of the IP traffic that is allowed when the
default IP filter policy is active. These rules can specify source address, destination
address, protocol, source port, destination port, routing, and security class.

952 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Unlike IP filter rules that are defined in Policy Agent, which allow direction to be
specified, an IPSECRULE or IPSEC6RULE is always bidirectional. This means that
for any IPSECRULE or IPSEC6RULE entry that specifies a source and destination
address or port, an outbound rule is created with that source and destination
address and port, along with an inbound rule with the source and destination
addresses and ports reversed. (This equates to the use of the bidirectional keyword
in an IpFilterRule statement.)

IPSECRULE and IPSEC6RULE entries always have an action of permit; there is no
action specification for deny or permit with IPSec protection.

Assuming the administrative machine has an IP address of 9.1.1.2 and connects
through an interface whose security class is 100, the following sample IPSECRULE
entries enable the z/OS system to communicate IPv4 DNS queries and OSPF
routing advertisements to anyone, while giving blanket access to the administrator.
The example IPSEC6RULE entry permits any ICMPv6 packets. An asterisk (*) is
the default and represents all, indicating that any packet matches this attribute.
IPSEC LOGENable
; Rule SrcAddr DstAddr Logging Protocol SrcPort DestPort Routing Secclass

; OSPF protocol used by Omproute
IPSECRule * * NOLOG PROTO OSPF

; IGMP protocol used by Omproute
IPSECRule * * NOLOG PROTO 2

; DNS queries to UDP port 53
IPSECRule * * NOLOG PROTO UDP SRCPort * DESTport 53

; Administrative access
IPSECRule * 9.1.1.2 LOG SECCLASS 100

; ICMPv6 protocol
IPSEC6Rule * * NOLOG PROTO ICMPv6

ENDIPSEC

Any IPSECRULE and IPSEC6RULE entries that are coded are given a
system-generated name for purposes of display. These rules are prefixed with the
string SYSDEFAULTRULE. The IPSECRULE entries that are configured in the
previous example are reflected in the ipsec -f display command as shown in the
following example. Notice that there are two rules created for each IPSECRULE or
IPSEC6RULE entry configured, one for each direction. The five rules that are
configured in the example IPSEC block have been expanded into ten IP filters.
Four additional filters have been created for the default-deny behavior. Each rule is
given a unique filter name comprised of SYSDEFAULTRULE.number, where number
is a numerical extension that indicates the relative order of the rule in the IP filter
table. Since each IPSECRULE and IPSEC6RULE statement results in multiple filter
rules with the same name (inbound and outbound), a FilterNameExtension value is
assigned by the system to uniquely identify each filter.
ipsec -f display

CS V1R12 ipsec Stack Name: TCPCS Tue Feb 16 09:55:31 2010
Primary: Filter Function: Display Format: Detail
Source: Stack Profile Scope: Current TotAvail: 14
Logging: On Predecap: Off DVIPSec: No
NatKeepAlive: 0 FIPS140: No
Defensive Mode: Inactive

FilterName: SYSDEFAULTRULE.1
FilterNameExtension: 1
GroupName: n/a
LocalStartActionName: n/a

Chapter 19. IP security 953

|
|
|
|
|
|
|
|
|
|
|
|
|

VpnActionName: n/a
TunnelID: 0x00
Type: Generic
DefensiveType: n/a
State: Active
Action: Permit
Scope: Local
Direction: Outbound
OnDemand: n/a
SecurityClass: 0
Logging: None
Protocol: OSPF(89)
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: All
TCPQualifier: n/a
ProtocolGranularity: n/a
SourceAddress: 0.0.0.0
SourceAddressPrefix: 0
SourceAddressRange: n/a
SourceAddressGranularity: n/a
SourcePort: n/a
SourcePortRange: n/a
SourcePortGranularity: n/a
DestAddress: 0.0.0.0
DestAddressPrefix: 0
DestAddressRange: n/a
DestAddressGranularity: n/a
DestPort: n/a
DestPortRange: n/a
DestPortGranularity: n/a
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2010/02/16 09:55:04
UpdateTime: 2010/02/16 09:55:04
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 3
LifetimeExpires: n/a
AssociatedStackCount: n/a

FilterName: SYSDEFAULTRULE.1
FilterNameExtension: 2
GroupName: n/a
LocalStartActionName: n/a
VpnActionName: n/a
TunnelID: 0x00
Type: Generic
DefensiveType: n/a
State: Active
Action: Permit
Scope: Local
Direction: Inbound
OnDemand: n/a
SecurityClass: 0
Logging: None
Protocol: OSPF(89)
ICMPType: n/a

954 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: All
TCPQualifier: n/a
ProtocolGranularity: n/a
SourceAddress: 0.0.0.0
SourceAddressPrefix: 0
SourceAddressRange: n/a
SourceAddressGranularity: n/a
SourcePort: n/a
SourcePortRange: n/a
SourcePortGranularity: n/a
DestAddress: 0.0.0.0
DestAddressPrefix: 0
DestAddressRange: n/a
DestAddressGranularity: n/a
DestPort: n/a
DestPortRange: n/a
DestPortGranularity: n/a
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2010/02/16 09:55:04
UpdateTime: 2010/02/16 09:55:04
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 4
LifetimeExpires: n/a
AssociatedStackCount: n/a

FilterName: SYSDEFAULTRULE.2
FilterNameExtension: 1
GroupName: n/a
LocalStartActionName: n/a
VpnActionName: n/a
TunnelID: 0x00
Type: Generic
DefensiveType: n/a
State: Active
Action: Permit
Scope: Local
Direction: Outbound
OnDemand: n/a
SecurityClass: 0
Logging: None
Protocol: IGMP(2)
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: n/a
SourceAddress: 0.0.0.0
SourceAddressPrefix: 0
SourceAddressRange: n/a
SourceAddressGranularity: n/a
SourcePort: n/a
SourcePortRange: n/a
SourcePortGranularity: n/a

Chapter 19. IP security 955

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

DestAddress: 0.0.0.0
DestAddressPrefix: 0
DestAddressRange: n/a
DestAddressGranularity: n/a
DestPort: n/a
DestPortRange: n/a
DestPortGranularity: n/a
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2010/02/16 09:55:04
UpdateTime: 2010/02/16 09:55:04
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 0
LifetimeExpires: n/a
AssociatedStackCount: n/a

FilterName: SYSDEFAULTRULE.2
FilterNameExtension: 2
GroupName: n/a
LocalStartActionName: n/a
VpnActionName: n/a
TunnelID: 0x00
Type: Generic
DefensiveType: n/a
State: Active
Action: Permit
Scope: Local
Direction: Inbound
OnDemand: n/a
SecurityClass: 0
Logging: None
Protocol: IGMP(2)
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: n/a
SourceAddress: 0.0.0.0
SourceAddressPrefix: 0
SourceAddressRange: n/a
SourceAddressGranularity: n/a
SourcePort: n/a
SourcePortRange: n/a
SourcePortGranularity: n/a
DestAddress: 0.0.0.0
DestAddressPrefix: 0
DestAddressRange: n/a
DestAddressGranularity: n/a
DestPort: n/a
DestPortRange: n/a
DestPortGranularity: n/a
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2010/02/16 09:55:04
UpdateTime: 2010/02/16 09:55:04
DiscardAction: Silent

956 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 0
LifetimeExpires: n/a
AssociatedStackCount: n/a

FilterName: SYSDEFAULTRULE.3
FilterNameExtension: 1
GroupName: n/a
LocalStartActionName: n/a
VpnActionName: n/a
TunnelID: 0x00
Type: Generic
DefensiveType: n/a
State: Active
Action: Permit
Scope: Local
Direction: Outbound
OnDemand: n/a
SecurityClass: 0
Logging: None
Protocol: UDP(17)
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: n/a
SourceAddress: 0.0.0.0
SourceAddressPrefix: 0
SourceAddressRange: n/a
SourceAddressGranularity: n/a
SourcePort: All
SourcePortRange: n/a
SourcePortGranularity: n/a
DestAddress: 0.0.0.0
DestAddressPrefix: 0
DestAddressRange: n/a
DestAddressGranularity: n/a
DestPort: 53
DestPortRange: n/a
DestPortGranularity: n/a
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2010/02/16 09:55:04
UpdateTime: 2010/02/16 09:55:04
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 0
LifetimeExpires: n/a
AssociatedStackCount: n/a

FilterName: SYSDEFAULTRULE.3
FilterNameExtension: 2

Chapter 19. IP security 957

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

GroupName: n/a
LocalStartActionName: n/a
VpnActionName: n/a
TunnelID: 0x00
Type: Generic
DefensiveType: n/a
State: Active
Action: Permit
Scope: Local
Direction: Inbound
OnDemand: n/a
SecurityClass: 0
Logging: None
Protocol: UDP(17)
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: n/a
SourceAddress: 0.0.0.0
SourceAddressPrefix: 0
SourceAddressRange: n/a
SourceAddressGranularity: n/a
SourcePort: 53
SourcePortRange: n/a
SourcePortGranularity: n/a
DestAddress: 0.0.0.0
DestAddressPrefix: 0
DestAddressRange: n/a
DestAddressGranularity: n/a
DestPort: All
DestPortRange: n/a
DestPortGranularity: n/a
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2010/02/16 09:55:04
UpdateTime: 2010/02/16 09:55:04
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 0
LifetimeExpires: n/a
AssociatedStackCount: n/a

FilterName: SYSDEFAULTRULE.4
FilterNameExtension: 1
GroupName: n/a
LocalStartActionName: n/a
VpnActionName: n/a
TunnelID: 0x00
Type: Generic
DefensiveType: n/a
State: Active
Action: Permit
Scope: Local
Direction: Outbound
OnDemand: n/a
SecurityClass: 100
Logging: All

958 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Protocol: All
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: n/a
SourceAddress: 0.0.0.0
SourceAddressPrefix: 0
SourceAddressRange: n/a
SourceAddressGranularity: n/a
SourcePort: n/a
SourcePortRange: n/a
SourcePortGranularity: n/a
DestAddress: 9.1.1.2
DestAddressPrefix: n/a
DestAddressRange: n/a
DestAddressGranularity: n/a
DestPort: n/a
DestPortRange: n/a
DestPortGranularity: n/a
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2010/02/16 09:55:04
UpdateTime: 2010/02/16 09:55:04
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 0
LifetimeExpires: n/a
AssociatedStackCount: n/a

FilterName: SYSDEFAULTRULE.4
FilterNameExtension: 2
GroupName: n/a
LocalStartActionName: n/a
VpnActionName: n/a
TunnelID: 0x00
Type: Generic
DefensiveType: n/a
State: Active
Action: Permit
Scope: Local
Direction: Inbound
OnDemand: n/a
SecurityClass: 100
Logging: All
Protocol: All
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: n/a
SourceAddress: 9.1.1.2
SourceAddressPrefix: n/a
SourceAddressRange: n/a
SourceAddressGranularity: n/a
SourcePort: n/a

Chapter 19. IP security 959

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

SourcePortRange: n/a
SourcePortGranularity: n/a
DestAddress: 0.0.0.0
DestAddressPrefix: 0
DestAddressRange: n/a
DestAddressGranularity: n/a
DestPort: n/a
DestPortRange: n/a
DestPortGranularity: n/a
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2010/02/16 09:55:04
UpdateTime: 2010/02/16 09:55:04
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 0
LifetimeExpires: n/a
AssociatedStackCount: n/a

FilterName: SYSDEFAULTRULE.5
FilterNameExtension: 1
GroupName: n/a
LocalStartActionName: n/a
VpnActionName: n/a
TunnelID: 0x00
Type: Generic
DefensiveType: n/a
State: Active
Action: Permit
Scope: Local
Direction: Outbound
OnDemand: n/a
SecurityClass: 0
Logging: None
Protocol: ICMPV6(58)
ICMPType: All
ICMPTypeGranularity: n/a
ICMPCode: All
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: n/a
SourceAddress: ::
SourceAddressPrefix: 0
SourceAddressRange: n/a
SourceAddressGranularity: n/a
SourcePort: n/a
SourcePortRange: n/a
SourcePortGranularity: n/a
DestAddress: ::
DestAddressPrefix: 0
DestAddressRange: n/a
DestAddressGranularity: n/a
DestPort: n/a
DestPortRange: n/a
DestPortGranularity: n/a
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2010/02/16 09:55:04

960 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

UpdateTime: 2010/02/16 09:55:04
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 0
LifetimeExpires: n/a
AssociatedStackCount: n/a

FilterName: SYSDEFAULTRULE.5
FilterNameExtension: 2
GroupName: n/a
LocalStartActionName: n/a
VpnActionName: n/a
TunnelID: 0x00
Type: Generic
DefensiveType: n/a
State: Active
Action: Permit
Scope: Local
Direction: Inbound
OnDemand: n/a
SecurityClass: 0
Logging: None
Protocol: ICMPV6(58)
ICMPType: All
ICMPTypeGranularity: n/a
ICMPCode: All
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: n/a
SourceAddress: ::
SourceAddressPrefix: 0
SourceAddressRange: n/a
SourceAddressGranularity: n/a
SourcePort: n/a
SourcePortRange: n/a
SourcePortGranularity: n/a
DestAddress: ::
DestAddressPrefix: 0
DestAddressRange: n/a
DestAddressGranularity: n/a
DestPort: n/a
DestPortRange: n/a
DestPortGranularity: n/a
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2010/02/16 09:55:04
UpdateTime: 2010/02/16 09:55:04
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 0
LifetimeExpires: n/a
AssociatedStackCount: n/a

Chapter 19. IP security 961

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

FilterName: SYSDEFAULTDENYRULE
FilterNameExtension: 1
GroupName: n/a
LocalStartActionName: n/a
VpnActionName: n/a
TunnelID: 0x00
Type: Generic
DefensiveType: n/a
State: Active
Action: Deny
Scope: Both
Direction: Outbound
OnDemand: n/a
SecurityClass: 0
Logging: None
Protocol: All
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: n/a
SourceAddress: 0.0.0.0
SourceAddressPrefix: 0
SourceAddressRange: n/a
SourceAddressGranularity: n/a
SourcePort: n/a
SourcePortRange: n/a
SourcePortGranularity: n/a
DestAddress: 0.0.0.0
DestAddressPrefix: 0
DestAddressRange: n/a
DestAddressGranularity: n/a
DestPort: n/a
DestPortRange: n/a
DestPortGranularity: n/a
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2010/02/16 09:44:37
UpdateTime: 2010/02/16 09:44:37
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 0
LifetimeExpires: n/a
AssociatedStackCount: n/a

FilterName: SYSDEFAULTDENYRULE
FilterNameExtension: 2
GroupName: n/a
LocalStartActionName: n/a
VpnActionName: n/a
TunnelID: 0x00
Type: Generic
DefensiveType: n/a
State: Active
Action: Deny
Scope: Both
Direction: Inbound
OnDemand: n/a

962 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

SecurityClass: 0
Logging: None
Protocol: All
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: n/a
SourceAddress: 0.0.0.0
SourceAddressPrefix: 0
SourceAddressRange: n/a
SourceAddressGranularity: n/a
SourcePort: n/a
SourcePortRange: n/a
SourcePortGranularity: n/a
DestAddress: 0.0.0.0
DestAddressPrefix: 0
DestAddressRange: n/a
DestAddressGranularity: n/a
DestPort: n/a
DestPortRange: n/a
DestPortGranularity: n/a
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2010/02/16 09:44:37
UpdateTime: 2010/02/16 09:44:37
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 1
LifetimeExpires: n/a
AssociatedStackCount: n/a

FilterName: SYSDEFAULTDENYRULE
FilterNameExtension: 3
GroupName: n/a
LocalStartActionName: n/a
VpnActionName: n/a
TunnelID: 0x00
Type: Generic
DefensiveType: n/a
State: Active
Action: Deny
Scope: Both
Direction: Outbound
OnDemand: n/a
SecurityClass: 0
Logging: None
Protocol: All
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: n/a
SourceAddress: ::
SourceAddressPrefix: 0
SourceAddressRange: n/a

Chapter 19. IP security 963

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

SourceAddressGranularity: n/a
SourcePort: n/a
SourcePortRange: n/a
SourcePortGranularity: n/a
DestAddress: ::
DestAddressPrefix: 0
DestAddressRange: n/a
DestAddressGranularity: n/a
DestPort: n/a
DestPortRange: n/a
DestPortGranularity: n/a
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2010/02/16 09:44:37
UpdateTime: 2010/02/16 09:44:37
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 0
LifetimeExpires: n/a
AssociatedStackCount: n/a

FilterName: SYSDEFAULTDENYRULE
FilterNameExtension: 4
GroupName: n/a
LocalStartActionName: n/a
VpnActionName: n/a
TunnelID: 0x00
Type: Generic
DefensiveType: n/a
State: Active
Action: Deny
Scope: Both
Direction: Inbound
OnDemand: n/a
SecurityClass: 0
Logging: None
Protocol: All
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: n/a
SourceAddress: ::
SourceAddressPrefix: 0
SourceAddressRange: n/a
SourceAddressGranularity: n/a
SourcePort: n/a
SourcePortRange: n/a
SourcePortGranularity: n/a
DestAddress: ::
DestAddressPrefix: 0
DestAddressRange: n/a
DestAddressGranularity: n/a
DestPort: n/a
DestPortRange: n/a
DestPortGranularity: n/a
OrigRmtConnPort: n/a
RmtIDPayload: n/a

964 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

RmtUdpEncapPort: n/a
CreateTime: 2010/02/16 09:44:37
UpdateTime: 2010/02/16 09:44:37
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 0
LifetimeExpires: n/a
AssociatedStackCount: n/a

14 entries selected

For an IP security-enabled stack, one of the two security policies is always in effect,
either the default policy or the IP security policy as defined in Policy Agent. The
policy that is in effect at any given time is considered to be the active policy. The
source field of the report header for the ipsec -f display command can be used to
determine which policy is currently active as follows:
ipsec -f display

CS V1R12 ipsec Stack Name: TCPCS Tue Feb 16 09:55:31 2010
Primary: Filter Function: Display Format: Detail
Source: Stack Profile Scope: Current TotAvail: 14
Logging: On Predecap: Off DVIPSec: No
NatKeepAlive: 0 FIPS140: No
Defensive Mode: Inactive

FilterName: SYSDEFAULTRULE.1
FilterNameExtension: 1

Stack Profile indicates that the default IP filter policy is active; Stack Policy
would indicate that the IP security policy as defined in Policy Agent is active.

You can also choose which policy is the active policy. The ipsec command provides
the ability to switch the active policy between the default IP filter policy in the
TCP/IP profile and the IP security policy in Policy Agent. Issuing the ipsec -f
default command causes the default policy to become the active policy, while
issuing the ipsec -f reload command reloads the IP security policy from Policy
Agent, provided that Policy Agent is active and that IP security has been correctly
configured.

There are cases in which you might want to switch to the default policy. For
instance, in the event of a security breach, the ipsec -f default command allows
only the network traffic that has been explicitly coded in the TCP/IP profile IPSEC
block, which typically permits only administrative access.

It is important to use the ipsec -f default command with discretion. Issuing ipsec
-f default on an operational system can have a dramatic impact and cause packets
to be dropped, depending on how the IPSECRULE and IPSEC6RULE entries are
coded. Consider the use of ipsec -f default as equivalent to a shutdown, and do
not use it in normal conditions unless the following are true:
v The system is in maintenance mode.
v There is no productive work being done on the system.

Chapter 19. IP security 965

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

v The site policy for IP traffic is default-allow and the appropriate IPSECRULE
and IPSEC6RULE entries were coded.

Malicious use of network resources can be identified by unusual IP traffic
conditions, console messages, or log inspection. Should a security concern arise in
a production environment, the following steps should be performed quickly to
minimize the impact of potentially restricted flow of IP traffic.
1. To secure the system, switch to the default IP filter policy by issuing the ipsec

-f default command.
2. Analyze system logs to determine the nature and the source of the security

concern. If packet logging was active for the time period in question, then
inspect the TRMD packet filtering log entries.

3. Update the IP security policy configuration to alleviate the security concern.
For example, add an IpFilterRule that denies any suspicious IP address or port
use, and activate IP filter logging.

4. Activate the updated IP security policy from the Policy Agent by issuing the
ipsec -f reload command.

5. Verify that the security concern is eliminated. Monitor the network traffic and
inspect the system logs, including any related IP filter log messages.

IP filter logging
Monitoring network events is an important aspect of network security. Logs can be
used to verify that policies have been correctly configured and enforced, or to
gather statistics on any traffic of interest. For instance, traffic that is persistently
denied might be suspect. With IP filter logging, you can inspect any traffic on the
system and even fine tune the configuration to show only those entries of interest.
Logging can be controlled at the global level or at the individual rule level,
including the ability to specify whether to log permitted traffic, denied traffic, or
both. The IP filter log entries provide detailed information about each packet,
including the rule that the packet matched and any pertinent IPSec information.

TRMD and syslogd provide the logging service for IP security. If running in the
common INET environment, you must configure one instance of TRMD for each
stack on a z/OS system.

Guideline: Exhaustive logging of IP traffic can have a negative effect on
performance. If logging is excessive, it can be turned off temporarily at the global
level while the appropriate logging modifications are made to the individual IP
filter rules. IP filter logging is controlled by the IpFilterLogging parameter on the
IpGenericFilterAction statement. For more details, see z/OS Communications Server:
IP Configuration Reference.

IP filter discard action
When packets are denied by IP filter policy, IP security supports sending an ICMP
or ICMPv6 destination unreachable message, which indicates that a packet is
administratively prohibited. You can enable this action for the implicit Policy Agent
deny filter rules using the ImplicitDiscardAction parameter on the IpFilterPolicy
statement, and for individual filter rules using the DiscardAction parameter on the
IpGenericFilterAction statement.

Rule: To make a system effectively invisible to attackers, choose the discard action
Silent. Choose the discard action ICMP only in cases in which doing so is a useful
diagnostic aid, such as for users of internal networks.

966 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Data encryption and authentication — IPSec
To participate in a virtual private network (VPN), a host must encrypt and
authenticate individual IP packets between itself and another communicating host.
IPSec is one of several mechanisms for achieving this, and one of the more
versatile.

IPSec is defined by the IPSec working group of the IETF. It provides
authentication, integrity, and data privacy between any two IP entities.
Management of cryptographic keys and Security Associations can be either manual
or dynamic using an IETF-defined key management protocol called Internet Key
Exchange (IKE).

IPSec provides flexible building blocks that can support a variety of configurations.
Because an IPSec Security Association can exist between any two IP entities, it can
protect a segment of the path or the entire path. The main advantage of using
IPSec for data encryption and authentication is that IPSec is implemented at the IP
layer. Consequently, any network traffic that is carried by an IP network is eligible
to use IPSec services without any special changes to higher level protocols that are
used by applications. However, if the system is using any of these alternate
security protocols to secure specific applications, IP filtering can be used to avoid
the overhead of multiple security protocols. For example, you might want to
exclude Web traffic (based on the well-known secure port of the Web server, port
443) from IPSec coverage because you would like to use SSL.

IPSec enables the creation of VPNs. A VPN enables an enterprise to extend its
network across a public network, such as the Internet, through a secure tunnel
using Security Associations. IPSec VPNs enable the secure transfer of data over the
public Internet for same-business and business-to-business communications, and
protect sensitive data within an enterprise's internal network.

IPSec uses IP filtering to determine which traffic should be protected by IPSec. A
special type of filter action specifies to permit the traffic, but only with IPSec
protection. The IP filters represent IP security policy to the stack by specifying the
traffic that requires IPSec protection. The filters are also used in locating the
outbound IPSec Security Association, and for verifying that inbound traffic is
received using the correct Security Association.

The IETF has standardized the IPSec protocol suite and key management schemes
in a series of IPSec RFCs. For more information on these RFCs, see Appendix G,
“Related protocol specifications,” on page 1555.

IPSec has three major components:
v IP Authentication Header (AH)
v IP Encapsulating Security Payload (ESP)
v Internet Key Exchange (IKE)

AH and ESP protocols
IPSec uses two distinct protocols, Authentication Header (AH) and Encapsulating
Security Payload (ESP), which are defined by the IETF.

The AH protocol provides a mechanism for authentication only. AH provides data
integrity, data origin authentication, and an optional replay protection service. Data
integrity is ensured by using a message digest that is generated by an algorithm
such as HMAC-MD5 or HMAC-SHA. Data origin authentication is ensured by

Chapter 19. IP security 967

using a shared secret key to create the message digest. Replay protection is
provided by using a sequence number field with the AH header. AH authenticates
IP headers and their payloads, with the exception of certain header fields that can
be legitimately changed in transit, such as the Time To Live (TTL) field.

The ESP protocol provides data confidentiality (encryption) and authentication
(data integrity, data origin authentication, and replay protection). ESP can be used
with confidentiality only, authentication only, or both confidentiality and
authentication. When ESP provides authentication functions, it uses the same
algorithms as AH, but the coverage is different. AH-style authentication
authenticates the entire IP packet, including the outer IP header, while the ESP
authentication mechanism authenticates only the IP datagram portion of the IP
packet.

Either protocol can be used alone to protect an IP packet, or both protocols can be
applied together to the same IP packet. The choice of IPSec protocol is determined
by the security needs of your installation, and is configured by the administrator. It
does not have to be applied system-wide, and can be configured differently for
each set of connection endpoints. For a dynamic tunnel, the choice of IPSec
protocol is configured using the IpDataOffer statement in an IP security policy
configuration file. For a manual tunnel, the choice of IPSec protocol is configured
using the IpManVpnAction statement in an IP security policy configuration file.
For more details about the IpDataOffer statement and the IpManVpnAction
statement, see z/OS Communications Server: IP Configuration Reference.

z/OS IP security requires authentication due to potential security exposures when
encryption is used alone. Authentication can be provided by the ESP or AH
protocol. The complete list of combinations for authentication and encryption that
are provided by z/OS IP security and that can be used for a specific connection are
shown in Table 45.

Table 45. Possible authentication and encryption combinations for a connection

Encryption Authentication

Protocol Algorithm Protocol Algorithm

None None. ESP or AH Any of the following algorithms:

v HMAC_MD5

v HMAC_SHA1

v AES128_XCBC_96

v HMAC_SHA2_256_128

v HMAC_SHA2_384_192

v HMAC_SHA2_512_256

v AES_GMAC_128

v AES_GMAC_256

ESP Any of the following
algorithms:

v DES

v 3DES

v AES_CBC KeyLength
128

v AES_CBC KeyLength
256

ESP or AH Any of the following algorithms:

v HMAC_MD5

v HMAC_SHA1

v AES128_XCBC_96

v HMAC_SHA2_256_128

v HMAC_SHA2_384_192

v HMAC_SHA2_512_256

968 z/OS V1R12.0 Comm Svr: IP Configuration Guide

||

||

||||

||||

|

|

|

|

|

|

|

|

||
|

|

|

|
|

|
|

||

|

|

|

|

|

|

Table 45. Possible authentication and encryption combinations for a connection (continued)

Encryption Authentication

Protocol Algorithm Protocol Algorithm

ESP Any of the following
algorithms:

v AES_GCM_16
KeyLength 128

v AES_GCM_16
KeyLength 256

ESP NULL (AES_GCM provides built-in
authentication)

Guideline: RFC 4835 discourages the use of DES. Use the 3DES or AES encryption
algorithms wherever possible for better security and interoperability.

Restriction:The combination of ESP protocol for encryption and AH protocol for
authentication is not supported by IKEv2. If you are using IKEv2 and require both
encryption and authentication, you should use ESP for both.

Encapsulation
In the process of applying either AH or ESP to an IP packet, the original IP packet
is modified. Outbound packets are rebuilt with additional IPSec headers in a
process known as encapsulation, while inbound packets are stripped of their IPSec
headers in a process known as decapsulation. Before leaving a host, outbound
packets are encapsulated using a cryptographic key that is known to both
communicating hosts. Inbound packets are decapsulated on the receiving side
using the same cryptographic key, thereby recovering the original datagram. If
encryption is used, any packet that is intercepted on the IP network is unreadable
to anyone without the encryption key. Any modifications to the IP packet while in
transit are detected by authentication processing at the receiving host and
discarded.

Transport mode and tunnel mode: The manner in which the original IP packet is
modified depends on the encapsulation mode used. There are two encapsulation
modes used by AH and ESP, transport and tunnel.

Transport mode encapsulation retains the original IP header. Therefore, when
transport mode is used, the IP header reflects the original source and destination of
the packet. Transport is most often used in a host-to-host scenario, where the data
endpoints and the security endpoints are the same. A transport mode encapsulated
datagram is routed, or transported, in the same manner as the original packet.

Figure 88 shows an IPv4 packet that is encapsulated using AH in transport mode:

Figure 89 on page 970 shows an IPv4 packet that is encapsulated using ESP in
transport mode:

IP
header

Authentication
header

IP payload

Authenticated

Figure 88. IPv4 packet encapsulated using AH in transport mode

Chapter 19. IP security 969

|

||

||||

||
|

|
|

|
|

||
|

|

|
|
|

Figure 90 shows an IPv6 packet that is encapsulated using AH in transport mode:

For a description of the IPv6 mutable fields, see RFC 2402. For information about
accessing RFCs, see Appendix G, “Related protocol specifications,” on page 1555.

Figure 91 shows an IPv6 packet that is encapsulated using ESP in transport mode:

Tunnel mode encapsulation builds a new IP header containing the source and
destination address of the security endpoints. When tunnel mode is used, the outer
IP header reflects the source and destination of the security endpoints, which
might or might not be the same as the original source and destination IP address
of the data connection. The choice of transport or tunnel mode depends on the
structure of the network and relies heavily on logical connections between the
endpoints. Tunnel mode is required if one of the IKE peers is a security gateway
that is applying IPSec on behalf of another host or hosts. A datagram that is
encapsulated in tunnel mode is routed, or tunneled, through the security gateways,
with the possibility that the secure IPSec packet will not flow through the same
network path as the original datagram. To successfully encapsulate and send an
outbound packet, the route table must contain a route that can be used to reach the
security gateway, as well as a route that can be used to reach the data endpoint. If
policy-based routing is being used on a TCP/IP stack where IP security is active, it
is important to understand how the two functions interact. For more information,
see “Considerations for using policy-based routing with IP security” on page 344.

Figure 92 on page 971 shows an IPv4 packet that is encapsulated using AH in
tunnel mode:

IP payload

Encrypted

IP
header

ESP
header

ESP
trailer ESP auth data

Authenticated

Figure 89. IPv4 packet encapsulated using ESP in transport mode

IP payloadorig IP header
ext headers (if present):

hop-by-hop, first dest opt,
routing, fragment

Authenticated except for mutable fields

ext headers
(if present):

final dest opt
AH

Figure 90. IPv6 packet encapsulated using AH in transport mode

IP payload

Encrypted

orig IP header
ext headers (if present):

hop-by-hop, first dest opt,
routing, fragment

ESP
auth data

Authenticated

ext headers
(if present):

final dest opt
ESP

Figure 91. IPv6 packet encapsulated using ESP in transport mode

970 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Figure 93 shows an IPv4 packet that is encapsulated using ESP in tunnel mode:

Figure 94 shows an IPv6 packet that is encapsulated using AH in tunnel mode:

For a description of the IPv6 mutable fields, see RFC 2402.

Figure 95 shows an IPv6 packet that is encapsulated using ESP in tunnel mode:

Do not confuse tunnel mode encapsulation with IKE tunnel or IPSec tunnel. In this
context, tunnel refers only to the method by which IPSec packets are constructed,
while IKE and IPSec tunnels are conceptually defined as secure logical connections
between hosts. IPSec tunnels can use transport mode or tunnel mode
encapsulation.

For a dynamic tunnel, the choice of encapsulation mode is configured using the
IpDataOffer statement in an IP security policy configuration file. For a manual
tunnel, the choice of IPSec protocol is configured using the IpManVpnAction
statement in an IP security policy configuration file. For more details about the

New IP
header

Authentication
header

IP payload

Authenticated

Original IP
header

IP packet

Figure 92. IPv4 packet encapsulated using AH in tunnel mode

IP payload

Encrypted

New IP
header

ESP
header

ESP
trailer ESP auth data

Authenticated

Original IP
header

IP packet

Figure 93. IPv4 packet encapsulated using ESP in tunnel mode

New IP header
ext headers (if present):

hop-by-hop, first dest opt,
routing, fragment

IP payload

Authenticated except for mutable fields in new IP header

orig IP headerAH
ext headers
(if present):

final dest opt

Figure 94. IPv6 packet encapsulated using AH in tunnel mode

Encrypted

New IP header
ext headers (if present):

hop-by-hop, first dest opt,
routing, fragment

IP payload

Authenticated

orig IP headerESP
ext headers
(if present):

final dest opt

ESP
auth data

Figure 95. IPv6 packet encapsulated using ESP in tunnel mode

Chapter 19. IP security 971

IpDataOffer statement and the IpManVpnAction statement, see z/OS
Communications Server: IP Configuration Reference.

Guideline: In host-to-host scenarios, transport mode is commonly used because it
does not incur the overhead of having to build an additional IP header. However,
tunnel mode is equally valid.

Tip: Any configurations that include a secure gateway as an IKE endpoint require
tunnel mode; however, if IKEv2 is used, then the selection of encapsulation mode
is performed automatically. The IKED will use transport mode if it determines that
the connection is host-to-host; otherwise the IKED will use tunnel mode
encapsulation. This behavior can be overridden by using the HowToEncapIKEv2
parameter on the associated KeyExchangeAction statement; see the
KeyExchangeAction statement in z/OS Communications Server: IP Configuration
Reference for details.

Rule: If you are using sysplex-wide Security Associations, a dynamic Security
Association cannot use a subnet or range that encompasses a DVIPA address. For
takeover to work consistently, Security Associations must be negotiated for single
IP addresses only. If two DVIPAs that are covered by the same Security Association
are subsequently taken over by two different backup stacks, the coverage of the
Security Association is ambiguous because it is then linked to two DVIPAs on two
different stacks.

UDP encapsulation of IPSec ESP packets
When building an ESP packet, it can be further encapsulated by placing a UDP
header in front of the ESP header. This is known as UDP encapsulation. UDP
encapsulation is used to allow IPSec traffic to successfully traverse a NAT device.
For more information on NAT traversal (NATT), see “IPSec and network address
translation devices” on page 982. z/OS Communications Server supports NAT
traversal for only IKEv1 Security Associations and for only IPv4 traffic.

There are two modes of UDP encapsulation:
v UDP-Encapsulated-Transport mode
v UDP-Encapsulated-Tunnel mode

As shown in Figure 96, UDP-Encapsulated-Transport mode inserts a UDP header
in between the IP header and the ESP header of a normal transport mode ESP
packet.

As shown in Figure 97 on page 973, UDP-Encapsulated-Tunnel mode inserts a UDP
header in between the new IP header and the ESP header of a normal tunnel mode
ESP packet.

IP payload

Encrypted

IP
header

UDP
header

ESP
trailer

ESP auth data

Authenticated

ESP
header

Figure 96. UDP-Encapsulated-Transport mode

972 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|
|
|
|

|

When an IPSec UDP-encapsulated packet is built, the source and destination port
values in the UDP header are set to the IKE port value of 4500.

Configure the choice of transport or tunnel mode using the IpDataOffer statement
in the IP security policy configuration file. For more details about the IpDataOffer
statement, see z/OS Communications Server: IP Configuration Reference.

The decision to use a UDP-encapsulated mode is not configured, but instead
inferred, when a NAT is detected between two IKE daemons.

IPSec and symmetric key management
At the center of encryption and authentication is the notion of a cryptographic key.
Security endpoints use keys to encrypt and decrypt data. The IPSec protocols
create Security Association keys that are directional. As shown in Figure 98, the key
that is used to encrypt outbound data on one host is used to decrypt the same data
on the remote host, while the key that is used to encrypt data on the remote host is
used to decrypt data on the local host.

This type of encryption is known as symmetric, because it requires that both hosts
use the same keys on the same data.

Manual key management
IPSec keys and values can be configured manually. Manual management of keys
was the only non-proprietary option for implementing IPSec before the
standardization of the IKE protocols. In a manual IPSec configuration, the keys that
are used to encrypt data, and the Security Parameter Index (SPI) values that are
used to uniquely identify a Security Association, are determined by the
administrator and configured beforehand on both hosts. However, the steps that
you must take to manually generate encryption keys can become quite
cumbersome, as shown in the following examples:
v A single IPSec connection requires two keys, because encryption keys are

unidirectional (one for inbound traffic, one for outbound traffic).

IP payload

Encrypted

UDP
header

ESP
header

ESP
trailer

ESP auth data

Authenticated

Original
IP

header

New IP
header

Figure 97. UDP-Encapsulated-Tunnel mode

Encrypted
text

Plain
text

Key 1

Key 2

Plain
text

Figure 98. Symmetric encryption

Chapter 19. IP security 973

v A single IPSec connection can require up to four SPI values, depending on the
type of IPSec protection required.

v The keys and SPI values must be individually installed on both the local and
remote system.

v To help ensure that the keys are not compromised, they need to be changed
periodically and updated on both hosts. Manual IPSec has no key refresh
capabilities unless the Security Associations are deactivated, reconfigured with
the new key, and then reactivated.

v During the refresh maintenance period, IPSec functionality is unavailable,
disrupting any IP traffic requiring IPSec protection.

v Because of the disruptive nature of key refresh with manual IPSec, key lifetimes
are frequently defined with much larger values, thus increasing the security
exposure.

v These steps must be carried out for each remote host that communicates with
IPSec, with different keys for each of them.

In a small installation with minimal security concerns, this manual process can
work quite well, and might actually be preferable. However, given the large
number of communicating hosts in a typical network, this manual process quickly
becomes unwieldy, error prone, maintenance intensive, and not scalable.
Nevertheless, z/OS IP security does support manual IPSec configuration for
compatibility with systems that use it. If an IP filter rule specifies a manual ipsec
action, the corresponding action is consulted to determine all aspects of the
encryption and authentication policy for that data, including the identities of the
communicating hosts, the keys that are used for encryption and authentication of
outbound and inbound packets, and the SPI values. Manual IPSec protection is
configured using the IpManVpnAction statement in an IP security policy
configuration file. For more details about the IpManVpnAction statement, see z/OS
Communications Server: IP Configuration Reference.

Dynamic key management - IKE and IPSec negotiations
The primary role of the IKE daemon in an IP security environment is the automatic
management of cryptographic keys. Dynamic key management, as provided by the
IKE daemon, removes much of the administrative burden that is associated with
the creation, distribution, and maintenance of cryptographic keys. IKE provides the
following services:
v Host authentication (ensuring that both hosts are certain of the other's identity)
v The negotiation of a Security Association as follows:

– Agreeing on the type of traffic to be protected
– Agreeing on the authentication and encryption algorithms to be used
– Generating cryptographic keys

v Nondisruptive periodic refresh of keys
v The deletion of Security Associations whose lifetimes have expired

There are two versions of the IKE protocol: IKEv1 and IKEv2. The architectural
differences between IKEv1 and IKEv2 are as follows:
v IKEv2 requires fewer network flows for Security Association establishment.
v IKEv2 provides a mechanism for re-keying an IKE Security Association without

reauthentication, which reduces the CPU cost.
v IKEv2 allows each peer to manage its own values for lifetime and lifesize,

whereas in IKEv1 Security Association lifetimes and lifesizes are negotiable

974 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|

|

|
|

|
|

attributes. This reduces coordination of configuration parameters between the
peer nodes and avoids potential race conditions when the SAs expire.

v IKEv2 supports the hash and URL certificate encoding types, but IKEv1 does
not.

The following are differences between IKEv1 and IKEv2 that are specific to the
z/OS implementation:
v NAT traversal is supported for IKEv1 but not for IKEv2.
v Sysplex-wide Security Associations are supported for IKEv1 but not for IKEv2.
v To use any authentication method for IKEv2 based on a digital signature, the

certificate service must be provided by an NSS server. You cannot use the IKED
native certificate service.

IKE operates at the application layer. IKE negotiations are communicated between
two IKE peers by a series of UDP messages. Ports 500 and 4500 are used by the
IKE daemon. For both IKEv1 and IKEv2, Security Association negotiation proceeds
in phases. In each phase, IKE negotiates a Security Association with a remote host.
During the initial phase, IKE negotiates a phase 1 Security Association, which
establishes a secure channel over which the IKE peers communicate. The phase 2
Security Association is negotiated to provide data authentication and encryption
for subsequent IP traffic. The distinction between a phase 1 Security Association
and a phase 2 Security Association is what the Security Associations protect:
v Phase 1 Security Associations are used to protect IKE messages that are

exchanged between two IKE peers, or security endpoints.
v Phase 2 Security Associations are used to protect IP traffic, as specified by the

security policy for a specific type of traffic, between two data endpoints.

Every Security Association that the IKE daemon negotiates contains information
about the type of traffic it is to protect, the IP addresses of the two endpoints, the
type of encryption or authentication that is provided, the keys that are used to
protect data, how often the keys are refreshed, and an identifier called a Security
Parameter Index (SPI) that is used to uniquely identify the Security Association.

An IPSec configuration contains separate policies governing each phase. Although
many of the same attributes apply for phase 1 and phase 2 negotiations and keys,
there are two major differences:
v The phase 1 Security Association can specify only a single IP address for the

security endpoints, while the phase 2 Security Association can specify a
contiguous range or subnet as the data endpoint.

v The phase 1 Security Association must specify an encryption method, while
encryption is optional for the phase 2 Security Association. An authentication
method must be specified for both the phase 1 and phase 2 Security Association.

The exact specifications for each phase 1 Security Association and each phase 2
Security Association are configured in the IP security configuration file. The
specific IP security policy statements that apply to the phase 1 and phase 2
specifications are the KeyExchangeOffer statement (phase 1) and the IpDataOffer
statement (phase 2). For more details about the KeyExchangeOffer statement and
the IpDataOffer statement, see z/OS Communications Server: IP Configuration
Reference.

Because the IKE protocols deal with initializing keys, they must be capable of
running over links where no security is assumed to exist. IKE addresses the
problem of secure key distribution by automatically deriving the keying material

Chapter 19. IP security 975

|
|

|
|

|
|

|

|

|
|
|

|
|
|
|
|
|
|
|
|

using a Diffie-Hellman exchange during the IKE phase 1 negotiation. This
automatic creation and distribution of the key during phase 1 eliminates the need
to manually distribute the session key between remote sites. Besides the obvious
administrative advantage of IKE, the manual method of key distribution is prone
to key compromise.

In addition, IKE non-disruptively refreshes the session keys based on the security
policy of the installation. IKE specifies that this can be based on time (lifetime) and
bytes transmitted (life size). IKE provides a property called perfect forward secrecy
(PFS), and if PFS is used, each phase 2 key is derived independently through a
separate Diffie-Hellman exchange. With PFS, if a single key is compromised, the
integrity of subsequently generated keys is not affected.

Phase 1
Before IKE can negotiate the security parameters and generate the keys that are
used to protect data between the two hosts, it must have a way of protecting the
negotiation itself. The IKE phase 1 negotiation provides this protection by
performing two tasks:
v Authenticating the IKE peer

Peer authentication is performed either by the pre-shared key method or a
digital signature method. For details of peer authentication, see “Peer
authentication.”

v Generating cryptographic keys
A Diffie-Hellman exchange is performed to create a shared secret between the
two IKE peers. This shared secret is then utilized in the generation of keying
material. Keys to encrypt and authenticate messages sent during phase 2 are
produced from this keying material. Cryptographic keys utilized by phase 2
Security Associations are generated from this keying material. The creation of
the Diffie-Hellman shared secret is secure, but computationally expensive.

The phase 1 Security Association contains the following:
v The key that is used to encrypt IKE messages
v The key that is used to authenticate IKE messages
v Keying material used to generate keys produced during phase 2
v The security endpoints (single IP addresses)
v The type of protection that is required (authentication and encryption)
v How often the keys should be renewed
v A Security Parameter Index (SPI) value, which is used together with the remote

security endpoint IP address to uniquely identify the Security Association
v The Diffie-Hellman group, which is an attribute of the public key cryptography

algorithm

Because the tasks of authentication and master key generation are so resource
intensive, a phase 1 Security Association is usually refreshed less often than a
phase 2 Security Association.

Peer authentication: Peer authentication is a critical part of a phase 1 negotiation.
Before two hosts can participate in the negotiation of a Security Association, each
must be authorized to negotiate with the other. IKE does not allow negotiation
with a host that cannot be properly identified. IP addresses are not a guarantee of
identity (an IP packet can be spoofed), and the IP address from an inbound packet
alone is insufficient to prove the identity of a remote host. Therefore, the IKE

976 z/OS V1R12.0 Comm Svr: IP Configuration Guide

daemon needs a more reliable method for determining the remote host’s identity.
This proof of identity is first presented during the phase 1 negotiation.

z/OS IP security implements two methods of host authentication as follows:
v Digital signature (RSA or ECDSA)
v Pre-shared key

Each of these authentication methods provides a way for hosts to verify the
identity of the other, and while the pre-shared key mechanism is easier to
configure, the digital signature methods are more versatile, secure, and scalable.
The choice of authentication method is configured in an IP security policy
configuration file for each IPSec connection, using the KeyExchangeOffer statement
for IKEv1 and the KeyExchangeAction statement for IKEv2. For more details about
the KeyExchangeOffer and KeyExchangeAction statements, see z/OS
Communications Server: IP Configuration Reference.

Peer authentication is not the same as data authentication. Data authentication uses
IPSec to authenticate an IP packet after an IPSec Security Association has been
negotiated by two IKE daemons. Peer authentication is used during an IKE phase
1 negotiation to identify two IKE peers to each other before the establishment of
any phase 2 Security Associations.

Guideline: As a matter of security, pre-shared keys should not be shared among
multiple remote IKE peers. If the pre-shared key method of authentication is used,
each remote host should have its own unique key and KeyExchangeRule specific to
that host. If multiple remote hosts are identified by the same KeyExchangeRule,
digital signature methods of peer authentication should be used.

Rule: For IKEv2, if digital signatures are used as the authentication method, then
the IKED must be configured to use the certificate services of the NSSD. For more
details about the configuring the IKED and the NSS IPSec client, see Chapter 20,
“Network security services,” on page 1149.

Identity information: Multiple identities can be assigned down to the level of
individual IP addresses for each IKE negotiation, or for ease of configuration, a
single identity can be assigned to represent the IKE daemon for the entire system.
With either method, the identity that is assigned must be an identity that is known
to the remote IKE peer. Similarly, the local server must know the identity of any
remote IKE peer with which it is to negotiate. The identity can be one of the
following types:
v X500dn (the host’s X.500 distinguished name)
v IpAddr (an IP address)
v Fqdn (a fully qualified domain name)
v UserAtFqdn (an e-mail address)
v KeyID (EBCDIC, ASCII or hexadecimal string)

Restriction: An identity of KeyID is valid only when using preshared key
authentication.

If a digital signature method of peer authentication is used, the local identity must
be in an X.509 digital certificate on the IKE daemon's key ring for an IKEv1
negotiation, or on the NSS server's key ring for an IKEv1 or IKEv2 negotiation that
uses the NSS certificate service. If the pre-shared key method of peer
authentication is used, any of the identity types can be used to identify this IKE

Chapter 19. IP security 977

|

|
|
|
|

|
|
|
|

|

|
|

|
|
|
|

peer. Because digital certificates are not used in the pre-shared key method, the
only requirement for the use of an identity type is that it be known to both hosts.

Identity information is configured using the LocalSecurityEndpoint and
RemoteSecurityEndpoint statements in an IP security policy configuration file. For
more details about the LocalSecurityEndpoint and RemoteSecurityEndpoint
statements, see z/OS Communications Server: IP Configuration Reference.

Digital signatures: Digital signature authentication methods include RSA and
ECDSA. They use X.509 digital certificates. An X.509 digital certificate contains
information that was verified by a certificate authority to uniquely identify a host.
IKE peers exchange certificates during the phase 1 negotiation to identify each
other. Of the information that is typically included in an X.509 digital certificate,
there are four fields that are relevant to an IKE exchange:

Subject Name
A certificate's subject name is the unique name by which the host is
known. The subject name is used to extract the host's X.500 distinguished
name (X.500dn). IKE can use the X.500dn as an identifier for the remote
host, or use one of the certificate's Subject Alternative Names.

Subject Alternative Name
An optional field, X.509 extensions, can contain a Subject Alternative Name
field. Although the X.500dn is the most specific way to identify a
certificate, the Subject Alternative Name can be used as well, often acting
as a simple alias to identify the certificate. If the certificate includes
optional X.509v3 extensions, the certificate can contain any or all of the
following:
v IpAddr - an IP address
v Fqdn - a fully qualified domain name
v UserAtFqdn - an e-mail address

Subject Public Key Info
The public key is used for encrypting information that can be decrypted
only with the certificate's private key. Likewise, information that is
encrypted using the certificate's private key can be decrypted only with the
public key. Using this scheme, information from the owner can be
encrypted, digitally signed, and authenticated. IKE uses the public key to
assist in verifying a host's identity.

Issuer Name
Certificate signing is a method by which a certificate is verified by a
trusted third party. A signed certificate contains the subject name and key
identifier of the certificate authority that signed it, known as the issuer.

Because there are many commercial and private certificate authorities, it is possible
for a host to own multiple certificates that are signed by different certificate
authorities. Depending on a site's policy, only certain certificate authorities might
be trusted. Therefore, a z/OS IP security host might request that a peer use only
certificates that are signed by a specific trusted certificate authority. Two
configuration parameters refer to certificate authorities, the SupportedCertAuth
parameter of the IkeConfig statement in the iked.conf file, and the CaLabel
parameter of the RemoteSecurityEndpoint statement. The SupportedCertAuth
parameter names a specific certificate authority that is recognized by the IKE
daemon. The CaLabel parameter identifies a portion of a certificate authority
hierarchy that is preferred by the local security endpoint.

978 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|
|

|

|
|

For more information about the IkeConfig and RemoteSecurityEndpoint
statements, see z/OS Communications Server: IP Configuration Reference.

Pre-shared key: The pre-shared key method of authentication enables a remote host
to authenticate itself by providing a secret key, which is known to both hosts. This
key is pre-configured by the administrator, and is used along with the
Diffie-Hellman shared secret to derive cryptographic keys used to protect and
authenticate data that flows during the phase 1 negotiation. The pre-shared key is
a shared secret between the two IKE peers, and any host that does not know the
shared key cannot enter into negotiation. IKE maintains a list of all the remote
hosts that are authorized to negotiate. This list contains the identity of the remote
host and the pre-shared key known to that host.

Negotiation modes for phase 1: For IKEv1, the phase 1 negotiation that takes place
between two IKE peers happens in one of two modes, Main mode or Aggressive
mode.

Main mode is more secure because it encrypts the identities of the two hosts that
are contained in the IKE messages, but somewhat slower because more message
exchanges are required. Main mode requires a total of six messages, three from the
initiator and three from the responder.

Aggressive mode is faster, in that fewer messages are exchanged. Aggressive mode
requires only three messages, two from the initiator and one from the responder.
However, the identity of the two hosts is not protected in Aggressive mode. An
IKE implementation is not required to support Aggressive mode.

The choice of mode depends in part on the security needs of the installation. If it is
important that the identities of either host are not to be in clear text on the
network, use Main mode. Otherwise, if both hosts support it, you can use
Aggressive mode for faster, more efficient key exchange. One limitation of
Aggressive mode is that the initiator can specify only a single Diffie-Hellman
group because the key exchange data is sent in the first message. If you need to
allow the initiator to send multiple offers with different Diffie-Hellman groups, use
Main mode.

For IKEv2, there is only one set of network flows defined for phase 1 negotiation.
The set requires four messages, two from the initiator and two from the responder.
The first two of these four messages flow in the clear on the network; the other
two messages are encrypted. The negotiation of the first phase 2 Security
Association is accomplished within these four flows; when the fourth message
flows, both phase 1 and phase 2 Security Associations are activated. Either the
initiator or the responder can subsequently activate additional phase 2 Security
Associations using this phase 1 Security Association.

You configure the choice of negotiation mode using the KeyExchangeAction
statement and the Diffie-Hellman group using the KeyExchangeOffer statement in
an IP security policy configuration file. For more details about the
KeyExchangeAction and KeyExchangeOffer statements, see z/OS Communications
Server: IP Configuration Reference.

Phase 2
The purpose of phase 2 negotiation is to establish a set of parameters known as a
Security Association, which is used to protect specific types of IP traffic. The phase
2 Security Association contains the keys that are used to encrypt and decrypt IPSec
packets on the host, authenticate IPSec packets on the host, or both. The phase 2

Chapter 19. IP security 979

|
|

|

|
|
|
|
|
|
|
|

Security Association is negotiated for a specific set of data endpoints for a specific
type of traffic, and contains the following:
v The keys that are used to encrypt, if encryption is being used
v The keys that are used to authenticate
v The data endpoints, either a single IP address or range of IP addresses
v The protocol of the traffic to be protected, either a single protocol or all protocols
v The ports of the traffic to be protected, either a single port, a range of ports if

the IKEv2 protocol is used to negotiate the phase 2 Security Association, or all
ports

v The IPSec protocol that is used to protect the data: AH or ESP, or both if the
IKEv1 protocol is used for the negotiation

v The type of authentication algorithm to be used
v The type of encryption algorithm to be used, if encryption is being used
v How to build the IPSec packets (tunnel, transport, UDP-Encapsulated-Tunnel, or

UDP-Encapsulated-Transport)
v How often the keys should be refreshed, if the IKEv1 protocol is used for the

negotiation
v A security parameter index (SPI) value, used together with the remote security

endpoint IP address to uniquely identify the Security Association
v The Diffie-Hellman group for perfect forward secrecy (PFS)

A phase 2 negotiation can begin only after the completion of a corresponding
phase 1 Security Association. The encryption methods that are agreed upon during
the phase 1 negotiation are used to protect the data that is exchanged during the
phase 2 negotiation. For instance, if the KeyExchangeRule between two security
endpoints specified SHA1 and 3DES, the IKE data that is exchanged during the
phase 2 negotiation is authenticated using HMAC-SHA and encrypted using 3DES
encryption. Although both phase 1 and phase 2 Security Associations might use
the same authentication and encryption methods, this is not required. For instance,
a phase 1 Security Association can specify SHA1 authentication and 3DES
encryption, while a phase 2 Security Association might use ESP with HMAC-MD5
authentication and DES encryption.

The keys that are generated during the phase 2 negotiation can be derived from
the phase 1 master key to amortize the cost of the phase 1 key generation. As an
alternative, you can configure the phase 2 negotiation to use perfect forward
secrecy (PFS) for stronger security. Each has its advantage as follows:
v If PFS is used, phase 2 negotiation does not derive its keys from the master key,

but instead generates new keying material using the Diffie-Hellman algorithm.
Because it is independently derived, the resultant phase 2 key is more secure.

v If PFS is not used, phase 2 negotiation is completed much more quickly, but the
resultant phase 2 key is less secure.

In either case, phase 2 does not incur the same degree of processing overhead that
is involved in phase 1 negotiation with the remote IKE peer.

For IKEv2, the negotiation of the first phase 2 Security Association on a given
phase 1 is a special case because it is performed during activation of the phase 1.
In this case, the phase 1 Diffie-Hellman group is used for the phase 2 negotiation,
regardless of what was defined on the IpDataOffer statement that corresponds to
the phase 2.

980 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|

|
|

|
|

|
|
|
|
|

When phase 2 negotiation has completed, the Security Association is available for
use by the stack. Now, any traffic that is mapped to this Security Association by an
IP filter rule is IPSec-protected. Since each phase 2 Security Association
corresponds to a single unique phase 1 Security Association, the identity of the
remote peer is implicitly authenticated when the phase 2 Security Association is
used.

Policy for phase 2 Security Associations is defined by referencing an
IpDynVpnAction statement on an IpFilterRule statement. For more details on
referencing an IpDynVpnAction statement on an IpFilterRule statement, see z/OS
Communications Server: IP Configuration Reference.

Only tunnel or transport mode encapsulation can be specified on the IpDataOffer
statement. For IKEv1, the decision to use UDP-Encapsulated-Transport mode or
UDP-Encapsulated-Tunnel mode is made heuristically by the z/OS IKE daemon. If
a NAT is detected in the process of creating a phase 1 Security Association, all
phase 2 Security Associations negotiated under the protection of that phase 1
Security Association are negotiated utilizing UDP encapsulation. In this case, the
z/OS IKE daemon internally converts all IpDataOffer statements containing ESP
with tunnel mode encapsulation to UDP-Encapsulated-Tunnel mode, and
IpDataOffer statements containing ESP with transport mode encapsulation to
UDP-Encapsulated-Transport mode. Any IpDataOffer statements that are
configured to use AH authentication are ignored, since the IPSec protocols do not
allow for AH authentication when NAT is being used.

The phase 2 parameter values supported can differ between IPSec
implementations. For example, z/OS provides configuration to negotiate a phase 2
Security Association for specific port and specific protocol values. Many
implementations of IPSec support negotiating only a wide Security Association,
covering all ports and protocols.

Refreshing phase 1 Security Associations
Refreshing a Security Association is the process of creating a new Security
Association to replace an existing Security Association. The IKED automatically
refreshes Security Associations when they are about to expire.

When an IKEv1 phase 1 Security Association is refreshed, the IKED performs the
following actions:
v It creates a new Security Association using a main mode or aggressive mode

exchange.
v It negotiates new keys and it reauthenticates the identity of the IKE peer.

When an IKEv2 phase 1 Security Association is refreshed, the IKED performs the
following actions:
v It creates a new Security Association by using a create child exchange process.
v It negotiates new keys but does not reauthenticate the identity of the IKE peer.

You can use the ReauthInterval parameter on the KeyExchangeAction statement to
cause the IKED to periodically reauthenticate an existing IKEv2 phase 1 Security
Association. For more information about the KeyExchangeAction statement, see the
KeyExchangeAction statement in z/OS Communications Server: IP Configuration
Reference.

You can use the refresh option on the ipsec command to refresh an existing phase
1 Security Association. When you use the ipsec command to refresh an existing

Chapter 19. IP security 981

|

|
|
|
|

|
|

|
|

|

|
|

|

|

|
|
|
|
|

|
|

IKEv1 or IKEv2 phase 1 Security Association, new keys are negotiated and the
identity of the IKE peer is reauthenticated. For more information about the ipsec
command, see z/OS Communications Server: IP System Administrator's Commands.

IPSec and network address translation devices
There are inherent incompatibilities between IPSec and network address translation
(NAT) functions. RFC 3715, IPsec-Network Address Translation (NAT) Compatibility
Requirements, provides a description of the problems that arise when IPSec is used
to protect traffic that traverses a NAT. One basic problem is that when IPSec
Security Associations traverse a NAT, the NAT is unable to update IP addresses
and checksums that are part of the encapsulated data (encrypted, authenticated, or
both). RFCs 3947 and 3948 define mechanisms that enable specific uses of IPSec to
traverse one or more NAT devices.
v RFC 3947, Negotiation of NAT-Traversal in the IKE, allows an IKE daemon to

detect when one or more NATs are being traversed.
v RFC 3948, UDP Encapsulation of IPsec ESP Packets, defines two IPSec

encapsulation modes, UDP-Encapsulated-Tunnel mode and UDP-Encapsulated-
Transport mode. These modes facilitate the traversal of IPSec traffic through a
NAT by encapsulating ESP packets within a UDP packet.

When IPSec traverses one or more NAT devices, it is known as NAT traversal
(NATT). z/OS Communications Server supports NAT traversal for only IKEv1
Security Associations and for only IPv4 traffic.

UDP-Encapsulated-Tunnel mode and UDP-Encapsulated-Transport mode Security
Associations are negotiated by IKE when NAT traversal is enabled and a NAT is
detected. Manually configured Security Associations do not support
UDP-Encapsulated-Tunnel mode or UDP-Encapsulated-Transport mode.

There are several reasons why network address translation might be used. One
reason is to economize on the use of public addresses within the internal network,
using a public address only when data must be globally routed. A second reason is
to hide internal IP addresses from network segments outside the internal IP
address domain.

It should be noted that the NAT traversal support, as defined by the IETF,
transmits internal IP addresses to its IPSec peer. These internal addresses are not
exposed on the external network. However, the internal addresses are available for
display at the remote security endpoint. If you are considering using this support,
evaluate whether transmitting internal IP addresses to an IPSec peer is acceptable
from a security policy perspective.

NAT encompasses the following IP address mapping techniques:
v One technique performs a one-to-one address translation. An internal-external IP

address mapping is maintained by the NAT device. IP addresses are translated,
but ports are unchanged. The mapping can be static or dynamic. For a static
mapping, there is a definition in the NAT that always translates IP address
x.x.x.x to IP address y.y.y.y. An outbound packet is not needed to establish the
mapping. For a dynamic mapping, the NAT has a pool of IP addresses that are
assigned as needed, so IP address x.x.x.x might be mapped to IP address y.y.y.y
one time, and to IP address z.z.z.z at another time. The mapping is established
when an outbound packet is processed.

v The network address port translation (NAPT) technique uses multiple internal IP
addresses that are translated into a single public IP address. As part of this

982 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|

|
|

translation process, the TCP and UDP ports in the packets are translated. NAPT
is sometimes referred to as port address translation (PAT) or IP masquerade. The
mapping is typically dynamic and established in the NAPT when an outbound
packet is processed. For example, the NAPT might create a mapping for internal
address x.x.x.x port y to external address a.a.a.a port b and a mapping for
internal address z.z.z.z port v to external address a.a.a.a port c.
When only one client behind a NAPT has negotiated a Security Association, it is
not always possible for the remote peer to detect whether the public address is
being used for one-to-one address translation or for NAPT. When multiple
clients have active Security Associations, the remote peer can detect when port
translation is being performed.

The terms in front of and behind are used to convey which IP address a NAT is
translating. When a NAT is said to be in front of a client, it means the client's
address will be translated by the NAT. When a server is said to be behind a NAT,
it means that server's address will be translated by the NAT.

NATT support level
z/OS supports NAT traversal as defined in RFCs 3947 and 3948. Platforms that
have implemented their NAT traversal support using pre-RFC drafts might not
inter-operate with implementations that are compliant with RFC 3947 and 3948.
z/OS does provide limited support for the following pre-RFC implementations:
v draft-ietf-ipsec-nat-t-ike-02 (pre-RFC draft of RFC 3947), and

draft-ietf-ipsec-udp-encaps-02 (pre-RFC draft of RFC 3948)
v draft-ietf-ipsec-nat-t-ike-03 (pre-RFC draft of RFC 3947), and

draft-ietf-ipsec-udp-encaps-03 (pre-RFC draft of RFC 3948)

Dynamic structures used to map Security Associations
The negotiation of a phase 2 Security Association results in the dynamic creation of
new filters used to map the Security Association to a specific type of traffic. These
dynamic filters are then added to the filter table and remain as long as the Security
Association is available for use. Additional structures are added to the filter table
when the remote security endpoint is behind a NAT.

Anchor filters and dynamic filters
Filters with ipsec actions are flagged as anchor filters. Anchor filters are neither
permit or deny rules, but rather serve as place holders for dynamic filters in the
ordered list of filter rules. A dynamic filter is an extension of an anchor filter and is
created when a phase 2 Security Association is created. Each phase 2 Security
Association that is negotiated is associated with two dynamic filters, an inbound
filter and an outbound filter. When an IP packet matches an anchor filter rule,
there is a secondary search for a matching dynamic filter rule. If one is not found,
the packet is denied, unless the packet is an outbound packet and on-demand
negotiations are allowed. In that case, an IKE negotiation ensues to create a
Security Association and the matching dynamic filter. If a dynamic filter already
exists, the action taken is to permit with IPSec processing applied. The dynamic
filter rule indicates which Security Association should be used when applying
IPSec processing, because there is a one-to-one correspondence between dynamic
filter pairs (inbound and outbound) and phase 2 Security Associations. For a
sample display of anchor and dynamic filters, see “Displaying active filters with
the ipsec command” on page 1111.

NATT anchor and NATT dynamic filters
When the remote peer is behind a NAT, the dynamic anchor still serves as a place
holder in the ordered list of filter rules. However, the dynamic filters that are

Chapter 19. IP security 983

created when a phase 2 Security Association is created are handled differently.
When the phase 2 negotiation is successful, the dynamic filter pair that is created
contains the 5-tuple information for which the Security Association was negotiated:
v The data endpoints, either a single IP address or range of IP addresses
v The protocol of the traffic to be protected, either a single protocol or all protocols
v The ports of the traffic to be protected, either a single port or all ports

In cases when the remote peer is behind a NAT, this 5-tuple might not be unique
for a Security Association. An additional structure, a NATT anchor, is generated to
anchor dynamic filters that share the same 5-tuple information. The dynamic filter
is then an extension to the NATT anchor and is flagged as a NATT dynamic. For a
sample display of NATT anchor and NATT dynamic filters, see “Displaying active
filters with the ipsec command” on page 1111.

NAT resolution filters
When the remote peer is behind a NAT, a connection level filter structure is also
created for TCP and UDP connections, the NAT resolution filter (NRF). Unlike the
NATT anchor and NATT dynamic filters, which are created when the phase 2
Security Association is created, the NRF is created when the first inbound packet is
received for the connection over the phase 2 Security Association. The NRF
contains a single source and destination IP address, a single source and destination
port value, and a single protocol. This connection-level filter is needed to
determine the phase 2 Security Association that will be used for outbound data.
For a sample display of NAT resolution filters, see “Displaying active filters with
the ipsec command” on page 1111.

Remote port translation
When the remote peer is a security gateway behind a NAT, the remote data
endpoint of the client is represented by the security gateway's public IP address.
From the z/OS server's perspective, multiple clients residing behind the security
gateway are all identified by the IP address of their corresponding security
gateway, not the client's private IP address. Consequently, if two clients behind the
security gateway were to open a connection to the same service (FTP, for example)
from the same ephemeral port (1024, for example), the two connections could not
be uniquely identified.

Similarly, when the remote peer is a host behind a NAPT, the remote data
endpoint of the host is represented by the public address assigned by the NAPT.
Typically, multiple hosts residing behind the NAPT are all assigned the same
public IP address, with port translation distinguishing the hosts. The port that is
being translated by the NAPT is the port found in the UDP header of the IKE
packet and the UDP-encapsulated ESP packet, not the connection port.
Consequently, if two hosts behind the NAPT open a connection to the same service
(FTP, for example) from the same ephemeral connection port (1024, for example),
the two connections cannot be uniquely identified.

Traditionally, the combination of local and remote IP addresses and ports is enough
to distinguish the connections; in these instances, since the connection requests
appear to be coming from the same IP address, they look identical. To avoid such
conflicts, Communications Server provides remote port translation for TCP and
UDP connections when needed. Without remote port translation, the first inbound
TCP connection request for a unique 5-tuple would succeed. However, a
subsequent inbound connection request using the same 5-tuple would fail.

984 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Communications Server's remote port translation allows subsequent inbound
connections using the same 5-tuple to succeed by translating the remote port value
to a different ephemeral port.

Remote port translation does not need to be configured or enabled. It is built into
Communications Server's NAT traversal support and is always in effect when the
remote peer is behind a NAT. When a remote port is translated, message EZ0827I,
remote port translated, is logged. Remote port translation determines whether the
source port in an inbound packet represents a duplicate port. If it does, an attempt
is made to assign an unused ephemeral port value. If the inbound packet matches
a configured filter rule that covers all ports, any unused ephemeral port value can
be assigned. If the configured filter rule applies only to a range of ports, the
remote port is translated only to an unused ephemeral port in that range. If an
unused port cannot be found, the connection request fails. When a remote port
value is translated, there is both an original remote port and translated remote port
for a connection. Various commands, such as Netstat, enable you to view
connection information including the port, or even to select display data based on
port. For connection data, if only one remote port is being provided, the translated
port is displayed or used for a selection, if remote port translation has been done.

The ipsec -o display command provides a display of port mappings in effect. For a
sample display of remote port translation, see “Displaying remote port translation
with the ipsec command” on page 1128.

Steps for preparing the z/OS system for IP security
Before you begin: You need to be familiar with the concepts of IP filter logging
and IPSec protection. See “Overview of using IP security” on page 929. You also
need to be familiar with the commands used to administer IP security. See
“Commands used to administer IP security” on page 928.

Perform the following steps to prepare the z/OS system for IP security.

1. Develop a site policy to address the security needs of your installation.

The following are some questions that you must consider before beginning to
build a robust IP security policy:
v Do you want a default-allow or default-deny policy?
v If a default-deny policy is desired, what traffic is allowable as critical to the

proper functioning of the system?
v What hosts are allowed to send data to the secure host?
v Do you understand the network topology, and where the communicating

hosts are located within the network?
v Are there network address translation (NAT) devices in the network

topology?
v What type of traffic is allowable from those hosts?
v What general network services that rely on well-known ports do you want

to allow?
v Will you forward any packets you receive that are not destined for you?
v Who is allowed to configure the IP security policy?
v Are you running with one TCP/IP stack, or more than one TCP/IP stack?
v Are you running IPv6 traffic?
v Will all TCP/IP stacks share the same policy definitions, or will they have

unique differences?

Chapter 19. IP security 985

v Will traffic that is sent or received by the secure host traverse the Internet?
v Do you want to participate in a VPN? (If so, IPSec is required.)
v If IPSec is required:

– What are the IPSec capabilities of the remote endpoints?
– How do you want to authenticate participating hosts:

- Pre-shared key?
- Digital signature? (requires digital certificates)

– What type of authentication is needed for the data that is involved?
– Is encryption needed for the data that is involved, and how strong should

the encryption algorithms be?
– Will all participating hosts use the same level of data encryption and

authentication, or do you need to define unique policies for individual
hosts?

2. Identify the resources to be secured.

Create a worksheet for each TCP/IP stack you will enable for IP security. This
information aids in determining which interfaces and connected networks are
secured. You can later use the information from the worksheets to provide
values for IP security policy configuration statements. Figure 99 includes a
sample worksheet:

Security class is an optional designation for a network interface. You can
assign network interfaces a security class (1-255) that is used to group
interfaces with similar security requirements. This concept is an extension of
the traditional notion of secure and nonsecure interfaces, to allow for more
than two classes. The secure and nonsecure model can still apply if only two
security classes are defined.
Complete a table of remote hosts and subnetworks with which this host needs
to transfer data, as shown in Table 46 on page 987. The remote hosts can
optionally be grouped in a user-defined zone to simplify the number of IP

Host name of z/OS system _____________________________________

Complete for each TCP/IP stack on this host:
TCP/IP stack name ______________IPSECURITY-enabled (Y/N)______
Network interface(s)
IPv4 address/Mask______________________Security Class_________
IPv4 address/Mask______________________Security Class_________
IPv4 address/Mask______________________Security Class_________
IPv4 address/Mask______________________Security Class_________
IPv6 address/Prefix____________________Security Class_________
IPv6 address/Prefix____________________Security Class_________
Virtual IPv4 address/Mask____________________
Virtual IPv4 address/Mask____________________
Virtual IPv4 address/Mask____________________
Virtual IPv4 address/Mask____________________
Virtual IPv6 address/Prefix__________________
Virtual IPv6 address/Prefix__________________

Identities, other than IP address, by which the IKE daemon will be known
(e.g., X500dn, Fqdn, UserAtFqdn, KeyID)

Figure 99. Sample worksheet for stack security

986 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|

filter rules that are required. For instance, you might want to define an
internal, external, trusted, Internet, partner company, or other zone that has
meaning to your site.
Rule: If the remote IKE peer resides on a security gateway to the remote host,
the IP address of the remote host might not match the IP address of the remote
IKE peer. If this is the case, tunnel-mode encapsulation of IPSec traffic is
required.

Table 46. Table of remote hosts and subnetworks

Remote IP
address or
subnet

User-
defined
zone of
remote
hosts

Identity of
remote IKE
peer
(IpAddr,
X500dn,
KeyID,
Fqdn, or
UserAtFqdn)

IP address
of remote
IKE peer

Allowed
list of
services
(Telnet,
FTP, Web,
EE, ALL, or
other)

Security
action
(permit,
deny, ipsec)

IPSec
security
level, if
applicable

3. Modify the default IP filter policy (optional).

After the site policy is established, you can modify the default IP filter policy
if necessary. For a description and examples of how to modify the default IP
filter policy, see “Default IP filter policy and IP security policy” on page 945.
Guideline: You should define IPSECRULE and IPSEC6RULE statements that
permit access from at least one administrative machine. In the event that
Policy Agent is unavailable, or the IP security configuration files contain
errors, the active default policy would deny access to the IP security-enabled
stack. Should this situation occur, if you have added the appropriate
IPSECRULE and IPSEC6RULE statements to the default policy, you can still
access the secure z/OS host and make the necessary administrative changes to
correct the problem.

4. Set up the key required applications:

v TCP/IP
To enable IP security on a z/OS stack, make the following changes in the
TCP/IP profile:
– Add IPCONFIG IPSECURITY.
– To also enable IP security for IPv6, add IPCONFIG6 IPSECURITY.
– Reserve ports 500 and 4500 for IP security. If the IKE daemon is running

on this system, reserve the ports for the user ID under which the IKE
daemon is running. In this example, the IKE daemon is running under
the IKED user ID:
500 UDP IKED
4500 UDP IKED

If the IKE daemon is not running on this system, reserve the ports by
specifying RESERVED:
500 UDP RESERVED
4500 UDP RESERVED

– To direct IPSec's AH and ESP protocol processing to zIIPs, add
GLOBALCONFIG ZIIP IPSECURITY.

Chapter 19. IP security 987

|

For information on the IPCONFIG, IPCONFIG6, GLOBALCONFIG, and
PORT statements, see z/OS Communications Server: IP Configuration Reference.

v Policy Agent
For information on configuring the Policy Agent, see Chapter 16,
“Policy-based networking,” on page 829.

v TRMD
For information on configuring TRMD, see “TRMD” on page 919.

v Syslogd
For information on configuring the syslog daemon, see “Configuring the
syslog daemon” on page 185.

v IKED
The IKED can be started from a z/OS UNIX command line or as an MVS
procedure. The iked.conf file controls the overall function of the IKE
daemon, such as the following settings:
– The logging level of the IKE daemon
– The logging level of the Policy Agent when performing IP security-related

tasks on behalf of the IKE daemon
– The name of the RACF key ring that is owned by the IKE daemon
– Whether IKE messages are echoed to STDOUT when the daemon is

started for the UNIX System services shell
– How long to wait when attempting to connect to the Policy Agent
– The list of certificate authorities that are acceptable for RSA signature

negotiation when the IKED is using the native certificate service (when
the Network Security Services (NSS) server is providing the certificate
service, this list is not used)

Most of the configuration parameters have a default value and do not
require modification.
Rule: If the RSA signature method is to be used in any IKE phase 1
negotiation and the IKED is using the native certificate service, the name of
the IKE key ring must be included in the iked.conf file. If the NSS server is
providing the certificate service, the IKE key ring name is not needed.
Tip: If the RSA signature method is used and the IKED is using the native
certificate service, including a list of supported certificate authorities
enhances the performance of certificate searches.
Guideline: The logging levels of the IKE daemon (IkeSyslogLevel) and
Policy Agent (PagentSyslogLevel) should not be changed from their default
values for normal day-to-day operation. Higher logging levels can affect
performance and should be used for temporary diagnostic purposes only.
The default PagentSyslogLevel of 0 prevents the IKE daemon from logging
diagnostic information about its interactions with Policy Agent. The default
IkeSyslogLevel of 1 provides basic informational and error messages. The
IkeSyslogLevel can be set to 0 to disable IKE syslog messages entirely (for
both IkeSyslogLevel and PagentSyslogLevel; to collect PagentSyslogLevel
tracing, IkeSyslogLevel must also be set to a nonzero value). The
IkeSyslogLevel can be set higher to identify the source of an error; for
example, if you experience problems with Security Association negotiations
due to a configuration error, you might enable IkeSyslogLevel 4 (debugging
information for Security Association negotiations).
For detailed syntax and a description of the iked.conf file, and details on
starting the IKE daemon as an MVS procedure, see z/OS Communications
Server: IP Configuration Reference.

988 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|

|
|
|

|
|
|

|
|

|
|
|
|

5. Define access controls for key required applications:

v TRMD
TRMD runs as an authorized program and requires RACF setup. TRMD
must be able to run as a started task and have superuser authority. For
sample RACF commands, see the EZARACF member of SEZAINST.

v Policy Agent
Policy Agent runs as an authorized program and requires RACF setup.
Policy Agent must be able to run as a started task and have superuser
authority. For sample RACF commands, see the EZARACF member of
SEZAINST and “Step 1: Configure general information” on page 849.

v IKED
For the steps to prepare for running the IKE daemon, see Appendix E,
“Steps for preparing to run IP security,” on page 1505.

6. Configure the IKE daemon.

See Appendix E, “Steps for preparing to run IP security,” on page 1505.

7. (Optional) Configure the NSS daemon.

If the IKED is using the NSS certificate service for any IKEv1 or IKEv2
Security Association negotiation, then configure the NSS daemon. The IKED
must use the NSS certificate service for any IKEv2 negotiation that uses
certificates for authentication. The IKED can use either the native certificate
service or the NSS certificate service for an IKEv1 negotiation that uses
certificates for authentication.
For more information about the NSS daemon, see Chapter 20, “Network
security services,” on page 1149.

8. (Optional) Configure additional encryption products.

v 3DES support
For 3DES (triple DES), the IP security level 3 feature, FMID JIP614K, is
required.

v AES support (including AES-CBC, AES-GCM and AES-GMAC)
For AES, the Communications Server Security Level 3 feature and the z/OS
Security Level 3 feature are required and ICSF must be started.

v FIPS 140
In order for the IKED, the NSSD, and TCP/IP to run in FIPS 140 mode, you
must start ICSF and configure the FIPSMODE(COMPAT) setting.

v ICSF
There are several options available on z/OS to perform encryption in
hardware. The ICSF product is required to support these various options.
For a description and information about how to configure these options, see
z/OS Cryptographic Services ICSF Administrator's Guide.
For the RACF commands that authorize ICSF, see Appendix E, “Steps for
preparing to run IP security,” on page 1505.

v SHA2 support (including SHA2-256, SHA2-384, and SHA2-512, as well as all
corresponding HMAC-SHA2 algorithms) and AES authentication
(AES-XCBC)
For SHA2 and AES-XCBC authentication, ICSF must be started.

9. Create IP security policy configuration files.

Chapter 19. IP security 989

|

|
|
|
|
|
|

|
|

|

|

|
|

|

|
|

|

|
|

|

|
|
|
|

|
|

|
|
|

|

After the security needs of your installation are established, the next step is to
create one or more IP security policy configuration files. There are two main
configuration files in which IP security policy configuration is stored:

Stack-specific IP security configuration file
Configured on a per-stack basis and contains only IP security policy
configuration that applies to the stacks for which it is configured.

Common IP security configuration file
Contains IP security policy configuration that applies to every stack on
the system and can be used to hold shared definitions.

The stack-specific file can refer to various definitions in the common file, and
can override policy definitions in the common file.
Although Policy Agent uses LDAP to store policy for some other policy types,
IP security policy configuration is stored exclusively in human-readable text
files, either in the z/OS UNIX file system or in an MVS data set. These
configuration files are then read by Policy Agent when it initializes and before
being installed into the stack.

IP security policy configuration
This topic describes the general steps for creating IP security policy configuration
files for the most common configurations. Configuring a complete and specific IP
security policy that meets the needs of any installation is beyond the scope of this
text, but guidance for more advanced configurations is provided.

“Overview of configuring IP security policy” describes the common IP security
configuration file, the stack-specific IP security configuration file, and the general
content, structure, and use of these files.

“Component policies of IP security policy configuration files” on page 997
describes the types of policies contained in IP security policy configuration files.

“Steps for configuring IP security policy” on page 1026 describes the steps for
manually creating IP security policy configuration files.

“Quick start using IP filtering and IPSec host-to-host” on page 1008 describes a
complete IP security policy allowing connections from a secure server to an
administrative machine on an internal network, and represents the minimum
configuration needed to provide IPSec protection with dynamic key management
between two hosts. This topic also describes the use of the ipsec command to
display filters and Security Associations.

“Configuring specific security models” on page 1028 provides more examples and
describes the configuration needed for common security models.

Overview of configuring IP security policy
There are three options for IP security policy configuration for a system:
v Use a common IP security configuration file that applies to all stacks on the

system, enforcing a consistent policy. In this instance, a stack-specific IP security
configuration file is not necessary.

v Use a unique and separate stack-specific IP security configuration file for each
stack on the system. In this instance, a common IP security configuration file is
not necessary.

v Use both a common and a stack-specific IP security configuration file.

990 z/OS V1R12.0 Comm Svr: IP Configuration Guide

– The common IP security configuration file can be used as a common
repository for frequently used definitions, which can be referenced by any
stack-specific IP security configuration file.

– The stack-specific IP security configuration file can contain unique statements
that apply only to the stack for which it is configured, and can reference
statements that are defined in the common IP security configuration file.

Although not an error, note that when using the last approach, it is possible for
duplicate statements to exist in the common and the stack-specific IP security
configuration files (for example, two IpFilterRule statements with the same name).
In this case, the statement in the stack-specific IP security configuration file is
honored. Statements in the stack-specific IP security configuration file always take
precedence over the common IP security configuration file.

Structure of an IP security configuration file
The common IP security configuration file and the stack-specific IP security
configuration file have exactly the same structure. They are comprised of a number
of statements that define items that are used to define policy, such as policies,
rules, actions, groups, and objects. Statement names and attribute names are not
case sensitive, though they appear in mixed case in this information for readability.
Only user-defined names are case sensitive. For the complete syntax of all IP
security policy statements, see z/OS Communications Server: IP Configuration
Reference.

An IP security policy configuration statement has the following generic form:
StatementType user-defined name
{

Attribute1 value1
Attribute2 value2
.
.
.

}

Statements often contain other inline statements in a recursive form:
StatementType1 user-defined name
{

Attribute1 value1
StatementType2 optional user-defined name
{

Attribute1 value1
Attribute2 value2

}
Attribute2 value2

}

There are three main sections in an IP security configuration file, identified by the
following three statements:
v IpFilterPolicy
v KeyExchangePolicy
v LocalDynVpnPolicy

Additional statements that define rules, actions, groups, and objects are found both
in the main body of the configuration file and within any of these other three
policy blocks. A high-level view of an IP security configuration file follows.
Although the statement blocks are shown in a specific order, the ordering is
arbitrary.

Chapter 19. IP security 991

IpFilterPolicy #(required)
{

<local statements>
}

KeyExchangePolicy #(optional)
{

<local statements>
}

LocalDynVpnPolicy #(optional)
{

<local statements>
}

<global statements>

Groups: Groups provide a method to combine related objects in a meaningful
way into sets. The following IP security policy configuration statements can be
used as groups:
v IpAddrGroup
v IpFilterGroup
v IpServiceGroup
v KeyExchangeGroup
v LocalDynVpnGroup

Reference statements: A reference statement can be recognized by the suffix Ref.
References provide a convenient way to reuse definitions, eliminating the need to
repeatedly specify things such as host addresses and common services. Nearly all
statements in the IP security configuration file can be referenced, and all action
statements must be referenced. To be referenced, an IP security policy configuration
statement must be given a user-defined name. Names of statements can be up to
32 characters. The following IP security policy configuration statements can be
referenced, and therefore reused:
v IpAddr
v IpAddrSet
v IpDataOffer
v IpDynVpnAction
v IpFilterGroup
v IpFilterRule
v IpGenericFilterAction
v IpLocalStartAction
v IpManVpnAction
v IpService
v IpServiceGroup
v IpTimeCondition
v KeyExchangeAction
v KeyExchangeGroup
v KeyExchangeOffer
v KeyExchangeRule
v LocalDynVpnGroup
v LocalDynVpnRule
v LocalSecurityEndpoint

992 z/OS V1R12.0 Comm Svr: IP Configuration Guide

v RemoteIdentity
v RemoteSecurityEndpoint

Steps for configuring local IP security policy using only a
common IP security configuration file

Perform the following steps to configure local IP security policy using only a
common IP security configuration file.

1. In the main Policy Agent configuration file, include a CommonIpSecConfig
line that identifies the common IP security configuration file, as follows:
CommonIpSecConfig /etc/common.ipsecpol

2. In the main Policy Agent configuration file, include a line with the TcpImage
statement for each IP security stack to be configured:
TcpImage TCPCS /etc/TCPCS.image
TcpImage TCPCS2 /etc/TCPCS2.image...

3. In each configuration file that was identified on the TcpImage statement shown
in step 2, include a line that contains IpSecConfig with no file name, as
follows:
In /etc/TCPCS.image:
IpSecConfig

In /etc/TCPCS2.image:
IpSecConfig

All stacks on the z/OS system will adhere to the policy that is specified in the
/etc/common.ipsecpol file.

Steps for configuring remote IP security policy using only a
common IP security configuration file

Perform the following steps to configure remote IP security policy using only a
common IP security configuration file.

1. In the main Policy Agent configuration file on the policy client, include the
ServerConnection statement, and a line with the TcpImage statement for each
IP security stack to be configured:
ServerConnection
{

...
}
TcpImage TCPCS /etc/TCPCS.image
TcpImage TCPCS2 /etc/TCPCS2.image...

2. In each configuration file that was identified on the TcpImage statement shown
in step 1, include a PolicyServer statement.
For example, in /etc/TCPCS.image:
PolicyServer
{

ClientName IPSecClientTCPCS
PolicyType IPSec
{

...
}
...

}

Chapter 19. IP security 993

In /etc/TCPCS2.image:
PolicyServer
{

ClientName IPSecClientTCPCS2
PolicyType IPSec
{

...
}
...

}

3. In the main configuration file on the policy server, include a
DynamicConfigPolicyLoad statement, as follows:
DynamicConfigPolicyLoad IPSecClient.*
{

PolicyType IPSec
{

CommonPolicyLoad /etc/common.ipsecpol
}
...

}

All stacks on the z/OS policy client system will adhere to the policy that is
specified in the /etc/common.ipsecpol file on the policy server.

Steps for configuring local IP security policy using only a
stack-specific IP security configuration file

Perform the following steps to configure local IP security policy using only a
stack-specific IP security configuration file.

1. In the main Policy Agent configuration file, include a line with the TcpImage
statement for each stack to be configured, as follows:
TcpImage TCPCS /etc/TCPCS.image
TcpImage TCPCS2 /etc/TCPCS2.image...

2. In each configuration file that was identified on the TcpImage statement shown
in step 1, include an IPSecConfig line that identifies the stack-specific IP
security configuration file, as follows:
In /etc/TCPCS.image:
IpSecConfig /etc/TCPCS.ipsecpol

In /etc/TCPCS2.image:
IpSecConfig /etc/TCPCS2.ipsecpol

Each stack on the z/OS system will adhere to the policy that is specified by its
unique policy file. Stack TCPCS uses the policy that is configured in
/etc/TCPCS.ipsecpol, and stack TCPCS2 uses the policy that is configured in
/etc/TCPCS2.ipsecpol.

Steps for configuring remote IP security policy using only a
stack-specific IP security configuration file

Perform the following steps to configure remote IP security policy using only a
stack-specific IP security configuration file.

1. In the main Policy Agent configuration file on the policy client, include the
ServerConnection statement, and a line with the TcpImage statement for each
IP security stack to be configured:

994 z/OS V1R12.0 Comm Svr: IP Configuration Guide

ServerConnection
{

...
}
TcpImage TCPCS /etc/TCPCS.image
TcpImage TCPCS2 /etc/TCPCS2.image...

2. In each configuration file that was identified on the TcpImage statement shown
in step 1, include a PolicyServer statement.
For example, in /etc/TCPCS.image:
PolicyServer
{

ClientName IPSecClientTCPCS
PolicyType IPSec
{

...
}
...

}

In /etc/TCPCS2.image:
PolicyServer
{

ClientName IPSecClientTCPCS2
PolicyType IPSec
{

...
}
...

}

3. In the main configuration file on the policy server, include
DynamicConfigPolicyLoad statements, as follows:
DynamicConfigPolicyLoad IPSecClientTCPCS
{

PolicyType IPSec
{

PolicyLoad /etc/TCPCS.ipsecpol
}
...

}
DynamicConfigPolicyLoad IPSecClientTCPCS2
{

PolicyType IPSec
{

PolicyLoad /etc/TCPCS2.ipsecpol
}
...

}

Each stack on the z/OS policy client system will adhere to the policy that is
specified by its unique policy file. Stack TCPCS uses the policy that is configured
in /etc/TCPCS.ipsecpol on the policy server, and stack TCPCS2 uses the policy
that is configured in /etc/TCPCS2.ipsecpol on the policy server.

Steps for configuring local IP security policy using both a
stack-specific file and a common file

Perform the following steps to configure local IP security policy using both a
stack-specific IP security configuration file and a common IP security configuration
file.

Chapter 19. IP security 995

1. In the main Policy Agent configuration file, include a CommonIpSecConfig
line that identifies the common IP security configuration file, as follows:
CommonIpSecConfig /etc/common.ipsecpol

2. In the main Policy Agent configuration file, include a line with the TcpImage
statement for each stack to be configured, as follows:
TcpImage TCPCS /etc/TCPCS.image
TcpImage TCPCS2 /etc/TCPCS2.image...

3. In each configuration file that was identified on the TcpImage statement in
step 2, include an IPSecConfig line that identifies the stack-specific IP security
configuration file, as follows:
In /etc/TCPCS.image:
IpSecConfig /etc/TCPCS.ipsecpol

In /etc/TCPCS2.image:
IpSecConfig /etc/TCPCS2.ipsecpol

Any statements in the common IP security configuration file are added to the
policy for each stack when the policy is initialized. Either file, /etc/TCPCS.ipsecpol
or /etc/TCPCS2.ipsecpol, can refer to statements in /etc/common.ipsecpol. In the
case of duplicate names, any named statement in the stack-specific IP security
configuration file overrides a statement with the same name in the common IP
security configuration file.

Steps for configuring remote IP security policy using both a
stack-specific file and a common file

Perform the following steps to configure remote IP security policy using both a
stack-specific IP security configuration file and a common IP security configuration
file.

1. In the main Policy Agent configuration file on the policy client, include the
ServerConnection statement, and a line with the TcpImage statement for each
IP security stack to be configured:
ServerConnection
{

...
}
TcpImage TCPCS /etc/TCPCS.image
TcpImage TCPCS2 /etc/TCPCS2.image...

2. In each configuration file that was identified on the TcpImage statement shown
in step 1, include a PolicyServer statement.
For example, in /etc/TCPCS.image:
PolicyServer
{

ClientName IPSecClientTCPCS
PolicyType IPSec
{

...
}
...

}

In /etc/TCPCS2.image:

996 z/OS V1R12.0 Comm Svr: IP Configuration Guide

PolicyServer
{

ClientName IPSecClientTCPCS2
PolicyType IPSec
{

...
}
...

}

3. In the main configuration file on the policy server, include
DynamicConfigPolicyLoad statements, as follows:
DynamicConfigPolicyLoad IPSecClientTCPCS
{

PolicyType IPSec
{

CommonPolicyLoad /etc/common.ipsecpol
PolicyLoad /etc/TCPCS.ipsecpol

}
...

}
DynamicConfigPolicyLoad IPSecClientTCPCS2
{

PolicyType IPSec
{

CommonPolicyLoad /etc/common.ipsecpol
PolicyLoad /etc/TCPCS2.ipsecpol

}
...

}

Any statements in the common IP security configuration file are added to the
policy for each stack when the policy is initialized. Either file, /etc/TCPCS.ipsecpol
or /etc/TCPCS2.ipsecpol, can refer to statements in /etc/common.ipsecpol. In the
case of duplicate names, any named statement in the stack-specific IP security
configuration file overrides a statement with the same name in the common IP
security configuration file.

Component policies of IP security policy configuration files
There are three types of policies in IP security policy configuration files:
v IP filter policy (IpFilterPolicy statement)
v Key exchange policy (KeyExchangePolicy statement)
v Local dynamic VPN policy (LocalDynVpnPolicy statement)

IP filter policy
An IP filter policy can stand alone to provide IP filtering and IPSec protection with
manual key management. Used in conjunction with the two other policies, it is also
required to provide IPSec protection with dynamic key management (IKE). Because
filtering is crucial to secure traffic on a host, an IP security policy that contains no
IpFilterPolicy statement block or an empty IpFilterPolicy statement block is
considered an error, leaving the default policy that is provided by the stack in
effect.

The IpFilterPolicy statement block consists of:
v A set of global configuration options
v An ordered list of IP filter rules (IpFilterRule statements)

The purpose of the global configuration options is to control global policy items,
such as whether logging is active or whether on-demand Security Association

Chapter 19. IP security 997

negotiations are allowed, and so forth. These global options apply to all of the IP
filter rules that are contained in the policy. Each IP filter rule, in turn, contains data
endpoints, traffic descriptions, and actions. When a packet entering or leaving the
system matches the data endpoints and traffic description in an IP filter rule, the
associated action is taken. If the action is an ipsec action, additional action
statements are coded that define the parameters of the IPSec Security Association.

Following is a sample IpFilterRule statement that allows Web traffic on an internal
server, and a description of each line in the sample:
1 IpFilterRule InternalNetWeb
2 {
3 IpSourceAddr 9.1.1.1
4 IpDestAddrSet 9.1.1.0/24
5 IpService
6 {
7 SourcePortRange 80
8 DestinationPortRange 1024 65535
9 Protocol tcp
10 Direction bidirectional InboundConnect
11 Routing local
12 SecurityClass 0
13 }
14 IpGenericFilterActionRef permit-nolog
15 }

Line Description

1 The IpFilterRule keyword, followed by a required user-defined name for
this rule.

2 An open brace ({) marks the start of an IpFilterRule statement block.

3 The source address of the rule. Outbound IP packets that match this rule
must have 9.1.1.1 as the source address in the IP header.

4 The destination address of the rule. Outbound IP packets that match this
rule must have an address in the range of 9.1.1.0 - 9.1.1.255 as the
destination address in the IP header.

5 The IpService statement block describes the type of traffic that is allowed
between the two data endpoints. The IpService block in this rule is inline
to the rule, meaning that the entire definition of the IP service is included
within the rule. Many policy statements, including the IpService statement,
can be referenced rather than included inline.

6 An open brace ({) marks the start of the IpService statement block.

7 The range of source ports that is allowed for outbound packets. The value
can be a single number, or a range of ports.

8 The range of destination ports that is allowed for outbound packets. The
value can be a single number, or a range of ports.

9 The specific protocol that is allowed by this rule.

10 The direction specification for the IP packet.

Bidirectional indicates that this rule allows outbound traffic from local
address 9.1.1.1 on local port 80 to any address in subnet 9.1.1.0/24 using
any ephemeral port (that is, 1024-65535), and inbound traffic from any
address in subnet 9.1.1.0/24 using any ephemeral port to local address
9.1.1.1 on local port 80. Without the use of the bidirectional keyword, it
would be necessary to create two filter rules, one for outbound traffic and
one for inbound traffic.

998 z/OS V1R12.0 Comm Svr: IP Configuration Guide

InboundConnect indicates that the rule will match inbound TCP
connection attempts as well as bidirectional data on an established
connection, but it will not match outbound TCP connection attempts.

11 The routing information for a packet matching this rule. For a packet to
match this rule, the traffic must be local. In other words, this rule does not
allow any packets that must be forwarded to another network node.
Possible values are local, routed, or either.

12 The security class of the interface on which the packet must arrive or
leave. The security class of an interface is defined using the SECCLASS
parameter on the statement that is used to define the interface in the
TCP/IP profile (that is, the LINK, INTERFACE, IPCONFIG DYNAMICXCF,
or IPCONFIG6 DYNAMICXCF statement). Each interface on the system
can be assigned a SECCLASS in the range 1 – 255. If the SECCLASS
parameter is not coded in the TCP/IP profile for an interface, by default
the interface is SECCLASS 255. In the SecurityClass parameter in this
example, the value 0 indicates that a packet that matches this rule is not
restricted and can traverse any interface (1 – 255).

13 A close brace (}) marks the end of the IpService block.

14 The action that is taken on a packet that matches this rule. In this case,
permit the packet and log all occurrences of a match. All IP filter rules
must include an IpGenericFilterActionRef statement. The
IpGenericFilterAction statement itself should be defined elsewhere, outside
of the IpFilterRule block, either in the common or the stack-specific IP
security configuration file:
IpGenericFilterAction permit-nolog
{

IpFilterAction permit
IpFilterLogging no

}

15 A close brace (}) marks the end of the IpFilterRule statement block.

Rule: Do not include policy action statements inline. They must be referenced.

Example 1: Permit rule allowing outbound FTP client connections from the local
host (9.1.1.1) to a remote FTP server (9.1.1.2):
IpFilterRule FTP-client
{

IpSourceAddr 9.1.1.1
IpDestAddr 9.1.1.2
IpService
{

SourcePortRange 1024 65535
DestinationPortRange 21
Protocol tcp
Direction bidirectional OutboundConnect
Routing local
SecurityClass 0

}
IpService
{

SourcePortRange 1024 65535
DestinationPortRange 20
Protocol tcp
Direction bidirectional InboundConnect
Routing local

Chapter 19. IP security 999

|
|
|
|
|

|
|

SecurityClass 0
}
IpGenericFilterActionRef permit

}

Normal (non-passive mode) FTP requires that the FTP client be allowed to initiate
outbound connections to port 21, and be able to receive inbound connections from
port 20. The IpGenericFilterAction permit block must be defined elsewhere, in
either the common or the stack-specific IP security configuration file:
IpGenericFilterAction permit
{

IpFilterAction permit
}

Example 2: Deny rule that blocks all traffic from all private address spaces that is
inbound to a public interface:
IpFilterRule deny-private
{

IpSourceAddrGroupRef PrivateAddrs
IpDestAddr all
IpService
{

SourcePortRange 0
DestinationPortRange 0
Protocol all
Direction inbound
Routing either
SecurityClass 0

}
IpGenericFilterActionRef deny-log

}

The IpSourceAddrGroupRef parameter references an IP address group that is
presumed to be defined elsewhere, in either the common or the stack-specific IP
security configuration file:
IpAddrGroup PrivateAddrs
{

IpAddrSet
{

Prefix 10.0.0.0/8
}
IpAddrSet
{

Prefix 172.16.0.0/12
}
IpAddrSet
{

Range 192.168.0.0-192.168.255.255
}

}

The IpGenericFilterActionRef parameter references an IpGenericFilterAction
statement that is presumed to be defined elsewhere, in either the common or the
stack-specific IP security configuration file:
IpGenericFilterAction deny-log
{

IpFilterAction deny
IpFilterLogging yes

}

Example 3: An ipsec rule that requires IPSec protection for all traffic between the
secure server and an administrative machine on the internal network:

1000 z/OS V1R12.0 Comm Svr: IP Configuration Guide

IpFilterRule Rule2Admin
{

IpSourceAddrRef InternalServerAddressA1
IpDestAddrRef AdminClient
IpServiceRef All-traffic-local
IpGenericFilterActionRef ipsec
IpDynVpnActionRef Silver-TransportMode

}

The use of multiple references in this example makes the IP filter rule easier to
read. For each referenced object or action, there should be a corresponding
definition elsewhere, in either the common or the stack-specific IP security
configuration file:
IpAddr InternalServerAddressA1
{

Addr 9.1.1.1
}

IpAddr AdminClient
{

Addr 9.1.1.2
}

IpService All-traffic-local
{

Protocol all
Direction bidirectional
Routing local
SecurityClass 0

}

IpGenericFilterAction ipsec
{

IpFilterAction ipsec
IpFilterLogging yes LogDeny

}

IpDynVpnAction Silver-TransportMode
{

Initiation either
InitiateWithPfs None
AcceptablePfs None
IpDataOfferRef SHA-DES-Transport

}

IpDataOffer SHA-DES-Transport
{

HowToEncap transport
HowToEncrypt DES
HowToAuth ESP HMAC_SHA1

}

IP filter rule order: “Example 1” on page 999, “Example 2” on page 1000, and
“Example 3” on page 1000 show individual IP filter rules. A complete IP filter
policy contains any number of IP filter rules, configured in much the same manner.
It is important to remember that IP filter rules in an IP filter policy are searched in
the order listed. Because it is possible for a packet to match more than one rule, a
search for a matching filter rule stops after the first match is found, even if there
are additional matches further down in the list. Use the ipsec command traffic test
option (ipsec -t) as an aid in determining which IP filter rule an IP packet matches.

The command-line arguments to the ipsec -t command are a set of characteristics
that describe a particular IP packet. The existing set of filter rules are searched for

Chapter 19. IP security 1001

|
|

|

potential matches. Unlike normal filter processing, which stops the search after a
match is found, the ipsec -t command displays all matching filter rules. Input to
the ipsec -t command does not have to specify all possible filtering criteria from an
IP packet. The output of the ipsec -t command must be inspected to determine
which of the returned rules match for a given case.

For instance, an IP filter rule for ICMP can be configured for a specific type and
code value, while the traffic test does not provide ICMP type and code as inputs. If
more than one IP filter rule matches on the ICMP protocol, they are all displayed.
You must determine, from among those listed, which rule applies for a specific IP
packet.

For a complete description of the ipsec command, including the ipsec -t option,
see z/OS Communications Server: IP System Administrator's Commands.

Key exchange policy
A key exchange policy is required by IKE to provide dynamic key management.
The policy contains the definitions about how the negotiation of keys is to be
performed (using IKEv1 or IKEv2), how the negotiations are to be protected, and
which hosts are allowed to negotiate keys. The absence of a key exchange policy is
not considered an error, but without it, the IKE daemon is unable to provide
dynamic key management.

A key exchange policy consists of an ordered list of key exchange rules. A key
exchange rule consists of a set of security endpoints, and an action to be taken
when the two security endpoints engage in an IKE phase 1 negotiation.

Optionally, a key exchange rule can contain a shared key known only to the two
negotiating entities that are described in the rule. When an IKE negotiation is
initiated, the current list of key exchange rules is searched for a match, based on
four criteria:
v The identity of the local IKE peer, if known
v The identity of the remote IKE peer, if known
v The location (IP address) of the local IKE peer, if needed to distinguish it or if

local identity is not known
v The location (IP address) of the remote IKE peer, if needed to distinguish it or if

remote identity is not known

Following is a sample KeyExchangeRule block that allows an IKE negotiation
between IKE daemons at 9.2.2.2 and 9.4.4.4. A description of each line in the
sample follows the sample.
1 KeyExchangeRule ZoneB_KeyExRule1
2 {
3 LocalSecurityEndpoint
4 {
5 Identity IpAddr 9.2.2.2
6 Location 9.2.2.2
7 }
8 RemoteSecurityEndpoint
9 {
10 Identity X500dn CN=ZoneB Cert,T=IKE ServerB,OU=endicott,O=ibm,C=US
11 Location 9.4.0.0/16
12 CaLabel CA4endicott
13 }
14 KeyExchangeActionRef Gold-RSA
15 SharedKey Ascii TheEagleHasLanded
16 }

Line Description

1002 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|

1 The KeyExchangeRule keyword, followed by a required user-defined
name.

2 An open brace ({) marks the beginning of the KeyExchangeRule statement
block.

3 The LocalSecurityEndpoint statement identifies a local security endpoint,
or local IKE peer.

4 An open brace ({) marks the beginning of the LocalSecurityEndpoint
statement block.

5 The identity of the local security endpoint that must match this rule. This
can be one of five types:
v Fqdn
v IpAddr
v KeyID
v UserAtFqdn
v X500dn

In the example, an IP address is used as the identity value.

6 The IP address of the local IKE peer.

7 A close brace (}) marks the end of the LocalSecurityEndpoint statement
block.

8 The RemoteSecurityEndpoint statement identifies a remote security
endpoint, or remote IKE peer. The RemoteSecurityEndpoint statement can
also be used to define a related group of remote IKE peers by using
wildcard values for identity and location.

9 An open brace ({) marks the beginning of the RemoteSecurityEndpoint
statement block.

10 The identity of the remote security endpoint that must match this rule.
This can be one of five types:
v Fqdn
v IpAddr
v KeyID
v UserAtFqdn
v X500dn

In the example, an X.500 distinguished name is used as the identity value.

11 The IP subnetwork that defines a group of remote IKE peers.

12 Used only for digital signature peer authentication. Specifies the certificate
authority that is advertised to the remote security endpoint as an
acceptable authority. The value for this parameter must be the label of a
certificate authority that is defined in RACF. The CaLabel parameter can be
specified multiple times.

13 A close brace (}) marks the end of the RemoteSecurityEndpoint statement.

14 A reference to a key exchange action that has been defined elsewhere, in
either the common or the stack-specific IP security configuration file, as
follows:
KeyExchangeAction Gold-RSA
{

HowToInitiate main

Chapter 19. IP security 1003

|

|

|

|

HowToRespondIKEv1 main
KeyExchangeOffer
{

HowToEncrypt 3DES
HowToAuthMsgs SHA1
HowToAuthPeers RsaSignature

}
}

The KeyExchangeAction statement specifies the detailed parameters that
govern a phase 1 negotiation between these two security endpoints, such
as who can begin the negotiation and what type of encryption is used.

15 An optional shared key used only for pre-shared key host authentication.

16 A close brace (}) marks the end of the KeyExchangeRule statement block.

Example 1: Following is a key exchange rule for an IKEv1 Aggressive-mode
phase 1 negotiation using pre-shared key authentication:
KeyExchangeRule Admin_KeyExRule1
{

LocalSecurityEndpointRef Internal_IKED
RemoteSecurityEndpointRef Admin_IKED
KeyExchangeActionRef Bronze-PSK
SharedKey Ascii TheEagleHasLanded

}

This rule defines the parameters for the IKEv1 phase 1 negotiation between two
hosts that are identified by the security endpoints Internal_IKED and Admin_IKED
(presumed to be defined elsewhere in the policy file). The specifics of the
negotiation are covered by the Bronze-PSK action as follows:
KeyExchangeAction Bronze-PSK
{

HowToInitiate Aggressive
HowToRespondIKEv1 Aggressive
KeyExchangeOffer
{

HowToEncrypt DES
HowToAuthMsgs SHA1
HowToAuthPeers PreSharedKey

}
}

The optional SharedKey parameter is required only when the pre-shared key
authentication method is used for the phase 1 negotiation.

Example 2: Following is a KeyExchangeRule statement for an IKEv1 Main-mode
phase 1 negotiation using digital signature authentication:
KeyExchangeRule ZoneA_KeyExRule1
{

LocalSecurityEndpointRef Internal_IKED
RemoteSecurityEndpointRef ZoneA_IKED
KeyExchangeActionRef Silver-RSA

}

The referenced objects are presumed to be defined elsewhere in the policy file. This
rule defines the parameters for the IKEv1 phase 1 negotiation between two hosts
that are identified by the security endpoints Internal_IKED and ZoneA_IKED. The
specifics of the negotiation are covered by the Silver-RSA action as follows:
KeyExchangeAction Silver-RSA
{

HowToInitiate main

1004 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|

|

|

|
|

|

|

HowToRespondIKEv1 main
KeyExchangeOffer
{

HowToEncrypt DES
HowToAuthMsgs SHA1
HowToAuthPeers RsaSignature

}
}

Example 3: Following is a key exchange rule for an IKEv2 phase 1 negotiation
using digital signature authentication:
KeyExchangeRule IKEv2_Example
{

LocalSecurityEndpointRef Internal_IKED
RemoteSecurityEndpointRef ZoneA_IKED
KeyExchangeActionRef IKEv2-DigitalSignature

}

This rule defines the parameters for the IKEv2 phase 1 negotiation between two
hosts that are identified by the security endpoints Internal_IKED and ZoneA_IKED
(presumed to be defined elsewhere in the policy file). The specifics of the
negotiation are covered by the IKEv2-DigitalSignature action as follows:
KeyExchangeAction IKEv2-DigitalSignature
{

HowToInitiate IKEv2
HowToAuthMe DigitalSignature
ReauthInterval 0
BypassIpValidation Yes
KeyExchangeOffer
{

HowToEncrypt AES_CBC KeyLength 128
HowToVerifyMsgs HMAC_SHA1_96
PseudoRandomFunction HMAC_SHA1
HowToAuthPeers RsaSignature

}
}

Key exchange rule order: “Example 1” on page 1004 and “Example 2” on page
1004 show individual key exchange rules. A complete key exchange policy contains
any number of key exchange rules. Key exchange rules in a key exchange policy
are searched in the order listed. In the process of an IKE negotiation, Policy Agent
searches the list of active key exchange rules to locate a best match. It is possible
for more than one key exchange rule to match a pending IKE negotiation. For this
reason, the list of key exchange rules in the key exchange policy should be ordered
from most specific to least specific in much the same way as the IP filter rules. If
the key exchange policy contains key exchange rules with both unique and
wildcard security endpoints, the most specific definitions should be placed higher
in the list than the wildcard definitions.

For instance, there might be one key exchange rule governing a connection from an
internal administrative machine, and another key exchange rule governing all other
hosts on the internal network, as follows:
KeyExchangeRule Admin_KeyExRule1
{

LocalSecurityEndpointRef Internal_IKED
RemoteSecurityEndpointRef Admin_IKED
KeyExchangeActionRef Bronze-PSK
SharedKey Ascii TheEagleHasLanded

}

KeyExchangeRule ZoneA_KeyExRule1

Chapter 19. IP security 1005

|

|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

{
LocalSecurityEndpointRef Internal_IKED
RemoteSecurityEndpointRef ZoneA_IKED
KeyExchangeActionRef Silver-RSA

}

In this case, because the remote IKE peer that is defined by the remote security
endpoint Admin_IKED matches both the Admin_KeyExRule1 and
ZoneA_KeyExRule1 rules, the Admin_KeyExRule1 rule should be placed ahead of
the ZoneA_KeyExRule1 rule in the key exchange policy as follows:
KeyExchangePolicy
{

KeyExchangeRuleRef Admin_KeyExRule1
KeyExchangeRuleRef ZoneA_KeyExRule1
KeyExchangeRuleRef ZoneB_KeyExRule1
KeyExchangeRuleRef ZoneC_KeyExRule1

}

Local dynamic VPN policy
A local dynamic VPN policy is required only if the IPSec negotiation is started
through command-line activation using the ipsec command, or through automatic
activation due to a local dynamic VPN policy update. IPSec negotiations can be
initiated in one of four ways:
v On-demand

The negotiation initiates when an outbound IP packet matches a filter rule with
an ipsec action.

v Remotely
The remote peer initiates the request, and the local IKE daemon responds.

v Command-line activation
The ipsec command enables you to manually initiate an IPSec negotiation. (Not
to be confused with manual tunnels, which do not use the IKE daemon at all.)

v Autoactivation
The negotiation begins when either the stack or the IKE daemon initializes and
both are active, or when the local dynamic VPN policy is updated.

A local dynamic VPN policy is required only in the last two cases.

A local dynamic VPN policy consists of an unordered list of local dynamic VPN
rules. The negotiation for a phase 2 Security Association requires that the two
communicating hosts agree on two data endpoints that the Security Association
covers, the protocols the Security Association covers, and the ports that the
Security Association covers. This information is then stored in the phase 2 Security
Association, which is consulted each time relevant IPSec traffic needs to be
encapsulated or decapsulated. The purpose of the local dynamic VPN rule is to
define these requirements for each Security Association that is configured.

Following is a sample LocalDynVpnRule statement that defines the parameters for
the negotiation of a phase 2 Security Association for TN3270E Telnet server traffic
between a server (9.1.1.1) and a client (9.4.4.100). A description of each line follows
the sample.
1 LocalDynVpnRule TelnetSA
2 {
3 LocalIP 9.1.1.1
4 RemoteIP 9.4.4.100
5 LocalDataPort 23

1006 z/OS V1R12.0 Comm Svr: IP Configuration Guide

6 RemoteDataPort 0
7 Protocol tcp
8 Autoactivate yes
9 }

Line Description

1 The LocalDynVpnRule keyword and user-defined name.

2 An open brace ({) marks the start of the LocalDynVpnRule statement block.

3 The local address of IP traffic that this Security Association is to protect.
The address can be either a single address or a range of addresses.
However, if the address is not a single address, this Security Association
must be negotiated for tunnel mode.

4 The remote address of IP traffic that this Security Association is to protect.
The address can be either a single address or a range of addresses.
However, if the address is not a single address, this Security Association
must be negotiated for tunnel mode.

5 The local ports for IP traffic that this Security Association is to protect. The
port must be either a single port or all ports. A range of ports is not
allowed. A value of 0 indicates all ports.

6 The remote ports for IP traffic that this Security Association is to protect.
The port must be either a single port or all ports. A range of ports is not
allowed. A value of 0 indicates all ports.

7 The protocol that this Security Association is to protect. This value can be
numeric. It must define a single protocol or all protocols.

8 Indicates that this Security Association is to be activated when the stack
and IKE daemon are active. No user intervention is required.

9 A close brace (}) marks the end of the LocalDynVpnRule statement block.

An on-demand Security Association does not require a local dynamic VPN rule
definition. All of the parameters for the negotiation of an on-demand phase 2
Security Association can be inferred from one of two places, either the packet that
began the on-demand activation or the filter rule on which the packet matched.
The packet always provides a single value for address, protocol, port, type, and
code. The filter rule, however, can allow for a range of values for IP address,
protocol, port, type, or code. The granularity setting of the IpLocalStartAction
statement determines whether the information is taken from the packet or from the
matching filter rule. For more information regarding the IpLocalStartAction
statement, see z/OS Communications Server: IP Configuration Reference.

Security Associations can be defined as wide or narrow with respect to IP
addresses or ports and protocols. If a Security Association is wide with respect to
IP address, the same Security Association is used to protect data between multiple
endpoints. If a Security Association is wide with respect to ports and protocols, the
same Security Association is used to protect multiple traffic types. Conversely, a
narrowly defined Security Association can be used to protect specific data
endpoints (based on IP address) or specific traffic types (based on commonly used
ports and protocols for network services). Security associations negotiated with
IKEv2 can also be narrow with respect to types and codes.

Example 1 - wide Security Association: The following rule allows any type of
traffic to flow between PublicServerAddressA1 and SubnetC using the same
Security Association. PublicServerAddressA1 and SubnetC can be defined in either

Chapter 19. IP security 1007

|
|
|

|
|

the common or the stack-specific IP security configuration file. The AutoActivate
parameter causes the IKE negotiation to initiate when the stack or IKE initializes.
LocalDynVpnRule ZoneC_VPN-All-traffic
{

LocalIpRef PublicServerAddressA1
RemoteIpSetRef SubnetC
Protocol all
AutoActivate yes

}

IpAddr PublicServerAddressA1
{

Addr 9.3.3.3
}

IpAddrSet SubnetC
{

Prefix 9.6.0.0/16
}

Example 2 - narrow Security Association: If narrow Security Associations are
used for IPSec-protected FTP traffic, two VPN definitions are required, one for the
data connection and one for the control connection. The following rules are from
the server's perspective. The FTP client connecting from BranchOfficeAddressC1 to
the PublicServerAddressA1 ports 20 and 21 uses the respective ZoneC FTP VPNs.
LocalDynVpnRule ZoneC_VPN-FTP-Data
{

LocalIpRef PublicServerAddressA1
RemoteIpRef BranchOfficeAddressC1
LocalDataPort 20
RemoteDataPort 0
Protocol tcp

}

LocalDynVpnRule ZoneC_VPN-FTP-Control
{

LocalIpRef PublicServerAddressA1
RemoteIpRef BranchOfficeAddressC1
LocalDataPort 21
RemoteDataPort 0
Protocol tcp

}

IpAddr PublicServerAddressA1
{

Addr 9.3.3.3
}

IpAddr BranchOfficeAddressC1
{

Addr 9.5.5.5
}

Quick start using IP filtering and IPSec host-to-host
The following sample shows a complete IP security policy allowing connections
from a secure server (9.1.1.1) to an administrative machine (9.1.1.2) on an internal
network. It represents the absolute minimum number of items that need to be
configured for the IKED to provide IPSec protection with dynamic key
management between two hosts.

Tip: You can modify the quick start sample for IPv6 by replacing all IPv4
addresses with IPv6 addresses.

1008 z/OS V1R12.0 Comm Svr: IP Configuration Guide

This IP security policy allows IKE negotiations in the clear (UDP, port 500 traffic),
while authenticating and encrypting all other traffic using the ESP IPSec protocol.
The policy relies almost exclusively on the z/OS IP security policy defaults,
including MD5 and DES for the phase 1 Security Association and ESP/MD5
ESP/DES for the phase 2 Security Association. For a complete description of IP
security policy configuration statements and their defaults, see z/OS
Communications Server: IP Configuration Reference.
#---
Quick-Start IP Security policy
#---
IpFilterPolicy
{

PreDecap off
FilterLogging on
AllowOnDemand yes

IpFilterRule QuickStartRule1
{

IpSourceAddr 9.1.1.1
IpDestAddr 9.1.1.2
IpService
{

SourcePortRange 500
DestinationPortRange 500
Protocol udp
Direction bidirectional
Routing local

}
IpGenericFilterActionRef permit

}

IpFilterRule QuickStartRule2
{

IpSourceAddr 9.1.1.1
IpDestAddr 9.1.1.2
IpService
{

Direction bidirectional
Routing local

}
IpGenericFilterActionRef ipsec
IpDynVpnActionRef TransportMode

}
}

KeyExchangePolicy
{

KeyExchangeRule QuickStart_KeyExRule
{

LocalSecurityEndpoint
{

Identity IpAddr 9.1.1.1
Location 9.1.1.1

}
RemoteSecurityEndpoint
{

Identity IpAddr 9.1.1.2
Location 9.1.1.2

}
KeyExchangeActionRef QuickStart_KeyExAction
SharedKey Ascii TheEagleHasLanded

}
}

#---

Chapter 19. IP security 1009

Reusable actions
#---
IpGenericFilterAction permit
{

IpFilterAction permit
}

IpGenericFilterAction ipsec
{

IpFilterAction ipsec
IpFilterLogging yes LogDeny

}

KeyExchangeAction QuickStart_KeyExAction
{

KeyExchangeOffer
{

HowToAuthPeers PreSharedKey
}

}

IpDynVpnAction TransportMode
{

IpDataOffer
{

HowToEncap transport
}

}

For all IKE negotiations, there must be a corresponding and consistent
configuration on the remote host. In this case, if the remote system is running with
z/OS IP security, the corresponding policy for the remote system can be generated
merely by transposing all instances of local and remote IP addresses.

Displaying filters, rules, and actions
To display the filter rules for the quick start policy after they have been installed in
the stack, enter the following UNIX System Services command:
ipsec -f display -r detail -c current

CS V1R12 ipsec Stack Name: TCPCS Tue Feb 16 10:29:51 2010
Primary: Filter Function: Display Format: Detail
Source: Stack Policy Scope: Current TotAvail: 8
Logging: On Predecap: Off DVIPSec: No
NatKeepAlive: 0 FIPS140: No
Defensive Mode: Inactive

FilterName: QuickStartRule1
FilterNameExtension: 1
GroupName: n/a
LocalStartActionName: n/a
VpnActionName: n/a
TunnelID: 0x00
Type: Generic
DefensiveType: n/a
State: Active
Action: Permit
Scope: Local
Direction: Outbound
OnDemand: n/a
SecurityClass: 0
Logging: None
Protocol: UDP(17)
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a

1010 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: n/a
SourceAddress: 9.1.1.1
SourceAddressPrefix: n/a
SourceAddressRange: n/a
SourceAddressGranularity: n/a
SourcePort: 500
SourcePortRange: n/a
SourcePortGranularity: n/a
DestAddress: 9.1.1.2
DestAddressPrefix: n/a
DestAddressRange: n/a
DestAddressGranularity: n/a
DestPort: 500
DestPortRange: n/a
DestPortGranularity: n/a
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2010/02/16 10:28:42
UpdateTime: 2010/02/16 10:28:42
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 0
LifetimeExpires: n/a
AssociatedStackCount: n/a

FilterName: QuickStartRule1
FilterNameExtension: 2
GroupName: n/a
LocalStartActionName: n/a
VpnActionName: n/a
TunnelID: 0x00
Type: Generic
DefensiveType: n/a
State: Active
Action: Permit
Scope: Local
Direction: Inbound
OnDemand: n/a
SecurityClass: 0
Logging: None
Protocol: UDP(17)
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: n/a
SourceAddress: 9.1.1.2
SourceAddressPrefix: n/a
SourceAddressRange: n/a
SourceAddressGranularity: n/a
SourcePort: 500
SourcePortRange: n/a
SourcePortGranularity: n/a
DestAddress: 9.1.1.1
DestAddressPrefix: n/a

Chapter 19. IP security 1011

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

DestAddressRange: n/a
DestAddressGranularity: n/a
DestPort: 500
DestPortRange: n/a
DestPortGranularity: n/a
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2010/02/16 10:28:42
UpdateTime: 2010/02/16 10:28:42
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 0
LifetimeExpires: n/a
AssociatedStackCount: n/a

FilterName: QuickStartRule2
FilterNameExtension: 1
GroupName: n/a
LocalStartActionName: n/a
VpnActionName: TransportMode
TunnelID: Y0
Type: Dynamic Anchor
DefensiveType: n/a
State: Active
Action: Permit
Scope: Local
Direction: Outbound
OnDemand: Yes
SecurityClass: 0
Logging: Deny
Protocol: All
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: Rule
SourceAddress: 9.1.1.1
SourceAddressPrefix: n/a
SourceAddressRange: n/a
SourceAddressGranularity: Packet
SourcePort: n/a
SourcePortRange: n/a
SourcePortGranularity: n/a
DestAddress: 9.1.1.2
DestAddressPrefix: n/a
DestAddressRange: n/a
DestAddressGranularity: Packet
DestPort: n/a
DestPortRange: n/a
DestPortGranularity: n/a
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2010/02/16 10:28:42
UpdateTime: 2010/02/16 10:28:42
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a

1012 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 0
LifetimeExpires: n/a
AssociatedStackCount: n/a

FilterName: QuickStartRule2
FilterNameExtension: 2
GroupName: n/a
LocalStartActionName: n/a
VpnActionName: TransportMode
TunnelID: Y0
Type: Dynamic Anchor
DefensiveType: n/a
State: Active
Action: Permit
Scope: Local
Direction: Inbound
OnDemand: Yes
SecurityClass: 0
Logging: Deny
Protocol: All
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: Rule
SourceAddress: 9.1.1.2
SourceAddressPrefix: n/a
SourceAddressRange: n/a
SourceAddressGranularity: Packet
SourcePort: n/a
SourcePortRange: n/a
SourcePortGranularity: n/a
DestAddress: 9.1.1.1
DestAddressPrefix: n/a
DestAddressRange: n/a
DestAddressGranularity: Packet
DestPort: n/a
DestPortRange: n/a
DestPortGranularity: n/a
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2010/02/16 10:28:42
UpdateTime: 2010/02/16 10:28:42
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 0
LifetimeExpires: n/a
AssociatedStackCount: n/a

FilterName: DenyAllRule_Generated___________Inbnd
FilterNameExtension: n/a
GroupName: n/a
LocalStartActionName: n/a

Chapter 19. IP security 1013

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

VpnActionName: n/a
TunnelID: 0x00
Type: Generic
DefensiveType: n/a
State: Active
Action: Deny
Scope: Both
Direction: Inbound
OnDemand: n/a
SecurityClass: 0
Logging: None
Protocol: All
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: n/a
SourceAddress: 0.0.0.0
SourceAddressPrefix: 0
SourceAddressRange: n/a
SourceAddressGranularity: n/a
SourcePort: n/a
SourcePortRange: n/a
SourcePortGranularity: n/a
DestAddress: 0.0.0.0
DestAddressPrefix: 0
DestAddressRange: n/a
DestAddressGranularity: n/a
DestPort: n/a
DestPortRange: n/a
DestPortGranularity: n/a
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2010/02/16 10:28:42
UpdateTime: 2010/02/16 10:28:42
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 34
LifetimeExpires: n/a
AssociatedStackCount: n/a

FilterName: DenyAllRule_Generated___________Outbnd
FilterNameExtension: n/a
GroupName: n/a
LocalStartActionName: n/a
VpnActionName: n/a
TunnelID: 0x00
Type: Generic
DefensiveType: n/a
State: Active
Action: Deny
Scope: Both
Direction: Outbound
OnDemand: n/a
SecurityClass: 0
Logging: None
Protocol: All
ICMPType: n/a

1014 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: n/a
SourceAddress: 0.0.0.0
SourceAddressPrefix: 0
SourceAddressRange: n/a
SourceAddressGranularity: n/a
SourcePort: n/a
SourcePortRange: n/a
SourcePortGranularity: n/a
DestAddress: 0.0.0.0
DestAddressPrefix: 0
DestAddressRange: n/a
DestAddressGranularity: n/a
DestPort: n/a
DestPortRange: n/a
DestPortGranularity: n/a
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2010/02/16 10:28:42
UpdateTime: 2010/02/16 10:28:42
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 7
LifetimeExpires: n/a
AssociatedStackCount: n/a

FilterName: DenyAllRule_Generated__________Inbnd_v6
FilterNameExtension: n/a
GroupName: n/a
LocalStartActionName: n/a
VpnActionName: n/a
TunnelID: 0x00
Type: Generic
DefensiveType: n/a
State: Active
Action: Deny
Scope: Both
Direction: Inbound
OnDemand: n/a
SecurityClass: 0
Logging: None
Protocol: All
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: n/a
SourceAddress: ::
SourceAddressPrefix: 0
SourceAddressRange: n/a
SourceAddressGranularity: n/a
SourcePort: n/a
SourcePortRange: n/a
SourcePortGranularity: n/a

Chapter 19. IP security 1015

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

DestAddress: ::
DestAddressPrefix: 0
DestAddressRange: n/a
DestAddressGranularity: n/a
DestPort: n/a
DestPortRange: n/a
DestPortGranularity: n/a
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2010/02/16 10:28:42
UpdateTime: 2010/02/16 10:28:42
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 1
LifetimeExpires: n/a
AssociatedStackCount: n/a

FilterName: DenyAllRule_Generated__________Outbnd_v6
FilterNameExtension: n/a
GroupName: n/a
LocalStartActionName: n/a
VpnActionName: n/a
TunnelID: 0x00
Type: Generic
DefensiveType: n/a
State: Active
Action: Deny
Scope: Both
Direction: Outbound
OnDemand: n/a
SecurityClass: 0
Logging: None
Protocol: All
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: n/a
SourceAddress: ::
SourceAddressPrefix: 0
SourceAddressRange: n/a
SourceAddressGranularity: n/a
SourcePort: n/a
SourcePortRange: n/a
SourcePortGranularity: n/a
DestAddress: ::
DestAddressPrefix: 0
DestAddressRange: n/a
DestAddressGranularity: n/a
DestPort: n/a
DestPortRange: n/a
DestPortGranularity: n/a
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2010/02/16 10:28:42
UpdateTime: 2010/02/16 10:28:42
DiscardAction: Silent

1016 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 0
LifetimeExpires: n/a
AssociatedStackCount: n/a

8 entries selected

Each IP service in the example uses the bidirectional keyword. Therefore, two rules
are created for each IP service, one outbound and one inbound. When the IP filter
rules are expanded in this way, the specific filter rules are distinguished from each
other by a unique numeric value in the FilterNameExtension field.

Note that the last four deny rules are not explicitly coded in the IP security
configuration file, but are added by the system in keeping with a default-deny
policy.

For more information on displaying active filters with the ipsec command, see
“Displaying active filters with the ipsec command” on page 1111.

To view the quick start filter rules using the pasearch command, issue the
following command:
pasearch -v f

TCP/IP pasearch CS V1R12 Image Name: TCPCS
Date: 02/16/2010 Time: 10:30:47
IPSec Instance Id: 1266334122

policyRule: QuickStartRule1
Rule Type: IpFilter
Version: 3 Status: Active
Weight: 106 ForLoadDist: False
Priority: 6 Sequence Actions: Don’t Care
No. Policy Action: 1 ConditionListType: CNF
IpSecType: policyIpFilter
policyAction: permit
ActionType: IpFilter GenericFilter
Action Sequence: 0
Time Periods:
Day of Month Mask:
First to Last: 1111111111111111111111111111111
Last to First: 1111111111111111111111111111111
Month of Yr Mask: 111111111111
Day of Week Mask: 1111111 (Sunday - Saturday)
Start Date Time: None
End Date Time: None
Fr TimeOfDay: 00:00 To TimeOfDay: 24:00
Fr TimeOfDay UTC: 00:00 To TimeOfDay UTC: 00:00
TimeZone: Local
IpSec Condition Summary: NegativeIndicator: Off
IpFilter Condition:
Source Address:
Destination Address:
Service Condition:
Protocol: 0
Direction: 0
RouteType: 0 SecurityClass: 0
FragmentsOnly: No

Chapter 19. IP security 1017

|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Condition Work Level: 0
Group Number: 0 Cond Count: 2
Ignore: No

IpSec Condition Work Summary: NegativeIndicator: Off
IpFilter Condition:
Source Address:
Destination Address:
Service Condition:
Protocol: 0
Direction: 0
RouteType: 0 SecurityClass: 0
FragmentsOnly: No

IpSec Condition Work: NegativeIndicator: Off
IpFilter Condition:
Source Address:
FromAddr: 9.1.1.1
ToAddr: 9.1.1.1
Destination Address:
Service Condition:
Protocol: 0
Direction: 0
RouteType: 0 SecurityClass: 0
FragmentsOnly: No

Condition Work Level: 1
Group Number: 1 Cond Count: 2
Ignore: No

IpSec Condition Work Summary: NegativeIndicator: Off
IpFilter Condition:
Source Address:
Destination Address:
Service Condition:
Protocol: 0
Direction: 0
RouteType: 0 SecurityClass: 0
FragmentsOnly: No

IpSec Condition Work: NegativeIndicator: Off
IpFilter Condition:
Source Address:
Destination Address:
FromAddr: 9.1.1.2
ToAddr: 9.1.1.2
Service Condition:
Protocol: 0
Direction: 0
RouteType: 0 SecurityClass: 0
FragmentsOnly: No

Condition Work Level: 2
Group Number: 3 Cond Count: 2
Ignore: No

IpSec Condition Work Summary: NegativeIndicator: Off
IpFilter Condition:
Source Address:
Destination Address:
Service Condition:
Protocol: 0
Direction: 0
RouteType: 0 SecurityClass: 0
FragmentsOnly: No

IpSec Condition Work: NegativeIndicator: Off
IpFilter Condition:
Source Address:
Destination Address:
Service Condition:
Protocol: UDP (17)
SrcPortFrom: 500 SrcPortTo: 500
DestPortFrom: 500 DestPortTo: 500
Direction: Bidirectional

1018 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

RouteType: Local SecurityClass: 0
FragmentsOnly: No

Policy created: Tue Feb 16 10:28:42 2010
Policy updated: Tue Feb 16 10:28:42 2010

IpFilter Action: permit
Version: 3 Status: Active
Scope: GenericFilter
ipFilterAction: Permit IpFilterLogging: No
DiscardAction: Silent
Policy created: Tue Feb 16 10:28:42 2010
Policy updated: Tue Feb 16 10:28:42 2010

policyRule: QuickStartRule2
Rule Type: IpFilter
Version: 3 Status: Active
Weight: 105 ForLoadDist: False
Priority: 5 Sequence Actions: Don’t Care
No. Policy Action: 2 ConditionListType: CNF
IpSecType: policyIpFilter
policyAction: ipsec
ActionType: IpFilter GenericFilter
Action Sequence: 0
policyAction: TransportMode
ActionType: IpFilter DynamicVpn
Action Sequence: 0
Time Periods:
Day of Month Mask:
First to Last: 1111111111111111111111111111111
Last to First: 1111111111111111111111111111111
Month of Yr Mask: 111111111111
Day of Week Mask: 1111111 (Sunday - Saturday)
Start Date Time: None
End Date Time: None
Fr TimeOfDay: 00:00 To TimeOfDay: 24:00
Fr TimeOfDay UTC: 00:00 To TimeOfDay UTC: 00:00
TimeZone: Local
IpSec Condition Summary: NegativeIndicator: Off
IpFilter Condition:
Source Address:
Destination Address:
Service Condition:
Protocol: 0
Direction: 0
RouteType: 0 SecurityClass: 0
FragmentsOnly: No

Condition Work Level: 0
Group Number: 0 Cond Count: 2
Ignore: No

IpSec Condition Work Summary: NegativeIndicator: Off
IpFilter Condition:
Source Address:
Destination Address:
Service Condition:
Protocol: 0
Direction: 0
RouteType: 0 SecurityClass: 0
FragmentsOnly: No

IpSec Condition Work: NegativeIndicator: Off
IpFilter Condition:
Source Address:
FromAddr: 9.1.1.1
ToAddr: 9.1.1.1
Destination Address:
Service Condition:
Protocol: 0
Direction: 0

Chapter 19. IP security 1019

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

RouteType: 0 SecurityClass: 0
FragmentsOnly: No

Condition Work Level: 1
Group Number: 1 Cond Count: 2
Ignore: No

IpSec Condition Work Summary: NegativeIndicator: Off
IpFilter Condition:
Source Address:
Destination Address:
Service Condition:
Protocol: 0
Direction: 0
RouteType: 0 SecurityClass: 0
FragmentsOnly: No

IpSec Condition Work: NegativeIndicator: Off
IpFilter Condition:
Source Address:
Destination Address:
FromAddr: 9.1.1.2
ToAddr: 9.1.1.2
Service Condition:
Protocol: 0
Direction: 0
RouteType: 0 SecurityClass: 0
FragmentsOnly: No

Condition Work Level: 2
Group Number: 3 Cond Count: 2
Ignore: No

IpSec Condition Work Summary: NegativeIndicator: Off
IpFilter Condition:
Source Address:
Destination Address:
Service Condition:
Protocol: 0
Direction: 0
RouteType: 0 SecurityClass: 0
FragmentsOnly: No

IpSec Condition Work: NegativeIndicator: Off
IpFilter Condition:
Source Address:
Destination Address:
Service Condition:
Protocol: All
Direction: Bidirectional
RouteType: Local SecurityClass: 0
FragmentsOnly: No

Policy created: Tue Feb 16 10:28:42 2010
Policy updated: Tue Feb 16 10:28:42 2010

IpFilter Action: ipsec
Version: 3 Status: Active
Scope: GenericFilter
ipFilterAction: IPSec IpFilterLogging: Yes Logdeny
DiscardAction: Silent
Policy created: Tue Feb 16 10:28:42 2010
Policy updated: Tue Feb 16 10:28:42 2010

IpFilter Action: TransportMode
Version: 3 Status: Active
Scope: DynamicVpn
Initiation: Either VpnLife: 1440
AcceptablePfs: None
InitiateWithPfs: None IpDataOfferNum: 1
PassthroughDSCP: Yes PassthroughDF: Yes
HowToEncapIKEv2: Either
IPDataOffer: 0
HowToEncap: Transport

1020 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

HowToEncrypt: DES KeyLength: N/A
HowToAuth: ESP HowToAuthAlgr: HMAC_MD5
RefLifeTmPropose: 240
RefLifeTmAcptMin: 120 RefLifeTmAcptMax: 480
RefLifeSzPropose: None
RefLifeSzAccept : None
Policy created: Tue Feb 16 10:28:42 2010
Policy updated: Tue Feb 16 10:28:42 2010

policyRule: DenyAllRule_Generated___________Inbnd
Rule Type: IpFilter
Version: 3 Status: Active
Weight: 104 ForLoadDist: False
Priority: 4 Sequence Actions: Don’t Care
No. Policy Action: 0
IpSecType: policyIpFilter
Time Periods:
Day of Month Mask:
First to Last: 1111111111111111111111111111111
Last to First: 1111111111111111111111111111111
Month of Yr Mask: 111111111111
Day of Week Mask: 1111111 (Sunday - Saturday)
Start Date Time: None
End Date Time: None
Fr TimeOfDay: 00:00 To TimeOfDay: 24:00
Fr TimeOfDay UTC: 00:00 To TimeOfDay UTC: 00:00
TimeZone: Local
IpSec Condition Summary: NegativeIndicator: Off
IpFilter Condition:
Source Address:
FromAddr: All4
ToAddr: All4
Destination Address:
FromAddr: All4
ToAddr: All4
Service Condition:
Protocol: All
Direction: Inbound
RouteType: Either SecurityClass: 0
FragmentsOnly: No

Policy created: Tue Feb 16 10:28:42 2010
Policy updated: Tue Feb 16 10:28:42 2010

policyRule: DenyAllRule_Generated___________Outbnd
Rule Type: IpFilter
Version: 3 Status: Active
Weight: 103 ForLoadDist: False
Priority: 3 Sequence Actions: Don’t Care
No. Policy Action: 0
IpSecType: policyIpFilter
Time Periods:
Day of Month Mask:
First to Last: 1111111111111111111111111111111
Last to First: 1111111111111111111111111111111
Month of Yr Mask: 111111111111
Day of Week Mask: 1111111 (Sunday - Saturday)
Start Date Time: None
End Date Time: None
Fr TimeOfDay: 00:00 To TimeOfDay: 24:00
Fr TimeOfDay UTC: 00:00 To TimeOfDay UTC: 00:00
TimeZone: Local
IpSec Condition Summary: NegativeIndicator: Off
IpFilter Condition:
Source Address:
FromAddr: All4
ToAddr: All4
Destination Address:

Chapter 19. IP security 1021

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

FromAddr: All4
ToAddr: All4
Service Condition:
Protocol: All
Direction: Outbound
RouteType: Either SecurityClass: 0
FragmentsOnly: No

Policy created: Tue Feb 16 10:28:42 2010
Policy updated: Tue Feb 16 10:28:42 2010

policyRule: DenyAllRule_Generated__________Inbnd_v6
Rule Type: IpFilter
Version: 3 Status: Active
Weight: 102 ForLoadDist: False
Priority: 2 Sequence Actions: Don’t Care
No. Policy Action: 0
IpSecType: policyIpFilter
Time Periods:
Day of Month Mask:
First to Last: 1111111111111111111111111111111
Last to First: 1111111111111111111111111111111
Month of Yr Mask: 111111111111
Day of Week Mask: 1111111 (Sunday - Saturday)
Start Date Time: None
End Date Time: None
Fr TimeOfDay: 00:00 To TimeOfDay: 24:00
Fr TimeOfDay UTC: 00:00 To TimeOfDay UTC: 00:00
TimeZone: Local
IpSec Condition Summary: NegativeIndicator: Off
IpFilter Condition:
Source Address:
FromAddr: All6
ToAddr: All6
Destination Address:
FromAddr: All6
ToAddr: All6
Service Condition:
Protocol: All
Direction: Inbound
RouteType: Either SecurityClass: 0
FragmentsOnly: No

Policy created: Tue Feb 16 10:28:42 2010
Policy updated: Tue Feb 16 10:28:42 2010

policyRule: DenyAllRule_Generated__________Outbnd_v6
Rule Type: IpFilter
Version: 3 Status: Active
Weight: 101 ForLoadDist: False
Priority: 1 Sequence Actions: Don’t Care
No. Policy Action: 0
IpSecType: policyIpFilter
Time Periods:
Day of Month Mask:
First to Last: 1111111111111111111111111111111
Last to First: 1111111111111111111111111111111
Month of Yr Mask: 111111111111
Day of Week Mask: 1111111 (Sunday - Saturday)
Start Date Time: None
End Date Time: None
Fr TimeOfDay: 00:00 To TimeOfDay: 24:00
Fr TimeOfDay UTC: 00:00 To TimeOfDay UTC: 00:00
TimeZone: Local
IpSec Condition Summary: NegativeIndicator: Off
IpFilter Condition:
Source Address:
FromAddr: All6
ToAddr: All6

1022 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Destination Address:
FromAddr: All6
ToAddr: All6
Service Condition:
Protocol: All
Direction: Outbound
RouteType: Either SecurityClass: 0
FragmentsOnly: No

Policy created: Tue Feb 16 10:28:42 2010
Policy updated: Tue Feb 16 10:28:42 2010

For more information on displaying filter rules with the pasearch command, see
“Displaying filter rules with the pasearch command” on page 1132.

To display the key exchange rules and actions for the quick start IP security policy,
issue the following command:
pasearch -v k

TCP/IP pasearch CS V1R12 Image Name: TCPCS
Date: 02/16/2010 Time: 10:31:07
IPSec Instance Id: 1266334122

policyRule: QuickStart_KeyExRule
Rule Type: KeyExchange
Version: 3 Status: Active
Weight: 101 ForLoadDist: False
Priority: 1 Sequence Actions: Don’t Care
No. Policy Action: 1
IpSecType: policyKeyExchange
policyAction: QuickStart_KeyExAction
ActionType: KeyExchange
Action Sequence: 0
Time Periods:
Day of Month Mask: 0000000000000000000000000000000
Month of Yr Mask: 000000000000
Day of Week Mask: 0000000 (Sunday - Saturday)
Start Date Time: None
End Date Time: None
Fr TimeOfDay: 00:00 To TimeOfDay: 00:00
Fr TimeOfDay UTC: 00:00 To TimeOfDay UTC: 00:00
TimeZone: Local
IpSec Condition Summary: NegativeIndicator: Off
KeyExchange Condition:
LocalSecurityEndPoint:
Location:
FromAddr: 9.1.1.1
ToAddr: 9.1.1.1
Identity:
IpAddr:
FromAddr: 9.1.1.1
ToAddr: 9.1.1.1

RemoteSecurityEndPoint:
Location:
FromAddr: 9.1.1.2
ToAddr: 9.1.1.2
Identity:
IpAddr:
FromAddr: 9.1.1.2
ToAddr: 9.1.1.2

Policy created: Tue Feb 16 10:28:42 2010
Policy updated: Tue Feb 16 10:28:42 2010

KeyExchange Action: QuickStart_KeyExAction
Version: 3 Status: Active
HowToInitiate: Main HowToRespondIKEv1: Either
AllowNat: No FilterByIdentity: No

Chapter 19. IP security 1023

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

HowToAuthMe: DigitalSignature ReauthInterval: 0
BypassIpValidation: No CertURLLookupPref: Tolerate
RevocationChecking: Loose
KeyExchangeOffer: 0
HowToEncrypt: DES KeyLength: N/A
HowToAuthPeers: PresharedKey DHGroup: Group1
HowToAuthMsgs: MD5
HowToVerifyMsgs: HMAC_SHA1_96 PseudoRandomFunc: HMAC_SHA1
RefLifeTmPropose: 480
RefLifeTmAcptMin: 240 RefLifeTmAcptMax: 1440
RefLifeSzPropose: None
RefLifeSzAccept : None
Policy created: Tue Feb 16 10:28:42 2010
Policy updated: Tue Feb 16 10:28:42 2010

Activating the quick start Security Association
The quick start policy enables on-demand activation of a Security Association
between the two endpoints. The Security Association is a wide Security Association
allowing any type of traffic. Therefore, it can be activated by sending any type of
traffic from the local host at 9.1.1.1 to the remote host at 9.1.1.2 as follows:
ping -s 9.1.1.1 9.1.1.2
CS V1R12: Pinging host 9.1.1.2
sendto(): EDC5111I Permission denied. (errno2=0x74420291)

Because the Security Association does not exist, the initial ping attempt fails. After
the negotiation for the Security Association has activated and the Security
Association is established, a subsequent ping attempt succeeds as follows:
ping -s 9.1.1.1 9.1.1.2
CS V1R12: Pinging host 9.1.1.2
Ping #1 response took 0.001 seconds.

Displaying the quick start Security Associations
Use the ipsec command to display both the phase 1 and phase 2 Security
Associations between 9.1.1.1 and 9.1.1.2. The following command displays the
phase 1 Security Associations:
ipsec -k display -r detail

CS V1R12 ipsec Stack Name: TCPCS Tue Feb 16 10:38:12 2010
Primary: IKE tunnel Function: Display Format: Detail
Source: IKED Scope: Current TotAvail: n/a

TunnelID: K1
Generation: 1
IKEVersion: 1.0
KeyExchangeRuleName: QuickStart_KeyExRule
KeyExchangeActionName: QuickStart_KeyExAction
LocalEndPoint: 9.1.1.1
LocalIDType: ID_IPV4_ADDR
LocalID: 9.1.1.1
RemoteEndPoint: 9.1.1.2
RemoteIDType: ID_IPV4_ADDR
RemoteID: 9.1.1.2
ExchangeMode: Main
State: DONE
AuthenticationAlgorithm: HMAC-MD5
EncryptionAlgorithm: DES-CBC
KeyLength: n/a
PseudoRandomFunction: HMAC-MD5
DiffieHellmanGroup: 1
LocalAuthenticationMethod: PresharedKey
RemoteAuthenticationMethod: PresharedKey
InitiatorCookie: 0x7456F943AA0154BB
ResponderCookie: 0xA344ED85C5D00154

1024 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Lifesize: 0K
CurrentByteCount: 288b
Lifetime: 480m
LifetimeRefresh: 2010/02/16 18:26:45
LifetimeExpires: 2010/02/16 18:37:43
ReauthInterval: 480m
ReauthTime: 2010/02/16 18:26:45
Role: Initiator
AssociatedDynamicTunnels: 1
NATTSupportLevel: None
NATInFrntLclScEndPnt: No
NATInFrntRmtScEndPnt: No
zOSCanInitiateP1SA: Yes
AllowNat: No
RmtNAPTDetected: No
RmtUdpEncapPort: n/a

1 entries selected

In addition to information relating specifically to the phase 2 Security Association,
use the ipsec -y display command to find the phase 1 that protects it. The
ParentIKETunnelID field shows the associated phase 1, which is the same as the
TunnelID from the previous ipsec -k display command.
ipsec -y display -r detail

CS V1R12 ipsec Stack Name: TCPCS Tue Feb 16 10:39:25 2010
Primary: Dynamic tunnel Function: Display Format: Detail
Source: Stack Scope: Current TotAvail: 1

TunnelID: Y2
Generation: 1
IKEVersion: 1.0
ParentIKETunnelID: K1
VpnActionName: TransportMode
LocalDynVpnRule: n/a
State: Active
HowToEncap: Transport
LocalEndPoint: 9.1.1.1
RemoteEndPoint: 9.1.1.2
LocalAddressBase: 9.1.1.1
LocalAddressPrefix: n/a
LocalAddressRange: n/a
RemoteAddressBase: 9.1.1.2
RemoteAddressPrefix: n/a
RemoteAddressRange: n/a
HowToAuth: ESP
AuthAlgorithm: HMAC-MD5
AuthInboundSpi: 1878088104 (0x6FF159A8)
AuthOutboundSpi: 270783814 (0x1023D546)
HowToEncrypt: DES-CBC
KeyLength: n/a
EncryptInboundSpi: 1878088104 (0x6FF159A8)
EncryptOutboundSpi: 270783814 (0x1023D546)
Protocol: ALL(0)
LocalPort: n/a
LocalPortRange: n/a
RemotePort: n/a
RemotePortRange: n/a
Type: n/a
TypeRange: n/a
Code: n/a
CodeRange: n/a
OutboundPackets: 1
OutboundBytes: 264
InboundPackets: 1

Chapter 19. IP security 1025

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

InboundBytes: 264
Lifesize: 0K
LifesizeRefresh: 0K
CurrentByteCount: 0b
LifetimeRefresh: 2010/02/16 14:26:22
LifetimeExpires: 2010/02/16 14:37:43
CurrentTime: 2010/02/16 10:39:25
VPNLifeExpires: 2010/02/17 10:37:43
NAT Traversal Topology:

UdpEncapMode: No
LclNATDetected: No
RmtNATDetected: No
RmtNAPTDetected: No
RmtIsGw: n/a
RmtIsZOS: n/a
zOSCanInitP2SA: n/a
RmtUdpEncapPort: n/a
SrcNATOARcvd: n/a
DstNATOARcvd: n/a

PassthroughDF: n/a
PassthroughDSCP: n/a

1 entries selected

Steps for configuring IP security policy
Perform the following steps to configure IP security policy.

1. Determine the number of zones to be protected. A zone typically equates to a
subnetwork that is reachable by the host server, but can be any group of IP
addresses that are conceptually related. The internal network can be defined
in one or several zones, while any external network or group of networks
can be placed in separate zones. Each zone should have meaning related to
the site's security policy. If a zone maps to a physical interface, optionally
assign a security class to all interfaces in that zone.

2. For each zone, determine what services are allowed and define an IpService
statement for each desired service. Services are defined by the protocols and
well-known ports that they use.

3. Determine the data endpoints to be protected. Typically, this is both a local
and remote IP address, or subnetwork.

4. Determine what level of security is needed between each set of data
endpoints. The level of security can be deny, permit, or ipsec.

5. Configure an IpGenericFilterAction statement for the level of security that is
required (permit, deny, ipsec), including whether the connection should be
logged.

6. If IPSec is required between any two endpoints:

a. Configure a KeyExchangePolicy statement that defines the parameters of
the phase 1 negotiation:
1) Determine the required type and strength of protection for the phase

1 Security Association.
2) Decide what type of peer authentication will be used:

v If digital signature, set up RACF certificates and certificate
authority information.

v If pre-shared key, create a secret key that is known to both peers.

1026 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

3) Decide whether NAT traversal will be allowed. If the network
topology contains one or more NAT devices that must be traversed by
the phase 1 Security Association, NAT traversal should be allowed.

4) Configure a KeyExchangeOffer statement.
5) Determine negotiation mode, IKEv1 Main, IKEv1 Aggressive, or

IKEv2.
6) Configure a KeyExchangeAction statement.
7) Configure a LocalSecurityEndpoint statement and

RemoteSecurityEndpoint statement.
8) Configure a KeyExchangeRule statement that includes the two

endpoints and the key exchange action.
9) Include the KeyExchangeRule statement in the KeyExchangePolicy

statement block.
b. Configure an IpDynVpnAction statement that defines the control of the

phase 2 negotiation:
1) Determine the required type and strength of IPSec protection for the

phase 2 Security Association.
2) Determine whether tunnel or transport mode is required. For an

IKEv2 negotiation, the appropriate mode is chosen based on topology.
3) Configure an IpDataOffer statement that defines the parameters of the

phase 2 negotiation.
4) Determine which peer should be allowed to initiate the negotiation.

c. Decide how the Security Association is to be activated:
1) Configure an optional LocalDynVpnPolicy statement, if command-line

activated or autoactivated.
2) Configure an optional IpLocalStartAction statement, if the Security

Association is to be activated locally (that is, on-demand,
command-line, or autoactivation) and one of the security endpoints is
acting as a security gateway (that is, not a host-to-host Security
Association). Include a reference to the IpLocalStartAction statement
in the IP filter rule.

3) Either create an IpFilterRule statement that allows IPSec traffic (AH
and ESP), or set the global PreDecap parameter of the IpFilterPolicy
statement to off.

7. Define an IpFilterRule statement for each set of data endpoints. The rule
should include the services that are allowed (one IpService statement for
each allowed service), and the level of security that is required (a reference to
the IpGenericFilterAction statement). If IPSec is required, create an
IpFilterRule statement that allows IKE traffic (UDP, port 500). If NAT
traversal is allowed, create an IpFilterRule statement that allows IKE UDP
traffic on port 4500.
Rule: To allow IKE negotiations for Security Associations, IKE traffic (port
500, and optionally port 4500 for NAT traversal) must be permitted in the
clear.

8. Define an IpFilterGroup statement for each zone and include the IpFilterRule
statements that belong to that zone.

9. Include the IpFilterRule statements in the IpFilterPolicy block.

10. Include all configured statements in the IP security configuration file. For
more information, see the following:

Chapter 19. IP security 1027

|
|

|
|

v “Steps for configuring local IP security policy using only a common IP
security configuration file” on page 993

v “Steps for configuring remote IP security policy using only a common IP
security configuration file” on page 993

v “Steps for configuring local IP security policy using only a stack-specific IP
security configuration file” on page 994

v “Steps for configuring remote IP security policy using only a stack-specific
IP security configuration file” on page 994

v “Steps for configuring local IP security policy using both a stack-specific
file and a common file” on page 995

v “Steps for configuring remote IP security policy using both a stack-specific
file and a common file” on page 996

For examples of the use of these steps, see “Configuring specific security models.”

Configuring specific security models
Setting up IP security configuration files can be a complex task, as there are many
powerful features, options, and controls. However, after the security needs of the
business are identified, implementing an IP security policy becomes a matter of
translating the requirements to a Policy Agent configuration file.

The choice of protection model primarily depends on the network topology.
Although it is perfectly permissible to follow a single model when configuring IP
security policy, the z/OS IP security function enables any number of models to be
installed concurrently. Commonly, one set of rules governs internal network traffic,
another protects traffic from connected networks, and a third provides security for
traffic that is routed over the Internet. The following scenarios presume that you
are configuring a secure server that is a multihomed host that is connected to an
internal, an external, and a wide-area network that traverses the Internet. The
configuration guidelines that are presented in the following subtopics are based on
three business models:
v Trusted internal network (permit, deny)

In the trusted internal network model, the server is protecting traffic that
originates from hosts inside a privately controlled network. IP packets on the
internal network are not generally subject to the stringent restrictions that are
placed on traffic that is generated from outside the business. This model is
usually more tolerant, given that users inside the company need access to
internal network resources and services, such as the Web, FTP, and Telnet.

v Partner company (permit, deny, strong IPSec protection)
The partner company model consists of two interconnected networks, with the
server protecting traffic that originates from hosts outside the internal network.
Typically, two separate networks are physically connected to the z/OS server.
Because the traffic is not restricted to internal hosts, security is usually
somewhat tighter than in the trusted internal network model. Each partner
company has no physical control over the machine of the other partner
company. The services that are provided are determined by the needs of the
business, but typically include many of the same services that are provided to
the internal network, such as access to a Web server, FTP, and Telnet. Though
many services might be allowed between partner companies, the need for
confidentiality and authentication of data is more stringent than in the trusted

1028 z/OS V1R12.0 Comm Svr: IP Configuration Guide

internal network model, because there is little to no control over the other
network. IPSec is often specified to authenticate and optionally encrypt data that
flows between the two networks.

v Branch office (permit, deny, strong tunnel-mode IPSec protection)
The branch office model consists of two networks whose IP connectivity relies
on the Internet. The server is protecting traffic that originates from hosts outside
the internal network, which at some point is routed over the Internet. Because
there is no control over any data that traverses the Internet, the need for security
is greatest in this model. The services that are provided are based on business
need, but typically include a subset of what is available internally. All traffic that
traverses the Internet carrying vital information should be secured using some
form of authentication and encryption.

Figure 100 shows a sample network for all three security models.

The following subtopics describe how to configure these models using the steps
described in “Steps for configuring IP security policy” on page 1026. The policy
examples assume that a default-deny policy is in place. Any traffic not explicitly
permitted is blocked.

Steps for configuring the trusted internal network model (simple
IP filtering)
The following statements, concepts, and files are covered in the discussion of this
model:
v IpFilterRule
v IpService
v IpGenericFilterAction
v References
v Groups
v Stack-specific IP security configuration file
v Common IP security configuration file

9.1.1.2

z/OS
Host

Z/OS
Policy9.1.1.1 9.3.3.3

9.2.2.2

Internet
9.5.5.5

Partner Company (B)
9.4.0.0/16

Branch Office (C)
9.6.0.0/16

9.4.4.4

PC

Host

GW

IP RouterInternal (A)
9.1.1.0/24

Figure 100. Security model network

Chapter 19. IP security 1029

Figure 101 shows the trusted internal network portion of the security model
network.

For this example, assume that the following requirements must be met to control
traffic on the internal network:
v Give FTP access to an administrator from a host inside the internal network

(9.1.1.2) to the secure server (9.1.1.1). Log any traffic that matches this traffic
pattern.

v Allow Web access (HTTP, port 80) to the secure server from any host on the
internal network (9.1.1.0/24). Do not log any traffic that matches this traffic
pattern.

v Deny all other traffic.

Perform the following steps to meet these requirements and configure the trusted
internal network model.

1. Determine the number of zones to be protected.

There is only one zone for this example, the internal network 9.1.1.0/24.

2. For each zone, determine what services are allowed and define an IpService
block for each desired service. Optionally, assign a security class to all
interfaces in each zone.
There are two services stated in the example requirements, HTTP and FTP.
The traffic is local to this host and, therefore, the routing is designated as
local. No forwarding of these services is allowed.
Because the entire internal network is defined in one zone, you can define a
unique security class for the interface with address 9.1.1.1. For this example,
the SECCLASS parameter of all internal network interfaces is assigned the
arbitrary value of 1, which can be interpreted to mean a trusted network. If
you specify the SecurityClass parameter in the IpService block, the related
interface must be assigned the same value on the SECCLASS parameter of
the LINK or INTERFACE statement in the TCP/IP profile. In this example,
the traffic is allowed only over an interface with a SECCLASS parameter
value of 1, presumed to be the interface connected to the internal network.
IpService
{

SourcePortRange 80
DestinationPortRange 1024 65535
Protocol tcp
Direction bidirectional InboundConnect
Routing local
SecurityClass 1

}

9.1.1.2

z/OS
Host

Z/OS
Policy 9.1.1.1

PC

Internal (A)
9.1.1.0/24

Figure 101. Trusted internal network model

1030 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Because normal FTP uses two well-known ports, two services are required,
one for the control connection and one for the data connection:
IpService
{

SourcePortRange 21
DestinationPortRange 1024 65535
Protocol tcp
Direction bidirectional InboundConnect
Routing local
SecurityClass 1

}

IpService
{

SourcePortRange 20
DestinationPortRange 1024 65535
Protocol tcp
Direction bidirectional OutboundConnect
Routing local
SecurityClass 1

}

The InboundConnect keyword is used for services that are not allowed to
initiate a TCP connection. The OutboundConnect keyword is used for
services that are not allowed to receive a TCP connection request. If neither
keyword is specified, either side can initiate a TCP connection.

3. Determine the data endpoints to be protected.

There are two sets of data endpoints to be protected in this example,
representing the connection from the administrative machine, and all the
other hosts on the subnetwork:
Local Address of secure server: 9.1.1.1
Remote Address of administrative machine: 9.1.1.2

Local Address of secure server: 9.1.1.1
Remote Address of all hosts on internal network: 9.1.1.0/24

4. Determine what level of security is needed between each set of data
endpoints.
In this example, only permit is required. Therefore, no IPSec information is
needed. Because z/OS IP security policy implicitly provides a default-deny
policy, all other traffic is denied.

5. Configure an IpGenericFilterAction statement for the level of security
(permit, deny, ipsec) that is required, including whether the connection is
logged.
Because the example requirement is to permit two types of traffic with
different logging requirements, two actions are needed as follows:
IpGenericFilterAction permit-log
{

IpFilterAction permit
IpFilterLogging yes

}

IpGenericFilterAction permit-nolog
{

IpFilterAction permit
IpFilterLogging no

}

Chapter 19. IP security 1031

6. If IPSec is required between any two endpoints, configure a
KeyExchangePolicy statement that defines the parameters of the phase 1
negotiation, configure an IpDynVpnAction statement that defines the control
of the phase 2 negotiation, and decide how the Security Association is to be
activated.
IPSec is not required in this example. If there was sensitive data flowing
through the internal network that needed to be confidential, IPSec could be
specified to encrypt some IP packets, thereby effectively securing information
that travels between two hosts on the internal network.

7. Define an IpFilterRule block for each set of data endpoints. Each rule should
include the services that are allowed (one IpService statement for each
allowed service), and the level of security that is required (a reference to the
IpGenericFilterAction statement). If IPSec is required, create an IpFilterRule
statement that allows IKE traffic (UDP, port 500). If NAT traversal is allowed,
create an IpFilterRule statement that allows IKE UDP traffic on port 4500.
In this example, the source address refers to an address on the secure host.
The destination address refers to remote hosts. The IpService statements are
the ones defined in step 2 on page 1030. Note that the IpGenericFilterAction
statement must reference a previously defined action.
IpFilterRule AdminFTP
{

IpSourceAddr 9.1.1.1
IpDestAddr 9.1.1.2
IpService
{

SourcePortRange 21
DestinationPortRange 1024 65535
Protocol tcp
Direction bidirectional InboundConnect
Routing local
SecurityClass 1

}
IpService
{

SourcePortRange 20
DestinationPortRange 1024 65535
Protocol tcp
Direction bidirectional OutboundConnect
Routing local
SecurityClass 1

}
IpGenericFilterActionRef permit-log

}
IpFilterRule InternalNetWeb
{

IpSourceAddr 9.1.1.1
IpDestAddrSet 9.1.1.0/24
IpService
{

SourcePortRange 80
DestinationPortRange 1024 65535
Protocol tcp
Direction bidirectional InboundConnect
Routing local
SecurityClass 1

}
IpGenericFilterActionRef permit-nolog

}

IpGenericFilterAction permit-log

1032 z/OS V1R12.0 Comm Svr: IP Configuration Guide

{
IpFilterAction permit
IpFilterLogging yes

}

IpGenericFilterAction permit-nolog
{

IpFilterAction permit
IpFilterLogging no

}

Because IPSec is not required in this example, no filters for IKE traffic are
needed.

8. Include the IpFilterRule statements in the IpFilterPolicy block.

The IP filter rules and their relative placement within the IpFilterPolicy block
should be from most specific to least specific. Because the AdminFTP rule
controls traffic from a specific host, it should be placed before the
InternalNetWeb rule. Note that to enable logging of the individual rules,
filter logging must be enabled at the global level of the IP filter policy with
the FilterLogging parameter.
IpFilterPolicy
{

FilterLogging on

IpFilterRule AdminFTP
{

IpSourceAddr 9.1.1.1
IpDestAddr 9.1.1.2
IpService
{

SourcePortRange 21
DestinationPortRange 1024 65535
Protocol tcp
Direction bidirectional InboundConnect
Routing local
SecurityClass 1

}
IpService
{

SourcePortRange 20
DestinationPortRange 1024 65535
Protocol tcp
Direction bidirectional OutboundConnect
Routing local
SecurityClass 1

}
IpGenericFilterActionRef permit-log

}
IpFilterRule InternalNetWeb
{

IpSourceAddr 9.1.1.1
IpDestAddrSet 9.1.1.0/24
IpService WebServer
{

SourcePortRange 80
DestinationPortRange 1024 65535
Protocol tcp
Direction bidirectional InboundConnect
Routing local
SecurityClass 1

}
IpGenericFilterActionRef permit-nolog

}
}

Chapter 19. IP security 1033

9. Include all configured statements in the stack-specific IP security
configuration file.
The IpFilterPolicy statement and the IpGenericFilterAction statements are
placed in the file in no particular order, although the file is easier to read if
logically related items are placed close together. For further ease of reading
and maintenance, document the file with comments, which begin with the
number sign (#).
The completed stack-specific IP security configuration file for the internal
network with two filter rules follows:
IP Security policy for Secure Server
##########################
IpFilterPolicy block
##########################
IpFilterPolicy
{

FilterLogging on
#Allow admin FTP; log traffic
IpFilterRule AdminFTP
{

IpSourceAddr 9.1.1.1
IpDestAddr 9.1.1.2
IpService
{

SourcePortRange 21
DestinationPortRange 1024 65535
Protocol tcp
Direction bidirectional InboundConnect
Routing local
SecurityClass 1

}
IpService
{

SourcePortRange 20
DestinationPortRange 1024 65535
Protocol tcp
Routing local
SecurityClass 1
Direction bidirectional OutboundConnect

}
IpGenericFilterActionRef permit-log

}
#Allow LAN Web traffic; don’t log
IpFilterRule InternalNetWeb
{

IpSourceAddr 9.1.1.1
IpDestAddrSet 9.1.1.0/24
IpService
{

SourcePortRange 80
DestinationPortRange 1024 65535
Protocol tcp
Direction bidirectional InboundConnect
Routing local
SecurityClass 1

}
IpGenericFilterActionRef permit-nolog

}

############################
Generic Filter Actions
############################
IpGenericFilterAction permit-log
{

IpFilterAction permit

1034 z/OS V1R12.0 Comm Svr: IP Configuration Guide

IpFilterLogging yes
}

IpGenericFilterAction permit-nolog
{

IpFilterAction permit
IpFilterLogging no

}

10. Define an IP filter group for each zone, and include the IP filter rules that
belong to that zone.
In step 9 on page 1034, both IpFilterRule statements include a reference to
statements defined outside of the IpFilterRule block, the
IpGenericFilterAction statements. Some other information, such as IP
addresses and services, is undoubtedly to be needed more than once.
Changing these occurrences to reference objects eliminates repeated typing of
the same information and adds clarity to the configuration file. To take
advantage of references, the reusable statements must be given a name.
v Single IP addresses are defined by the IpAddr statement, which contains

one parameter, Addr:
IpAddr InternalNetServerAddress
{

Addr 9.1.1.1
{

IpAddr InternalNetAdminAddress
{

Addr 9.1.1.2
}

v Ranges or subnetworks are defined by the IpAddrSet statement, which
contains either a Range or Prefix attribute:
IpAddrSet InternalNet
{

Prefix 9.1.1.0/24
}

v To be referenced, each IpService statement needs a name:
IpService WebServer
{

SourcePortRange 80
DestinationPortRange 1024 65535
Protocol tcp
Direction bidirectional InboundConnect
Routing local
SecurityClass 1

}

IpService FTPServer-Control
{

SourcePortRange 21
DestinationPortRange 1024 65535
Protocol tcp
Direction bidirectional InboundConnect
Routing local
SecurityClass 1

}
IpService FTPServer-Data
{

SourcePortRange 20
DestinationPortRange 1024 65535
Protocol tcp

Chapter 19. IP security 1035

Direction bidirectional OutboundConnect
Routing local
SecurityClass 1

}

v FTP is composed of two individual services, and both can be condensed
into an IpServiceGroup that references the two FTP services:
IpServiceGroup FTPServer
{

IpServiceRef FTPServer-Control
IpServiceRef FTPServer-Data

}

v The IP filter rules can be grouped as well. Because the filter rules that
apply to the internal network naturally relate to each other in the sense
that they apply to the same security zone, they can be combined into an
IpFilterGroup statement:
IpFilterGroup InternalNetZoneA
{

IpFilterRef AdminFTP
IpFilterRef InternalNetWeb

}

Notice that just as the list of IpFilterRule statements in the IpFilterPolicy
block is ordered, the list of IpFilterRef statements in the IpFilterGroup
block is also ordered. The InternalNetWeb rule applies to all of the IP
addresses in the network, including the administrative machine. However,
the AdminFTP rule is more specific because it applies only to a specific
address within that network. The more specific rule is placed first in the
list.

Now that all reusable statements have been identified and separately
defined, they can be incorporated into any statement that requires that
reusable statement type. The modified stack-specific IP security configuration
file using references follows. Note that by adding names and organizing
related statements, the purpose of the IpFilterPolicy statement is clarified.
IP Security policy for Secure Server
##########################
IpFilterPolicy block
##########################
IpFilterPolicy
{

FilterLogging on
IpFilterGroupRef InternalNetZoneA

}

##########################
Security Zones
##########################
IpFilterGroup InternalNetZoneA
{

IpFilterRuleRef AdminFTP
IpFilterRuleRef InternalNetWeb

}

##########################
Filter rules
##########################
#Allow admin FTP; log traffic
IpFilterRule AdminFTP
{

IpSourceAddrRef InternalNetServerAddress
IpDestAddrRef InternalNetAdminAddress
IpServiceGroupRef FTPServer
IpGenericFilterActionRef permit-log

1036 z/OS V1R12.0 Comm Svr: IP Configuration Guide

}

#Allow LAN Web traffic; don’t log
IpFilterRule InternalNetWeb
{

IpSourceAddrRef InternalNetServerAddress
IpDestAddrSetRef InternalNet
IpServiceRef WebServer
IpGenericFilterActionRef permit-nolog

}

######## All reusable reference statements defined below ########

############################
Generic Filter Actions
############################
IpGenericFilterAction permit-log
{

IpFilterAction permit
IpFilterLogging yes

}

IpGenericFilterAction permit-nolog
{

IpFilterAction permit
IpFilterLogging no

}

##########################
Reusable Services
##########################
IpService WebServer
{

SourcePortRange 80
DestinationPortRange 1024 65535
Protocol tcp
Direction bidirectional InboundConnect
Routing local
SecurityClass 1

}

IpService FTPServer-Control
{

SourcePortRange 21
DestinationPortRange 1024 65535
Protocol tcp
Direction bidirectional InboundConnect
Routing local
SecurityClass 1

}

IpService FTPServer-Data
{

SourcePortRange 20
DestinationPortRange 1024 65535
Protocol tcp
Direction bidirectional OutboundConnect
Routing local
SecurityClass 1

}

############################
Reusable Service Groups
############################
IpServiceGroup FTPServer
{

Chapter 19. IP security 1037

IpServiceRef FTPServer-Control
IpServiceRef FTPServer-Data

}

############################
Reusable IP Addresses
############################
IpAddr InternalNetServerAddress
{

Addr 9.1.1.1
}

IpAddr InternalNetAdminAddress
{

Addr 9.1.1.2
}

IpAddrSet InternalNet
{

Prefix 9.1.1.0/24
}

This stack-specific IP security configuration file gives FTP access to the
administrator and Web access to everyone in the internal network. By relying
heavily on the abstracted use of references, the policy is not only more
self-explanatory, but changes to any referenced object are propagated to any
statement that references it. So, if the IP address of the administrative
machine or internal subnetwork changes, you merely have to make one
change to an IpAddr or IpAddrSet statement, rather than modify a large
number of instances in multiple rules.

Using a common IP security configuration file for reusable statements: The
stack-specific IP security configuration file should be tailored to the specific stack
to which it belongs. However, as the policy files for IP security are being
constructed, a large number of statements can be reused. Reusable statements can
be placed in a common file, which is available to all stacks. Statements in the
common IP security configuration file are read by all stacks on the system,
providing a convenient way to store common definitions that they can all share. If
you are operating in a sysplex, you can also place a common IP security
configuration file on shared DASD or in a shared zSeries File System directory so
that stacks in a multiple sysplex image have access to the same common
configuration file.

Assuming that all statements that might be used later are placed in a common IP
security configuration file, the stack-specific IP security configuration file from step
10 now reads as follows:
IP Security policy for Secure Server
##########################
IpFilterPolicy block
##########################
IpFilterPolicy
{

FilterLogging on
IpFilterGroupRef InternalNetZoneA

}

##########################
Security Zones
##########################
IpFilterGroup InternalNetZoneA
{

IpFilterRuleRef AdminFTP
IpFilterRuleRef InternalNetWeb

1038 z/OS V1R12.0 Comm Svr: IP Configuration Guide

}

##########################
Filter rules
##########################
#Allow admin FTP; log traffic
IpFilterRule AdminFTP
{

IpSourceAddrRef InternalNetServerAddress
IpDestAddrRef InternalNetAdminAddress
IpServiceGroupRef FTPServer
IpGenericFilterActionRef permit-log

}

#Allow LAN Web traffic; don’t log
IpFilterRule InternalNetWeb
{

IpSourceAddrRef InternalNetServerAddress
IpDestAddrSetRef InternalNet
IpServiceRef WebServer
IpGenericFilterActionRef permit-nolog

}

This stack-specific IP security configuration file references the following reusable
statements:
v InternalNetServerAddress
v InternalNetAdminAddress
v InternalNet
v FTPServer
v FTPServer-Control
v FTPServer-Data
v permit-log
v permit-nolog
v WebServer

IpFilterRule statements can also be placed in the common IP security configuration
file, because some IP filter rules apply to all addresses. If certain IpFilterRule
statements are to apply globally to all stacks on the system, they can go into the
common file. Use a value of all for the IpSourceAddr and IpDestAddr attributes.
For instance, if all stacks on a z/OS system need rules permitting dynamic routing
traffic (OSPF or RIP, for example), the statements that define this type of traffic can
be placed in the common file and referenced in the stack-specific file:
IpFilterRule AllowOmprouteLocalNolog
{

IpSourceAddr all
IpDestAddr all
IpServiceGroupRef Omproute-local
IpGenericFilterActionRef Permit-nolog

}

IpServiceGroup Omproute-local
{

IpServiceRef OSPF-local
IpServiceRef RIP-local

}

IpService OSPF-local
{

Protocol OSPF
Direction bidirectional

Chapter 19. IP security 1039

Routing local
}

IpService RIP-local
{

Protocol UDP
SourcePortRange 520
DestinationPortRange 520
Direction bidirectional
Routing local

}

With these definitions in the common IP security configuration file, any stack
needing global permission to send and receive routing information merely needs to
include the following statement in the IpFilterPolicy block of its stack-specific IP
security configuration file:
IpFilterRuleRef AllowOmprouteLocalNolog

Steps for configuring the partner company model (host-to-host
with IPSec)
The following statements and concepts are covered in the discussion of this model:
v Dynamic host-to-host IKE negotiations
v Key exchange rules
v Local and remote security endpoints
v Use of wildcards in Location and Identity
v IpLocalStartAction
v Granularity
v RSA signature peer authentication
v Certificates and certificate authorities
v On-demand activation
v Remote activation

Figure 102 shows the partner company portion of the security model network.

The partner company model is similar to that of the internal network, but an
increased need for security means that a greater number of connections rely on
data authentication and encryption. Although some services are allowed in the
clear, sensitive data needs IPSec protection. To apply IPSec to a connection, the
traffic that flows over that connection must match an IP filter rule that has an ipsec
action.

For this example, assume you must meet the following requirements to allow
network communications from a partner company in an untrusted zone B over a
connected network (9.4.0.0/16) to a public IP address (9.2.2.2) on this host:
v Allow IKE traffic from untrusted zone B to this host.

z/OS
Host

Z/OS
Policy

9.2.2.2 Partner Company (B)
9.4.0.0/16

Host

IP Router

9.4.4.4

Figure 102. Partner company model

1040 z/OS V1R12.0 Comm Svr: IP Configuration Guide

v Allow secure FTP traffic (using TLS/SSL) from untrusted zone B to a secure FTP
server running on this host.
Secure FTP has its own security mechanism. Although IPSec can be used
together with TLS/SSL, using both adds processing expense. For this example,
secure FTP is allowed without IPSec protection.

v Allow Enterprise Extender (EE) traffic from untrusted zone B to an EE service
running on this host using a dynamic IPSec tunnel with strong encryption and
authentication.
Because there is no encryption mechanism used in this example for EE, IPSec
provides the secure service.

v Allow FTP traffic from untrusted zone B to an FTP server running on this host
using a dynamic IPSec tunnel with strong AH authentication.

v The dynamic IPSec tunnel for EE comes up when outbound EE traffic is
detected (on-demand activation).

v A dynamic IPSec tunnel for normal FTP control activates for each remote host
that initiates an FTP connection (remote activation).

v A dynamic IPSec tunnel for normal FTP data activates for each outbound data
connection to a remote host (local activation).

v Peers authenticate themselves using the RSA signature method.

Perform the following steps to meet these requirements and configure the partner
company model.

1. For each zone, determine what services are allowed:

v IKE traffic
v Normal FTP traffic
v Secure FTP traffic
v Enterprise Extender traffic

2. Define an IpService statement for each desired service.

v IKE uses UDP, port 500 for message exchanges:
IpService IKE-local
{

SourcePortRange 500
DestinationPortRange 500
Protocol UDP
Direction bidirectional
Routing local
SecurityClass 0

}

v For normal FTP traffic, allow inbound connections but do not allow
outbound connection requests, other than data. Two services are required,
one for the control connection and one for the data connection:
IpService FTPServer-Control
{

SourcePortRange 21
DestinationPortRange 1024 65535
Protocol tcp
Direction bidirectional InboundConnect
Routing local
SecurityClass 0

}

IpService FTPServer-Data
{

SourcePortRange 20

Chapter 19. IP security 1041

DestinationPortRange 1024 65535
Protocol tcp
Direction bidirectional OutboundConnect
Routing local
SecurityClass 0

}

v For secure FTP traffic, allow inbound connections but do not allow
outbound connection requests, other than data. Two services are required,
one for the control connection and one for the data connection.
IpService SecureFTPServer-Control
{

SourcePortRange 990
DestinationPortRange 1024 65535
Protocol tcp
Direction bidirectional InboundConnect
Routing local
SecurityClass 0

}

IpService SecureFTPServer-Data
{

SourcePortRange 989
DestinationPortRange 1024 65535
Protocol tcp
Direction bidirectional OutboundConnect
Routing local
SecurityClass 0

}

v For Enterprise Extender traffic, allow both inbound and outbound traffic:
IpService Enterprise-Extender
{

SourcePortRange 12000 12004
DestinationPortRange 12000 12004
Protocol UDP
Direction bidirectional
Routing local
SecurityClass 0

}

IP services can be grouped together for convenience, flexibility, and reuse of
configuration. Any IP filter rule that includes an IP service group will be
expanded to include all of the services from that group. The following IP
service groups include the IP services that define the FTPServer and the
SecureFTPServer:
IpServiceGroup FTPServer
{

IpServiceRef FTPServer-Control
IpServiceRef FTPServer-Data

}
IpServiceGroup SecureFTPServer
{

IpServiceRef Secure-FTPServer-Control
IpServiceRef Secure-FTPServer-Data

}

3. Determine the data endpoints to be protected. In this example, the local data
endpoint is the public address of the server, and the remote data endpoint is
the entire subnetwork in zone B:
Local public IP address: 9.2.2.2
Remote subnet: 9.4.0.0/16

4. Determine what level of security is needed between each set of data
endpoints:

1042 z/OS V1R12.0 Comm Svr: IP Configuration Guide

IKE traffic - permit
Secure FTP traffic - permit
EE traffic - IPSec encryption and authentication
FTP traffic - IPSec authentication

5. Configure an IpGenericFilterAction statement for the level of security that is
required. The requirements stated that IKE and secure FTP should be
allowed, and that EE and normal FTP traffic required IPSec protection.
Notice that the parameters of the IpGenericFilterAction statement include
ipsec as well as permit and deny. Because no logging requirements were
specified, two actions are needed, permit and ipsec:
IpGenericFilterAction permit-nolog
{

IpFilterAction permit
IpFilterLogging no

}

IpGenericFilterAction ipsec-nolog
{

IpFilterAction ipsec
IpFilterLogging no

}

6. If IPSec is required between any two endpoints, do the following:

a. Configure a key exchange policy that defines the parameters of the phase
1 negotiation as follows:
1) Determine the required type and strength of protection for the phase

1 Security Association. Phase 1 Security Associations must use both
authentication and encryption. Because strong encryption was
specified for phase 2, use strong encryption for phase 1:
Authentication, SHA1 algorithm
Encryption, 3DES algorithm
DHGroup, Diffie-Hellman Group2

Tip: The greater the Diffie-Hellman group specified, the greater the
protection provided.

2) Decide what type of peer authentication is used:
RSA signature

Because the remote data endpoint represents multiple hosts in this
example, RSA signature is used. RSA signature authentication
provides greater flexibility, scalability, and security than pre-shared
key authentication. Because there are potentially multiple remote
peers in the partner company's subnet, RSA signature is a reasonable
choice.
The use of RSA signature requires setup of RACF certificates and
certificate authority information. Both IKE peers need access to a key
ring with at least one X.509 digital certificate to identify itself. To set
up the IKE daemon for certificates, see Appendix E, “Steps for
preparing to run IP security,” on page 1505. The site should decide
what certificate authorities are recognized. A certificate authority can
be an outside commercial entity, or it can be defined locally in RACF.
For information about installing certificate authorities in RACF, see
z/OS Security Server RACF Security Administrator's Guide.
In this example, the IKEv1 protocol is used and the IKE daemon is
using the native certificate service. A certificate authority with label
CA4PartnerCompany is used, which is presumed to have been
defined as a certificate authority in the RACF database. The label

Chapter 19. IP security 1043

|
|

CA4PartnerCompany should be added to the iked.conf file as a
recognized certificate authority as follows:
SupportedCertAuth CA4PartnerCompany

Guideline: For more efficient processing of certificates when the IKED
is using the native certificate service, you should code
SupportedCertAuth for each acceptable certificate authority that will
be used to sign certificates for remote IKE peers.

3) Configure a KeyExchangeOffer statement that defines the parameters
for the phase 1 negotiation, including type of peer authentication,
strength of encryption, and how often the phase 1 keys are refreshed.
Because KeyExchangeOffer statements are reusable, give it a
descriptive name as follows:
KeyExchangeOffer RSA-SHA1-3DES-DH2
{

HowToEncrypt 3DES
HowToAuthMsgs SHA1
HowToAuthPeers RsaSignature
DHGroup Group2
RefreshLifetimeProposed 480
RefreshLifetimeAccepted 240 1440
RefreshLifesizeProposed none
RefreshLifesizeAccepted none

}

4) Decide whether NAT traversal will be allowed.
In this example, the following parameter is used:
AllowNat No

5) Determine the negotiation mode. Main mode is used for phase 1,
providing added security by encrypting the identities of the two IKE
peers during the phase 1 negotiation.

6) Configure a KeyExchangeAction statement that defines the control
information for the phase 1 negotiation. The key exchange action
determines the mode of the phase 1 negotiation and the parameters
that are included in the KeyExchangeOffer statement. Although
multiple KeyExchangeOffer statements are acceptable, only one is
required. Both peers must agree on the parameters. Use the
KeyExchangeOffer statement that was configured in step 6a3:
KeyExchangeAction Main-RSA-SHA1-3DES-DH2
{

HowToInitiate main
HowToRespondIKEv1 main
KeyExchangeOfferRef RSA-SHA1-3DES-DH2

}

7) Configure a LocalSecurityEndpoint statement and
RemoteSecurityEndpoint statement. In this example, the local security
endpoint is the local host. An identity and IP address of the local IKE
peer is required as follows:
LocalSecurityEndpoint Public_IKED
{

Identity IpAddr 9.2.2.2
Location 9.2.2.2

}

Similarly, the same information is needed for remote hosts. Notice
that in the RemoteSecurityEndpoint statement, an IP address range is
specified for both identity and location. Although it is possible to
configure a RemoteSecurityEndpoint statement for every host in the
remote subnetwork, unless they have unique key exchange

1044 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|
|

|

requirements, it is not necessary. Wildcards can be used for the
Identity and Location parameters. Any of the identity types can
potentially contain wildcards to include a group of remote hosts with
similar identities.
RemoteSecurityEndpoint ZoneB_IKED
{

Identity IpAddr 9.4.0.0/16
Location 9.4.0.0/16
CaLabel CA4PartnerCompany

}

The use of an IPv4 address on the Identity parameter for the
Local_IKED security endpoint requires that the X.509 digital certificate
for the local IKE daemon include the IPv4 address in the Subject
Alternative Name field of the certificate. The use of an IPv4 subnet on
the Identity parameter for the ZoneB_IKED security endpoint requires
that an IPv4 address within that subnet (9.4.0.0/16) appear in the
Subject Alternative Name field of the X.509 digital certificate for the
remote IKE daemon.
The inclusion of the CaLabel parameter in the ZoneB_IKED security
endpoint emphasizes the fact that the local host requests that the
remote host use only certificates that are signed by the certificate
authority that is identified by the label CA4PartnerCompany.
Rule: For RSA signature mode authentication, the identity of a
security endpoint must be contained in its X.509 digital certificate,
either in the Subject Name field or the Subject Alternative Name field.
For detailed specifications on the use of wildcards in the
RemoteSecurityEndpoint statement, see z/OS Communications Server:
IP Configuration Reference.

8) Configure a KeyExchangeRule statement that includes the two
endpoints and the key exchange action:
KeyExchangeRule ZoneB_KeyExRule1
{

LocalSecurityEndpointRef Public_IKED
RemoteSecurityEndpointRef ZoneB_IKED
KeyExchangeActionRef Main-RSA-SHA1-3DES-DH2

}

9) Include the key exchange rule in the KeyExchangePolicy statement:
KeyExchangePolicy
{

KeyExchangeRuleRef ZoneB_KeyExRule1
}

b. Configure an IpDynVpnAction statement that defines the parameters of
the phase 2 negotiation as follows:
1) Determine the required type and strength of IPSec protection for the

phase 2 Security Association.
In this example, there is a unique requirement for each traffic type.
Therefore, there are two types of IPSec protection for each type of
traffic as follows:
EE traffic - strong encryption: ESP, 3DES

strong ESP authentication: Hmac SHA1
Normal FTP traffic - strong AH authentication, Hmac SHA1

This information eventually translates into two IpDataOffer
statements.

2) Determine whether tunnel or transport mode is required.

Chapter 19. IP security 1045

|
|

Tunnel mode is required only if either endpoint of the Security
Association is a secure gateway. The choice is optional in a
host-to-host configuration, but transport mode is typically used.

3) Configure IpDataOffer statements that define the parameters of the
phase 2 negotiation.
v Authenticated offer for FTP:

IpDataOffer TRAN-AHSHA-NOENCR
{

HowToEncap Transport
HowToEncrypt DoNot
HowToAuth AH HMAC_SHA1
RefreshLifetimeProposed 240
RefreshLifetimeAccepted 120 480
RefreshLifesizeProposed none
RefreshLifesizeAccepted none

}

v Encrypted and authenticated offer for EE:
IpDataOffer TRAN-ESPSHA-3DES
{

HowToEncap Transport
HowToEncrypt 3DES
HowToAuth ESP HMAC_SHA1
RefreshLifetimeProposed 240
RefreshLifetimeAccepted 120 480
RefreshLifesizeProposed none
RefreshLifesizeAccepted none

}

4) Determine which peer is allowed to initiate the negotiation.
Because the EE VPN activates when outbound EE traffic is detected,
you need to be able to start the negotiation locally. The remote host
initiates the negotiation of the Security Association for the FTP control
connection, so local initiation is not required. The FTP data connection
is initiated from the local host, so to activate the Security Association,
local initiation is required.

5) Configure an IpDynVpnAction statement that defines the control
information for the phase 2 negotiation.
The IpDynVpnAction statement can control which host is allowed to
initiate the negotiation. You must allow the IPSec VPN for the FTP
control connection to be initiated by the remote peer, and the data
connection by the local host. EE should be allowed to initiate an IKE
negotiation locally.
v Authenticated VPN action for FTP:

IpDynVpnAction FTP-vpnaction
{

Initiation either
InitiateWithPfs group2
AcceptablePfs group2
VpnLife 1440
IpDataOfferRef TRAN-AHSHA-NOENCR

}

v Encrypted and authenticated VPN action for EE traffic:
IpDynVpnAction EE-vpnaction
{

Initiation localonly
InitiateWithPfs group2

1046 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|

|
|

|

AcceptablePfs group2
VpnLife 1440
IpDataOfferRef TRAN-ESPSHA-3DES

}

c. Decide how the Security Association is to be activated as follows:
1) Configure an optional LocalDynVpnPolicy statement, if command-line

activated or autoactivated.
Neither the EE nor FTP VPNs require a LocalDynVpnPolicy
statement, because neither is command-line activated or autoactivated.

2) Configure an optional IpLocalStartAction statement, if the Security
Association is to be activated locally (that is, on-demand,
command-line, or autoactivation) and one of the security endpoints is
acting as a security gateway (that is, not a host-to-host Security
Association). Include a reference to the IpLocalStartAction statement
in the IP filter rule.
Before a phase 2 negotiation can initiate, the IKE daemon needs to
know the IP addresses, ports, and protocols that the Security
Association covers. In most cases, these can be inferred from the filter
rule, or from the packet that started the on-demand activation. An
IpLocalStartAction statement explicitly defines where these
parameters are obtained. The granularity setting determines whether
the information comes from the matching filter rule, or from the
packet. By explicitly specifying packet, you can guarantee that a new
Security Association is created for each connection request.
IpLocalStartAction ZoneB-Start-Action
{

AllowOnDemand yes
LocalPortGranularity packet
RemotePortGranularity packet
ProtocolGranularity packet
LocalIpGranularity packet
RemoteIpGranularity packet
LocalSecurityEndpointRef Public_IKED
RemoteSecurityEndpointRef ZoneB_IKED

}

In this example, specifying packet is not required. IKE detects that the
filter rule has a range of ports specified and resorts to packet
granularity instead of the default of rule. Specifying packet is
required, however, if the EE and FTP rules had all ports specified. In
that case, one Security Association is negotiated for all ports, not a
single port. To avoid confusion, it is better to specify your intention.

3) Set the global PreDecap parameter of the IpFilterPolicy statement to
off, or create an IpFilterRule statement that allows IPSec traffic (AH
and ESP).
When the system begins to process encapsulated traffic, the
encapsulated packets are subject to filtering. The encrypted and
authenticated packets are denied unless they are explicitly allowed.
There are two options to configure this that are subtly different. The
first is less restrictive, allowing AH and ESP packets from anywhere
and not subjecting them to filtering until after the packets have had
their IPSec headers removed. The second method is to add an
IpFilterRule statement that explicitly permits the IPSec-encapsulated
traffic. This option adds an additional layer of security, in that you
can control exactly who is allowed to send encrypted traffic. This
protects system resources by preventing the processing of IPSec
packets unnecessarily, such as might happen in the case of a malicious

Chapter 19. IP security 1047

|

attack of IPSec packets. Although more secure, this solution is less
efficient because it requires additional processing resources to filter all
IPSec-encapsulated traffic.
For the first option, in the main IpFilterPolicy block, code PreDecap
off as follows:
IpFilterPolicy
{

PreDecap off

...
}

For the second option, configure a filter rule in the IpFilterPolicy
block that explicitly allows AH and ESP traffic as follows:
IpFilterRule Allow-IPSec-traffic
{

IpSourceAddr 9.2.2.2
IpDestAddrSet 9.4.0.0/16
IpService AH-traffic
{

Protocol AH
Direction bidirectional
Routing local
SecurityClass 0

}
IpService ESP-traffic
{

Protocol ESP
Direction bidirectional
Routing local
SecurityClass 0

}
IpGenericFilterRef permit-nolog

}

Tip: In most cases, unless the extra security is deemed a necessity, use
the PreDecap off global option to allow IPSec packets to flow with
minimum overhead.

7. Define an IpFilterRule statement for each set of data endpoints.

The secure host and subnetwork B represent the data endpoints. The
IpService statements were defined in step 2 on page 1041. Place the
IpDynVpnAction statements that were created in step 6 on page 1043 with
the appropriate rule.
IpFilterRule ZoneB-Permitted-traffic
{

IpSourceAddrRef PublicServerAddress
IpDestAddrSetRef ZoneB-subnet
IpServiceRef IKE-local
IpServiceGroupRef SecureFTPServer
IpGenericFilterActionRef permit-nolog

}

IpFilterRule FTPServer-ZoneB
{

IpSourceAddr 9.2.2.2
IpDestAddrSet 9.4.0.0/16
IpServiceGroupRef FTPServer
IpGenericFilterActionRef ipsec-nolog
IpDynVpnAction FTP-vpnaction
IpLocalStartActionRef ZoneB-Start-Action

}
IpFilterRule EE-ZoneB

1048 z/OS V1R12.0 Comm Svr: IP Configuration Guide

{
IpSourceAddr 9.2.2.2
IpDestAddrSet 9.4.0.0/16
IpService
{

SourcePortRange 12000 12004
DestinationPortRange 12000 12004
Protocol udp
Direction bidirectional
Routing local
SecurityClass 0

}
IpGenericFilterActionRef ipsec-nolog
IpDynVpnAction EE-vpnaction
IpLocalStartActionRef ZoneB-Start-Action

}

Because both IKE and Secure FTP need to be permitted without IPSec
protection, an IpFilterRule statement for both is not needed. The two services
can be combined into one rule.
Tip: Any services that share the same data endpoints and the same security
requirements can be placed together in one IpFilterRule statement.

8. Include the IpFilterRule statements in the IpFilterPolicy block.

The IpFilterRule statement allowing IKE traffic should always be at the top
of the list. The rest of the IpFilterRule statements are disjointed, and their
relative placement within the IpFilterPolicy is irrelevant.
Tip: If it is known that one particular type of traffic is the most frequent,
placing that rule near the top of the list results in faster filter lookups.

9. Define an IP filter group for each zone and include the IpFilterRule
statements that belong to that zone. Although the creation of reference
objects and groups is not mandatory, they provide for ease of maintenance as
the IP security policy grows more complex.
A completely configured policy, including all objects and their references, is
as follows:
IpFilterPolicy for secure public server

IpFilterPolicy
{

PreDecap off
IpFilterGroupRef ZoneB

}

KeyExchangePolicy
{

KeyExchangeRuleRef ZoneB_KeyExRule1
}

All reusable statements follow
IpFilterGroup ZoneB
{

IpFilterRuleRef ZoneB-Permitted-traffic
IpFilterRuleRef FTPServer-ZoneB #IPSec-protected
IpFilterRuleRef EE-ZoneB #IPSec-protected

}

######################################
IpFilterRules
defines:
data endpoints
Allowed services
Actions (permit, deny, ipsec)

Chapter 19. IP security 1049

######################################
IpFilterRule ZoneB-Permitted-traffic
{

IpSourceAddrRef PublicServerAddress
IpDestAddrSetRef ZoneB-subnet
IpServiceRef IKE-local
IpServiceGroupRef SecureFTPServer
IpGenericFilterActionRef permit-nolog

}

IpFilterRule EE-ZoneB
{

IpSourceAddrRef PublicServerAddress
IpDestAddrSetRef ZoneB-subnet
IpServiceRef Enterprise-Extender
IpGenericFilterActionRef ipsec-nolog
IpDynVpnActionRef EE-vpnaction
IpLocalStartActionRef ZoneB-Start-Action

}

IpFilterRule FTPServer-ZoneB
{

IpSourceAddrRef PublicServerAddress
IpDestAddrSetRef ZoneB-subnet
IpServiceGroupRef FTPServer
IpGenericFilterActionRef ipsec-nolog
IpDynVpnActionRef FTP-vpnaction
IpLocalStartActionRef ZoneB-Start-Action

}

#######################
Local Start Actions
#######################
IpLocalStartAction ZoneB-Start-Action
{

AllowOnDemand yes
LocalPortGranularity packet
RemotePortGranularity packet
ProtocolGranularity packet
LocalIpGranularity packet
RemoteIpGranularity packet
LocalSecurityEndpointRef Public_IKED
RemoteSecurityEndpointRef ZoneB_IKED

}

####################
IpService groups
####################
IpServiceGroup FTPServer
{

IpServiceRef FTPServer-Control
IpServiceRef FTPServer-Data

}

IpServiceGroup SecureFTPServer
{

IpServiceRef SecureFTPServer-Control
IpServiceRef SecureFTPServer-Data

}

##################################
Services provided by this host
##################################

IpService IKE-local
{

SourcePortRange 500

1050 z/OS V1R12.0 Comm Svr: IP Configuration Guide

DestinationPortRange 500
Protocol UDP
Direction bidirectional
Routing local
SecurityClass 0

}

IpService SecureFTPServer-Control
{

SourcePortRange 990
DestinationPortRange 1024 65535
Protocol tcp
Direction bidirectional InboundConnect
Routing local
SecurityClass 0

}

IpService SecureFTPServer-Data
{

SourcePortRange 989
DestinationPortRange 1024 65535
Protocol tcp
Direction bidirectional OutboundConnect
Routing local
SecurityClass 0

}

IpService Enterprise-Extender
{

SourcePortRange 12000 12004
DestinationPortRange 12000 12004
Protocol UDP
Direction bidirectional
Routing local
SecurityClass 0

}

IpService FTPServer-Control
{

SourcePortRange 21
DestinationPortRange 1024 65535
Protocol tcp
Direction bidirectional InboundConnect
Routing local
SecurityClass 0

}

IpService FTPServer-Data
{

SourcePortRange 20
DestinationPortRange 1024 65535
Protocol tcp
Direction bidirectional OutboundConnect
Routing local
SecurityClass 0

}

######################
Security Endpoints
######################
LocalSecurityEndpoint Public_IKED
{

Identity IpAddr 9.2.2.2
Location 9.2.2.2

}

RemoteSecurityEndpoint ZoneB_IKED

Chapter 19. IP security 1051

{
Identity IpAddr 9.4.0.0/16
Location 9.4.0.0/16
CaLabel CA4PartnerCompany

}

##########################
Generic filter actions
##########################

IpGenericFilterAction permit-nolog
{

IpFilterAction permit
IpFilterLogging no

}

IpGenericFilterAction ipsec-nolog
{

IpFilterAction ipsec
IpFilterLogging no

}

##################################
Key Exchange offers
defines:
Authentication type
Encryption type
Peer authentication method
Refresh limits
##################################
KeyExchangeOffer RSA-SHA1-3DES-DH2
{

HowToEncrypt 3DES
HowToAuthMsgs SHA1
HowToAuthPeers RsaSignature
DHGroup Group2
RefreshLifetimeProposed 480
RefreshLifetimeAccepted 240 1440
RefreshLifesizeProposed none
RefreshLifesizeAccepted none

}

##################################
Key Exchange Actions
defines:
Negotiation mode
List of Key exchange offers
##################################
KeyExchangeAction Main-RSA-SHA1-3DES-DH2
{

HowToInitiate main
HowToRespondIKEv1 main
KeyExchangeOfferRef RSA-SHA1-3DES-DH2

}

######################################
KeyExchangeRules
defines:
A pair of security endpoints
permitted in IKE negotiations
######################################
KeyExchangeRule ZoneB_KeyExRule1
{

LocalSecurityEndpointRef Public_IKED
RemoteSecurityEndpointRef ZoneB_IKED
KeyExchangeActionRef Main-RSA-SHA1-3DES-DH2

}

1052 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

############################
Data Offers
defines:
Encapsulation mode
Authentication type
Encryption type
Refresh limits
############################
Authenticated offer
IpDataOffer TRAN-AHSHA-NOENCR
{

HowToEncap Transport
HowToEncrypt DoNot
HowToAuth AH HMAC_SHA1
RefreshLifetimeProposed 240
RefreshLifetimeAccepted 120 480
RefreshLifesizeProposed none
RefreshLifesizeAccepted none

}

Encrypted offer
IpDataOffer TRAN-ESPSHA-3DES
{

HowToEncap Transport
HowToEncrypt 3DES
HowToAuth DoNot
RefreshLifetimeProposed 240
RefreshLifetimeAccepted 120 480
RefreshLifesizeProposed none
RefreshLifesizeAccepted none

}

##############################
Dynamic VPN Actions
defines:
Initiation role
Pfs group
Lifetime of connection
List of Data offers
##############################
IpDynVpnAction FTP-vpnaction
{

Initiation either
InitiateWithPfs group2
AcceptablePfs group2
VpnLife 1440
IpDataOfferRef TRAN-AHSHA-NOENCR

}

IpDynVpnAction EE-vpnaction
{

Initiation localonly
InitiateWithPfs group2
AcceptablePfs group2
VpnLife 1440
IpDataOfferRef TRAN-ESPSHA-3DES

}

################
IP addresses
################

IpAddr PublicServerAddress
{

Addr 9.2.2.2
}

Chapter 19. IP security 1053

|

|
|

|
|

IpAddrSet ZoneB-subnet
{

Prefix 9.4.0.0/16
}

10. Include all configured statements in the stack-specific IP security
configuration file.

Steps for configuring the partner company with NAT model
(host-to-host with IPSec)
The following statements and concepts are covered in the discussion of this model:
v AllowNat and NatKeepAliveInterval parameters on the KeyExchangePolicy and

KeyExchangeAction statements
v IKE traffic on UDP port 4500, in addition to port 500
v NAT implications for host-to-host dynamic IKE negotiations:

– Local and remote data endpoints
– Local and remote security endpoints
– IKE initiator and responder roles
– Restriction on HowToAuth protocol (AH not supported)

v Using wildcards for location and identity
v RSA signature peer authentication
v Certificates and certificate authorities
v CaLabel
v SupportedCertAuth

“Steps for configuring the partner company model (host-to-host with IPSec)” on
page 1040 assumed a network topology with both partner companies using public
IP addresses in their internal networks. Often one or both businesses have an
internal network utilizing IETF-defined private IP addresses (10.0.0.0/8,
172.16.0.0./12, and 192.168.0.0/16). Private IP addresses cannot be routed outside
an internal network. Network address translation (NAT) is used to create a
mapping of private addresses to public addresses and perform the necessary
translation as packets traverse the NAT device.

When IPSec Security Associations traverse a NAT, there are problems because the
NAT is unable to update IP addresses and checksums that are part of the
encapsulated data (encrypted, authenticated, or both). The IETF has defined a
solution known as NAT traversal (NATT) that allows IPSec Security Associations to
successfully traverse a NAT device.

Figure 103 on page 1055 shows the partner company with NAT topology when the
partner company model topology has been modified to include private addressing
in each partner company's private network with a NAT device in front of each
private network.

1054 z/OS V1R12.0 Comm Svr: IP Configuration Guide

The steps in this topic will describe the configuration considerations and
requirements when the NATT solution is implemented to traverse NAT devices in
a host-to-host environment. The partner company with NAT model has the same
basic security requirements as the partner company model. Configuration
statements added or changed for the partner company with NAT model are shown
in bold. The example describes the policy for partner company 1 (PCO1).

For this example, assume you must meet the following requirements to allow
network communications from a partner company (PCO2) in an untrusted zone B
behind a NAT over a connected network (9.4.0.0/16) to a server on this host that is
behind a NAT:
v IKE traffic from untrusted zone B that is behind a NAT is allowed to this host

that is behind a NAT.
v Secure FTP traffic (using TLS/SSL) from untrusted zone B is allowed to a secure

FTP server running on this host.
v Enterprise Extender (EE) traffic from untrusted zone B is allowed to an EE

service running on this host using a dynamic IPSec tunnel with strong
encryption and authentication.

v FTP traffic from untrusted zone B is allowed to an FTP server running on this
host using a dynamic IPSec tunnel with strong authentication.

v The dynamic IPSec tunnel for EE is activated when outbound EE traffic is
detected (on-demand activation).

v A dynamic IPSec tunnel for normal FTP control activates for each remote host
that initiates an FTP connection (remote activation).

v A dynamic IPSec tunnel for normal FTP data activates for each remote host that
initiates an FTP data connection (remote activation).

v Peers authenticate themselves using the RSA signature method.

Perform the following steps to meet these requirements and configure the partner
company with NAT model.

1. For each zone, determine what services are allowed:

v IKE traffic
v Normal FTP traffic
v Secure FTP traffic

NAT NAT

PCO2
host

(zone B)

10.1.1.1 9.2.2.2 10.2.0.0

10.2.2.2
10.2.2.3

9.4.0.0

9.4.4.4
9.4.4.5

9.4.255.255 10.2.255.255

PCO1
host

(z/OS)

Figure 103. Partner company with NAT model

Chapter 19. IP security 1055

v Enterprise Extender traffic

2. Define an IpService statement for each desired service.

v IKE traffic
When NAT traversal is allowed, IKE uses UDP port 500 and port 4500 for
message exchanges. NAT traversal is controlled by the AllowNat
parameter on the KeyExchangePolicy and KeyExchangeAction statements.
IpService IKE-local-500
{

SourcePortRange 500
DestinationPortRange 500
Protocol UDP
Direction bidirectional
Routing local
SecurityClass 0

}

IpService IKE-local-4500
{

SourcePortRange 4500
DestinationPortRange 4500
Protocol UDP
Direction bidirectional
Routing local
SecurityClass 0

}

v Normal FTP traffic
When a NAT is being traversed, FTP clients typically need to use passive
mode (PASV) or extended passive mode (EPSV) to connect to the FTP
server, allowing inbound connections but not outbound connection
requests. For more information on active and passive mode FTP, see
“Considerations for IPSec-encapsulated FTP traffic when traversing a
NAT” on page 1098.
Two services are required, one for the control connection and one for the
data connection. The range of server ports specified for the data
connection reflects the port range specified for PASSIVEDATAPORTS in
the server's FTP.DATA file. For more information on
PASSIVEDATAPORTS, see z/OS Communications Server: IP Configuration
Reference.
The following definitions show the services required for the FTP server for
EPSV mode:
IpService FTPServer-Control
{

SourcePortRange 21
DestinationPortRange 1024 65535
Protocol tcp
Direction bidirectional InboundConnect
Routing local
SecurityClass 0

}

IpService FTPServer-Data-Passive
{

SourcePortRange 50000 50200
DestinationPortRange 1024 65535
Protocol tcp
Direction bidirectional InboundConnect
Routing local
SecurityClass 0

}

1056 z/OS V1R12.0 Comm Svr: IP Configuration Guide

v Secure FTP traffic
Again, when a NAT is being traversed, FTP clients typically need to use
passive mode (PASV) or extended passive mode (EPSV) to connect to the
FTP server, allowing inbound connections but not outbound connection
requests. Two services are required, one for the control connection and one
for the data connection.
IpService SecureFTPServer-Control
{

SourcePortRange 990
DestinationPortRange 1024 65535
Protocol tcp
Direction bidirectional InboundConnect
Routing local
SecurityClass 0

}

IpService SecureFTPServer-Data-Passive
{

SourcePortRange 50201 50400
DestinationPortRange 1024 65535
Protocol tcp
Direction bidirectional InboundConnect
Routing local
SecurityClass 0

}

v Enterprise Extender traffic
Allow both inbound and outbound connections.
IpService Enterprise-Extender
{

SourcePortRange 12000 12004
DestinationPortRange 12000 12004
Protocol UDP
Direction bidirectional
Routing local
SecurityClass 0

}

3. Determine the data endpoints that are to be protected.

In this case, the local data endpoint is the private address of the server, local
IP address 10.1.1.1.
The remote data endpoint is the partner company's internal network. The
z/OS implementation does not require you to code private addresses for the
remote endpoint; the network address translated public addresses should be
configured as the remote data endpoint. In this example, the private
addresses in the PCO2 internal network (10.2.0.0/16) are translated into the
public address range 9.4.0.0/16. Thus, the remote subnetwork is 9.4.0.0/16.

4. Determine what level of security is needed between each set of data
endpoints.
IKE traffic - permit
Secure FTP traffic - permit
EE traffic - IPSec encryption and authentication
FTP traffic - IPSec authentication

5. Configure an IpGenericFilterAction statement for the level of security that is
required. The requirements stated that IKE and secure FTP should be
allowed, and that EE and normal FTP traffic required IPSec protection.
Because no logging requirements were specified, two actions are needed,
permit and ipsec.

Chapter 19. IP security 1057

IpGenericFilterAction permit-nolog
{

IpFilterAction permit
IpFilterLogging no

}

IpGenericFilterAction ipsec-nolog
{

IpFilterAction ipsec
IpFilterLogging no

}

6. If IPSec is required between any two endpoints, do the following:

a. Configure a key exchange policy that defines the parameters of the phase
1 negotiation as follows:
1) Determine the required type and strength of protection for the phase

1 Security Association. Phase 1 Security Associations must use both
authentication and encryption. Because strong encryption was
specified for phase 2, use strong encryption for phase 1:
Authentication, SHA1 algorithm
Encryption, 3DES algorithm
DHGroup, Diffie-Hellman Group2

Tip: The greater the Diffie-Hellman group specified, the greater the
protection provided.

2) Decide what type of peer authentication is used:
RSA signature

Because the remote data endpoint represents multiple hosts in this
example, RSA signature is used. RSA signature authentication
provides greater flexibility, scalability, and security than pre-shared
key authentication. Because there are potentially multiple remote
peers in the partner company's subnet, RSA signature is a reasonable
choice.
The use of RSA signature requires setup of RACF certificates and
certificate authority information. Both IKE peers need access to a key
ring with at least one X.509 digital certificate to identify itself. To set
up the IKE daemon for certificates, see Appendix E, “Steps for
preparing to run IP security,” on page 1505. The site should decide
what certificate authorities are recognized. A certificate authority can
be an outside commercial entity, or it can be defined locally in RACF.
For information about installing certificate authorities in RACF, see
z/OS Security Server RACF Security Administrator's Guide.
In this example, the IKEv1 protocol is used and the IKE daemon is
using the native certificate service. A certificate authority with label
CA4PartnerCompany is used, which is presumed to have been
defined as a certificate authority in the RACF database. The label
CA4PartnerCompany should be added to the iked.conf file as a
recognized certificate authority as follows:
SupportedCertAuth CA4PartnerCompany

Guideline: For more efficient processing of certificates when the IKED
is using the native certificate service, you should code
SupportedCertAuth for each acceptable certificate authority that will
be used to sign certificates for remote IKE peers.

3) Configure a KeyExchangeOffer statement that defines the parameters
for the phase 1 negotiation, including type of peer authentication,

1058 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|

|

|
|

strength of encryption, and how often the phase 1 keys are refreshed.
Because KeyExchangeOffer statements are reusable, give it a
descriptive name as follows:
KeyExchangeOffer RSA-SHA1-3DES-DH2
{

HowToEncrypt 3DES
HowToAuthMsgs SHA1
HowToAuthPeers RSAsignature
DHGroup Group2
RefreshLifetimeProposed 480
RefreshLifetimeAccepted 240 1440
RefreshLifesizeProposed none
RefreshLifesizeAccepted none

}

4) Decide whether NAT traversal will be allowed.
The AllowNat parameter on the KeyExchangePolicy and
KeyExchangeAction statements allows IKE to advertise NAT traversal
support. When a phase 1 Security Association is being negotiated, if
both IKE peers support NAT traversal, several IKE payloads are
exchanged that allow the peers to determine if one or more NAT
devices are being traversed. If a NAT is being traversed, the IKE peers
negotiate a UDP-Encapsulated-Transport or UDP-Encapsulated-Tunnel
mode phase 2 Security Association to allow IPSec traffic to traverse
the NATs successfully. If a NAT is not being traversed, a standard
transport or tunnel mode phase 2 Security Association is negotiated.
The AllowNat parameter can be specified on the overall
KeyExchangePolicy statement or for a specific KeyExchangeAction
statement. If AllowNat is No, IKE does not advertise its support for
NAT traversal. You might want to disable NAT traversal for
interoperability purposes (certain remote resources might not be able
to tolerate NAT traversal protocols) or security concerns (for example,
NAT traversal exposes private internal addresses to the IKE peer). If
NAT traversal is disabled and there is a NAT device in the path, ipsec
processing might fail to negotiate the Security Association or fail to
send data over the Security Association.
For this model, allow NAT traversal support to be advertised for all
phase 1 Security Associations by coding the following on the
KeyExchangePolicy statement:
AllowNat Yes

A NatKeepAliveInterval parameter is also provided on the
KeyExchangePolicy statement. A NAT keep-alive timer is maintained
to ensure that NAT mappings do not expire. If z/OS is behind a NAT,
a NAT keep-alive timer is started with the interval specified on the
NatKeepAliveInterval parameter. If z/OS is behind a NAT that is
using static mappings that will not expire, the NatKeepAliveInterval
parameter should be set to 0. It is not necessary to run a NAT
keep-alive timer in this case.
For this model, since static mapping is being used for the NAT in
front of PCO1, the NatKeepAliveInterval parameter is set to 0:
NatKeepAliveInterval 0

5) Determine the negotiation mode. Main mode is used for phase 1 in
this example, providing added security by encrypting the identities of
the two IKE peers during the phase 1 negotiation.

6) Configure a KeyExchangeAction statement that defines the control
information for the phase 1 negotiation. The key exchange action

Chapter 19. IP security 1059

determines the mode of the phase 1 negotiation and the parameters
that are included in the KeyExchangeOffer statement. Although
multiple KeyExchangeOffer statements are acceptable, only one is
required. Both peers must agree on the parameters. Use the
KeyExchangeOffer statement that was configured previously:
KeyExchangeAction Main-RSA-SHA1-3DES-DH2
{

HowToInitiate main
HowToRespondIKEv1 main
KeyExchangeOfferRef RSA-SHA1-3DES-DH2

}

7) Configure a LocalSecurityEndpoint statement and
RemoteSecurityEndpoint statement. In this example, the local security
endpoint is the local host. An identity and IP address of the local IKE
peer is required as follows:
LocalSecurityEndpoint Local_IKED
{

Identity Fqdn Server.PCO1.example.com
Location 10.1.1.1

}

The value specified for Identity on the LocalSecurityEndpoint
statement is sent to the remote peer to identify this endpoint. The
remote peer uses this value to determine if a Security Association can
be negotiated and which policy should be used. Identity can be
specified in different formats, such as an IP address or fully qualified
domain name.
The partner company model specified an IP address for Identity, and
an IP address could be used in this model. However, PCO1's private
IP address 10.1.1.1 is not meaningful in the PCO2 configuration, so
one of the other Identity types was chosen. The fully qualified
domain name (Fqdn) identifies the local security endpoint.
An identity and IP address are also needed for the remote hosts.
Notice that in the following RemoteSecurityEndpoint statement, the
Identity and Location attributes use a wildcard to include a group of
remote hosts with similar identities. It is possible to use a wildcard
for the values because the key exchange requirements are the same
for the hosts included in the specified range.
The Identity attribute is specified as Fqdn (fully qualified domain
name), and the Location attribute is the range of public IP addresses
used by the PCO2 internal network. PCO2 internal private addresses
are not coded because they have no meaning for PCO1.
RemoteSecurityEndpoint ZoneB_IKED
{

Identity Fqdn *.PCO2.example.com
Location 9.4.0.0/16
CaLabel CA4PartnerCompany

}

The use of a fully qualified domain name on the Identity parameter
for the Local_IKED security endpoint requires that the X.509 digital
certificate for the local IKE daemon include the fully-qualified domain
name in the Subject Alternative Name field of the certificate. The use
of a wild-carded domain name on the Identity parameter for the
ZoneB_IKED security endpoint requires that a fully-qualified domain
name ending with .PCO2.example.com appear in the Subject
Alternative Name field of the X.509 digital certificate for the remote
IKE daemon.

1060 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

The inclusion of the CaLabel parameter in the ZoneB_IKED security
endpoint emphasizes the fact that the local host requests that the
remote host use only certificates that are signed by the certificate
authority that is identified by the label CA4PartnerCompany.
Rule: For RSA signature mode authentication, the identity of a
security endpoint must be contained in its X.509 digital certificate,
either in the Subject Name field or the Subject Alternative Name field.
For detailed specifications on the use of wildcards in the
RemoteSecurityEndpoint statement, see z/OS Communications Server:
IP Configuration Reference.

8) Configure a KeyExchangeRule statement that includes the two
endpoints and the key exchange action:
KeyExchangeRule ZoneB_KeyExRule1
{

LocalSecurityEndpointRef Local_IKED
RemoteSecurityEndpointRef ZoneB_IKED
KeyExchangeActionRef Main-RSA-SHA1-3DES-DH2

}

9) Include the key exchange rule in the KeyExchangePolicy statement
block. Also include the AllowNat parameter:
KeyExchangePolicy
{

AllowNat Yes
KeyExchangeRuleRef ZoneB_KeyExRule1

}

b. Configure an IpDynVpnAction statement that defines the parameters of
the phase 2 negotiation as follows:
1) Determine the required type and strength of IPSec protection for the

phase 2 Security Association.
In this example, there is a unique requirement for each traffic type.
Therefore, there are two types of IPSec protection for each type of
traffic as follows:
EE traffic - strong encryption: ESP, 3DES

strong ESP authentication: Hmac SHA1
Normal FTP traffic - strong ESP authentication, Hmac SHA1

The partner company model used AH authentication for normal FTP
traffic, but the NATT solution defined by the IETF is based on the
ESP protocol. The AH protocol is not supported for NATT, and ESP
authentication is used in this model.
This information eventually translates into two IpDataOffer
statements.

2) Determine whether tunnel or transport mode is required.
Tunnel mode is required only if either endpoint of the Security
Association is a secure gateway. The choice is optional in a
host-to-host configuration, but transport mode is typically used.

3) Configure IpDataOffer statements that define the parameters of the
phase 2 negotiation.
v Authenticated offer for FTP:

IpDataOffer TRAN-ESPSHA-NOENCR
{

HowToEncap Transport
HowToEncrypt DoNot
HowToAuth ESP HMAC_SHA1
RefreshLifetimeProposed 240

Chapter 19. IP security 1061

|
|

|

RefreshLifetimeAccepted 120 480
RefreshLifesizeProposed none
RefreshLifesizeAccepted none

}

v Encrypted and authenticated offer for EE:
IpDataOffer TRAN-ESPSHA-3DES
{

HowToEncap Transport
HowToEncrypt 3DES
HowToAuth ESP HMAC_SHA1
RefreshLifetimeProposed 240
RefreshLifetimeAccepted 120 480
RefreshLifesizeProposed none
RefreshLifesizeAccepted none

}

4) Determine which peer is allowed to initiate the negotiation.
When an IKE peer is behind a NAT device, there are implications
regarding which peer can initiate. In a host-to-host configuration, IKE
should only initiate to a peer whose IP address is unambiguous. If the
peer is not behind a NAT, or if the peer's NAT mapping is static, the
address is unambiguous. In this model, assume that static mapping is
being used for both PCO1 and PCO2.
Because the EE VPN activates when outbound EE traffic is detected,
you need to be able to start the negotiation locally. For PASV mode or
EPSV mode FTP, both the FTP control connection and the FTP data
connection initiate the negotiation of the Security Association
remotely, so local initiation is not required.

5) Configure an IpDynVpnAction statement that defines the control
information for the phase 2 negotiation.
The IpDynVpnAction statement can control which host is allowed to
initiate the negotiation. Both the FTP control connection and data
connection will be initiated remotely. EE should be allowed to initiate
an IKE negotiation locally.
v Authenticated VPN action for FTP:

IpDynVpnAction FTP-vpnaction
{

Initiation remoteonly
InitiateWithPfs group2
AcceptablePfs group2
VpnLife 1440
IpDataOfferRef TRAN-ESPSHA-NOENCR

}

v Encrypted and authenticated VPN action for EE traffic:
IpDynVpnAction EE-vpnaction
{

Initiation localonly
InitiateWithPfs group2
AcceptablePfs group2
VpnLife 1440
IpDataOfferRef TRAN-ESPSHA-3DES

}

c. Decide how the Security Association is to be activated as follows:
1) Configure an optional LocalDynVpnPolicy statement, if command-line

activated or autoactivated.
Neither the EE nor FTP VPNs require a LocalDynVpnPolicy
statement, because neither is command-line activated or autoactivated.

1062 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|
|

|
|

2) Configure an optional IpLocalStartAction statement, if the Security
Association is to be activated locally (that is, on-demand,
command-line, or autoactivated) and one of the security endpoints is
acting as a security gateway (that is, not a host-to-host Security
Association). Include a reference to the IpLocalStartAction statement
in the IP filter rule.
Before a phase 2 negotiation can initiate, the IKE daemon needs to
know the IP addresses, ports, and protocols that the Security
Association covers. In most cases, these can be inferred from the filter
rule, or from the packet that started the on-demand activation. An
IpLocalStartAction statement explicitly defines where these
parameters are obtained. The granularity setting determines whether
the information comes from the matching filter rule, or from the
packet. By explicitly specifying packet, you can guarantee that a new
Security Association is created for each connection request.
IpLocalStartAction ZoneB-Start-Action
{

AllowOnDemand yes
LocalPortGranularity packet
RemotePortGranularity packet
ProtocolGranularity packet
LocalIpGranularity packet
RemoteIpGranulatiry packet
LocalSecurityEndpointRef Local_IKED
RemoteSecurityEndpointRef ZoneB_IKED

}

In this example, specifying packet for LocalPortGranularity and
RemotePortGranularity is not required. IKE detects that the filter rule
has a range of ports specified and resorts to packet granularity
instead of the default of rule. Specifying packet is required, however,
if the EE rules had all ports specified. In that case, one Security
Association is negotiated for all ports, not a single port. To avoid
confusion, it is better to specify your intention.

3) Set the global PreDecap parameter of the IpFilterPolicy statement to
off, or create an IpFilterRule statement that allows IPSec traffic (AH
and ESP).
In this example, set PreDecap off in the IpFilterPolicy statement

7. Define an IpFilterRule statement for each set of data endpoints.

The secure host and zone B represent the data endpoints. The IpService
statements were defined previously. Place the IpDynVpnAction statements
that were created previously with the appropriate rule. Notice that the
parameters of the IpGenericFilterAction statement include ipsec as well as
permit and deny. Because no logging requirements were specified, two
actions are needed, permit and ipsec.
IpFilterRule ZoneB-Permitted-traffic
{

IpSourceAddrRef PrivateServerAddress
IpDestAddrSetRef ZoneB-subnet
IpServiceRef IKE-local-500
IpServiceRef IKE-local-4500
IpServiceGroupRef SecureFTPServer
IpGenericFilterActionRef permit-nolog

}

IpFilterRule FTPServer-ZoneB
{

IpSourceAddr 10.1.1.1

Chapter 19. IP security 1063

IPDestAddrSet 9.4.0.0/16
IpServiceRef FTPServer-Control
IpServiceRef FTPServer-Data-Passive
IpGenericFilterActionRef ipsec-nolog
IpDynVpnAction FTP-vpnaction

}

IpFilterRule EE-ZoneB
{

IpSourceAddr 10.1.1.1
IPDestAddrSet 9.4.0.0/16
IpServiceRef Enterprise-Extender
IpGenericFilterActionRef ipsec-nolog
IpDynVpnAction EE-vpnaction
IpLocalStartActionRef ZoneB-Start-Action

}

Because IKE port 500, IKE port 4500, and secure FTP without IPSec
protection are permitted, a separate IpFilterRule statement for each is not
needed. The services can be combined into one IpFilterRule statement.
Tip: Any services that share the same data endpoints and the same security
requirements can be placed together in one IpFilterRule statement.

8. Include the IpFilterRule statements in the IpFilterPolicy block.

9. Define an IP filter group for each zone and include the IpFilterRule
statements that belong to that zone. Although the creation of reference
objects and groups is not mandatory, they provide for ease of maintenance as
the IP security policy grows more complex.

10. Include all configured statements in the stack-specific IP security
configuration file.

A completely configured policy, including all objects and their references, is as
follows:
IpFilterPolicy for secure public server

IpFilterPolicy
{

PreDecap off
IpFilterGroupRef ZoneB

}

KeyExchangePolicy
{

AllowNat Yes
NatKeepAliveInterval 0
KeyExchangeRuleRef ZoneB_KeyExRule1

}

All re-usable statements follow
IpFilterGroup ZoneB
{

IpFilterRuleRef ZoneB-Permitted-traffic
IpFilterRuleRef FTPServer-ZoneB #IPSec-protected
IpFilterRuleRef EE-ZoneB #IPSec-protected

}

######################################
IpFilterRules
defines:
data endpoints
Allowed services
Actions (permit, deny, ipsec)
######################################

1064 z/OS V1R12.0 Comm Svr: IP Configuration Guide

IpFilterRule ZoneB-Permitted-traffic
{

IpSourceAddrRef PrivateServerAddress
IpDestAddrSetRef ZoneB-subnet
IpServiceRef IKE-local-500
IpServiceRef IKE-local-4500
IpServiceGroupRef SecureFTPServer
IpGenericFilterActionRef permit-nolog

}

IpFilterRule EE-ZoneB
{

IpSourceAddrRef PrivateServerAddress
IpDestAddrSetRef ZoneB-subnet
IpServiceRef Enterprise-Extender
IpGenericFilterActionRef ipsec-nolog
IpDynVpnActionRef EE-vpnaction
IpLocalStartActionRef ZoneB-Start-Action

}

IpFilterRule FTPServer-ZoneB
{

IpSourceAddrRef PrivateServerAddress
IpDestAddrSetRef ZoneB-subnet
IpServiceGroupRef FTPServer
IpGenericFilterActionRef ipsec-nolog
IpDynVpnActionRef FTP-vpnaction

}

#######################
Local Start Actions
#######################
IpLocalStartAction ZoneB-Start-Action
{

AllowOnDemand yes
LocalPortGranularity packet
RemotePortGranularity packet
ProtocolGranularity packet
LocalIpGranularity packet
RemoteIpGranulatiry packet
LocalSecurityEndpointRef Local_IKED
RemoteSecurityEndpointRef ZoneB_IKED

}

####################
IpService groups
####################
IpServiceGroup FTPServer
{

IpServiceRef FTPServer-Control
IpServiceRef FTPServer-Data-Passive

}

IpServiceGroup SecureFTPServer
{

IpServiceRef SecureFTPServer-Control
IpServiceRef SecureFTPServer-Data-Passive

}

##################################
Services provided by this host
##################################

IpService IKE-local-500
{

SourcePortRange 500
DestinationPortRange 500

Chapter 19. IP security 1065

Protocol UDP
Direction bidirectional
Routing local
SecurityClass 0

}

IpService IKE-local-4500
{

SourcePortRange 4500
DestinationPortRange 4500
Protocol UDP
Direction bidirectional
Routing local
SecurityClass 0

}

IpService SecureFTPServer-Control
{

SourcePortRange 990
DestinationPortRange 1024 65535
Protocol tcp
Direction bidirectional InboundConnect
Routing local
SecurityClass 0

}

IpService SecureFTPServer-Data-Passive
{

SourcePortRange 50201 50400
DestinationPortRange 1024 65535
Protocol tcp
Direction bidirectional InboundConnect
Routing local
SecurityClass 0

}

IpService Enterprise-Extender
{

SourcePortRange 12000 12004
DestinationPortRange 12000 12004
Protocol UDP
Direction bidirectional
Routing local
SecurityClass 0

}

IpService FTPServer-Control
{

SourcePortRange 21
DestinationPortRange 1024 65535
Protocol tcp
Direction bidirectional InboundConnect
Routing local
SecurityClass 0

}

IpService FTPServer-Data-Passive
{

SourcePortRange 50000 50200
Protocol tcp
Direction bidirectional InboundConnect
Routing local
SecurityClass 0

}

######################

1066 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Security Endpoints
######################
LocalSecurityEndpoint Local_IKED
{

Identity Fqdn Server.PCO1.example.com
Location 10.1.1.1
CaLabel CA4PartnerCompany

}RemoteSecurityEndpoint ZoneB_IKED
{

Identity Fqdn *.PCO2.example.com
Location 9.4.0.0/16

}

##########################
Generic filter actions
##########################

IpGenericFilterAction permit-nolog
{

IpFilterAction permit
IpFilterLogging no

}

IpGenericFilterAction ipsec-nolog
{

IpFilterAction ipsec
IpFilterLogging no

}

##################################
Key Exchange offers
defines:
Authentication type
Encryption type
Peer authentication method
Refresh limits
##################################
KeyExchangeOffer RSA-SHA1-3DES-DH2
{

HowToEncrypt 3DES
HowToAuthMsgs SHA1
HowToAuthPeers RsaSignature
DHGroup Group2
RefreshLifetimeProposed 480
RefreshLifetimeAccepted 240 1440
RefreshLifesizeProposed none
RefreshLifesizeAccepted none

}

##################################
Key Exchange Actions
defines:
Negotiation mode
List of Key exchange offers
##################################
KeyExchangeAction Main-RSA-SHA1-3DES-DH2
{

HowToInitiate main
HowToRespondIKEv1 main
KeyExchangeOfferRef RSA-SHA1-3DES-DH2

}

######################################
KeyExchangeRules
defines:
A pair of security endpoints
permitted in IKE negotiations

Chapter 19. IP security 1067

|

|

######################################
KeyExchangeRule ZoneB_KeyExRule1
{

LocalSecurityEndpointRef Local_IKED
RemoteSecurityEndpointRef ZoneB_IKED
KeyExchangeActionRef Main-RSA-SHA1-3DES-DH2

}

############################
Data Offers
defines:
Encapsulation mode
Authentication type
Encryption type
Refresh limits
############################
Authenticated offer
IpDataOffer TRAN-ESPSHA-NOENCR
{

HowToEncap Transport
HowToEncrypt DoNot
HowToAuth ESP HMAC_SHA1
RefreshLifetimeProposed 240
RefreshLifetimeAccepted 120 480
RefreshLifesizeProposed none
RefreshLifesizeAccepted none

}

Encrypted Authenticated offer
IpDataOffer TRAN-ESPSHA-3DES
{

HowToEncap Transport
HowToEncrypt 3DES
HowToAuth ESP HMAC_SHA1
RefreshLifetimeProposed 240
RefreshLifetimeAccepted 120 480
RefreshLifesizeProposed none
RefreshLifesizeAccepted none

}

##############################
Dynamic VPN Actions
defines:
Initiation role
Pfs group
Lifetime of connection
List of Data offers
##############################
IpDynVpnAction FTP-vpnaction
{

Initiation remoteonly
InitiateWithPfs group2
AcceptablePfs group2
VpnLife 1440
IpDataOfferRef TRAN-ESPSHA-NOENCR

}

IpDynVpnAction EE-vpnaction
{

Initiation localonly
InitiateWithPfs group2
AcceptablePfs group2
VpnLife 1440
IpDataOfferRef TRAN-ESPSHA-3DES

}

################

1068 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|

|
|

|
|

IP addresses
################

IpAddr PrivateServerAddress
{

Addr 10.1.1.1
}IpAddrSet ZoneB-subnet
{

Prefix 9.4.0.0/16
}

Steps for configuring the partner company with NAPT model
(host-to-host with IPSec)
The following statements and concepts are covered in the discussion of this model:
v Using wildcard values for the remote port for IKE traffic
v NAPT implications for host-to-host dynamic IKE negotiations:

– Local and remote data endpoints
– Local and remote security endpoints
– IKE initiator and responder roles

The partner company model assumed a network topology with both partner
companies using public IP addresses in their internal networks. The partner
company with NAT model modified the partner company model to include private
addressing in the private network of each partner company, with a NAT device in
front of each private network. Both NAT devices used static one-to-one address
mappings.

The partner company with NAPT model modifies the partner company with NAT
model, replacing the NAT device in front of the partner company's internal
network with a NAPT device. The NAPT device uses many-to-one address and
port mappings. The NAT in front of the z/OS host continues to use static
one-to-one address mappings.

Figure 104 shows the partner company with NAPT topology.

The partner company with NAPT model has the same basic security requirements
as the partner company with NAT model. One difference is that IPSec protection
for Enterprise Extender (EE) traffic has been eliminated from the example. EE

NAT NAPT

PCO2
host

(zone B)

10.1.1.1 9.2.2.2 10.2.1.1
10.2.2.2
10.2.2.3

9.4.4.4 /1024
9.4.4.4 /1025
9.4.4.4 /1026

PCO1
host

(z/OS)

Figure 104. Partner company with NAPT model

Chapter 19. IP security 1069

traffic is not compatible with the use of NAPT, with or without IPSec protection.
For more information, see “Enterprise Extender considerations when traversing a
NAT” on page 1099.

This example includes only the configuration steps that are impacted by a change
from static one-to-one address mappings to NAPT mappings. Configuration
statements added or changed for the partner company with NAPT model are
shown in bold. The example describes the policy for partner company 1 (PCO1).

For this example, assume you must meet the following requirements to enable
network communications from a partner company (PCO2) in an untrusted zone B
behind a NAPT (9.4.4.4), over a connected network, to a server on this host that is
behind a NAT, using static one-to-one address mapping:
v IKE traffic from untrusted zone B is allowed to this host.
v Secure FTP traffic (using TLS/SSL) from untrusted zone B is allowed to a secure

FTP server running on this host.
v FTP traffic from untrusted zone B is allowed to an FTP server running on this

host using a dynamic IPSec tunnel with strong authentication.
v A dynamic IPSec tunnel for normal FTP control activates for each remote host

that initiates an FTP connection (remote activation).
v A dynamic IPSec tunnel for normal FTP data activates for each remote host that

initiates an FTP data connection (remote activation).
v Peers authenticate themselves using the RSA signature method.

Starting with the partner company with NAT policy, the following changes need to
be made to meet these requirements when there is a NAPT in front of the partner
company's internal network (Zone B):
v Modify the IpService statements for the IKE traffic to specify a wildcard value

for the remote port. The NAPT will update both the IP address and port values
of an IKE packet, so that the traffic can no longer be described with a constant
value of 500 or 4500.
IpService IKE-local-500
{

SourcePortRange 500
DestinationPortRange 0
Protocol UDP
Direction bidirectional
Routing local
SecurityClass 0

}

IpService IKE-local-4500
{

SourcePortRange 4500
DestinationPortRange 0
Protocol UDP
Direction bidirectional
Routing local
SecurityClass 0

}

v Modify the remote data endpoint to reflect the NAPT's single IP address, 9.4.4.4.
The remote data endpoint is the partner company's internal network. The z/OS
implementation does not require you to code private addresses for the remote
endpoint; the network address translated public address should be configured as
the remote data endpoint. In this example, the private addresses in the PCO2
internal network (10.2.0.0/16) are translated into the public address 9.4.4.4. Thus,
the remote data endpoint is 9.4.4.4.

1070 z/OS V1R12.0 Comm Svr: IP Configuration Guide

IpAddr ZoneB
{

Addr 9.4.4.4
}

v Modify the remote security endpoint.
RemoteSecurityEndpoint ZoneB_IKED
{

Identity Fqdn *.PCO2.example.com
Location 9.4.4.4
CaLabel CA4PartnerCompany

}

A completely configured policy, including all objects and their references, is as
follows:
IpFilterPolicy for secure public server

IpFilterPolicy
{

PreDecap off
IpFilterGroupRef ZoneB

}

KeyExchangePolicy
{

AllowNat Yes
NatKeepAliveInterval 0
KeyExchangeRuleRef ZoneB_KeyExRule1

}

All re-usable statements follow
IpFilterGroup ZoneB
{

IpFilterRuleRef ZoneB-Permitted-traffic
IpFilterRuleRef FTPServer-ZoneB #IPSec-protected

}

######################################
IpFilterRules
defines:
data endpoints
Allowed services
Actions (permit, deny, ipsec)
######################################
IpFilterRule ZoneB-Permitted-traffic
{

IpSourceAddrRef PrivateServerAddress
IpDestAddrRef ZoneB
IpServiceRef IKE-local-500
IpServiceRef IKE-local-4500
IpServiceGroupRef SecureFTPServer
IpGenericFilterActionRef permit-nolog

}

IpFilterRule FTPServer-ZoneB
{

IpSourceAddrRef PrivateServerAddress
IpDestAddrRef ZoneB
IpServiceGroupRef FTPServer
IpGenericFilterActionRef ipsec-nolog
IpDynVpnActionRef FTP-vpnaction

}

####################
IpService groups
####################

Chapter 19. IP security 1071

IpServiceGroup FTPServer
{

IpServiceRef FTPServer-Control
IpServiceRef FTPServer-Data-Passive

}

IpServiceGroup SecureFTPServer
{

IpServiceRef SecureFTPServer-Control
IpServiceRef SecureFTPServer-Data-Passive

}

##################################
Services provided by this host
##################################

IpService IKE-local-500
{

SourcePortRange 500
DestinationPortRange 0
Protocol UDP
Direction bidirectional
Routing local
SecurityClass 0

}

IpService IKE-local-4500
{

SourcePortRange 4500
DestinationPortRange 0
Protocol UDP
Direction bidirectional
Routing local
SecurityClass 0

}

IpService SecureFTPServer-Control
{

SourcePortRange 990
DestinationPortRange 1024 65535
Protocol tcp
Direction bidirectional InboundConnect
Routing local
SecurityClass 0

}

IpService SecureFTPServer-Data-Passive
{

SourcePortRange 50201 50400
DestinationPortRange 1024 65535
Protocol tcp
Direction bidirectional InboundConnect
Routing local
SecurityClass 0

}

IpService FTPServer-Control
{

SourcePortRange 21
DestinationPortRange 1024 65535
Protocol tcp
Direction bidirectional InboundConnect
Routing local
SecurityClass 0

}

IpService FTPServer-Data-Passive

1072 z/OS V1R12.0 Comm Svr: IP Configuration Guide

{
SourcePortRange 50000 50200
Protocol tcp
Direction bidirectional InboundConnect
Routing local
SecurityClass 0

}

######################
Security Endpoints
######################
LocalSecurityEndpoint Local_IKED
{

Identity Fqdn Server.PCO1.example.com
Location 10.1.1.1

}

RemoteSecurityEndpoint ZoneB_IKED
{

Identity Fqdn *.PCO2.example.com
Location 9.4.4.4
CaLabel CA4PartnerCompany

}

##########################
Generic filter actions
##########################

IpGenericFilterAction permit-nolog
{

IpFilterAction permit
IpFilterLogging no

}

IpGenericFilterAction ipsec-nolog
{

IpFilterAction ipsec
IpFilterLogging no

}

##################################
Key Exchange offers
defines:
Authentication type
Encryption type
Peer authentication method
Refresh limits
##################################
KeyExchangeOffer RSA-SHA1-3DES-DH2
{

HowToEncrypt 3DES
HowToAuthMsgs SHA1
HowToAuthPeers RsaSignature
DHGroup Group2
RefreshLifetimeProposed 480
RefreshLifetimeAccepted 240 1440
RefreshLifesizeProposed none
RefreshLifesizeAccepted none

}

##################################
Key Exchange Actions
defines:
Negotiation mode
List of Key exchange offers
##################################
KeyExchangeAction Main-RSA-SHA1-3DES-DH2

Chapter 19. IP security 1073

{
HowToInitiate main
HowToRespondIKEv1 main
KeyExchangeOfferRef RSA-SHA1-3DES-DH2

}

######################################
KeyExchangeRules
defines:
A pair of security endpoints
permitted in IKE negotiations
######################################
KeyExchangeRule ZoneB_KeyExRule1
{

LocalSecurityEndpointRef Local_IKED
RemoteSecurityEndpointRef ZoneB_IKED
KeyExchangeActionRef Main-RSA-SHA1-3DES-DH2

}

############################
Data Offers
defines:
Encapsulation mode
Authentication type
Encryption type
Refresh limits
############################
Authenticated offer
IpDataOffer TRAN-ESPSHA-NOENCR
{

HowToEncap Transport
HowToEncrypt DoNot
HowToAuth ESP HMAC_SHA1
RefreshLifetimeProposed 240
RefreshLifetimeAccepted 120 480
RefreshLifesizeProposed none
RefreshLifesizeAccepted none

}

##############################
Dynamic VPN Actions
defines:
Initiation role
Pfs group
Lifetime of connection
List of Data offers
##############################
IpDynVpnAction FTP-vpnaction
{

Initiation remoteonly
InitiateWithPfs group2
AcceptablePfs group2
VpnLife 1440
IpDataOfferRef TRAN-ESPSHA-NOENCR

}

################
IP addresses
################

IpAddr PrivateServerAddress
{

Addr 10.1.1.1
}

1074 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|

|
|

IpAddr ZoneB
{

Addr 9.4.4.4
}

Steps for configuring the branch office model: Part 1
(host-to-gateway with IPSec)
The following topics are covered in the discussion of this model:
v Host-to-gateway
v Gateway-to-gateway
v Autoactivation
v Command-line activation
v Using wildcards for location and identity
v Pre-shared key peer authentication

Figure 105 shows the branch office portion of the security model network.

Transport-mode IPSec is used exclusively for transporting encrypted data directly
between two hosts. Tunnel-mode IPSec encapsulation must be used if one of the
security endpoints is a security gateway routing traffic for any number of hosts. In
the branch office model, there can be multiple hosts behind a security gateway that
is providing the security mechanism for all hosts that reside behind the security
gateway. The base assumption is that the local secure server represents a single
data endpoint and a single security endpoint, whereas the remote subnetwork
represents multiple data endpoints which share a common security endpoint,
namely the security gateway host. Traffic from the local server to the branch office
gateway is IPSec protected, while traffic from the branch office gateway to the
hosts behind the security gateway need not be encrypted or even filtered.

As in the previous models, a complete IP security policy defines the traffic that is
allowed between the local server and the zone representing the branch office.
However, the difference lies primarily in where the remote security endpoint is
situated. In the previous examples, all of the IPSec protection was provided on a
host-to-host basis. Each set of communicating endpoints had a single dynamic
VPN that represented a secure channel of communication between two hosts, local
and remote. In contrast, any scenario that involves an IPSec security gateway can
require that one VPN carry traffic for multiple hosts. This difference is highlighted
in this branch office example.

For this example, assume the following requirements to allow network
communications from zone C, a branch office network (9.6.0.0/16), to a public IP
address (9.3.3.3) on this host. The hosts on the branch office network connect to the
Internet through the public branch office gateway server (9.5.5.5).
v Allow IKE traffic from branch office zone C to this host.

z/OS
Host

Z/OS
Policy 9.3.3.3

Internet
9.5.5.5

Branch Office (C)
9.6.0.0/16

GW

Figure 105. Branch office model

Chapter 19. IP security 1075

v Allow EE traffic from branch office zone C to an EE service running on this host,
using a dynamic VPN with strong authentication and encryption. The VPN
should be up when the stack initializes.

v Allow normal FTP traffic from branch office zone C to an FTP server running on
this host, using a dynamic VPN with strong authentication and encryption. The
VPN is command-line activated. Only one VPN should be established to carry
all FTP traffic. There will not be one VPN per connection, but rather one
Security Association will be negotiated for all of the remote FTP clients.
Restriction: Negotiating a single Security Association for multiple remote clients
is possible only when the remote security endpoint is acting as a secure gateway.

v Peers authenticate themselves using the pre-shared key method.

Perform the following steps to meet these requirements and configure part 1 of the
branch office model.

1. Determine the number of zones to be protected.

The branch office represents one zone, zone C.

2. For each zone, determine what services are allowed and define an IpService
block for each desired service. Services are defined by their protocols and the
well-known ports they use.
The definitions that describe FTP traffic can be combined in an IP service
group as follows:
IpServiceGroup FTPServer
{

IpService FTPServer-Control
{

SourcePortRange 21
Protocol tcp
Direction bidirectional InboundConnect
Routing local
SecurityClass 0

}
IpService FTPServer-Data
{

SourcePortRange 20
Protocol tcp
Direction bidirectional OutboundConnect
Routing local
SecurityClass 0

}
IpService FTPServer-Data-Passive
{

SourcePortRange 50000 50200
Protocol tcp
Direction bidirectional InboundConnect
Routing local
SecurityClass 0

}
}

The traffic pattern for Enterprise Extender can be defined in one IpService
block as follows:
IpService Enterprise-Extender
{

SourcePortRange 12000 12004
DestinationPortRange 12000 12004
Protocol udp
Direction bidirectional
Routing local
SecurityClass 0

}

1076 z/OS V1R12.0 Comm Svr: IP Configuration Guide

3. Determine the data endpoints to be protected. Typically, this is both a local
and remote IP address or subnetwork.
In this example, for the local host's public IP address, 9.3.3.3, define the
following:
IpAddr PublicServerAddressA1
{

Addr 9.3.3.3
}

For the remote subnet, 9.6.0.0/16, the following is defined:
IpAddrSet SubnetC
{

Prefix 9.6.0.0/16
}

Because it is necessary to permit IKE traffic between the local public server
and the remote branch office gateway, the IP address of the remote gateway
must also be defined as follows:
IpAddr BranchOfficeGateway
{

Addr 9.5.5.5
}

4. Determine what level of security is needed between each set of data
endpoints.
In this example, strong authentication and encryption is needed for both EE
and FTP traffic, so ESP authentication and ESP encryption are used.

5. Configure an IpGenericFilterAction statement for the level of security that is
required (permit, deny, ipsec), including whether the connection should be
logged, as follows:
IpGenericFilterAction ipsec
{

IpFilterAction ipsec
}

6. If IPSec is required between any two endpoints, do the following:

a. Configure a key exchange policy that defines the parameters of the phase
1 negotiation as follows:
1) Determine the required type and strength of protection for the phase

1 Security Association.
In this example, SHA1 authentication is used because it is more
secure than MD5, and AES encryption is used because it is stronger
than DES and equivalent to 3DES. Diffie-Hellman Group5 and
Group14 are considered strong enough to generate keying material for
AES using a 128 bit key. Group14 is used in this example..

2) Decide what type of peer authentication to use.
In this example, pre-shared key authentication is specified in the
requirements. Typically, the RSA signature method is preferable, given
its numerous advantages, but for the purposes of example the
pre-shared key method is used here. Because there is only one remote
IKE peer in the branch office scenario (the remote security gateway),
and because it is relatively simple to configure, pre-shared key
authentication is a reasonable choice.

3) Configure a KeyExchangeOffer statement that defines the parameters
for the phase 1 negotiation as follows:

Chapter 19. IP security 1077

KeyExchangeOffer SHA1-AES-PSK
{

HowToEncrypt AES_CBC KeyLength 128
HowToAuthMsgs SHA1
HowToAuthPeers PresharedKey
DHGroup Group14

}

4) Decide whether NAT traversal will be allowed.
In this example, the following parameter is used:
AllowNat No

5) Determine the negotiation mode, Main or Aggressive.
Because security is a priority in the branch office model, the more
secure Main mode is used for the phase 1 negotiation.

6) Configure a KeyExchangeAction statement as follows:
KeyExchangeAction Gold-PSK
{

HowToInitiate main
HowToRespondIKEv1 main
KeyExchangeOfferRef SHA1-AES-PSK

}

7) Configure a LocalSecurityEndpoint statement and
RemoteSecurityEndpoint statement as follows:
LocalSecurityEndpoint Public_IKED
{

Identity IpAddr 9.3.3.3
LocationRef PublicServerAddressA1

}

RemoteSecurityEndpoint ZoneC_IKED
{

Identity Fqdn gateway.BO.example.com
LocationRef BranchOfficeGateway

}

8) Configure a KeyExchangeRule statement that includes the two
endpoints, the key exchange action, and the pre-shared key as
follows:
KeyExchangeRule ZoneC_KeyExRule1
{

LocalSecurityEndpointRef Public_IKED
RemoteSecurityEndpointRef ZoneC_IKED
KeyExchangeActionRef Gold-PSK
PresharedKey abracadabra

}

9) Include the KeyExchangeRule statement in the KeyExchangePolicy
statement block, as follows:
KeyExchangePolicy
{

KeyExchangeRuleRef ZoneC_KeyExRule1
}

b. Configure an IpDynVpnAction statement defining the control of the
phase 2 negotiation, as follows:
1) Determine the required type and strength of IPSec protection for the

phase 2 Security Association.
In this example, authentication is ESP HMAC_SHA1 and encryption
is AES.

2) Determine whether tunnel or transport mode is required.

1078 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|

|

Tunnel mode is required when one of the security endpoints is a
security gateway.

3) Configure an IpDataOffer statement that defines the parameters of the
phase 2 negotiation, as follows:
IpDataOffer SHA-AES-Tunnel
{

HowToEncap tunnel
HowToEncrypt AES_CBC KeyLength 128
HowToAuth ESP HMAC_SHA1

}

4) Determine which peer is allowed to initiate the negotiation.
Because the EE VPN is up when the stack starts, you need to be able
to start the negotiation locally (that is, autoactivate it). The FTP VPN
is command-line activated, so you need to be able to start the
negotiation locally.

5) Configure an IpDynVpnAction statement that defines the control
information for the phase 2 negotiation, as follows:
IpDynVpnAction Gold-TunnelMode
{

Initiation either
InitiateWithPfs group2
AcceptablePfs group2
IpDataOfferRef SHA-AES-Tunnel

}

c. Decide how the Security Association is activated.
1) Optionally, configure a local dynamic VPN policy, if command-line

activated or autoactivated.
A LocalDynVpnRule statement is required for each Security
Association because none are on-demand activated, five for the EE
traffic and two for the FTP traffic, as follows:
LocalDynVpnRule ZoneC_VPN-EE1
{

LocalIpRef PublicServerAddressA1
RemoteIpSetRef SubnetC
LocalDataPort 12000
RemoteDataPort 12000
Protocol UDP
AutoActivate Yes

}

LocalDynVpnRule ZoneC_VPN-EE2
{

LocalIpRef PublicServerAddressA1
RemoteIpSetRef SubnetC
LocalDataPort 12001
RemoteDataPort 12001
Protocol UDP
AutoActivate Yes

}

LocalDynVpnRule ZoneC_VPN-EE3
{

LocalIpRef PublicServerAddressA1
RemoteIpSetRef SubnetC
LocalDataPort 12002
RemoteDataPort 12002
Protocol UDP
AutoActivate Yes

}

LocalDynVpnRule ZoneC_VPN-EE4

Chapter 19. IP security 1079

|
|

|
|

{
LocalIpRef PublicServerAddressA1
RemoteIpSetRef SubnetC
LocalDataPort 12003
RemoteDataPort 12003
Protocol UDP
AutoActivate Yes

}

LocalDynVpnRule ZoneC_VPN-EE5
{

LocalIpRef PublicServerAddressA1
RemoteIpSetRef SubnetC
LocalDataPort 12004
RemoteDataPort 12004
Protocol UDP
AutoActivate Yes

}

LocalDynVpnRule ZoneC_VPN-FTP-Data
{

LocalIpRef PublicServerAddressA1
RemoteIpSetRef SubnetC
LocalDataPort 20
RemoteDataPort 0
Protocol TCP
AutoActivate Yes

}

LocalDynVpnRule ZoneC_VPN-FTP-Control
{

LocalIpRef PublicServerAddressA1
RemoteIpSetRef SubnetC
LocalDataPort 21
RemoteDataPort 0
Protocol TCP
AutoActivate Yes

}

2) Configure an optional IpLocalStartAction statement, if the Security
Association is to be activated locally (that is, on-demand,
command-line, or autoactivation) and one of the security endpoints is
acting as a security gateway (that is, not a host-to-host Security
Association). Include a reference to the IpLocalStartAction statement
in the IP filter rule.
If the local secure server initiates an IKE negotiation, it must be able
to identify a remote IKE peer. However, in this case, the remote data
endpoint is not a single host, but multiple endpoints in a subnetwork,
ZoneC. The IpLocalStartAction statement is used to identify the
remote IKE peer, and is required if the local IKE daemon initiates an
ipsec connection with a remote security gateway.
IpLocalStartAction StartZoneC
{

RemoteSecurityEndpointRef ZoneC_IKED
}

3) Create an IpFilterRule statement that allows IPSec traffic (AH and
ESP), or set the global IpFilterPolicy statement parameter PreDecap to
off.
In this example, PreDecap off is used in the IpFilterPolicy statement.

7. Define an IpFilterRule statement for each set of data endpoints. The rule
should include the services that are allowed (one IpService statement for
each allowed service), and the level of security that is required (a reference to

1080 z/OS V1R12.0 Comm Svr: IP Configuration Guide

the IpGenericFilterAction statement). If IPSec is required, create an
IpFilterRule statement that allows IKE traffic (UDP, port 500). If NAT
traversal is allowed, create an IpFilterRule statement that allows IKE UDP
traffic on port 4500. See the IpAddr and IpAddrSet statements configured in
step 3 on page 1077.
IpFilterRule Rule1C
{

IpSourceAddrRef PublicServerAddressA1
IpDestAddrRef BranchOfficeGateway
IpServiceRef IKE
IpGenericFilterActionRef permit

}

IpFilterRule Rule2C
{

IpSourceAddrRef PublicServerAddressA1
IpDestAddrSetRef SubnetC
IpServiceRef Enterprise-Extender
IpServiceGroupRef FTPServer
IpGenericFilterActionRef ipsec
IpDynVpnActionRef Gold-TunnelMode
IpLocalStartActionRef StartZoneC

}

8. Define an IpFilterGroup statement for each zone and include the IpFilterRule
statements that belong to that zone.

9. Include all IpFilterGroup references and, optionally, any additional
IpFilterRule statements as needed, in the IpFilterPolicy block.

10. Include all configured statements in the stack-specific IP security
configuration file.

Following is a complete IP security policy for traffic from the local secure server to
zone C, assuming that the reusable statements have been included in the common
IP security configuration file:
#---
Filter Policy for Secure Server
#---
IpFilterPolicy
{

PreDecap off
FilterLogging on
AllowOnDemand no
IpFilterGroupRef ZoneC

}

#---
KeyExchange Policy for Secure Server
#---
KeyExchangePolicy
{

KeyExchangeRuleRef ZoneC_KeyExRule1
}

#---
LocalDynVpn Policy for Secure Server
#---
LocalDynVpnPolicy
{

LocalDynVpnGroupRef ZoneC_BranchOfficeVPNs
}

##

Chapter 19. IP security 1081

Connectivity Profile
Secure Server To Zone C
#
Server to Trusted Branch Office Network
#
##
IpFilterGroup ZoneC
{

#---
Permitted Zone C traffic:
Allow IKE traffic from the gateway IKE Server
for branch office to this host.
#
IKE (UDP port 500) - IKE negotiations
#---

IpFilterRule Rule1C
{

IpSourceAddrRef PublicServerAddressA1
IpDestAddrRef BranchOfficeGateway
IpServiceRef IKE
IpGenericFilterActionRef permit

}

#---
IPSec-protected Zone C traffic:
#
Enterprise Extender (ports 12000-12004)
FTP Server - SubnetC to PublicServerAddressA
#---

IpFilterRule Rule2C
{

IpSourceAddrRef PublicServerAddressA1
IpDestAddrSetRef SubnetC
IpServiceRef Enterprise-Extender
IpServiceGroupRef FTPServer
IpGenericFilterActionRef ipsec
IpDynVpnActionRef Gold-TunnelMode
IpLocalStartActionRef StartZoneC

}
}

IpLocalStartAction StartZoneC
{

AllowOnDemand yes
RemoteSecurityEndpointRef ZoneC_IKED

}

KeyExchangeRule ZoneC_KeyExRule1
{

LocalSecurityEndpointRef Public_IKED
RemoteSecurityEndpointRef ZoneC_IKED
KeyExchangeActionRef Gold-PSK

}

#--
Zone C LocalDynVpnRules
#
Setup SAs for EE traffic from branch office zone C to
EE (UDP ports 12000-12004).
#--

LocalDynVpnGroup ZoneC_BranchOfficeVPNs
{

LocalDynVpnRule ZoneC_VPN-EE1
{

1082 z/OS V1R12.0 Comm Svr: IP Configuration Guide

LocalIpRef PublicServerAddressA1
RemoteIpSetRef SubnetC
LocalDataPort 12000
RemoteDataPort 12000
Protocol UDP
AutoActivate Yes

}

LocalDynVpnRule ZoneC_VPN-EE2
{

LocalIpRef PublicServerAddressA1
RemoteIpSetRef SubnetC
LocalDataPort 12001
RemoteDataPort 12001
Protocol UDP
AutoActivate Yes

}

LocalDynVpnRule ZoneC_VPN-EE3
{

LocalIpRef PublicServerAddressA1
RemoteIpSetRef SubnetC
LocalDataPort 12002
RemoteDataPort 12002
Protocol UDP
AutoActivate Yes

}

LocalDynVpnRule ZoneC_VPN-EE4
{

LocalIpRef PublicServerAddressA1
RemoteIpSetRef SubnetC
LocalDataPort 12003
RemoteDataPort 12003
Protocol UDP
AutoActivate Yes

}

LocalDynVpnRule ZoneC_VPN-EE5
{

LocalIpRef PublicServerAddressA1
RemoteIpSetRef SubnetC
LocalDataPort 12004
RemoteDataPort 12004
Protocol UDP
AutoActivate Yes

}

#---
Setup SAs for FTP traffic from branch office zone C
to an FTP server running on this host using a dynamic
vpn (TCP port 20, 21).
#---

LocalDynVpnRule ZoneC_VPN-FTP-Data
{

LocalIpRef PublicServerAddressA1
RemoteIpSetRef SubnetC
LocalDataPort 20
RemoteDataPort 0
Protocol TCP
AutoActivate Yes

}

LocalDynVpnRule ZoneC_VPN-FTP-Control
{

LocalIpRef PublicServerAddressA1

Chapter 19. IP security 1083

RemoteIpSetRef SubnetC
LocalDataPort 21
RemoteDataPort 0
Protocol TCP
AutoActivate Yes

}
}

Steps for configuring the branch office with NAT model
(host-to-gateway with IPSec)
The following NAT implications for host-to-gateway dynamic IKE negotiations are
covered in the discussion of this model:
v Local and remote data endpoints
v Local and remote security endpoints
v IKE initiator and responder roles
v Restriction on HowToAuth protocol (AH not supported)

“Steps for configuring the branch office model: Part 1 (host-to-gateway with
IPSec)” on page 1075 assumed a network topology with both the host and the
security gateway, as well as the hosts behind the security gateway, using public IP
addresses. Often one or both security endpoints are behind a NAT utilizing a
private IP address.

Modifying the branch office model topology to include a NAT in front of the
security gateway, the branch office with NAT topology becomes as shown in
Figure 106:

This example will describe the configuration considerations and requirements
when the NATT solution is implemented to traverse NAT devices in a

NAT

host

9.3.3.3 9.5.5.5

host

GW

host

host
10.3.3.3

Zone C 10.3.0.0/16

Internet

Figure 106. Branch office with NAT model

1084 z/OS V1R12.0 Comm Svr: IP Configuration Guide

host-to-security gateway environment. The branch office with NAT model has the
same basic security requirements as the branch office model. Configuration
statements added or changed for the branch office with NAT model are shown in
bold. The example describes the policy for host 9.3.3.3.

For this example, assume the following requirements to enable network
communications from zone C, a branch office network using private IP addresses
(10.3.0.0/16), to a public IP address (9.3.3.3) on this host. The hosts on the branch
office network connect to the Internet through the branch office gateway server,
which is behind a NAT. In this model, the NAT has a static mapping of the
security gateway's private address 10.3.3.3 to the public address 9.5.5.5.
v Allow IKE traffic from the branch office zone C security gateway to this host.
v Allow EE traffic from branch office zone C to an EE service running on this host,

using a dynamic VPN with strong authentication and encryption. Only one host
behind the security gateway (branch office zone C) will be able to send EE
traffic.
Guideline: In most cases, EE hosts should not be located behind a security
gateway that is behind a NAT. Instead, a host-to-host Security Association
should be negotiated for each EE host.
In “Steps for configuring the branch office model: Part 1 (host-to-gateway with
IPSec)” on page 1075, the VPN was brought up when the z/OS stack initialized
by setting the AutoActivate parameter to Yes on the LocalDynVpnRule
statement. In this scenario, the hosts behind the gateway do not have public
addresses that can be configured in the policy. Therefore, initiation from host
9.3.3.3 to the security gateway 9.5.5.5 becomes ambiguous because the IP address
of the remote data endpoint is unknown. z/OS does not allow initiation of a
UDP-Encapsulated-Tunnel mode Security Association to a security gateway. The
Security Associations between the security gateway 9.5.5.5 and host 9.3.3.3 must
be initiated by the security gateway, with host 9.3.3.3 acting as responder.

v Allow normal FTP traffic from branch office zone C to an FTP server running on
this host, using a dynamic VPN with strong authentication and encryption. In
“Steps for configuring the branch office model: Part 1 (host-to-gateway with
IPSec)” on page 1075, the VPN was activated by an administrator from the z/OS
UNIX command line. Again, z/OS does not allow initiation of a
UDP-Encapsulated-Tunnel mode Security Association to a security gateway. The
Security Associations between the security gateway and host 9.3.3.3 must be
initiated by the security gateway, with host 9.3.3.3 acting as the responder.

v Peers authenticate themselves using the pre-shared key method.

Perform the following steps to meet these requirements and configure the branch
office with NAT model.

1. Determine the number of zones to be protected.

The branch office represents one zone, zone C.

2. For each zone, determine what services are allowed and define an IpService
block for each desired service. Services are defined by their protocols and the
well-known ports that they use.
The definitions that describe FTP traffic can be combined in an IP service
group. Typically, FTP clients use passive mode (PASV) or extended passive
mode (EPSV) to connect to the FTP server when the client is behind a NAT.
For more information on active and passive mode FTP, see “Considerations
for IPSec-encapsulated FTP traffic when traversing a NAT” on page 1098.

Chapter 19. IP security 1085

The range of server ports specified for the data connection reflects the port
range specified for PASSIVEDATAPORTS in the server's FTP.DATA file. For
more information on PASSIVEDATAPORTS, see z/OS Communications Server:
IP Configuration Reference.
The following definitions show the services required for the server for PASV
or EPSV:
IpServiceGroup FTPServer
{

IpService FTPServer-Control
{

SourcePortRange 21
Protocol tcp
Direction bidirectional InboundConnect
Routing local
SecurityClass 0

}
IpService FTPServer-Data-Passive
{

SourcePortRange 50000 50200
Protocol tcp
Direction bidirectional InboundConnect
Routing local
SecurityClass 0

}
}

The traffic pattern for Enterprise Extender can be defined in one IpService
block as follows:
IpService Enterprise-Extender
{

SourcePortRange 12000 12004
DestinationPortRange 12000 12004
Protocol udp
Direction bidirectional
Routing local
SecurityClass 0

}

3. Determine the data endpoints to be protected.

In this example, for the local host's public IP address, 9.3.3.3, define the
following:
IpAddr PublicServerAddressA1
{

Addr 9.3.3.3
}

In this case, the remote data endpoints are in the branch office's internal
network. The z/OS NATT implementation does not require the coding of
private addresses for the remote endpoints. Instead, the security gateway's
public address is treated as the remote data endpoint. The NAT is using a
static mapping for the security gateway, so the public address of the gateway
is specified. If the NAT was using dynamic mappings, the range of public IP
addresses to which the security gateway could be mapped would need to be
included in this definition.
IpAddr BranchOfficeGateway
{

Addr 9.5.5.5
}

This IP address is also needed to permit IKE traffic between the local public
server and the remote branch office gateway.

1086 z/OS V1R12.0 Comm Svr: IP Configuration Guide

4. Determine what level of security is needed between each set of data
endpoints.
In this example, strong authentication and encryption is needed for both EE
and FTP traffic, so ESP authentication and ESP encryption are used. ESP
must be used when NAT traversal support is being used.

5. Configure an IpGenericFilterAction statement for the level of security that is
required (permit, deny, ipsec), including whether the connection should be
logged, as follows:
IpGenericFilterAction ipsec
{

IpFilterAction ipsec
}

6. If IPSec is required between any two endpoints, do the following:

a. Configure a key exchange policy that defines the parameters of the phase
1 negotiation as follows:
1) Determine the required type and strength of protection for the phase

1 Security Association.
In this example, SHA1 authentication is used because it is more
secure than MD5, and AES encryption is used because it is as secure
as 3DES.

2) Decide what type of peer authentication to use.
In this example, pre-shared key authentication is specified in the
requirements. Typically, the RSA signature method is preferable, given
its numerous advantages, but for the purposes of example the
pre-shared key method is used here. Because there is only one remote
IKE peer in the branch office scenario (the remote security gateway),
and because it is relatively simple to configure, pre-shared key
authentication is a reasonable choice.

3) Configure a KeyExchangeOffer statement that defines the parameters
for the phase 1 negotiation as follows:
KeyExchangeOffer SHA1-AES-PSK
{

HowToEncrypt AES_CBC KeyLength 128
HowToAuthMsgs SHA1
HowToAuthPeers PresharedKey
DHGroup Group14

}

4) Decide whether NAT traversal will be allowed.
The AllowNat parameter on the KeyExchangePolicy and
KeyExchangeAction statements enables the IKED to advertise NAT
traversal support. For this model, allow NAT traversal support to be
advertised for all phase 1 Security Associations by specifying Yes on
the AllowNat parameter on the KeyExchangePolicy statement:
AllowNat Yes

For this model, use the NatKeepAliveInterval parameter default
value, 20 seconds. When z/OS is behind a NAT, a NAT keep-alive
timer is started, with the interval specified in NatKeepAliveInterval
parameter on the KeyExchangePolicy statement. Because z/OS is not
behind a NAT in this model, a NAT keep-alive is not kept regardless
of the value specified or the default for NatKeepAliveInterval.

5) Determine the negotiation mode, Main or Aggressive.

Chapter 19. IP security 1087

|

Because security is a priority in the branch office with NAT model,
the more secure Main mode is used for the phase 1 negotiation.

6) Configure a KeyExchangeAction statement as follows:
KeyExchangeAction Gold-PSK
{

HowToInitiate main
HowToRespondIKEv1 main
KeyExchangeOfferRef SHA1-AES-PSK

}

7) Configure a LocalSecurityEndpoint statement and
RemoteSecurityEndpoint statement as follows:
LocalSecurityEndpoint Public_IKED
{

Identity IpAddr 9.3.3.3
LocationRef PublicServerAddressA1

}

RemoteSecurityEndpoint ZoneC_IKED
{

Identity Fqdn gateway.BO.example.com
LocationRef BranchOfficeGateway

}

8) Configure a KeyExchangeRule statement that includes the two
endpoints and the key exchange action, as follows:
KeyExchangeRule ZoneC_KeyExRule1
{

LocalSecurityEndpointRef Public_IKED
RemoteSecurityEndpointRef ZoneC_IKED
KeyExchangeActionRef Gold-PSK
PresharedKey abracadabra

}

9) Include the KeyExchangeRule statement in the KeyExchangePolicy
statement block, as follows:
KeyExchangePolicy
{

AllowNat Yes
KeyExchangeRuleRef ZoneC_KeyExRule1

}

b. Configure an IpDynVpnAction statement defining the control of the
phase 2 negotiation, as follows:
1) Determine the required type and strength of IPSec protection for the

phase 2 Security Association.
In this example, authentication is ESP HMAC_SHA1 and encryption
is AES.

2) Determine whether tunnel or transport mode is required.
Tunnel mode is required when one of the security endpoints is a
security gateway.

3) Configure an IpDataOffer statement that defines the parameters of the
phase 2 negotiation, as follows:
IpDataOffer SHA-AES-Tunnel
{

HowToEncap tunnel
HowToEncrypt AES_CBC KeyLength 128
HowToAuth ESP HMAC_SHA1

}

4) Determine which peer is allowed to initiate the negotiation.

1088 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|

|
|

In this scenario, the hosts behind the gateway do not have public
addresses that can be configured in the policy. Therefore, initiation
from host 9.3.3.3 to the security gateway 9.5.5.5 becomes ambiguous
because the IP address of the remote data endpoint is unknown. z/OS
does not allow initiation of a UDP-Encapsulated-Tunnel mode
Security Association to a security gateway. The Security Associations
between the security gateway 9.5.5.5 and host 9.3.3.3 must be initiated
by the security gateway, with host 9.3.3.3 acting as responder.

5) Configure an IpDynVpnAction statement that defines the control
information for the phase 2 negotiation, as follows:
IpDynVpnAction Gold-TunnelMode
{

Initiation remoteonly
InitiateWithPfs group2
AcceptablePfs group2
IpDataOfferRef SHA-AES-Tunnel

}

c. Decide how the Security Association is activated.
1) Only remote initiation of the Security Association is allowed, as

specified for the Initiation parameter on the Gold-TunnelMode
IpDynVpnAction statement. No LocalDynVpnRule or
IpLocalStartAction statements are needed.

2) Create an IpFilterRule statement that allows IPSec traffic (ESP), or set
the global IpFilterPolicy statement parameter PreDecap to off.
In this example, PreDecap off is used in the IpFilterPolicy statement.

7. Define an IpFilterRule statement for each set of data endpoints. The rule
should include the services that are allowed (one IpService statement for
each allowed service), and the level of security that is required (a reference to
the IpGenericFilterAction statement). If IPSec is required, create an
IpFilterRule statement that allows IKE traffic (UDP, port 500 and 4500). See
the IpAddr and IpAddrSet statements configured previously.
IpFilterRule Rule1C
{

IpSourceAddrRef PublicServerAddressA1
IpDestAddrRef BranchOfficeGateway
IpServiceRef IKE-local-500
IpServiceRef IKE-local-4500
IpGenericFilterActionRef permit

}

IpFilterRule Rule2C
{

IpSourceAddrRef PublicServerAddressA1
IpDestAddrRef BranchOfficeGateway
IpServiceRef Enterprise-Extender
IpServiceGroupRef FTPServer
IpGenericFilterActionRef ipsec
IpDynVpnActionRef Gold-TunnelMode

}

8. Define an IpFilterGroup statement for each zone and include the IpFilterRule
statements that belong to that zone.

9. Include all IpFilterGroup references and, optionally, any additional
IpFilterRule statements as needed, in the IpFilterPolicy block.

10. Include all configured statements in the stack-specific IP security
configuration file.

Chapter 19. IP security 1089

|
|

The following is the complete IP security policy for traffic from the local secure
server to zone C, assuming that the reusable statements have been included in the
common IP security configuration file:
#---
Filter Policy for Secure Server
#---
IpFilterPolicy
{

PreDecap off
FilterLogging on
AllowOnDemand no
IpFilterGroupRef ZoneC

}

#---
KeyExchange Policy for Secure Server
#---
KeyExchangePolicy
{

AllowNat Yes
KeyExchangeRuleRef ZoneC_KeyExRule1

}

##
Connectivity Profile
Secure Server To Zone C
#
Server to Trusted Branch Office Network
#
##
IpFilterGroup ZoneC
{

#---
Permitted Zone C traffic:
Allow IKE traffic from the gateway IKE Server
for branch office to this host.
#
IKE (UDP port 500/4500) - IKE negotiations
#---

IpFilterRule Rule1C
{

IpSourceAddrRef PublicServerAddressA1
IpDestAddrRef BranchOfficeGateway
IpServiceGroupRef IKE
IpGenericFilterActionRef permit

}

#---
IPSec-protected Zone C traffic:
#
Enterprise Extender (ports 12000-12004)
FTP Server - SubnetC to PublicServerAddressA
#---

IpFilterRule Rule2C
{

IpSourceAddrRef PublicServerAddressA1
IpDestAddrRef BranchOfficeGateway
IpServiceRef Enterprise-Extender
IpServiceGroupRef FTPServer
IpGenericFilterActionRef ipsec
IpDynVpnActionRef Gold-TunnelMode

}
}

1090 z/OS V1R12.0 Comm Svr: IP Configuration Guide

KeyExchangeRule ZoneC_KeyExRule1
{

LocalSecurityEndpointRef Public_IKED
RemoteSecurityEndpointRef ZoneC_IKED
KeyExchangeActionRef Gold-PSK
PresharedKey abracadabra

}

Steps for configuring the branch office model: Part 2
(gateway-to-gateway with IPSec)
It is not likely that the z/OS system will function strictly as a router or a firewall
at the network perimeter, but it is possible to configure the z/OS system to
provide the IPSec functionality that many secure gateway devices provide. This
topic includes instructions on how to configure a scenario in which the z/OS
system is routing network traffic from inside the internal network. This
functionality is similar to the functionality that is provided by the branch office
gateway in “Steps for configuring the branch office model: Part 1 (host-to-gateway
with IPSec)” on page 1075. Here, there are multiple data endpoints on both the
local side and the remote side, but only one pair of security endpoints, one local
and one remote.

In this example, assume that the local z/OS system is acting as a secure gateway
for hosts on an internal network A, and tunneling the IPSec-protected traffic to a
remote secure gateway for subnetwork C. The following summarizes the
requirements for this example:
v Permit IKE negotiations between the two security gateways, the secure local host

and the secure remote gateway for subnetwork C.
v Permit traffic from the internal network to the internal interface on the secure

local host.
v Add IPSec protection to any traffic that flows between the two secure gateways.

In this scenario, the z/OS system is a secure forwarding agent for the internal
hosts, rather than a data endpoint. Traffic from the internal hosts that is destined
for the remote network first comes to the secure local gateway in the clear. Before
it is sent out to the remote network, it is IPSec encapsulated. The process is
reversed for traffic that comes from the remote network. Traffic that comes from
the remote network to the local secure gateway is IPSec decapsulated on the local
secure host and forwarded to the internal host in the clear.

Perform the following steps to meet the above requirements and configure part 2
of the branch office model.

1. Permit IKE negotiations between the two secure gateways.

UDP port 500 traffic must be allowed for IKE negotiations.
IpFilterRule Rule1AtoC
{

IpSourceAddrRef PublicServerAddressA1
IpDestAddrRef BranchOfficeGateway
IpServiceRef IKE
IpGenericFilterActionRef permit

}

2. Permit traffic from the internal network to the internal interface on the secure
host.
IpFilterRule Rule2AtoC
{

IpSourceAddrSetRef SubnetC

Chapter 19. IP security 1091

IpDestAddrSetRef InternalNetworkA
IpServiceGroupRef All-traffic-routed
IpGenericFilterActionRef permit

}

The bidirectional keyword on the IpService statement creates two filter rules,
one inbound and one outbound. Expansion of this IpFilterRule statement is
shown in Table 47.

Table 47. Expanded filter rule for internal traffic

Source Destination Routing Direction Action

SubnetC InternalNetworkA Routed Outbound permit

InternalNetworkA SubnetC Routed Inbound permit

As required, traffic that enters the secure server from InternalNetworkA that is
destined for SubnetC is permitted by the secure host as an inbound routed
packet. Traffic that leaves the secure server from SubnetC destined for
InternalNetworkA is permitted by the secure host as an outbound routed
packet.

3. Add IPSec protection to any traffic that flows between the two secure
gateways.
IpFilterRule Rule3AtoC
{

IpSourceAddrSetRef InternalNetworkA
IpDestAddrSetRef SubnetC
IpServiceGroupRef All-traffic-routed
IpGenericFilterActionRef ipsec-log

}

Expansion of this rule is shown in Table 48.

Table 48. Expanded filter rule for remote traffic

Source Destination Routing Direction Action

InternalNetworkA SubnetC Routed Outbound ipsec

SubnetC InternalNetworkA Routed Inbound ipsec

Traffic that leaves the secure server from InternalNetworkA that is destined for
SubnetC is permitted with ipsec. Traffic that enters the secure server from
SubnetC that is destined for InternalNetworkA is permitted with ipsec.

Additional topologies
There are alternative security models that might be suitable for particular
networks. Each of these configurations is supported by z/OS IP security.

Cascaded tunnels: If there are multiple hops from data endpoint to data
endpoint, there might be Security Associations between any two hosts along the
path. For example, the data might be authenticated from a host to the secure
gateway, then encrypted for transportation over the Internet, then possibly
authenticated and encrypted from the second secure gateway to the host on the
other side, as shown in Figure 107 on page 1093:

1092 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Nested tunnels: In a nested environment, data is encapsulated multiple times
over multiple hops. If the local and remote hosts are both behind a secure gateway,
there could be a tunnel-mode Security Association that carries the traffic from one
secure gateway to the other. Meanwhile, a transport-mode Security Association
could carry the traffic from one host to the other, end-to-end. In this case, the
transport-mode Security Association is nested in the tunnel-mode Security
Association. Data from the local host is encapsulated once when leaving the local
machine, encapsulated again at the secure gateway, decapsulated at the other
secure gateway, and decapsulated one final time at the remote host, leaving only
the original packet.

Mobile users: Mobile users represent a unique security model, because their IP
address is not fixed and can be unpredictable. Instead of selecting traffic based on
remote IP address, the mobile user's IKE identity can be used to select traffic. IPSec
protection is required so that the IKE identity is known. You configure this security
model similarly to other security models that require IPSec protection, except that
the peer's remote identity is indicated on the RemoteIdentity parameter of the
IpFilterRule statement, and the IpDestAddr parameter typically uses a wildcard
value to indicate all addresses.

Multicast traffic: Multicast traffic can be protected by IPSec, but only manual
tunnels are supported because the IKED supports negotiating dynamic tunnels
with only a single peer rather than with a group of peers.

Multicast traffic is one-to-many (sent by individual nodes but received by multiple
nodes) and is normally both sent and received; therefore, to use manual tunnels for

Z/OS
Policy

Security
gateway 2

Security
gateway 1

Host 1

Security association 1
tunnel

Security association 2
tunnel

Security association 3
tunnel

Internet
Z/OS
Policy

Host 2

Figure 107. Cascaded tunnels

Z/OS
Policy

Z/OS
Policy

Security
gateway 2

Security
gateway 1

Host 1 Host 2

Security association 1
tunnel

Security association 2
tunnel

Internet

Figure 108. Nested tunnels

Chapter 19. IP security 1093

multicast, you must use the same Security Parameter Index (SPI) and keys for
inbound and outbound traffic. You must coordinate the SPI values and keys that
are used with all multicast peers on the LAN segment. Also, because this manual
tunnel is to be used to protect traffic with various source and destination
addresses, you must specify any or any6 for the local and remote security endpoint
locations. The following example shows AH authentication using the SHA
algorithm, and ESP encryption using the DES algorithm.
IpManVpnAction tunnel-multicast

{
LocalSecurityEndpointAddr any
RemoteSecurityEndpointAddr any
HowToAuth AH HMAC_SHA1

AuthOutboundSa 2700 0xa66e1b72e58a367ebd39d62daef84d5d9222cfe1
AuthInboundSa 2700 0xa66e1b72e58a367ebd39d62daef84d5d9222cfe1

HowToEncrypt DES
EncryptOutboundSa 2701 0x3e6dcf72459ef551
EncryptInboundSa 2701 0x3e6dcf72459ef551

HowToEncap transport
}

Requirement: You must define two filter rules for the multicast traffic. The first
rule matches outbound multicast traffic, which has a unicast source address and a
multicast destination address. The second rule matches inbound multicast traffic,
which has a remote (destination) address that is unicast, and a local (source)
address that is multicast. The addresses of the inbound rule are reversed from
those that you might expect, because bidirectional rules are written from an
outbound perspective. These rules are as follows:
IpFilterRule outbound-multicast

{
IpSourceAddrSetRef lan-home-address
IpDestAddr 224.0.0.1
IpServiceRef service-udp
IpGenericFilterActionRef ipsec-nolog
IpManVpnActionRef tunnel-multicast

}
IpFilterRule inbound-multicast
{

IpSourceAddr 224.0.0.1
IpDestAddr lan-subnet
IpServiceRef service-udp
IpGenericFilterActionRef ipsec-nolog
IpManVpnActionRef tunnel-multicast

}

It is possible to restrict the tunnel to the multicast address that is being used.
Define separate tunnels for different multicast addresses while using the same SPI
value (the combination of address and SPI makes the tunnel unique). Because the
local system is expected to participate in both sending and receiving multicast
messages, you must create two manual tunnels. Following is an example of this
approach. In this example, one endpoint address is known for each tunnel, so you
specify that address for the given security endpoint address.
IpManVpnAction tunnel-multicast-outbound

{
LocalSecurityEndpointAddr any
RemoteSecurityEndpointAddr 224.0.0.1
HowToAuth AH HMAC_SHA1

AuthOutboundSa 2700 0xa66e1b72e58a367ebd39d62daef84d5d9222cfe1
AuthInboundSa 2700 0xa66e1b72e58a367ebd39d62daef84d5d9222cfe1

HowToEncrypt DES
EncryptOutboundSa 2701 0x3e6dcf72459ef551
EncryptInboundSa 2701 0x3e6dcf72459ef551

1094 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|

HowToEncap transport
}
IpManVpnAction tunnel-multicast-inbound
{

LocalSecurityEndpointAddr 224.0.0.1
RemoteSecurityEndpointAddr any
HowToAuth AH HMAC_SHA1

AuthOutboundSa 2700 0xa66e1b72e58a367ebd39d62daef84d5d9222cfe1
AuthInboundSa 2700 0xa66e1b72e58a367ebd39d62daef84d5d9222cfe1

HowToEncrypt DES
EncryptOutboundSa 2701 0x3e6dcf72459ef551
EncryptInboundSa 2701 0x3e6dcf72459ef551

HowToEncap transport
}
IpFilterRule outbound-multicast
{

IpSourceAddrSetRef lan-home-address
IpDestAddr 224.0.0.1
IpServiceRef service-udp
IpGenericFilterActionRef ipsec-nolog
IpManVpnActionRef tunnel-multicast-outbound

}
IpFilterRule inbound-multicast
{

IpSourceAddr 224.0.0.1
IpDestAddr lan-subnet
IpServiceRef service-udp
IpGenericFilterActionRef ipsec-nolog
IpManVpnActionRef tunnel-multicast-inbound

}

Tip: Configuration of manual tunnels for IPv6 multicast is similar. For specific
examples of configuring this for OSPFv3 security, see “Considerations for IPv6
OSPF security” on page 942.

Configuration scenarios supported for NAT traversal
Communications Server can act as a host Security Association endpoint for
UDP-encapsulated mode Security Associations that are negotiated to enable IPSec
traffic to traverse a NAT. The partner company with NAT model and the partner
company with NAPT model describe Communications Server's host-to-host
support. The branch office with NAT model describes Communications Server's
host-to-security gateway support.

Rule: Communications Server does not support acting as a security gateway
endpoint for UDP-Encapsulated-Tunnel mode Security Associations. This is
different than the Communications Server support provided for tunnel mode
Security Associations, where Communications Server can act as a security gateway,
although Communications Server is not typically deployed in this manner.

The figures in the subtopics show z/OS configuration support for
UDP-encapsulated Security Associations. A Security Association is negotiated by
two IKE peers, with one initiating the negotiation and the other acting in
responder mode. The location of the NAT, and the NAT's functionality, affect
which IKE peer can initiate the Security Association. A traditional dynamic NAT
implementation requires outbound traffic to be sent first to create an address
mapping, before inbound traffic can be accepted. The dynamic NAT can be
creating one-to-one address mappings from a dynamic pool of public IP addresses,
or creating many-to-one address port mappings using a single public IP address
and a pool of port values. When an IKE responder is behind a NAT, the NAT's
address mapping must be static, allowing inbound traffic for the address to be
received prior to outbound traffic being sent.

Chapter 19. IP security 1095

|

Host-to-host scenario 1 — z/OS-to-z/OS: Figure 109 shows a NAT in front of both
z/OS hosts. A configuration with a NAT in front of only one of the z/OS hosts is
supported as well. If there is a NAT device in front of the responder, the NAT's
address mapping must be static. If there is a NAT device in front of the initiator,
the NAT's address mapping can be static or dynamic. A dynamic mapping can use
either one-to-one address translation or many-to-one address port translation
(NAPT).

Either UDP-Encapsulated-Transport mode or UDP-Encapsulated-Tunnel mode can
be negotiated in a z/OS host-to-z/OS host configuration.

Rule: The z/OS host is limited to acting in responder mode when the remote
endpoint is behind a NAPT. The negotiation of the phase 1 and phase 2 Security
Associations must be initiated by the client behind the NAPT. Data must be
initiated by the client behind the NAPT.

Host-to-host scenario 2 — z/OS-to-non-z/OS: Figure 110 shows a NAT in front of
the z/OS host and the non-z/OS host. A configuration with a NAT in front of only
one of the hosts is supported as well. If there is a NAT device in front of the
responder, the NAT's address mapping must be static. If there is a NAT device in
front of the initiator, the NAT's address mapping can be static or dynamic. A
dynamic mapping can use either one-to-one address translation or many-to-one
address port translation (NAPT).

Either UDP-Encapsulated-Transport mode or UDP-Encapsulated-Tunnel mode can
be negotiated in a z/OS host-to-non-z/OS host configuration.

Rule: The z/OS host is limited to acting in responder mode when the remote
endpoint is behind a NAPT. The negotiation of the phase 1 and phase 2 Security
Associations must be initiated by the client behind the NAPT. Data must be
initiated by the client behind the NAPT.

Interoperability Considerations: z/OS is typically used to provide a server function.
The client initiates the phase 2 Security Association and data, with z/OS acting in

Intranet Internet Intranet

Initiator
or
Responder

Initiator
or
Responder

z/OS z/OSprivate address space public address space private address space

NAT NAT
210.1.1.1 211.1.1.1Data Stream

11.1.1.1

Figure 109. z/OS host to z/OS host, double NAT

Intranet Internet Intranet

10.1.1.1

10.1.1.2

10.1.1.3

Initiator
or
Responder

PC z/OSprivate address space public address space private address space

NAT NAT
210.1.1.1
210.1.1.2
210.1.1.3

211.1.1.1
Data Stream 11.1.1.1

Figure 110. z/OS host to non-z/OS host, double NAT

1096 z/OS V1R12.0 Comm Svr: IP Configuration Guide

the role of IKE responder and data responder. z/OS provides robust NAT traversal
responder support, allowing it to interoperate with a variety of clients.

z/OS can also act as the initiator of the phase 2 Security Association and data.
Potential incompatibilities exist in the following cases, depending on the support of
the non-z/OS peer:
v Phase 2 Security Associations that protect specific ports, protocols, or both.

When initiating such a phase 2 Security Association, z/OS represents the data
being protected by the Security Association with the following:
– The local IP address as it appears in the home list. This could be a private IP

address if z/OS is behind a NAT.
– The client's public IP address. If the client is behind a NAT, this would be the

client's public address.
– The specific port and protocol values.
The Phase 2 Security Association negotiation should succeed if the non-z/OS
peer supports receiving this specification.

v Tunnel mode phase 2 Security Associations that protect all ports and protocols.
When initiating such a phase 2 Security Association, z/OS does not explicitly
include the IP addresses of the data being protected in the negotiation of the
Security Association. This allows the non-z/OS peer to view the protected data
in terms of the IP addresses that it understands, the public address of the remote
endpoint and the private address of the local endpoint. The phase 2 Security
Association negotiation is expected to be successful.
If data is initiated from z/OS over the Security Association, the data packet
contains:
– The local IP address as it appears in the home list. This could be a private IP

address if z/OS is behind a NAT.
– The client's public IP address. If the client is behind a NAT, this would be the

client's public address.
If the non-z/OS peer supports receiving a packet with these IP addresses, the
data flow should be successful. Once z/OS receives data packets from the
non-z/OS peer, z/OS will send packets containing the IP addresses used by the
peer.

Host-to-security gateway scenario: Figure 111 on page 1098 shows both the
security gateway and the host behind a NAT. z/OS also supports acting in
responder mode when only one endpoint (either the security gateway or the z/OS
host) is behind a NAT. When there is a NAT device in front of the z/OS host
(acting as responder), the address mapping of the NAT must be static. If there is a
NAT device in front of the security gateway, the address mapping of the NAT can
be static or dynamic. A dynamic mapping can use either one-to-one address
translation or many-to-one address port translation (NAPT).

Chapter 19. IP security 1097

Rule: The z/OS host is limited to acting in responder mode in a host-to-security
gateway configuration when a NAT is traversed. The phase 2 Security Association
negotiation must be initiated by the security gateway. Data must be initiated by the
client behind the security gateway.

Figure 111 shows the clients and the security gateway as separate devices.
However, whenever a Security Association is negotiated to protect something other
than a single IP address (for example, a range of IP addresses), that IKE daemon
negotiating the Security Association is acting as a security gateway.

When the security gateway is behind a NAT, the individual hosts behind the NAT
cannot be distinguished. If only one NAT address is available, all Security
Associations negotiated between the security gateway (GW) and z/OS are
negotiated using the NAT address, and have the same security characteristics. If
multiple security characteristics are required to protect the traffic behind the
security gateway, more NAT addresses are needed so that z/OS can locate different
policies based on the NAT address.

Considerations for IPSec-encapsulated FTP traffic when traversing a NAT: FTP
requires both a control connection and a data connection. For active-mode FTP, the
client initiates the control connection and provides IP address and port information
for the server to initiate the data connection. If the client is behind a NAT, the
client provides its private IP address. The NAT updates the IP address in the FTP
data for a packet that is not encapsulated; however, when you use IPSec
encapsulation to secure your FTP connection, the NAT is unable to update the IP
address in the FTP data.

Rule: When the FTP client is behind a NAT, you must use passive-mode FTP.

For passive-mode FTP, the client initiates the control connection. When a file
transfer is to be started, the client sends a passive (PASV) command to the server.
In response to the PASV command, the server provides the IP address and port
information for establishing the data connection. The client is then able to initiate
the data connection to the IP address and port.

When the FTP server is behind a NAT, the IP address provided in the PASV
response is its private address. The NAT updates the IP address in the FTP data
for a packet that is not encapsulated; however, when you use IPSec encapsulation
to secure your FTP connection, the NAT is unable to update the IP address in the
FTP data.

Rule: When the FTP server is behind a NAT, you must use extended passive-mode
FTP.

Intranet Internet Intranet

10.1.1.1

10.1.1.2

10.1.1.3

Responder
only

PC z/OSprivate address space public address space private address space

NAT NAT
210.1.1.1 211.1.1.1

Data Stream 11.1.1.1

GW
110.1.1.1

Figure 111. z/OS in a host-to-security gateway configuration

1098 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Extended passive-mode FTP eliminates the IP address from the FTP data. The
server provides the port for the data connection, and the client connects to the
same IP address that was used for the control connection.

The z/OS FTP client and server support extended passive-mode FTP using the
EPSV command. If you are using the z/OS FTP client and the FTP server that you
are accessing does not support the EPSV command, you can configure the
PASSIVEIGNOREADDR statement for the z/OS FTP client and use passive-mode
FTP, which is widely supported. The PASSIVEIGNOREADDR statement directs the
z/OS FTP client to ignore the IP address in the PASV reply, and to connect to the
same IP address used for the control connection.

For more information about FTP, see Chapter 12, “Transferring files using FTP,” on
page 659. For a sample FTP.DATA data set, or for information about the LOCSIte
subcommand, see z/OS Communications Server: IP User's Guide and Commands.

Enterprise Extender considerations when traversing a NAT: The implementation
of Enterprise Extender (EE) requires that the EE connection endpoints be defined
by unique static VIPA addresses. NAT functions are limited in the EE environment
as follows:
v The NAT mapping must be a one-to-one address mapping. NAPT is not

supported.
v Dynamic mappings are generally unreliable for an EE connection. A static

mapping of internal IP address to external IP address should be defined when
an EE endpoint is behind a NAT.

v When IPSec protection is added for EE traffic that traverses a NAT, only one
host that is behind a security gateway that is behind a NAT will be able to send
EE traffic. In most cases, EE hosts should not be located behind a security
gateway that is behind a NAT. Instead, a host-to-host Security Association
should be negotiated for each EE host.

Additional configuration concerns for NAT traversal: Following are some
additional configuration concerns for NAT traversal:
v When using NAT traversal, z/OS views its own address as the one configured

in the z/OS home list. If the z/OS host is behind a NAT, this address is a
private address. Otherwise, it is the public address of the z/OS host.
The z/OS implementation does not use private addresses in its configuration to
describe the remote IKE peer or remote IP connection endpoint. z/OS views its
IPSec peer and the remote IP connection endpoint as a public IP address. If a
NAT is in front of the IPSec peer, the z/OS host perceives the IPSec peer and
connection endpoint addresses to be that of the NAT.

v You should not configure pre-shared keys in Main mode when multiple remote
peers reside behind a NAT and the peers do not map to unique
RemoteSecurityEndpoint specifications. RFC 3947 states that pre-shared keys
cannot be used with Main mode, unless group shared keys for all those behind
the NAT are deployed. The use of group pre-shared keys is considered a
security risk.

v If a NAT address is coming out of a dynamic NAT pool, addresses assigned to a
host from the pool can be assigned any of the pooled addresses. In this case,
there are additional considerations. When z/OS is the responder, the IPSec
policy intended for a host must be broad enough to cover the entire range of IP
addresses in the dynamic NAT pool. When z/OS is the initiator and the
responder is behind a NAT, the identity of the target host can be ambiguous. A
z/OS should not be configured to initiate to an ambiguous target host.

Chapter 19. IP security 1099

v When a remote security endpoint resides behind a NAT, its identity must be
unique. During a phase 1 negotiation, the remote security endpoint sends its
identity in an ID payload. The IKE daemon can manage multiple remote
security endpoints using the same ID when those endpoints are not behind a
NAT. However, when a remote security endpoint is behind a NAT, it must use a
unique ISAKMP identity.

v When the remote security endpoint is a security gateway behind a NAT or a
host behind a NAPT, only TCP, UDP, and ICMP traffic is supported. ICMP traffic
has limited support.

v z/OS allows traffic for a TCP connection to continue as long as the integrity of
the connection can be verified. Two cases where z/OS can no longer verify the
integrity of the connection are:
– Adding or removing IPSec protection for a TCP connection

When a TCP connection traverses a NAT, the TCP connection must be
restarted after a filter policy change that causes the connection's traffic to
change from IPSec-protected traffic to clear text, or from clear text to
IPSec-protected traffic.

– NAT IP address remapping
If the peer's IP address is remapped by a NAT due to a timeout or reboot of
the NAT device, the TCP connection must be restarted.

Configuring the IKE daemon
This topic describes considerations and steps for configuring the IKE daemon.

The IKE daemon's purpose is to manage dynamic IPSec tunnels and to provide a
network management interface (NMI) for monitoring and controlling IP filtering
and IPSec. The IKE daemon is not involved in the actual filtering, encapsulation, or
decapsulation of packets. The IKE daemon is not required for the configuration or
use of IP filters when no IpDynVpnAction statements are used. However, because
the IKE daemon processes NMI monitoring requests, it must be running to gather
monitoring data for IP filters, manual Security Associations, or dynamic Security
Associations. To start the IKE daemon, it must be able to connect to the Policy
Agent. For information about this requirement, see “Policy Agent considerations”
on page 1102. For more information about the IPSec network management
interface, see z/OS Communications Server: IP Programmer's Guide and Reference.

Multiple TCP/IP stacks
A one-to-many relationship can exist between an instance of the IKE daemon and
stacks configured with IPCONFIG IPSECURITY. A single instance of the IKE
daemon can service all stacks configured with IPCONFIG IPSECURITY on a single
z/OS image. Only one instance of the IKE daemon can run on a single z/OS
image.

Each stack can be configured as a network security services (NSS) client. An NSS
client makes use of network security services offered by the NSS server. For details
about configuring an NSS server, see Chapter 20, “Network security services,” on
page 1149.

“TCP/IP stack initialization access control” on page 126 describes a time interval
during which limited stack access is available for stacks that have been configured
for AT-TLS using the TCPCONFIG statement with the TTLS parameter. To enable
the IKE daemon for a stack during this interval, the IKE daemon user ID must be

1100 z/OS V1R12.0 Comm Svr: IP Configuration Guide

permitted to the EZB.INITSTACK.sysname.tcpname resource profile. For examples of
the security product commands needed to grant access to this profile, see member
EZARACF in sample data set SEZAINST.

Run-time environment
The IKE daemon is a z/OS UNIX application, and it requires a z/OS UNIX file
system such as zSeries File System. The IKE daemon can be started from an MVS
started procedure, from the z/OS shell, with the AUTOLOG statement in the
TCP/IP profile, or by using the COMMNDxx member of PARMLIB. The IKE
daemon must be started by a RACF-authorized user ID, and it must reside in an
APF-authorized library. For more information about how to start the IKE daemon,
see “Starting the IKE daemon” on page 1109.

The IKE daemon uses the MVS operator's console, syslogd, CTRACE, and
STDOUT for its logging and tracing. The MVS operator's console and STDOUT are
used for major events such as initialization, termination, and error conditions.
Syslogd is used for logging events related to dynamic IPSec tunnel management.
CTRACE is used for detailed tracing and debugging.

The IKE daemon uses a standard message catalog. The message catalog must be in
the z/OS UNIX file system. The directory location for the message catalog path is
set by the environment variables NLSPATH and LANG.

Language Environment run-time considerations
When starting the IKE daemon from a started or cataloged procedure, you should
usually start the IKE daemon directly from the SEZALOAD data set using
PGM=IKED. However, there is a situation where you might want to start the IKE
daemon using BPXBATCH.

When the IKE daemon is started using PGM=IKED, the STDENV DD card, if used,
is passed directly to the IKE daemon program. Language Environment does not
get access to the STDENV environment variables. As a result, any Language
Environment run-time options set in the STDENV DD data set using the
_CEE_RUNOPTS= environment variable are ignored. In this case, Language
Environment run-time options must be passed on the PARM= parameter and the
options must be specified before any IKE daemon options. However, the PARM=
statement allows a maximum of 100 characters. If the desired Language
Environment run-time options plus IKE daemon parameters exceeds 100
characters, consider using BPXBATCH to start the IKE daemon. When
PGM=BPXBATCH is used, the Language Environment variable _CEE_RUNOPTS
can be included on the STDENV DD card to specify run-time options in excess of
100 characters long.

IKE daemon configuration source information
The IKE daemon obtains configuration information from two sources.
v IKE daemon configuration file

The IKE daemon configuration file contains the IkeConfig statement. Parameters
on the IkeConfig statement are global IKE daemon operational parameters. For
details on the IKE daemon configuration file and the IkeConfig statement, see
z/OS Communications Server: IP Configuration Reference.
The IKE daemon configuration file is read when the IKE daemon initializes and
can be reread dynamically. For more information, see “Controlling the IKE
daemon” on page 1110.

Chapter 19. IP security 1101

v Policy Agent
IP security policy includes dynamic IPSec tunnel configuration information
required by the IKE daemon. The IKE daemon obtains IP security policy from
the Policy Agent. The IKE daemon obtains IP security policy when connecting to
the Policy Agent and whenever the Policy Agent informs the IKE daemon of a
change in IP security policy. The IKE daemon connects only to stacks configured
with IPCONFIG IPSECURITY, if there is an IP security policy defined for a
stack. For details on configuring IP security policy, see “Configuring specific
security models” on page 1028.

Policy Agent considerations
The IKE daemon cannot perform management of dynamic IPSec tunnels until it
has obtained IP security policy from the Policy Agent. While the Policy Agent is
running, it can inform the IKE daemon of dynamic changes to IP security policy.
Once the IKE daemon has obtained an IP security policy, the Policy Agent can be
stopped without impacting the IKE daemon. However, any changes to the IP
security policy will not be detected until the Policy Agent is restarted, nor will IKE
detect newly activated or reactivated stacks. The IKE daemon reconnects to the
Policy Agent when the Policy Agent is restarted. For information about starting
and monitoring policy related applications using the Policy Agent, see “Step 7:
Configuring Policy Agent to automatically monitor applications” on page 861.

Using network security services
The IKE daemon allows a stack to be defined as a network security services (NSS)
client. When a stack is defined as an NSS client, the IKE daemon uses at least one
network security service on behalf of that stack. Network security services are
provided by an NSS server. An NSS server provides a certificate service and a
remote management service. For details about the configuration of an NSS server,
see Chapter 20, “Network security services,” on page 1149.

The certificate service of the NSS server is used to create and verify digital
signatures on behalf of an NSS client. Certificates for stacks that are configured to
use the NSS certificate service must reside on the key ring of the NSS server. For
details about configuring the IKE daemon to use the NSS certificate service, see
“Step 5: Setting up the IKE daemon for digital signature authentication (optional)”
on page 1510.

Restriction: If you want the IKED to use a digital signature authentication method
to negotiate an IKEv2 Security Association for a stack, the stack must be
configured to use the NSS certificate service.

The remote management service of the NSS server enables the IP filter rules and
Security Associations of an NSS client to be monitored and managed from the
system on which the NSS server is executing. For details about using the ipsec
command to monitor and manage NSS clients, see z/OS Communications Server: IP
System Administrator's Commands. For details about using the IPSec NMI to monitor
and manage NSS clients, see z/OS Communications Server: IP Programmer's Guide and
Reference.

The NSS server does not need to reside on the same system as the IKE daemon.
The location of the NSS server is specified by the NetworkSecurityServer
parameter and optionally by the NetworkSecurityServerBackup parameter of the
IkeConfig statement. For additional details about the IkeConfig statement, see z/OS
Communications Server: IP Configuration Reference

1102 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|

The NssStackConfig statement in the IKE daemon configuration file is used to
define a stack as an NSS client. The ServiceType parameter of the NssStackConfig
statement identifies what network security services are to be used by a stack.
When a ServiceType value Cert is specified, the NSS certificate service is used.
When a ServiceType value RemoteMgmt is specified, the NSS remote management
service is used. The ServiceType parameter can be specified multiple times. For
complete details about the NssStackConfig statement, see z/OS Communications
Server: IP Configuration Reference.

When a stack is configured to use the NSS remote management service, the NSS
server can send the IKE daemon a request to switch between default IP filter
policy and IP security filter policy. To change filter sets, the IKE daemon creates or
deletes a specific marker file that the stack accesses. This marker file is the same
marker file that is created or deleted by the ipsec command when the ipsec -f
reload or ipsec -f default IP filter options are specified locally without the -z
option. For details about the marker file, see z/OS Communications Server: IP System
Administrator's Commands.

The ClientName parameter of the NssStackConfig statement associates an NSS
client name with a stack. This is the name by which the NSS server knows the
stack. The UserId parameter of the NssStackConfig statement associates the NSS
client name with a user ID defined on the NSS server's system. The NSS server
uses both the client name and user ID when checking SERVAUTH profiles to
verify that an NSS client is authorized to request a specific action. For details about
SERVAUTH profiles checked by the NSS server, see Chapter 20, “Network security
services,” on page 1149.

The AuthBy parameter of the NssStackConfig statement defines how the user ID
associated with a stack that is acting as an NSS client is to be authenticated. This
user ID can be authenticated using a password or a PassTicket. When a PassTicket
is used, the application key is stored in the local external security manager
database.

Tip: Using a PassTicket is more secure than specifying a password.

To store the application key in the local external security manager database, the
secure signon function must be enabled and a PTKTDATA profile must be created.
This key must be associated with an application ID of the NSSD. For specific
information about enabling the secure signon function and defining profiles to be
utilized by the single signon function, see z/OS Security Server RACF Security
Administrator's Guide.

The following is an example of a RACF command that you can issue to store the
application key for the NSS server and NSS clients:
RDEFINE PTKTDATA NSSD SSIGNON(KEYMASKED(E001193519561977)) UACC(NONE)

Figure 112 on page 1104 shows a partial configuration for the IKE daemon on
system SYSTEMA. The NetworkSecurityServer parameter on the IkeConfig
statement specifies that the IKE daemon is configured to use network security
services from an NSS server that is listening on IP address 9.1.1.1. One
NssStackConfig statement is shown. The ClientName parameter associates stack
STACK1 with an NSS client name SYSTEMA_STACK1. This is the name by which
the NSS server knows this stack. The UserId parameter associates the client name
with the user ID A1S1. The A1S1 user ID must be defined on the NSS server's
system. Both the client name and user ID are used by the NSS server when
verifying the authorization of an NSS client. The multiple ServiceType parameters

Chapter 19. IP security 1103

indicate that the IKE daemon uses both the NSS certificate service and the NSS
remote management service.

The IKE daemon requires that communication with the NSS server be protected
using AT-TLS. During the AT-TLS handshake, the NSS server provides a certificate
that can be used to authenticate its identity. The IKE daemon examines this
certificate and verifies that the identity in the certificate matches the identity
specified on the NetworkSecurityServer parameter of the IkeConfig statement.

The IKE daemon does not perform any SERVAUTH checks when processing an
IPSec monitoring request or an IPSec management request from the NSS server.
The NSS server performs SERVAUTH checks to make sure that the requester of an
IPSec monitoring or management request is authorized. For details about the
SERVAUTH requirements imposed by the NSS server, see z/OS Communications
Server: IP Programmer's Guide and Reference.

The IKE daemon does perform a SERVAUTH check for the
EZB.NETMGMT.sysname.sysname.IKED.DISPLAY profile when processing a local
NMI request to display information about current NSS client state. For additional
details, see z/OS Communications Server: IP Programmer's Guide and Reference.

Certificate revocation checking
Certificate revocation checking is applicable only to digital signature authentication
methods. The RevocationChecking parameter in the IPSec policy file controls the
level of certificate revocation checking that is performed during an IKE negotiation.
The following three levels of revocation checking are supported:
v Strict
v Loose
v None

Figure 112. Enabling network security services

1104 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|
|
|
|

|

|

|

You can specify the RevocationChecking parameter on the KeyExchangePolicy
statement and the KeyExchangeAction statement. For more information about the
KeyExchangePolicy statement and the KeyExchangeAction statement, see z/OS
Communications Server: IP Configuration Reference.

The native IKED certificate service does not support the retrieval and checking of
certificate revocation information. When the IKED is configured to use the native
IKE daemon certificate service, the RevocationChecking parameter is ignored.

The NSS certificate service does support the retrieval and checking of certificate
revocation information in the form of certificate revocation lists (CRLs). For
information about the NSS server requirements for retrieving CRLs, see “NSS
server certificate revocation support” on page 1172. Ensure that these requirements
can be met before you enable strict revocation checking in the IPSec policy file.

Steps for configuring the IKE daemon
Perform the following steps to configure the IKE daemon:

1. Create the IKE daemon configuration file.

A sample configuration file is provided in /usr/lpp/tcpip/samples/
iked.conf.
Following is the search order used by the IKE daemon to locate the
configuration data set or file:
a. If the environment variable IKED_FILE has been defined, the IKE

daemon uses the value as the name of an MVS data set or z/OS UNIX
file to access the configuration data.

b. /etc/security/iked.conf
You can specify statements in the configuration file using a variety of
EBCDIC code pages. Use the IKED_CODEPAGE environment variable to
specify the code page that you want to use. The default code page is
IBM-1047.

2. Set the _BPX_JOBNAME environment variable (optional).

When starting the IKE daemon from the z/OS shell, the environment
variable _BPX_JOBNAME should be set. This enables a specific job name to
be used when reserving ports for the IKE daemon. This name can also be
used with the STOP or MODIFY console commands.
For more information on _BPX_JOBNAME, see z/OS UNIX System Services
Planning

3. Reserve the ports.

Update the PORT statement in PROFILE.TCPIP to reserve ports 500 and 4500
for the IKE daemon. Add the name of the member containing the IKE
daemon cataloged procedure or the name as set using _BPX_JOBNAME:
PORT

500 UDP IKED
4500 UDP IKED

4. Update the IKE daemon cataloged procedure.

If the IKE daemon is to be started by a procedure, create the cataloged
procedure by copying the sample in SEZAINST(IKED) to your system or
recognized PROCLIB. Specify IKE daemon parameters and change the data
set names to suit your local configuration. Following is a copy of the sample:

Chapter 19. IP security 1105

|
|
|
|

|
|
|

|
|
|
|
|

5. Authorize the IKE daemon to the external security manager.

See “Step 2: Authorizing the IKE daemon to the external security manager”
on page 1505.

6. Configure and start syslogd.

The IKE daemon uses the local4 facility when writing messages to syslogd.
For performance purposes, syslogd should use zSeries File System as its
underlying file system. For more information on syslogd, see “Configuring
the syslog daemon” on page 185.
Tip: The system logging daemon (syslogd) can be configured to forward
messages from the IKE daemon to a syslogd on another host. For
information about forwarding syslog messages to another host, see z/OS
Communications Server: IP Configuration Reference. When a stack is configured
as an NSS client, it can be advantageous to forward syslog messages from
the IKE daemon to the syslogd running on the NSS server's system.
Configuring syslogd in this manner allows all IKE messages relating to an
NSS client to reside in the same log file as the NSS server's messages.

7. Update the IKE daemon environment variables (optional).

The following environment variables are used by the IKE daemon and can
be tailored to a particular installation:

IKED_CODEPAGE
Use the IKED_CODEPAGE variable to specify the EBCDIC code page

//IKED PROC
//*
//* IBM Communications Server for z/OS
//* SMP/E distribution name: EZBIKPRC
//*
//* 5694-A01 Copyright IBM Corp. 2005, 2009
//* Licensed Materials - Property of IBM
//* "Restricted Materials of IBM"
//* Status = CSV1R11
//*
//*
//IKED EXEC PGM=IKED,REGION=0K,TIME=NOLIMIT,
// PARM=’ENVAR("_CEE_ENVFILE=DD:STDENV")/’
//*
//* Provide environment variables to run with the desired
//* configuration. As an example, the data set or file specified by
//* STDENV could contain:
//*
//* IKED_FILE=/etc/security/iked.conf2
//* IKED_CTRACE_MEMBER=CTIIKE01
//* IKED_CODEPAGE=IBM-1047
//*
//* For information on the above environment variables, refer to the
//* IP Configuration Reference.
//*
//STDENV DD DUMMY
//* Sample MVS data set containing environment variables:
//*STDENV DD DSN=TCPIP.IKED.ENV(IKED),DISP=SHR
//* Sample HFS file containing environment variables:
//*STDENV DD PATH=’/etc/security/iked.env’,PATHOPTS=(ORDONLY)
//*
//* Output written to stdout and stderr goes to the data set or
//* file specified with SYSPRINT or SYSOUT, respectively.
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*

Figure 113. IKE cataloged procedure

1106 z/OS V1R12.0 Comm Svr: IP Configuration Guide

to be used when reading the configuration file. For more information
about IKE environment variables and the supported code pages, see
z/OS Communications Server: IP Configuration Reference.

IKED_CTRACE_MEMBER
The IKED_CTRACE_MEMBER variable is used by the IKE daemon
to locate a parmlib member for IKE daemon CTRACE customization.
For more information on the TCP/IP services component trace for
the IKE daemon, see z/OS Communications Server: IP Diagnosis Guide.

IKED_FILE
The IKED_FILE variable is used by the IKE daemon in the search
order for the IKE daemon configuration file. For details on the search
order used for locating this configuration file, see step 1 on page
1105.

8. Setup the IKE daemon for TCP/IP stack initialization access control
(optional).
See “Multiple TCP/IP stacks” on page 1100.

9. Setup the IKE daemon for digital signature mode authentication (optional).

See “Step 5: Setting up the IKE daemon for digital signature authentication
(optional)” on page 1510.

10. Define AT-TLS policy to protect communication with an NSS server.

The IKE daemon requires that communication between the NSS server and
the IKE daemon be secured using Application Transparent Transport Layer
Security (AT-TLS). If a stack is configured as an NSS client, AT-TLS rules
must be defined to secure this communication. Enable AT-TLS processing for
a stack by specifying the TTLS parameter on the TCPCONFIG statement in
the TCP/IP profile. Specific AT-TLS policy is configured in Policy Agent
configuration files. For details about enabling AT-TLS and configuring
AT-TLS policy, see Chapter 22, “Application Transparent Transport Layer
Security data protection,” on page 1193.
Tip: Define AT-TLS policy such that only cipher suites requiring TLS
encryption are exchanged with the NSS server. Failure to restrict the cipher
suites to those requiring encryption can result in sensitive information
flowing in the clear across an untrusted network.
Rule: AT-TLS policy must be defined for each stack through which the IKE
daemon communicates with the NSS server.
A sample AT-TLS policy is located in /usr/lpp/tcpip/samples/
pagent_TTLS.conf.
Rule: The RemotePortRange value in the TTLSRule statement must include
the value specified on the NetworkSecurityServer port parameter or the
NetworkSecurityServerBackup port parameter in the IKE daemon
configuration file.

11. Define IP filter policy to enable communication with an NSS server
(optional).
If a stack is configured as an NSS client, IP filter policy for that stack must be
defined to enable this communication. The IKE daemon communicates with
the NSS clients using the TCP protocol. By default, the NSS server listens on
port 4159. The IKE daemon connects to the NSS client using an ephemeral
port. Ephemeral ports are generally in the range 1024 – 65355.
Two types of IP filter policy can be defined for a z/OS stack:

Chapter 19. IP security 1107

v Default IP filter policy is defined in the TCP/IP profile. Updating default
IP filter policy to permit communications between the IKE daemon and the
NSS server is optional. Default IP filter policy is in effect only when IP
security filter policy cannot be loaded or when the ipsec -f default
command has been issued. For details about how to define default IP filter
policy, see z/OS Communications Server: IP Configuration Reference.
Following is an example of a default policy containing IPSECRule
definitions allowing IKE daemon traffic with the NSS server:
IPSEC LOGENable
; Rule SrcAddr DstAddr Logging Protocol SrcPort DestPort Routing Secclass

; OSPF protocol used by Omproute
IPSECRule * * NOLOG PROTO OSPF

; IGMP protocol used by Omproute
IPSECRule * * NOLOG PROTO 2

; DNS queries to UDP port 53
IPSECRule * * NOLOG PROTO UDP SRCPort * DESTport 53

; Administrative access
IPSECRule * 9.1.1.2 LOG SECCLASS 100

; IKE daemon access to the Network Security Server
IPSECRule * * LOG TCP SRCPort * DESTport 4159

; IKE daemon access to the Network Security Server
IPSEC6Rule * * LOG TCP SRCPort * DESTport 4159

ENDIPSEC

Rule: The DESTport value in the filter rules must include the value
specified for the NetworkSecurityServer port parameter or the
NetworkSecurityServerBackup port parameter in the IKE daemon
configuration file.

v IP security filter policy is defined in Policy Agent configuration files. IP
security filter policy must be updated to permit communications between
the IKE daemon and the NSS server. For details about how to define IP
security policy files, see z/OS Communications Server: IP Configuration
Reference.
Following is an example of an IpFilterRule statement for IPv4, an
IpFilterRule statement for IPv6, and an IpGenericFilterAction statement
allowing the IKE daemon to communicate with the NSS server:

IpFilterRule NssTrafficIPv4
{

IpSourceAddr all4
IpDestAddr all4
IpService
{

SourcePortRange 1024 65535
DestinationPortRange 4159
Protocol tcp
Direction bidirectional OutboundConnect
Routing local

}
IpGenericFilterActionRef permit-nolog

}

IpFilterRule NssTrafficIPv6
{

IpSourceAddr all6
IpDestAddr all6
IpService
{

SourcePortRange 1024 65535
DestinationPortRange 4159
Protocol tcp

1108 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Direction bidirectional InboundConnect
Routing local

}
IpGenericFilterActionRef permit-nolog

}

IpGenericFilterAction permit-nolog
{

IpFilterAction permit
IpFilterLogging no

}

Rule: The DestinationPortRange value on the IpService statement must
include the value specified on the NetworkSecurityServer port parameter
or the NetworkSecurityServerBackup port parameter in the IKE daemon
configuration file.

Starting the IKE daemon
After the necessary external security manager authorization has been defined (see
“Step 2: Authorizing the IKE daemon to the external security manager” on page
1505), the IKE daemon can be started from an MVS procedure, from the z/OS
shell, or using the AUTOLOG statement.
v You can start the IKE daemon procedure from the MVS operator console. A

sample start procedure is provided in SEZAINST(IKED).
v You can start the IKE daemon from the z/OS shell by starting OMVS and then

issuing the iked command.
v You can use the AUTOLOG statement to start the IKE daemon automatically

during TCP/IP initialization by inserting the name of the IKE daemon start
procedure into the AUTOLOG statement in the PROFILE.TCPIP data set:
AUTOLOG

IKED
ENDAUTOLOG

Tips:

– When implementing multiple stacks enabled for IP security, adding an
AUTOLOG statement for the IKE daemon might not be optimal. If the IKE
daemon is listed in an AUTOLOG statement of a stack's profile, the IKE
daemon is cancelled if it is already running when that stack starts. In a
multiple IP security stack environment, this could disrupt traffic on other IP
security stacks. Use another method to automate starting the IKE daemon
when the system is IPLed, such as using the COMMNDxx member of
PARMLIB. For more information about the use and configuration of the
COMMNDxx member of PARMLIB, see z/OS MVS Initialization and Tuning
Reference.

– If you start the IKE daemon from the z/OS shell and you stop the shell
environment from scrolling, then when the daemon needs to display data to
the shell it might stop and wait indefinitely for the shell to scroll and make
output buffer space available for the data.

When running from an MVS procedure, the environment variables can be set using
the STDENV DD statement in the IKE daemon procedure. For information
concerning the environment variables used by IKE daemon, see step 7 on page
1106 in “Steps for configuring the IKE daemon” on page 1105.

Chapter 19. IP security 1109

Stopping the IKE daemon
The IKE daemon can be stopped as follows:
v From MVS, issue:

STOP procname

If the IKE daemon was started from a cataloged procedure, procname is the
member name of that procedure. If the IKE daemon was started from the z/OS
shell and the environment variable _BPX_JOBNAME was set, procname is the
same as _BPX_JOBNAME. If the IKE daemon was started from the z/OS shell
and _BPX_JOBNAME was not set, procname is useridX, where X is the sequence
number set by the system. To determine the sequence number, from the SDSF
LOG window on TSO, issue:
/d omvs,u=userid

This command shows the programs running under this user ID. For more
information on _BPX_JOBNAME, see z/OS UNIX System Services Planning.

v From a superuser ID in the z/OS shell, issue the kill command to the process ID
(PID) associated with the IKE daemon. The IKE daemon PID is recorded in
/var/ike/iked.pid.

Controlling the IKE daemon
You can control the IKE daemon from the operator's console using the MODIFY
command. MODIFY commands are available to perform the following functions:
v Rereading the configuration file

The MODIFY procname,REFRESH command is used to reread the IKE daemon
configuration file. Not all IkeConfig statement parameters can be updated using
this command. For information on which parameters can be dynamically
changed, see the parameter descriptions for the IkeConfig statement of the IKE
daemon configuration file in the z/OS Communications Server: IP Configuration
Reference.

v Displaying the configuration file parameters
The MODIFY procname,DISPLAY command is used to display configuration
values currently being used by the IKE daemon.

For more information on the MODIFY command, see z/OS Communications Server:
IP System Administrator's Commands.

Verifying policy installation
This topic describes the console messages and commands that are used to verify
policy installation.

Console messages
After the IP security policy has been configured, start the TCP/IP stacks, Policy
Agent, and the IKED. A series of console messages is issued if the installation of IP
security policy was successful.

The following console messages indicate that Policy Agent and IKE have
completed initialization:
EZZ8432I PAGENT INITIALIZATION COMPLETE
EZD1046I IKE INITIALIZATION COMPLETE

1110 z/OS V1R12.0 Comm Svr: IP Configuration Guide

The following console messages indicate that the processing of IP security policy is
complete:
EZZ8771I PAGENT CONFIG POLICY PROCESSING COMPLETE FOR TCPCS : IPSEC
EZD1068I IKE POLICY UPDATED FOR STACK TCPCS

If there were errors in the configuration files, Policy Agent issues the following
message to the console:
EZZ8438I PAGENT POLICY DEFINITIONS CONTAIN ERRORS FOR TCPCS : IPSEC

Look at the Policy Agent log to find and correct the error.

Displaying TCP/IP configuration
To display whether the TCP/IP stack is configured with IPCONFIG IPSECURITY,
issue the netstat -f command and look for the following field in the IPv4
Configuration Table section:
IpSecurity: Yes

To display whether the TCP/IP stack is configured with IPCONFIG6 IPSECURITY,
issue the netstat -f command and look for the following field in the IPv6
Configuration Table section:
IpSecurity: Yes

To display whether the TCP/IP stack is configured for sysplex-wide Security
Associations, issue the ipsec -f display command. The DVIPSec field in the header
of the command display shows whether or not the DVIPSEC keyword has been
coded in the TCP/IP profile:
ipsec -f display | head -n 7

CS V1R12 ipsec Stack Name: TCPCS Tue Feb 16 10:52:03 2010
Primary: Filter Function: Display Format: Detail
Source: Stack Policy Scope: Current TotAvail: 137
Logging: On Predecap: Off DVIPSec: Yes
NatKeepAlive: 20 FIPS140: No
Defensive Mode: Inactive

Displaying active filters with the ipsec command
Use the ipsec -f display command to display active filter rules, configured filter
rules from IP security policy configuration files, and the default IP filter rules from
the TCP/IP profile. The scope on the command, as indicated by the -c option,
determines which source is queried:

-c policy
Shows IP filters as configured in the IP security policy configuration files.

-c profile
Shows default IP filters as configured in the TCP/IP profile.

-c current
Shows active IP filters in the stack. The active filters that are shown can be
the default IP filters as defined in the TCP/IP profile, or IP filters as
configured in the IP security policy configuration files, depending on
which policy is active at the time the command is issued. The output of
the display indicates the source of the current active filters.

The output of the command can be quite voluminous, so you might want to
redirect the output of the display to a file.

Chapter 19. IP security 1111

|
|
|
|
|
|
|
|

The information in the report header of the report output indicates how many
filters are active, and also indicates the source of the filters, whether from the
default IP filter policy or the IP security policy from the Policy Agent.
ipsec -f display

CS V1R12 ipsec Stack Name: TCPCS Tue Feb 16 10:53:12 2010
Primary: Filter Function: Display Format: Detail
Source: Stack Profile Scope: Current TotAvail: 14
Logging: On Predecap: Off DVIPSec: Yes
NatKeepAlive: 20 FIPS140: No
Defensive Mode: Inactive

If the source field shows Stack Policy, the IP security policy is installed and
active.

If the source field shows Stack Profile, the IP security policy is either not
installed or the ipsec -f default command was issued. Either issue the ipsec -f
reload command, or correct the IP security policy configuration.

Filter displays can be abbreviated to include only specific named rules. To view a
named filter rule, use the -n option as follows:
ipsec -f display -n Rule2Admin

CS V1R12 ipsec Stack Name: TCPCS Tue Feb 16 10:54:36 2010
Primary: Filter Function: Display Format: Detail
Source: Stack Policy Scope: Current TotAvail: 137
Logging: On Predecap: Off DVIPSec: Yes
NatKeepAlive: 20 FIPS140: No
Defensive Mode: Inactive

FilterName: Rule2Admin
FilterNameExtension: 1
GroupName: Admin
LocalStartActionName: n/a
VpnActionName: Silver-TransportMode
TunnelID: Y0
Type: Dynamic Anchor
DefensiveType: n/a
State: Active
Action: Permit
Scope: Local
Direction: Outbound
OnDemand: No
SecurityClass: 0
Logging: Deny
Protocol: All
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: Rule
SourceAddress: 9.1.1.1
SourceAddressPrefix: n/a
SourceAddressRange: n/a
SourceAddressGranularity: Packet
SourcePort: n/a
SourcePortRange: n/a
SourcePortGranularity: n/a
DestAddress: 9.1.1.2
DestAddressPrefix: n/a
DestAddressRange: n/a
DestAddressGranularity: Packet

1112 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

DestPort: n/a
DestPortRange: n/a
DestPortGranularity: n/a
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2010/02/16 10:49:48
UpdateTime: 2010/02/16 10:49:48
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 0
LifetimeExpires: n/a
AssociatedStackCount: n/a

FilterName: Rule2Admin
FilterNameExtension: 2
GroupName: Admin
LocalStartActionName: n/a
VpnActionName: Silver-TransportMode
TunnelID: Y0
Type: Dynamic Anchor
DefensiveType: n/a
State: Active
Action: Permit
Scope: Local
Direction: Inbound
OnDemand: No
SecurityClass: 0
Logging: Deny
Protocol: All
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: Rule
SourceAddress: 9.1.1.2
SourceAddressPrefix: n/a
SourceAddressRange: n/a
SourceAddressGranularity: Packet
SourcePort: n/a
SourcePortRange: n/a
SourcePortGranularity: n/a
DestAddress: 9.1.1.1
DestAddressPrefix: n/a
DestAddressRange: n/a
DestAddressGranularity: Packet
DestPort: n/a
DestPortRange: n/a
DestPortGranularity: n/a
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2010/02/16 10:49:48
UpdateTime: 2010/02/16 10:49:48
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a

Chapter 19. IP security 1113

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 0
LifetimeExpires: n/a
AssociatedStackCount: n/a

2 entries selected

Anchor filters and dynamic filters
After a Security Association is negotiated, the ipsec -f display command shows the
addition of two dynamic filters that were created when the Security Association
was created, corresponding to the inbound and outbound anchor filters. Dynamic
filters are placed ahead of the anchor filters in the filter table, so dynamic filters
are searched first when IP filtering is performed. In the following sample output,
note that two dynamic filters have been added to the filter table subsequent to the
activation of a phase 2 Security Association. The Type field indicates whether the
filter is a dynamic anchor filter or a dynamic filter:
ipsec -f dis -n Rule2Admin

CS V1R12 ipsec Stack Name: TCPCS Tue Feb 16 11:23:54 2010
Primary: Filter Function: Display Format: Detail
Source: Stack Policy Scope: Current TotAvail: 139
Logging: On Predecap: Off DVIPSec: Yes
NatKeepAlive: 20 FIPS140: No
Defensive Mode: Inactive

FilterName: Rule2Admin
FilterNameExtension: 1
GroupName: Admin
LocalStartActionName: n/a
VpnActionName: Silver-TransportMode
TunnelID: Y4
Type: Dynamic
DefensiveType: n/a
State: Active
Action: Permit
Scope: Local
Direction: Outbound
OnDemand: No
SecurityClass: 0
Logging: Deny
Protocol: All
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: n/a
SourceAddress: 9.1.1.1
SourceAddressPrefix: n/a
SourceAddressRange: n/a
SourceAddressGranularity: n/a
SourcePort: n/a
SourcePortRange: n/a
SourcePortGranularity: n/a
DestAddress: 9.1.1.2
DestAddressPrefix: n/a
DestAddressRange: n/a
DestAddressGranularity: n/a
DestPort: n/a
DestPortRange: n/a
DestPortGranularity: n/a

1114 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: n/a
UpdateTime: n/a
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 1
LifetimeExpires: n/a
AssociatedStackCount: n/a

FilterName: Rule2Admin
FilterNameExtension: 1
GroupName: Admin
LocalStartActionName: n/a
VpnActionName: Silver-TransportMode
TunnelID: Y0
Type: Dynamic Anchor
DefensiveType: n/a
State: Active
Action: Permit
Scope: Local
Direction: Outbound
OnDemand: No
SecurityClass: 0
Logging: Deny
Protocol: All
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: Rule
SourceAddress: 9.1.1.1
SourceAddressPrefix: n/a
SourceAddressRange: n/a
SourceAddressGranularity: Packet
SourcePort: n/a
SourcePortRange: n/a
SourcePortGranularity: n/a
DestAddress: 9.1.1.2
DestAddressPrefix: n/a
DestAddressRange: n/a
DestAddressGranularity: Packet
DestPort: n/a
DestPortRange: n/a
DestPortGranularity: n/a
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2010/02/16 10:49:48
UpdateTime: 2010/02/16 11:07:20
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No

Chapter 19. IP security 1115

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

FilterMatches: 1
LifetimeExpires: n/a
AssociatedStackCount: n/a

FilterName: Rule2Admin
FilterNameExtension: 2
GroupName: Admin
LocalStartActionName: n/a
VpnActionName: Silver-TransportMode
TunnelID: Y4
Type: Dynamic
DefensiveType: n/a
State: Active
Action: Permit
Scope: Local
Direction: Inbound
OnDemand: No
SecurityClass: 0
Logging: Deny
Protocol: All
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: n/a
SourceAddress: 9.1.1.2
SourceAddressPrefix: n/a
SourceAddressRange: n/a
SourceAddressGranularity: n/a
SourcePort: n/a
SourcePortRange: n/a
SourcePortGranularity: n/a
DestAddress: 9.1.1.1
DestAddressPrefix: n/a
DestAddressRange: n/a
DestAddressGranularity: n/a
DestPort: n/a
DestPortRange: n/a
DestPortGranularity: n/a
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: n/a
UpdateTime: n/a
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 1
LifetimeExpires: n/a
AssociatedStackCount: n/a

FilterName: Rule2Admin
FilterNameExtension: 2
GroupName: Admin
LocalStartActionName: n/a
VpnActionName: Silver-TransportMode
TunnelID: Y0
Type: Dynamic Anchor
DefensiveType: n/a
State: Active

1116 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Action: Permit
Scope: Local
Direction: Inbound
OnDemand: No
SecurityClass: 0
Logging: Deny
Protocol: All
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: Rule
SourceAddress: 9.1.1.2
SourceAddressPrefix: n/a
SourceAddressRange: n/a
SourceAddressGranularity: Packet
SourcePort: n/a
SourcePortRange: n/a
SourcePortGranularity: n/a
DestAddress: 9.1.1.1
DestAddressPrefix: n/a
DestAddressRange: n/a
DestAddressGranularity: Packet
DestPort: n/a
DestPortRange: n/a
DestPortGranularity: n/a
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2010/02/16 10:49:48
UpdateTime: 2010/02/16 11:07:20
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 1
LifetimeExpires: n/a
AssociatedStackCount: n/a

4 entries selected

NATT anchor and NATT dynamic filters
Using the ipsec -f command after the activation of two phase 2 Security
Associations in the branch office with NAT model, the filter structure looks like the
following:
CS V1R12 ipsec Stack Name: TCPCS Tue Feb 16 11:38:37 2010
Primary: Filter Function: Display Format: Detail
Source: Stack Policy Scope: Current TotAvail: 139
Logging: On Predecap: Off DVIPSec: No
NatKeepAlive: 20 FIPS140: No
Defensive Mode: Inactive

FilterName: Rule2C
FilterNameExtension: 1
GroupName: n/a
LocalStartActionName: StartZoneC
VpnActionName: Gold-TunnelMode
TunnelID: Y2
Type: NATT Dynamic

Chapter 19. IP security 1117

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

DefensiveType: n/a
State: Active
Action: Permit
Scope: Local
Direction: Outbound
OnDemand: No
SecurityClass: 0
Logging: All
Protocol: All
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: Rule
SourceAddress: 9.3.3.3
SourceAddressPrefix: n/a
SourceAddressRange: n/a
SourceAddressGranularity: Packet
SourcePort: All
SourcePortRange: n/a
SourcePortGranularity: Rule
DestAddress: 9.5.5.5
DestAddressPrefix: n/a
DestAddressRange: n/a
DestAddressGranularity: Packet
DestPort: All
DestPortRange: n/a
DestPortGranularity: Rule
OrigRmtConnPort: n/a
RmtIDPayload: 10.3.1.1
RmtUdpEncapPort: 4500
CreateTime: 2010/02/16 10:19:52
UpdateTime: 2010/02/16 10:19:52
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 0
LifetimeExpires: n/a
AssociatedStackCount: n/a

FilterName: Rule2C
FilterNameExtension: 1
GroupName: n/a
LocalStartActionName: StartZoneC
VpnActionName: Gold-TunnelMode
TunnelID: Y3
Type: NATT Dynamic
DefensiveType: n/a
State: Active
Action: Permit
Scope: Local
Direction: Outbound
OnDemand: No
SecurityClass: 0
Logging: All
Protocol: All
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a

1118 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: Rule
SourceAddress: 9.3.3.3
SourceAddressPrefix: n/a
SourceAddressRange: n/a
SourceAddressGranularity: Packet
SourcePort: All
SourcePortRange: n/a
SourcePortGranularity: Rule
DestAddress: 9.5.5.5
DestAddressPrefix: n/a
DestAddressRange: n/a
DestAddressGranularity: Packet
DestPort: All
DestPortRange: n/a
DestPortGranularity: Rule
OrigRmtConnPort: n/a
RmtIDPayload: 10.3.2.2
RmtUdpEncapPort: 4500
CreateTime: 2010/02/16 10:19:52
UpdateTime: 2010/02/16 10:19:52
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 0
LifetimeExpires: n/a
AssociatedStackCount: n/a

FilterName: Rule2C
FilterNameExtension: 1
GroupName: n/a
LocalStartActionName: StartZoneC
VpnActionName: Gold-TunnelMode
TunnelID: Y0
Type: NATT Anchor
DefensiveType: n/a
State: Active
Action: Permit
Scope: Local
Direction: Outbound
OnDemand: No
SecurityClass: 0
Logging: All
Protocol: All
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: Rule
SourceAddress: 9.3.3.3
SourceAddressPrefix: n/a
SourceAddressRange: n/a
SourceAddressGranularity: Packet
SourcePort: All
SourcePortRange: n/a
SourcePortGranularity: Rule
DestAddress: 9.5.5.5
DestAddressPrefix: n/a
DestAddressRange: n/a

Chapter 19. IP security 1119

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

DestAddressGranularity: Packet
DestPort: All
DestPortRange: n/a
DestPortGranularity: Rule
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2010/02/16 10:19:52
UpdateTime: 2010/02/16 10:19:52
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 0
LifetimeExpires: n/a
AssociatedStackCount: n/a

FilterName: Rule2C
FilterNameExtension: 1
GroupName: n/a
LocalStartActionName: StartZoneC
VpnActionName: Gold-TunnelMode
TunnelID: Y0
Type: Dynamic Anchor
DefensiveType: n/a
State: Active
Action: Permit
Scope: Local
Direction: Outbound
OnDemand: No
SecurityClass: 0
Logging: All
Protocol: All
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: Rule
SourceAddress: 9.3.3.3
SourceAddressPrefix: n/a
SourceAddressRange: n/a
SourceAddressGranularity: Packet
SourcePort: All
SourcePortRange: n/a
SourcePortGranularity: Rule
DestAddress: 9.6.0.0
DestAddressPrefix: 16
DestAddressRange: n/a
DestAddressGranularity: Packet
DestPort: All
DestPortRange: n/a
DestPortGranularity: Rule
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2010/02/16 10:19:52
UpdateTime: 2010/02/16 10:19:52
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a

1120 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 0
LifetimeExpires: n/a
AssociatedStackCount: n/a

FilterName: Rule2C
FilterNameExtension: 2
GroupName: n/a
LocalStartActionName: StartZoneC
VpnActionName: Gold-TunnelMode
TunnelID: Y2
Type: NATT Dynamic
DefensiveType: n/a
State: Active
Action: Permit
Scope: Local
Direction: Inbound
OnDemand: No
SecurityClass: 0
Logging: All
Protocol: All
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: Rule
SourceAddress: 9.5.5.5
SourceAddressPrefix: n/a
SourceAddressRange: n/a
SourceAddressGranularity: Packet
SourcePort: All
SourcePortRange: n/a
SourcePortGranularity: Rule
DestAddress: 9.3.3.3
DestAddressPrefix: n/a
DestAddressRange: n/a
DestAddressGranularity: Packet
DestPort: All
DestPortRange: n/a
DestPortGranularity: Rule
OrigRmtConnPort: n/a
RmtIDPayload: 10.3.1.1
RmtUdpEncapPort: 4500
CreateTime: 2010/02/16 10:19:52
UpdateTime: 2010/02/16 10:19:52
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 0
LifetimeExpires: n/a
AssociatedStackCount: n/a

FilterName: Rule2C
FilterNameExtension: 2
GroupName: n/a
LocalStartActionName: StartZoneC
VpnActionName: Gold-TunnelMode

Chapter 19. IP security 1121

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

TunnelID: Y3
Type: NATT Dynamic
DefensiveType: n/a
State: Active
Action: Permit
Scope: Local
Direction: Inbound
OnDemand: No
SecurityClass: 0
Logging: All
Protocol: All
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: Rule
SourceAddress: 9.5.5.5
SourceAddressPrefix: n/a
SourceAddressRange: n/a
SourceAddressGranularity: Packet
SourcePort: All
SourcePortRange: n/a
SourcePortGranularity: Rule
DestAddress: 9.3.3.3
DestAddressPrefix: n/a
DestAddressRange: n/a
DestAddressGranularity: Packet
DestPort: All
DestPortRange: n/a
DestPortGranularity: Rule
OrigRmtConnPort: n/a
RmtIDPayload: 10.3.2.2
RmtUdpEncapPort: 4500
CreateTime: 2010/02/16 10:19:52
UpdateTime: 2010/02/16 10:19:52
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 0
LifetimeExpires: n/a
AssociatedStackCount: n/a

FilterName: Rule2C
FilterNameExtension: 2
GroupName: n/a
LocalStartActionName: StartZoneC
VpnActionName: Gold-TunnelMode
TunnelID: Y0
Type: NATT Anchor
DefensiveType: n/a
State: Active
Action: Permit
Scope: Local
Direction: Inbound
OnDemand: No
SecurityClass: 0
Logging: All
Protocol: All
ICMPType: n/a
ICMPTypeGranularity: n/a

1122 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: Rule
SourceAddress: 9.5.5.5
SourceAddressPrefix: n/a
SourceAddressRange: n/a
SourceAddressGranularity: Packet
SourcePort: All
SourcePortRange: n/a
SourcePortGranularity: Rule
DestAddress: 9.3.3.3
DestAddressPrefix: n/a
DestAddressRange: n/a
DestAddressGranularity: Packet
DestPort: All
DestPortRange: n/a
DestPortGranularity: Rule
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2010/02/16 10:19:52
UpdateTime: 2010/02/16 10:19:52
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 0
LifetimeExpires: n/a
AssociatedStackCount: n/a

FilterName: Rule2C
FilterNameExtension: 2
GroupName: n/a
LocalStartActionName: StartZoneC
VpnActionName: Gold-TunnelMode
TunnelID: Y0
Type: Dynamic Anchor
DefensiveType: n/a
State: Active
Action: Permit
Scope: Local
Direction: Inbound
OnDemand: No
SecurityClass: 0
Logging: All
Protocol: All
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: Rule
SourceAddress: 9.6.0.0
SourceAddressPrefix: 16
SourceAddressRange: n/a
SourceAddressGranularity: Packet
SourcePort: All
SourcePortRange: n/a
SourcePortGranularity: Rule
DestAddress: 9.3.3.3

Chapter 19. IP security 1123

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

DestAddressPrefix: n/a
DestAddressRange: n/a
DestAddressGranularity: Packet
DestPort: All
DestPortRange: n/a
DestPortGranularity: Rule
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2010/02/16 10:19:52
UpdateTime: 2010/02/16 10:19:52
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 0
LifetimeExpires: n/a
AssociatedStackCount: n/a

8 entries selected

The inbound dynamic anchor filter protects TCP traffic from source address
9.6.0.0/16, source port any, to destination address 9.3.3.3, destination port 21. The
inbound NATT anchor filter protects TCP traffic from source address 9.5.5.5, source
port any, to destination address 9.3.3.3, destination port 21. The two inbound
NATT dynamic filters also protect TCP traffic from source address 9.5.5.5, source
port any, to destination address 9.3.3.3, destination port 21. However, the two
NATT dynamic filters were negotiated for separate clients behind the security
gateway. You can see that the first inbound NATT dynamic is for a host behind the
security gateway using internal address 10.3.1.1 (value in the RmtIDpayload field).

The second inbound NATT dynamic is for a host behind the security gateway
using internal address 10.3.2.2. The internal address of the data endpoint is what
makes each NATT dynamic unique.

NAT resolution filters
Use the -h option on the ipsec -f command to display any NRFs associated with
the displayed filters. After two clients behind the security gateway have connected
to host 9.3.3.3 using FTP, the NRFs could look like the following (The display has
been truncated to include only the NRFs):
FilterName: Rule2C
FilterNameExtension: 1
GroupName: n/a
LocalStartActionName: StartZoneC
VpnActionName: Gold-TunnelMode
TunnelID: Y2
Type: NRF
DefensiveType: n/a
State: Active
Action: Permit
Scope: Local
Direction: Outbound
OnDemand: No
SecurityClass: 0
Logging: All
Protocol: TCP(6)
ICMPType: n/a
ICMPTypeGranularity: n/a

1124 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: None
ProtocolGranularity: Rule
SourceAddress: 9.3.3.3
SourceAddressPrefix: n/a
SourceAddressRange: n/a
SourceAddressGranularity: Packet
SourcePort: 21
SourcePortRange: n/a
SourcePortGranularity: Rule
DestAddress: 9.5.5.5
DestAddressPrefix: n/a
DestAddressRange: n/a
DestAddressGranularity: Packet
DestPort: 34732
DestPortRange: n/a
DestPortGranularity: Rule
OrigRmtConnPort: 34732
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2010/02/16 10:19:52
UpdateTime: 2010/02/16 10:19:52
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 0
LifetimeExpires: n/a
AssociatedStackCount: n/a

FilterName: Rule2C
FilterNameExtension: 1
GroupName: n/a
LocalStartActionName: StartZoneC
VpnActionName: Gold-TunnelMode
TunnelID: Y3
Type: NRF
DefensiveType: n/a
State: Active
Action: Permit
Scope: Local
Direction: Outbound
OnDemand: No
SecurityClass: 0
Logging: All
Protocol: TCP(6)
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: None
ProtocolGranularity: Rule
SourceAddress: 9.3.3.3
SourceAddressPrefix: n/a
SourceAddressRange: n/a
SourceAddressGranularity: Packet
SourcePort: 21
SourcePortRange: n/a
SourcePortGranularity: Rule
DestAddress: 9.5.5.5

Chapter 19. IP security 1125

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

DestAddressPrefix: n/a
DestAddressRange: n/a
DestAddressGranularity: Packet
DestPort: 65535
DestPortRange: n/a
DestPortGranularity: Rule
OrigRmtConnPort: 34732
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2010/02/16 10:19:52
UpdateTime: 2010/02/16 10:19:52
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 0
LifetimeExpires: n/a
AssociatedStackCount: n/a

FilterName: Rule2C
FilterNameExtension: 2
GroupName: n/a
LocalStartActionName: StartZoneC
VpnActionName: Gold-TunnelMode
TunnelID: Y2
Type: NRF
DefensiveType: n/a
State: Active
Action: Permit
Scope: Local
Direction: Inbound
OnDemand: No
SecurityClass: 0
Logging: All
Protocol: TCP(6)
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: None
ProtocolGranularity: Rule
SourceAddress: 9.5.5.5
SourceAddressPrefix: n/a
SourceAddressRange: n/a
SourceAddressGranularity: Packet
SourcePort: 34732
SourcePortRange: n/a
SourcePortGranularity: Rule
DestAddress: 9.3.3.3
DestAddressPrefix: n/a
DestAddressRange: n/a
DestAddressGranularity: Packet
DestPort: 21
DestPortRange: n/a
DestPortGranularity: Rule
OrigRmtConnPort: 34732
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2010/02/16 10:19:52
UpdateTime: 2010/02/16 10:19:52
DiscardAction: Silent
MIPv6Type: n/a

1126 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 0
LifetimeExpires: n/a
AssociatedStackCount: n/a

FilterName: Rule2C
FilterNameExtension: 2
GroupName: n/a
LocalStartActionName: StartZoneC
VpnActionName: Gold-TunnelMode
TunnelID: Y3
Type: NRF
DefensiveType: n/a
State: Active
Action: Permit
Scope: Local
Direction: Inbound
OnDemand: No
SecurityClass: 0
Logging: All
Protocol: TCP(6)
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: None
ProtocolGranularity: Rule
SourceAddress: 9.5.5.5
SourceAddressPrefix: n/a
SourceAddressRange: n/a
SourceAddressGranularity: Packet
SourcePort: 65535
SourcePortRange: n/a
SourcePortGranularity: Rule
DestAddress: 9.3.3.3
DestAddressPrefix: n/a
DestAddressRange: n/a
DestAddressGranularity: Packet
DestPort: 21
DestPortRange: n/a
DestPortGranularity: Rule
OrigRmtConnPort: 34732
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2010/02/16 10:19:52
UpdateTime: 2010/02/16 10:19:52
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 0
LifetimeExpires: n/a
AssociatedStackCount: n/a

Chapter 19. IP security 1127

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

There are two NRF inbound/outbound entry pairs associated with the NATT
anchor. In this example, two clients behind the security gateway have an FTP
connection with host 9.3.3.3. The first outbound NRF entry is for:
source address 9.3.3.3, source port 21
destination address 9.5.5.5, destination port 34732
protocol TCP

The destination port is shown in the DestPort field. This value can be a translated
value. The OrigRmtConnPort field indicates the original remote connection port,
prior to remote port translation by Communications Server. In this example, the
first outbound NRF shows that DestPort and OrigRmtConnPort are both 34732. For
more information, see “Remote port translation” on page 984.

The second outbound NRF entry is for:
source address 9.3.3.3, source port 21
destination address 9.5.5.5, destination port 65535
protocol TCP

The original remote connection port (OrigRmtConnPort) is 34732. Because the
values in DestPort and OrigRmtConnPort do not match, you can tell that the value
was translated by Communications Server's remote port translation function. For
more information, see “Remote port translation” on page 984.

The TunnelID field provides information on which phase 2 Security Association the
traffic will be sent over. In this example, the phase two Security Associations are
identified by the labels Y2 and Y3 respectively.

Displaying remote port translation with the ipsec command
As seen in “NAT resolution filters” on page 1124, the remote data endpoint is
represented by the security gateway's public IP address (9.5.5.5), not the client's IP
address (10.3.1.1 or 10.3.2.2). Using the ipsec -o display command after the
activation of two FTP connections in the branch office with NAT model, the port
mappings look like the following:
CS V1R12 ipsec Stack Name: TCPCS Tue Feb 16 11:43:55 2010
Primary: NATT Port Trans Function: Display Format: Detail
Source: Stack Scope: Current TotAvail: 2

RmtIpAddress: 9.5.5.5
Protocol: TCP(6)
TransRmtConnPort: 34732
OrigRmtConnPort: 34732
RmtInnerIpAddress: 10.3.1.1

RmtIpAddress: 9.5.5.5
Protocol: TCP(6)
TransRmtConnPort: 65535
OrigRmtConnPort: 34732
RmtInnerIpAddress: 10.3.2.2

2 entries selected

In both entries, you can see that the remote IP address (RmtIpAddress) value is
9.5.5.5, the IP address of the branch office gateway, the protocol is TCP (6), and the
original remote connection port (OrigRmtConnPort) is 34732. The first entry shows
that the translated remote connection port (TransRmtConnPort) is also 34732. The
remote inner IP address contains the private address of the client behind the
security gateway that initiated the connection, 10.3.1.1. The second entry shows

1128 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

that the remote connection port was translated to a value of 65535
(TransRmtConnPort), and that the client initiating the connection is using private
IP address 10.3.2.2.

Table 49 details several places where one or both of the remote port values are
displayed or used for a selection.

Table 49. Original and translated port values

Function
How remote port values are
used

Which remote port, original
or translated?

Netstat displays of
connection data, such as
Netstat ALL/-A, Netstat
ALLConn/-a, and Netstat
COnn/-c

The Netstat command has
many options to display
connection information,
including the remote port
value. In some cases, the
Netstat command takes a
remote port value as a
selector.

Translated remote port

Netstat display of the VIPA
connection routing table
(netstat VCRT/-V)

This command displays the
remote port value in the
sport or Source field,
depending on the flavor of
the report generated, and
allows you to select based on
port.

Translated remote port

Packet trace Packet trace displays packet
data as it was received or
sent. If the packet is
authenticated but not
encrypted, the port is visible
in the packet trace data.

Original remote port

IPSecurity syslog messages:

v EZD0814I packet
permitted

v EZD0815I packet denied
by policy

v EZD0821I packet denied,
no tunnel

v EZD0822I packet denied,
tunnel inactive

v EZD0832I packet denied
by NAT traversal
processing

v EZD0833I packet denied,
tunnel mismatch

v EZD0836I packet
permitted

Defensive filtering syslog
messages:

v EZD1721I packet denied
by defensive filter

v EZD1722I packet would
have been denied by
defensive filter

For an inbound packet, the
sport field in these messages
contains a remote port value.
For an outbound packet, the
dport field in these messages
contains a remote port value.
These messages also have an
origport field.

The sport and dport fields
contain the translated remote
port, and the origport field
contains the original remote
port.

Chapter 19. IP security 1129

Table 49. Original and translated port values (continued)

Function
How remote port values are
used

Which remote port, original
or translated?

Dynamic anchor, displayed
with the ipsec -f command
and the ipsec -t command

The dynamic anchor that is
configured in the Policy
Agent configuration file can
specify the remote port as a
single port, a range of ports,
or all ports. This specification
of the remote port controls
the range of ports that the
original port can be
translated to. Both the
original port and the
translated port for a
connection will fit the range
of ports coded.

The configured remote port
value is displayed. A packet's
original port is used to
match on this rule. Both the
original port and translated
port are included in the
remote port value displayed.

NATT anchor, displayed
with the ipsec -f command
and the ipsec -t command

The NATT anchor, which is
created as a result of the
Security Association
negotiation, contains a
specific remote port or all
ports.

Original remote port if
specific port displayed

NATT dynamic, displayed
with the ipsec -f command
and the ipsec -t command

The NATT dynamic, which is
created as a result of the
Security Association
negotiation, contains a
specific remote port or all
ports.

Original remote port if
specific port displayed

NAT resolution filter (NRF),
displayed with the ipsec -f
command with the -h option

The NAT resolution filter is a
connection level filter, and
contains both the translated
remote port and the original
remote port.

Translated remote port and
original remote port. A
packet's translated port is
used to match on this rule.

ipsec -t command The ipsec traffic test
command allows a remote
port value to be specified as
a filter selection criteria.

Original remote port

Displaying Security Associations with the ipsec command
Use the ipsec command to verify Security Associations.

Displaying IKE tunnel information with the ipsec command
Use the ipsec -k display command to display IKE tunnel information.
ipsec -k display

CS V1R12 ipsec Stack Name: TCPCS Tue Feb 16 11:48:25 2010
Primary: IKE tunnel Function: Display Format: Detail
Source: IKED Scope: Current TotAvail: n/a

TunnelID: K3
Generation: 1
IKEVersion: 1.0
KeyExchangeRuleName: ZoneC_KeyExRule1
KeyExchangeActionName: Gold-PSK
LocalEndPoint: 9.3.3.3
LocalIDType: IPV4

1130 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|

LocalID: 9.3.3.3
RemoteEndPoint: 10.3.1.1
RemoteIDType: USERFQDN
RemoteID: gateway.poughkeepsie.ibm.com
ExchangeMode: Main
State: DONE
AuthenticationAlgorithm: HMAC-MD5
EncryptionAlgorithm: 3DES-CBC
KeyLength: n/a
PseudoRandomFunction: HMAC-MD5
DiffieHellmanGroup: 2
LocalAuthenticationMethod: PresharedKey
RemoteAuthenticationMethod: PresharedKey
InitiatorCookie: 0xE70D94ADB3D75947
ResponderCookie: 0xCED4B800A0BE81BC
Lifesize: 0K
CurrentByteCount: 296b
Lifetime: 480m
LifetimeRefresh: 2010/02/16 19:15:22
LifetimeExpires: 2010/02/16 19:23:19
ReauthInterval: 480m
ReauthTime: 2010/02/16 19:15:22
Role: Responder
AssociatedDynamicTunnels: 2
NATTSupportLevel: RFC
NATInFrntLclScEndPnt: No
NATInFrntRmtScEndPnt: Yes
zOSCanInitiateP1SA: Yes
AllowNat: Yes
RmtNAPTDetected: No
RmtUdpEncapPort: 4500

1 entries selected

The setting of the AllowNat field indicates whether or not NAT traversal support
was advertised to the IKE peer. If AllowNat is Yes, the negotiation might or might
not have detected a NAT. If the NATInFrntLclScEndPnt field is Yes, a NAT device
was detected in front of the local security endpoint. If the NATInFrntRmtScEndPt
field is Yes, a NAT device was detected in front of the remote security endpoint.

Displaying IPSec tunnel information with the ipsec command
Use the ipsec -y display command to display IPSec tunnel information.
ipsec -y display -a Y39

TunnelID: Y39
Generation: 1
IKEVersion: 1.0
ParentIKETunnelID: K11
VpnActionName: TransportMode
LocalDynVpnRule: n/a
State: Active
HowToEncap: Transport
LocalEndPoint: 9.2.2.2
RemoteEndPoint: 9.4.4.4
LocalAddressBase: 9.2.2.2
LocalAddressPrefix: n/a
LocalAddressRange: n/a
RemoteAddressBase: 9.4.4.4
RemoteAddressPrefix: n/a
RemoteAddressRange: n/a
HowToAuth: ESP
AuthAlgorithm: HMAC-MD5
AuthInboundSpi: 2418545801 (0x90281489)
AuthOutboundSpi: 4027602341 (0xF01055A5)

Chapter 19. IP security 1131

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

HowToEncrypt: DES-CBC
KeyLength: n/a
EncryptInboundSpi: 2418545801 (0x90281489)
EncryptOutboundSpi: 4027602341 (0xF01055A5)
Protocol: ALL(0)
LocalPort: n/a
LocalPortRange: n/a
RemotePort: n/a
RemotePortRange: n/a
Type: n/a
TypeRange: n/a
Code: n/a
CodeRange: n/a
OutboundPackets: 1
OutboundBytes: 264
InboundPackets: 1
InboundBytes: 264
Lifesize: 0K
LifesizeRefresh: 0K
CurrentByteCount: 0b
LifetimeRefresh: 2010/02/16 15:14:52
LifetimeExpires: 2010/02/16 15:23:19
CurrentTime: 2010/02/16 11:53:31
VPNLifeExpires: 2010/02/17 11:23:19
NAT Traversal Topology:

UdpEncapMode: Yes
LclNATDetected: No
RmtNATDetected: Yes
RmtNAPTDetected: No
RmtIsGw: No
RmtIsZOS: Yes
zOSCanInitP2SA: Yes
RmtUdpEncapPort: 4500
SrcNATOARcvd: 10.2.2.2
DstNATOARcvd: 9.2.2.2

PassthroughDF: n/a
PassthroughDSCP: n/a

1 entries selected

The NAT Traversal Topology fields show additional information when a NAT was
detected in the path between the IKE peers. The setting of the UdpEncapMode
field indicates whether a UDP-encapsulated mode Security Association has or has
not been negotiated. If NAT Traversal is supported by both IKE peers and one or
more NATs are detected, UdpEncapMode is set to Yes. The RmtNATDetected field
is Yes if a NAT is detected in front of the remote peer. The RmtIsGW field is Yes if
the remote peer is acting as a security gateway.

Tip: Use the -b option of the ipsec -y display command to show the ports and
protocols of the dynamic filter that are associated with the phase 2 Security
Association. The following excerpt from the ipsec -y display using the -b option
indicates a Telnet connection from a remote host:
AssociatedFiltProtocol: TCP(6)
AssociatedFiltSrcPort: 23
AssociatedFiltDestPort: 0

Displaying filter rules with the pasearch command
The configured IP filter rules and associated actions can also be viewed from the
perspective of the Policy Agent. The pasearch command provides a way to view
all Policy Agent configuration, of which IP security is a subset. In contrast to the
information that is provided by the ipsec command, the detailed information that

1132 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

is provided by the pasearch command does not reflect the stack's active use of the
IP security policy, but offers a relatively static view of configured IP security values
that were generated from the IP security configuration file. For more information
on displaying policy based networking information, see z/OS Communications
Server: IP System Administrator's Commands.

Verifying filter action
To quickly determine which filter rule applies to a specific type of traffic, use the
ipsec traffic test command (ipsec -t). This command returns all of the rules in the
current filter table that match the given traffic type.

For example, to test which filter rule matches an incoming FTP connection request
from remote IP address 9.1.1.2 to local IP address 9.1.1.1, issue the following
command. The input values represent the remote address, local address, protocol,
remote port, local port, direction, and security class of the packet.:
ipsec -t 9.1.1.2 9.1.1.1 tcp 0 21 in 0

CS V1R12 ipsec Stack Name: TCPCS Tue Feb 16 11:59:45 2010
Primary: IP Traffic Test Function: Display Format: Detail
Source: Stack Policy Scope: n/a TotAvail: 5
TestData: 9.1.1.2 9.1.1.1 tcp 0 21 in 0
Defensive Mode: Inactive

FilterName: Rule2Admin
FilterNameExtension: 2
GroupName: Admin
LocalStartActionName: n/a
VpnActionName: Silver-TransportMode
TunnelID: Y4
Type: Dynamic
DefensiveType: n/a
State: Active
Action: Permit
Scope: Local
Direction: Inbound
OnDemand: No
SecurityClass: 0
Logging: Deny
Protocol: All
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: n/a
SourceAddress: 9.1.1.2
SourceAddressPrefix: n/a
SourceAddressRange: n/a
SourceAddressGranularity: n/a
SourcePort: n/a
SourcePortRange: n/a
SourcePortGranularity: n/a
DestAddress: 9.1.1.1
DestAddressPrefix: n/a
DestAddressRange: n/a
DestAddressGranularity: n/a
DestPort: n/a
DestPortRange: n/a
DestPortGranularity: n/a
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: n/a

Chapter 19. IP security 1133

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

UpdateTime: n/a
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 1
LifetimeExpires: n/a
AssociatedStackCount: n/a

FilterName: Rule2Admin
FilterNameExtension: 2
GroupName: Admin
LocalStartActionName: n/a
VpnActionName: Silver-TransportMode
TunnelID: Y0
Type: Dynamic Anchor
DefensiveType: n/a
State: Active
Action: Permit
Scope: Local
Direction: Inbound
OnDemand: No
SecurityClass: 0
Logging: Deny
Protocol: All
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: Rule
SourceAddress: 9.1.1.2
SourceAddressPrefix: n/a
SourceAddressRange: n/a
SourceAddressGranularity: Packet
SourcePort: n/a
SourcePortRange: n/a
SourcePortGranularity: n/a
DestAddress: 9.1.1.1
DestAddressPrefix: n/a
DestAddressRange: n/a
DestAddressGranularity: Packet
DestPort: n/a
DestPortRange: n/a
DestPortGranularity: n/a
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2010/02/16 10:49:48
UpdateTime: 2010/02/16 11:07:20
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 1
LifetimeExpires: n/a
AssociatedStackCount: n/a

FilterName: Rule1All-IPv4-Permit

1134 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

FilterNameExtension: 6
GroupName: ZoneAll
LocalStartActionName: n/a
VpnActionName: n/a
TunnelID: 0x00
Type: Generic
DefensiveType: n/a
State: Active
Action: Permit
Scope: Local
Direction: Inbound
OnDemand: n/a
SecurityClass: 0
Logging: None
Protocol: TCP(6)
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: Connect Outbound
ProtocolGranularity: n/a
SourceAddress: 0.0.0.0
SourceAddressPrefix: 0
SourceAddressRange: n/a
SourceAddressGranularity: n/a
SourcePort: 53
SourcePortRange: n/a
SourcePortGranularity: n/a
DestAddress: 0.0.0.0
DestAddressPrefix: 0
DestAddressRange: n/a
DestAddressGranularity: n/a
DestPort: All
DestPortRange: n/a
DestPortGranularity: n/a
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2010/02/16 10:49:48
UpdateTime: 2010/02/16 10:49:48
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 0
LifetimeExpires: n/a
AssociatedStackCount: n/a

FilterName: Rule2All-IPv4-Deny
FilterNameExtension: 2
GroupName: ZoneAll
LocalStartActionName: n/a
VpnActionName: n/a
TunnelID: 0x00
Type: Generic
DefensiveType: n/a
State: Active
Action: Deny
Scope: Both
Direction: Inbound
OnDemand: n/a
SecurityClass: 0
Logging: All

Chapter 19. IP security 1135

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Protocol: All
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: n/a
SourceAddress: 0.0.0.0
SourceAddressPrefix: 0
SourceAddressRange: n/a
SourceAddressGranularity: n/a
SourcePort: n/a
SourcePortRange: n/a
SourcePortGranularity: n/a
DestAddress: 0.0.0.0
DestAddressPrefix: 0
DestAddressRange: n/a
DestAddressGranularity: n/a
DestPort: n/a
DestPortRange: n/a
DestPortGranularity: n/a
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2010/02/16 10:49:48
UpdateTime: 2010/02/16 10:49:48
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 40
LifetimeExpires: n/a
AssociatedStackCount: n/a

FilterName: DenyAllRule_Generated___________Inbnd
FilterNameExtension: n/a
GroupName: n/a
LocalStartActionName: n/a
VpnActionName: n/a
TunnelID: 0x00
Type: Generic
DefensiveType: n/a
State: Active
Action: Deny
Scope: Both
Direction: Inbound
OnDemand: n/a
SecurityClass: 0
Logging: None
Protocol: All
ICMPType: n/a
ICMPTypeGranularity: n/a
ICMPCode: n/a
ICMPCodeGranularity: n/a
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: n/a
SourceAddress: 0.0.0.0
SourceAddressPrefix: 0
SourceAddressRange: n/a
SourceAddressGranularity: n/a
SourcePort: n/a
SourcePortRange: n/a

1136 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

SourcePortGranularity: n/a
DestAddress: 0.0.0.0
DestAddressPrefix: 0
DestAddressRange: n/a
DestAddressGranularity: n/a
DestPort: n/a
DestPortRange: n/a
DestPortGranularity: n/a
OrigRmtConnPort: n/a
RmtIDPayload: n/a
RmtUdpEncapPort: n/a
CreateTime: 2010/02/16 10:36:09
UpdateTime: 2010/02/16 10:49:48
DiscardAction: Silent
MIPv6Type: n/a
MIPv6TypeGranularity: n/a
TypeRange: n/a
CodeRange: n/a
RemoteIdentityType: n/a
RemoteIdentity: n/a
FragmentsOnly: No
FilterMatches: 0
LifetimeExpires: n/a
AssociatedStackCount: n/a

5 entries selected

An incoming FTP connection request matches all of the rules shown in the
example. The first rule that is returned does not always match a specific packet,
depending on how much detail you provide as the input to the ipsec -t command.
However, the Rule2Admin rule is the best match in this case, so the search for a
matching filter ends there. The matching rule in this case is an ipsec rule, as
indicated by the designation Dynamic Anchor. Therefore, IPSec processing is applied
to this packet.

Tip: When using the ipsec -t command, provide as much detailed input as
possible. The more detailed the input to the command, the more narrow the results
of the search will be.

For detailed information about the use of the ipsec command, see z/OS
Communications Server: IP System Administrator's Commands.

Security Associations
This topic includes the following:
v Activating a Security Association
v Verifying the activation of a Security Association
v Verifying the use of an active Security Association
v Refreshing Security Associations
v Deactivating Security Associations

Activating a Security Association
Negotiations can be initiated in one of four ways:
v Remote activation

When a remote IKE peer initiates a negotiation with the local IKE daemon, no
action is required. If the IP security policy has been configured correctly and is
consistent with the policy of the remote IKE peer, a Security Association is

Chapter 19. IP security 1137

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

established. No operator message is issued when a remote activation has
occurred, but the syslog does contain a record of all IKE activity. The ipsec -y
display command can also be used to view all of the active Security
Associations.

v On-demand activation
An on-demand Security Association is activated when some outbound traffic
matches an ipsec rule that allows on-demand activation. The ondemand field of
the filter display indicates whether or not on-demand activation is allowed for
that rule.

v Automatic activation
The local IKE daemon initiates a negotiation for an autoactivated Security
Association when it connects to the TCP/IP stack. IKE also initiates a
negotiation for an autoactivated Security Association when the ipsec -f reload
command is issued, changing the active filter rule set from default IP filter rules
to Policy Agent filter rules. No operator message is issued when an
autoactivation has occurred, but the syslog does contain a record of all IKE
activity. The ipsec -y display command can also be used to view all of the active
Security Associations.

v Command-line activation
The ipsec command can be used as follows to activate a Security Association
that has been defined by a LocalDynVpnRule statement:
ipsec -y activate -l ZoneC_VPN-EE1

CS V1R12 ipsec Stack Name: TCPCS Wed Feb 3 16:02:05 2010
Primary: Dynamic tunnel Function: Activate

Selection Data Status
ZoneC_VPN-EE1 Activating

The output of the command indicates the status of the activation.

For detailed information about the use of the ipsec command, see z/OS
Communications Server: IP System Administrator's Commands.

Verifying the activation of a Security Association
After a Security Association has been activated, it can be displayed with the ipsec
-y display command. To view all active Security Associations, issue the following
command:
ipsec -y display

You can use the ipsec command to view all of the active phase 1 Security
Associations, or limit the report to a single phase 1 Security Association by using
the -a option.

For detailed information about the use of the ipsec command, see z/OS
Communications Server: IP System Administrator's Commands.

Verifying the use of an active Security Association
If filter logging is enabled for the selected filter rule, the log indicates whether a
packet has been permitted with IPSec processing applied. Among the information
available for a typical filter log entry are the rule name, the action, and the tunnel
ID:

1138 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|
|
|

Feb 13 18:09:11 MVS175/TRMD TRMD1 TRMD.TCPCS2[28]: EZD0814I Packet
permitted: 02/13/2010 18:09:05.96 filter rule= Rule2Admin ext= 1 sipaddr=
9.1.1.2 dipaddr= 9.1.1.1 proto= tcp(6) sport= 3755 dport= 21 -=
Interface= 9.1.1.1 (I) secclass= 255 dest= local len= 52 vpnaction=
Silver-TransportMode tunnelID= Y58 ifcname= MPC4142L fragment= N

The ipsec -y display command also outputs a field with the number of bytes of
traffic that have been protected by a particular Security Association.

For detailed information about the use of the ipsec command, see z/OS
Communications Server: IP System Administrator's Commands.

Refreshing Security Associations
When a Security Association is refreshed, the encryption keys change. Refreshing a
Security Association periodically prevents the keys from being compromised by an
outside party. Phase 1 and phase 2 Security Associations are refreshed
automatically, based on the lifetime or life size that was configured for IKEv2 or
negotiated between the two IKE peers for IKEv1. When a lifetime expiration causes
an IKEv2 phase 1 Security Association to refresh, the encryption key changes but
the peer is not reauthenticated. Changing the key without reauthenticating the peer
reduces CPU cost.

Tip: For phase 1, these parameters are specified in the KeyExchangeOffer
statement. For phase 2, these parameters are specified in the IpDataOffer
statement.

You can also refresh Security Associations from the z/OS UNIX command line, but
this should only be necessary in exceptional conditions because the IKE daemon is
normally responsible for refreshing the keys at configured intervals. Exceptional
conditions might include the compromise of a key or the failure to receive an
informational IKE message from a remote host. For both IKEv1 and IKEv2 Phase 1
Security Associations, refreshes from the z/OS UNIX command line include both
reauthentication and re-keying.

Phase 1
Each phase 1 Security Association is identified by a tunnel ID, a number with a
prefix of K. To manually refresh a phase 1 Security Association, issue the ipsec -k
display command to find the tunnel ID. Then issue the ipsec -k refresh command
for that ID as follows:
ipsec -k refresh -a K1

CS V1R12 ipsec Stack Name: TCPCS Tue Feb 16 11:48:04 2010
Primary: IKE tunnel Function: Refresh

Tunnel ID Status
K1 Refreshing

For detailed information about the use of the ipsec command, see z/OS
Communications Server: IP System Administrator's Commands.

Phase 2
Each phase 2 Security Association is identified by a tunnel ID, a number with a
prefix of Y. To manually refresh a phase 2 Security Association, issue the ipsec -y
display command to find the tunnel ID. Then issue the ipsec -y refresh command
for that ID as follows:

Chapter 19. IP security 1139

|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

ipsec -y refresh -a Y2

CS V1R12 ipsec Stack Name: TCPCS Tue Feb 16 11:48:04 2010
Primary: Dynamic tunnel Function: Refresh

Tunnel ID LocalDynVpnRuleName Status
Y2 ZoneC_VPN-EE1 Refreshing

The phase 2 Security Association can also be identified by the local dynamic VPN
rule with which it is associated, if one exists, as follows:
ipsec -y refresh -l ZoneC_VPN-EE1

CS V1R12 ipsec Stack Name: TCPCS Tue Feb 16 11:48:04 2010
Primary: Dynamic tunnel Function: Refresh

Tunnel ID LocalDynVpnRuleName Status
Y2 ZoneC_VPN-EE1 Refreshing

For detailed information about the use of the ipsec command, see z/OS
Communications Server: IP System Administrator's Commands.

Deactivating Security Associations
When a Security Association is deleted, all of the information that is stored in the
Security Association is deleted from the TCP/IP stack and from the IKED, along
with the dynamic filters that were created when the Security Association was
created. After deletion, the Security Association is no longer available for use.
Traffic that was protected by the old Security Association is denied until a new
Security Association is subsequently activated.

When a parent phase 1 Security Association is deactivated, all of the associated
phase 2 Security Associations are deleted as well. Be careful when deleting phase 1
Security Associations, because all traffic that uses the Security Association and its
associated phase 2 Security Associations are dropped until new Security
Associations can be negotiated.
v To delete a phase 1 Security Association and all of the phase 2 Security

Associations it is protecting, issue the following command:
ipsec -k deactivate -a K1

CS V1R12 ipsec Stack Name: TCPCS Tue Feb 16 11:48:04 2010
Primary: IKE tunnel Function: Deactivate

Tunnel ID Status
K1 Deactivating

v To delete all phase 1 Security Associations and all phase 2 Security Associations,
use the -a all option as follows:
ipsec -k deactivate -a all

CS V1R12 ipsec Stack Name: TCPCS Tue Feb 16 11:48:04 2010
Primary: IKE tunnel Function: Deactivate

All IKE tunnels Deactivating

v To delete a phase 2 Security Association, issue the following command:
ipsec -y deactivate -a Y2

CS V1R12 ipsec Stack Name: TCPCS Tue Feb 16 11:48:04 2010
Primary: Dynamic tunnel Function: Deactivate

Tunnel ID LocalDynVpnRuleName Status
Y2 n/a Deactivating

1140 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

The n/a in the LocalDynVpnRuleName field indicates that no local dynamic
VPN rule name is associated with this Security Association. The Security
Association was either remotely activated or was activated on-demand.

v To delete all phase 2 Security Associations, use the -a all option as follows:
ipsec -y deactivate -a all

CS V1R12 ipsec Stack Name: TCPCS Tue Feb 16 11:48:04 2010
Primary: Dynamic tunnel Function: Deactivate

All dynamic tunnels Deactivating

For detailed information about the use of the ipsec command, see z/OS
Communications Server: IP System Administrator's Commands.

Modifying active IP security policy
This topic describes the effects of changes to security-related files and of issuing
the ipsec -f default command.

IP security policy files
The IP security configuration files for a TCP/IP stack that has the IPSECURITY
parameter defined can be modified while the stack is active in the following ways:
v Policy Agent configuration, including IP security, is updated at each configured

refresh interval that is specified on the TcpImage statement for local policies or
on the DynamicConfigPolicyLoad statement for remote policies. The default is
30 minutes.

v If Policy Agent was started with the -i option and the configuration files are
stored in a z/OS UNIX file, changes to any of the configuration files are
detected and updated dynamically without user intervention. The -i option has
no effect when the policies are stored in remote configuration files on the policy
server.

v Policy Agent configuration, including IP security, can be updated at any time by
issuing the MODIFY PAGENT,REFRESH command or the MODIFY
PAGENT,UPDATE command from the console of the policy client.

Policy Agent image configuration files
For an active TCP/IP stack with IPSECURITY defined, the following conditions
apply:
v Changing the file name that is identified by an existing IpSecConfig or

DynamicConfigPolicyLoad statement causes Policy Agent to update and install
the IP security policy as defined in the new file. If the new IP security policy file
contains errors, the policy is not updated and the existing IP security policy
remains in effect.

v For local IP security policies, removing an existing IpSecConfig statement from a
Policy Agent image configuration file activates the default IP filter policy.

v For remote IP security policies, removing the PolicyServer statement (or the
PolicyType IPSec parameter on that statement) from a Policy Agent image
configuration file activates the default IP filter policy, assuming that no local IP
security policy is defined using the IpSecConfig statement.

Chapter 19. IP security 1141

|
|
|
|
|
|

Policy Agent main configuration file
For an active TCP/IP stack with IPSECURITY defined, removing an existing
TcpImage statement from the Policy Agent configuration file has the following
effects on IP security policy:
v Existing IP filters remain.
v Existing Security Associations remain.
v Traffic continues to flow in the same way it did before the TcpImage statement

was removed, including IPSec-protected traffic.
v New Security Associations cannot be activated.
v Existing Security Associations cannot be refreshed and are deleted when the

refresh period expires.

If the intent of removing the TcpImage statement is to remove IP filters from the
stack, an alternative is to modify the IP security policy to install a filter rule that
permits all inbound and outbound traffic. Also, before restarting the stack, the
IPSECURITY parameter should be removed from the IPCONFIG statement of the
relevant stack.

Active Security Associations and the ipsec -f default
command

Any active Security Associations that were negotiated for IPSec-protected traffic are
not deleted when the ipsec -f default command is issued. However, they are
deleted if, while the default policy is in effect, any associated IP filter rules from
the IP filter policy are deleted or modified in such a way that the filter rule no
longer encompasses the scope of the Security Association. In that case, the Security
Association will be deleted when the IP security policy is reloaded.

For example, Security Associations are not deleted by the following sequence of
actions:
1. The ipsec -f default command is issued.

Security Associations remain active in the stack and in IKE, though unavailable
for use.

2. No modification is made to the IP filter policy in the IP security configuration
files.
Security Associations remain active in the stack and in IKE, though unavailable
for use.

3. The ipsec -f reload command is issued.
Security Associations remain active in the stack and in IKE, and are available
for use.

Security Associations are deleted by the following sequence of actions:
1. The ipsec -f default command is issued.

Security Associations remain active in the stack and in IKE.
2. The IpFilterRule statement that is associated with an active Security Association

is deleted.
3. The IP security policy is updated by issuing the MODIFY PAGENT,REFRESH

command from the console.
Existing Security Associations are deleted.

4. The ipsec -f reload command is issued.
Security Associations have been deleted.

1142 z/OS V1R12.0 Comm Svr: IP Configuration Guide

In either case, Security Associations are never available for use when the default IP
filter policy is in effect.

Displaying NSS client information
Use the NssStackConfig statement to configure a stack as an NSS client. Use the -w
primary option on the ipsec command to determine which active stacks are
configured as NSS clients, as well as their current status.
ipsec -w display

CS V1R12 ipsec NSS Client Name: n/a Tue Feb 16 12:14:24 2010
Primary: Stack NSS Function: Display Format: Detail
Source: IKED Scope: n/a TotAvail: 3
SystemName: MVS175

StackName: TCPCS
ClientName: n/a
ClientAPIVersion: n/a
ServerAPIVersion: n/a
NSServicesSupported: No
RemoteManagementSelected: No
RemoteManagementEnabled: n/a
CertificateServicesSelected: No
CertificateServicesEnabled: n/a
NSClientIPAddress: n/a
NSClientPort: n/a
NSServerIPAddress: n/a
NSServerPort: n/a
NSServerSystemName: n/a
UserID: n/a
ConnectionState: n/a
TimeConnectedToNSServer: n/a
TimeOfLastMessageToNSServer: n/a

StackName: TCPCS4
ClientName: Client4
ClientAPIVersion: 4
ServerAPIVersion: 4
NSServicesSupported: Yes
RemoteManagementSelected: Yes
RemoteManagementEnabled: Yes
CertificateServicesSelected: Yes
CertificateServicesEnabled: Yes
NSClientIPAddress: 10.81.4.4
NSClientPort: 50008
NSServerIPAddress: 10.81.5.5
NSServerPort: 4159
NSServerSystemName: MVS175
UserID: USER1
ConnectionState: connected
TimeConnectedToNSServer: 2010/02/16 12:12:42
TimeOfLastMessageToNSServer: 2010/02/16 12:12:45

StackName: TCPCS5
ClientName: V1RCIPSECREG_TCPCS5_SGWR
ClientAPIVersion: 4
ServerAPIVersion: 4
NSServicesSupported: Yes
RemoteManagementSelected: Yes
RemoteManagementEnabled: Yes
CertificateServicesSelected: Yes
CertificateServicesEnabled: Yes
NSClientIPAddress: 10.81.5.5
NSClientPort: 50000
NSServerIPAddress: 10.81.5.5

Chapter 19. IP security 1143

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

NSServerPort: 4159
NSServerSystemName: MVS175
UserID: USER1
ConnectionState: connected
TimeConnectedToNSServer: 2010/02/16 12:11:59
TimeOfLastMessageToNSServer: 2010/02/16 12:11:59

3 entries selected

For complete details about the ipsec command, see z/OS Communications Server: IP
System Administrator's Commands.

Sysplex-wide Security Associations and IP security
z/OS IP security supports sysplex-wide Security Associations (SWSA) for only
IKEv1 Security Associations between IPv4 endpoints. In a sysplex environment,
SWSA provides for distribution of IPSec Security Associations to the target stacks
of distributed DVIPAs. To enable this support, you must code IPCONFIG
IPSECURITY in the TCP/IP profile, as well as DVIPSEC in the IPSEC block.

In NATT configurations where the IKE peer is behind a NAPT, the negotiated
UDP-encapsulated mode Security Associations can be distributed only to a V1R8
or later target that supports IP security.

In a sysplex environment, the IKE daemon can detect movement of a DVIPA to or
from an IP security or Firewall Technologies stack.

Restriction: A stack configured for Firewall Technologies must be running z/OS
V1R7 or earlier.

To re-establish the Security Associations of a DVIPA, the DVIPSEC option must be
specified in the TCP/IP profile of both the stack that the DVIPA is being moved
from and the stack detecting the movement. For details of this movement, see
“Sysplex-wide security associations” on page 388. For information on the
IPCONFIG and IPSEC statements that need to be added to the TCP/IP profile to
configure this support, see z/OS Communications Server: IP Configuration Reference.

When a DVIPA is moved from one IP security stack in a sysplex to another IP
security stack, and both stacks have the DVIPSEC option specified, an attempt is
made to automatically re-establish Security Associations on the backup stack. The
IKE daemon on the system that is assuming control of the DVIPA attempts to
renegotiate new Security Associations to replace the ones that were on the system
that previously owned the DVIPA. If these attempts fail due to configuration errors
or connectivity errors, manual intervention might be required. Phase 1 Security
Association or phase 2 Security Association negotiations that were in progress at
the time of the DVIPA movement are lost. However, if these negotiations were for
a refresh, a new negotiation is started in the process of assuming control of the
DVIPA.

In NATT configurations where IKE can act only as the responder, the IKE daemon
does not attempt to renegotiate a new Security Association for a UDP-encapsulated
mode Security Association. Sysplex distribution is possible in these configurations,
but the recovery of the Security Associations when the DVIPA moves is not
supported. There are two NATT configurations in which IKE can act only as the
responder:
v When the IKE peer is a security gateway and a NAT is being traversed

1144 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|
|
|
|
|

|
|

v When the IKE peer is behind a NAPT

For more information about NATT configurations, as well as interoperability
considerations, see “Configuration scenarios supported for NAT traversal” on page
1095.

When only one client behind a NAPT has negotiated a Security Association, it is
not always possible for the server to detect whether one-to-one address translation
or many-to-one address port translation (NAPT) is being done. When multiple
clients have active Security Associations, the server can detect that port translation
is being done. If z/OS cannot determine that a Security Association is negotiated
with a remote peer behind a NAPT, the Security Association is treated as if it is
being negotiated with a remote peer using one-to-one address translation.

When IKE is limited to only a responder role, the Security Association must be
reestablished by peer initiation. The interoperability considerations for establishing
an initial phase 2 Security Association are relevant to the renegotiation of the phase
2 Security Association due to the movement of a DVIPA. For example, a
host-to-host UDP-Encapsulated-Tunnel mode Security Association protecting
specific protocols or ports that was initially initiated from a non-z/OS client, might
not be able to be renegotiated when the z/OS system assuming control of the
DVIPA initiates the negotiation. If this is the case, the Security Association must be
reestablished by peer initiation.

When a DVIPA is moved from one IP security stack in a sysplex to another IP
security stack, and one or both stacks do not have the DVIPSEC option specified,
the Security Associations that are associated with that DVIPA must be
re-established by issuing the ipsec command, on-demand activation, or by a peer
initiation.

Guidelines:

v If a DVIPA is manually deleted and that address has no backup, the IKE
daemon might not be able to terminate the tunnels in which the DVIPA is a
security endpoint. To avoid this problem, use the ipsec command to deactivate
the DVIPA's IKE tunnels before manually deleting the DVIPA.

v This support does not address the dynamic relocation of static filter rules and
VPN policy definitions to the target system in the sysplex. It is up to you to
ensure that the necessary filter rules and IP security policy definitions exist on
all participating systems in the sysplex. If the necessary filter rules and IP
security policy definitions do not exist, the IKE daemon might not be able to
re-establish all Security Associations. For a description of the SWSA function, see
“Sysplex-wide security associations” on page 388.

Rule: Because the renegotiation of a Security Association after a DVIPA move
requires the sysplex stack to initiate an IKE negotiation, the sysplex stack must be
allowed to initiate. You must code the Initiation attribute on the IpDynVpnAction
statement as localonly or either.

Restriction: An on-demand tunnel negotiation will fail if it is triggered by a
connection request from a stack using a distributed DVIPA as the source address
and that stack is not also the owner (distributor) of the DVIPA.

FIPS 140 and sysplex-wide Security Associations
To enable FIPS 140 mode in a sysplex, you should enable FIPS 140 mode for all the
TCP/IP stacks, IKE daemons, and network security services (NSS) daemons on all

Chapter 19. IP security 1145

|

|
|

systems in the sysplex. If the FIPS 140 mode of the distributing TCP/IP stack in
the sysplex is different than the FIPS 140 mode of the target TCP/IP stacks,
distribution of some of the tunnels across the target TCP/IP stacks might not
function as expected.

If the distributor is configured with FIPS 140 support, then all of the tunnels it
activates will adhere to the FIPS 140 restrictions (for example, DES encryption will
not allowed). All target TCP/IP stacks can use the distributed tunnels and can
process the distributed traffic, regardless of their FIPS 140 mode. The targets that
are configured without FIPS 140 support might not adhere to the strict
cryptographic module boundaries as defined by FIPS 140, but the Security
Association will be successfully activated and used.

If the distributor is not configured with FIPS 140 support, it might activate Security
Associations that do not adhere to the FIPS 140 restrictions. The distributor can
successfully distribute those associations to target TCP/IP stacks that are not
configured in FIPS 140 mode. However, if the distributor distributes those
associations to target TCP/IP stacks that are configured in FIPS 140 mode, the data
flowing over connections to those stacks is discarded because the associated
Security Association or tunnel is not installed.

The distributor and its backup can be configured differently with respect to the
FIPS 140 mode. When a backup takes over from a distributor, all the IP security
tunnels are renegotiated by the backup. The renegotiated tunnels operate at the
FIPS 140 mode that is defined on the backup distributor. This can change the
operation of the tunnels as they are distributed by the backup. If the distributor is
configured with FIPS 140 support and its backup is not, the backup might activate
Security Associations that do not adhere to the FIPS 140 restrictions and
distribution of them might fail.

For more information about enabling FIPS 140 mode in a sysplex environment, see
“Steps for configuring IP security to support FIPS 140 mode” on page 932.

Sysplex-wide Security Associations in a mixed-level
environment

This topic includes considerations for using sysplex-wide Security Associations
(SWSA) in a mixed-level environment.

Using encryption or authentication algorithms
IP security support includes encryption and authentication algorithms.

Restriction: Tunnels that use encryption or authentication algorithms that were
introduced in V1R12 are not distributed to target stacks that are at a release prior
to V1R12.

Remote identity support in filter policy
An IP filter rule can specify a remote IKE identity when the remote IP address of a
client system is unknown or unpredictable, but its IKE identity is known. If the
release level of the distributor, backup, and target stacks is not prior to the z/OS
V1R10 level, and if all stacks share a common filter policy, sysplex-wide Security
Associations (SWSA) distribution and takeover function correctly for dynamic
tunnels associated with these IP filter rules. However, if the release level of the
distributor is not prior to V1R10 but the release level of the backup or targets is
V1R9 or earlier, the remote identity support will not function correctly.

1146 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|

|
|

|
|
|

Guideline: Remote identities in IP filter policy should not be used in combination
with SWSA unless no TCP/IP stacks are at a release level prior to V1R10.

Shadow Security Associations
When an IP security stack is the target of a DVIPA, it receives a copy (shadow) of
any active Security Associations for the DVIPA. To display the shadow Security
Associations, use the following command:
ipsec -y display -s

CS V1R12 ipsec Stack Name: TCPCS Tue Feb 16 10:39:25 2010
Primary: Dynamic tunnel Function: display (shadows) Format: Detail
Source: Stack Scope: Current TotAvail: 1

TunnelID: Y2
Generation: 1
IKEVersion: 1.0
ParentIKETunnelID: K1
VpnActionName: TransportMode
LocalDynVpnRule: n/a
State: Active
HowToEncap: Transport
LocalEndPoint: 9.1.1.1
RemoteEndPoint: 9.1.1.2
LocalAddressBase: 9.1.1.1
LocalAddressPrefix: n/a
LocalAddressRange: n/a
RemoteAddressBase: 9.1.1.2
RemoteAddressPrefix: n/a
RemoteAddressRange: n/a
HowToAuth: ESP
AuthAlgorithm: HMAC-MD5
AuthInboundSpi: 1878088104 (0x6FF159A8)
AuthOutboundSpi: 270783814 (0x1023D546)
HowToEncrypt: DES-CBC
KeyLength: n/a
EncryptInboundSpi: 1878088104 (0x6FF159A8)
EncryptOutboundSpi: 270783814 (0x1023D546)
Protocol: ALL(0)
LocalPort: n/a
LocalPortRange: n/a
RemotePort: n/a
RemotePortRange: n/a
Type: n/a
TypeRange: n/a
Code: n/a
CodeRange: n/a
OutboundPackets: 1
OutboundBytes: 264
InboundPackets: 1
InboundBytes: 264
Lifesize: 0K
LifesizeRefresh: 0K
CurrentByteCount: 0b
LifetimeRefresh: 2010/02/16 14:26:22
LifetimeExpires: 2010/02/16 14:37:43
CurrentTime: 2010/02/16 10:39:25
VPNLifeExpires: 2010/02/17 10:37:43
NAT Traversal Topology:

UdpEncapMode: No
LclNATDetected: No
RmtNATDetected: No
RmtNAPTDetected: No
RmtIsGw: n/a
RmtIsZOS: n/a
zOSCanInitP2SA: n/a

Chapter 19. IP security 1147

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

RmtUdpEncapPort: n/a
SrcNATOARcvd: n/a
DstNATOARcvd: n/a

PassthroughDF: n/a
PassthroughDSCP: n/a

1 entries selected

Sample IP security policy files
A sample stack-specific policy is located in /usr/lpp/tcpip/samples/
pagent_IPSec.conf.

A sample common policy is located in /usr/lpp/tcpip/samples/
pagent_CommonIPSec.conf.

1148 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|
|
|
|

Chapter 20. Network security services

A network security services (NSS) server provides network security services for
one or more security disciplines. Supported disciplines are IPSec, which is a set of
services that supports IPSec and IKE processing, and XMLAppliance, which is a set
of services for XML appliances. For the IPSec discipline, these services include the
IPSec certificate service and the IPSec remote management service. For the
XMLAppliance discipline, the NSS server supports the XMLAppliance SAF access
service, the XMLAppliance certificate service, and the XMLAppliance private key
service. For information about configuring the IKE daemon to act as an NSS IPSec
client on behalf of a TCP/IP stack, see Chapter 19, “IP security,” on page 923.

Terms and concepts for network security services
The following terms and concepts apply to the information about network security
services (NSS):

certificate bundle
An x.509 bundle as defined in Section 3.6 of RFC 4306, Internet Key
Exchange Protocol: IKEv2. A certificate bundle can contain multiple DER
encoded certificates and certificate revocation lists (CRLs). You can use the
certbundle command to create a certificate bundle.

Certificate revocation list (CRL)
A time-stamped list of revoked certificates that is signed by a certificate
authority.

CRLDistributionPoints
An optional x.509 certificate extension that identifies one or more locations
where the CRL for a certificate resides.

hash and URL encoding
A certificate payload encoding that includes the hash of a certificate or
bundle and the URL that identifies where that certificate or bundle can be
retrieved from an HTTP server

IPSec certificate service
A service for NSS IPSec clients that provides IPSec digital signature and
verification services.

IPSec discipline
A set of services provided to an NSS IPSec client. The services are the
IPSec certificate service and the IPSec remote management service.

IPSec remote management service
A service for NSS IPSec clients that provides remote IPSec management
capability.

Network security services (NSS)
A set of services that performs security enforcement or management. The
services are provided in groupings called security disciplines.

NSS client
A client that requests network security services from an NSS server.

NSS daemon (NSSD)
The z/OS UNIX daemon that implements the NSS server functionality.

© Copyright IBM Corp. 2000, 2011 1149

|
|
|
|
|

|
|
|

|
|
|

|
|
|
|

NSS IPSec client
An NSS client that is using the IPSec discipline. The z/OS IKE daemon can
act as an NSS IPSec client for one or more TCP/IP stacks.

NSS server
Provides network security services for one or more NSS clients.

NSS XMLAppliance client
An NSS client that is using the XMLAppliance discipline.

security discipline
A specific grouping of network security services.

trust chain
The signing sequence of certificates for any particular certificate back to a
root certificate authority.

XML appliance
A network appliance that processes XML messages efficiently and securely.
XML appliances often offload XML parsing and transformations from host
systems and implement a variety of XML security features.

XMLAppliance certificate service
A service for NSS XMLAppliance clients that provides key ring listing and
certificate retrieval capability.

XMLAppliance discipline
A set of services provided to an NSS XMLAppliance client. The NSS server
supports the XMLAppliance SAF access service, the XMLAppliance
certificate service, and the XMLAppliance private key service.

XMLAppliance private key service
A service for NSS XMLAppliance clients that provides private key retrieval
of private keys that are not protected by Integrated Cryptographic Service
Facility (ICSF), RSA signature generation using ICSF-protected private
keys, and RSA message decryption using ICSF-protected private keys.

XMLAppliance SAF access service
A service for NSS XMLAppliance clients that provides SAF user
authentication and access control capability.

For additional IP security-related terms, see Chapter 19, “IP security,” on page 923.

Network security services overview
Network security services (NSS) includes services that perform security
enforcement or management. As shown in Figure 114 on page 1151, NSS includes
services provided by the NSS IPSec discipline and NSS XMLAppliance discipline.
Each discipline includes a subset of services provided by NSS and is intended for
use by a specific type of NSS client.

1150 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|

NSS IPSec discipline overview
The NSS IPSec discipline includes the NSS IPSec certificate service and NSS IPSec
remote management service.

The NSS server provides the NSS IPSec certificate service to perform digital
signature and verification operations on behalf of an NSS IPSec client. The NSS
IPSec certificate service is used by an NSS IPSec client during a phase 1 negotiation
when digital signature authentication is required. Certificates and private keys for
all NSS IPSec clients are stored on a single key ring. The NSS server must have
access to this key ring and must have access to the certificates and private keys on
this key ring. When providing the NSS IPSec certificate service, the NSS server
consults SERVAUTH profiles to verify that an NSS IPSec client is authorized to
access the certificates that are involved. For details about these profiles, see step 7d
on page 1155 and step 7e on page 1156, under “Steps for authorizing resources for
NSS” on page 1152.

The NSS server uses the NSS IPSec remote management service to request IPSec
monitoring data from an NSS IPSec client and to make IPSec control requests to an
NSS IPSec client. Control requests include the ability to activate, deactivate, or
refresh a Security Association, and to switch between default IP filter policy and IP
security filter policy. Use the ipsec command and the IPSec network management
interface (NMI) to make these requests. For details about the ipsec command, see
z/OS Communications Server: IP System Administrator's Commands. For details about
the IPSec NMI, see z/OS Communications Server: IP Programmer's Guide and
Reference.

NSS XMLAppliance discipline
The NSS XMLAppliance discipline includes the NSS XMLAppliance SAF access
service, the NSS XMLAppliance certificate service, and the NSS XMLAppliance
private key service.

Figure 114. NSS services by discipline

Chapter 20. Network security services 1151

An NSS XMLAppliance client uses the NSS XMLAppliance SAF access service to
perform SAF user authentication and access control checks. The NSS server
consults SERVAUTH profiles for access control checks. For details about these
profiles, see step 7d on page 1155 and step 7e on page 1156, under “Steps for
authorizing resources for NSS.”

The NSS XMLAppliance certificate service enables an NSS server to provide a list
of authorized certificates on its key ring. Those certificates can then be retrieved on
behalf of an NSS XMLAppliance client. Certificates for all NSS XMLAppliance
clients are stored on a single key ring. The NSS server must have access to this key
ring and must have access to the certificates on this key ring. When the NSS server
provides the NSS XMLAppliance certificate service, it consults SERVAUTH profiles
to verify that an NSS XMLAppliance client is authorized to access the certificates
involved. For details about these profiles, see step 7d on page 1155 and step 7e on
page 1156, in “Steps for authorizing resources for NSS.”

An NSS XMLAppliance client uses the NSS XMLAppliance private key service to
retrieve authorized private keys stored in the SAF database of the NSS server. The
private key service also enables the NSS server to perform RSA signature and RSA
decryption operations using private keys protected by Integrated Cryptographic
Service Facility (ICSF) on behalf of an NSS XMLAppliance client. An NSS
XMLAppliance client can use a retrievable private key to sign and decrypt XML
messages locally. XML appliances that are in less-trusted network zones can use a
centralized NSS server to perform critical RSA operations using ICSF-protected
private keys on behalf of the appliance. Certificates and private keys for all NSS
XMLAppliance clients are stored on a single key ring. The NSS server must have
access to this key ring and must have access to the certificates and private keys on
this key ring. Retrieval of the private key is not allowed if the private key is stored
in the ICSF public key data set (PKDS). When providing NSS XMLAppliance
private key service, the NSS server consults SERVAUTH profiles to verify that an
NSS XMLAppliance client is authorized to access the certificates and associated
keys involved. For details about these profiles, see step 7d on page 1155, step 7e on
page 1156, and step 7g on page 1157 under “Steps for authorizing resources for
NSS.”

Preparing to provide network security services
Before network security services can be provided, authorization to several
resources must be defined to the external security manager. This topic also
includes NSS server certificate label naming considerations, an NSS client
authorization example, information on configuring and controlling the NSS server,
and recovery considerations.

Steps for authorizing resources for NSS
Before you begin: RACF is used as the external security manager in the following
examples. RACF commands shown in these examples are also provided in the
EZARACF member of the SEZAINST dataset. In these examples, it is assumed that
the NSS server is running under the user ID NSSD.

Perform the following steps to authorize access to the appropriate resources:

1. Define and authorize the NSSD user ID.

The NSS server is a z/OS UNIX application that you can start from the z/OS
UNIX shell or from an MVS started procedure. Before starting the NSS
server, you must define the NSSD user ID to the external security manager

1152 z/OS V1R12.0 Comm Svr: IP Configuration Guide

with UID 0. If you start the NSS server from an MVS started procedure, the
NSSD user ID must also be authorized to the STARTED class.
Issue the following commands:
ADDUSER NSSD DFLTGRP(OMVSGRP) NOPASSWORD OMVS(UID(0) HOME(’/’))
RDEFINE STARTED NSSD.* STDATA(USER(NSSD))
SETROPTS RACLIST(STARTED) REFRESH
SETROPTS GENERIC(STARTED) REFRESH

2. Permit the NSSD user ID to SYS1.PARMLIB.

The NSS server uses the TCP/IP component trace (CTRACE) to perform
service-level tracing. The default NSS server component trace parmlib
member is stored in SYS1.PARMLIB. The NSSD user ID must be permitted to
access SYS1.PARMLIB.
Issue the following command:
PERMIT SYS1.PARMLIB ID(NSSD) ACCESS(READ)

3. Define key ring controls.

Certificates used by NSS clients are stored on a SAF key ring. The
RACDCERT command is used to manage a RACF key ring. The
IRR.DIGTCERT FACILITY class resource is used to control access to the
RACDCERT command. If these controls do not already exist, they must be
defined as follows:
RDEFINE FACILITY IRR.DIGTCERT.ADD UACC(NONE)
RDEFINE FACILITY IRR.DIGTCERT.ADDRING UACC(NONE)
RDEFINE FACILITY IRR.DIGTCERT.CONNECT UACC(NONE)
RDEFINE FACILITY IRR.DIGTCERT.GENCERT UACC(NONE)
RDEFINE FACILITY IRR.DIGTCERT.GENREQ UACC(NONE)

For details about these controls, see z/OS Security Server RACF Command
Language Reference.

4. Give the user ID of the administrator that will manage the NSS server's key
ring appropriate access to manage the key ring.
Issue the following commands:
PERMIT IRR.DIGTCERT.ADD CLASS(FACILITY) ID(userid) ACC(CONTROL)
PERMIT IRR.DIGTCERT.ADDRING CLASS(FACILITY) ID(userid) ACC(UPDATE)
PERMIT IRR.DIGTCERT.CONNECT CLASS(FACILITY) ID(userid) ACC(CONTROL)
PERMIT IRR.DIGTCERT.GENCERT CLASS(FACILITY) ID(userid) ACC(CONTROL)
PERMIT IRR.DIGTCERT.GENREQ CLASS(FACILITY) ID(userid) ACC(CONTROL)
PERMIT IRR.DIGTCERT.LIST CLASS(FACILITY) ID(userid) ACC(CONTROL)
PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(userid) ACC(UPDATE)

If you will issue the RACDCERT command using the NSSD user ID, READ
authority to the IRR.DIGTCERT.ADD, IRR.DIGTCERT.ADDRING,
IRR.DIGTCERT.GENREQ, and IRR.DIGTCERT.LISTRING resources is
sufficient. Authority requirements for the other resources remain the same. If
you will issue the RACDCERT command using a user ID other than the
NSSD user ID, you must provide appropriate access for the NSSD user ID to
its own key ring as follows:
PERMIT IRR.DIGTCERT.LIST CLASS(FACILITY) ID(NSSD) ACC(READ)
PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(NSSD) ACC(READ)

After you permit access to the various IRR.DIGTCERT resources, update the
FACILITY class as follows:
SETROPTS RACLIST(FACILITY) REFRESH

5. Optionally, permit the NSS server to the BPX.DAEMON FACILITY class
profile.
For information concerning the use of the BPX.DAEMON profile, see
“BPX.DAEMON FACILITY class profile” on page 43.

Chapter 20. Network security services 1153

If you decide to use this profile, permit the NSS server user ID to this profile
using the following command, where the userid value is the user ID under
which the NSS server runs:
PERMIT BPX.DAEMON CLASS(FACILITY) ID(userid) ACCESS(READ)

6. Enable the secured signon function.

The NSS server supports the use of PassTickets. To use this support, the
secured signon function must be enabled, and at least one profile must be
created for the NSS server.
The secured signon function of RACF is enabled by activating the
PTKTDATA class as follows:
SETROPTS CLASSACT(PTKTDATA)
SETROPTS RACLIST(PTKTDATA) REFRESH

Profiles in the PTKTDATA class control the use of the secured signon
function by an application. A secured signon application key is associated
with each profile. This key is stored in the external security manager's
database. When RACF is used as the external security manager, this key is
stored in a masked or encrypted state.
With RACF, you can use a secured signon application key that is controlled
at the following levels:
v All users who need access to the application
v A specific RACF group of users who need access to the application
v A specific RACF user, when connected to a specific RACF group
v A specific RACF user
The application name NSSD must be used when defining the secured signon
keys for the NSS server. Following is an example of a RACF command that
you can issue to assign a secured signon key that can be used by all NSS
clients authenticating to the NSS server:
RDEFINE PTKTDATA NSSD SSIGNON(KEYMASKED(E001193519561977)) UACC(NONE)

For specific information about enabling the secured signon function and
defining profiles to be used by the single signon function, see z/OS Security
Server RACF Security Administrator's Guide.

7. Define SERVAUTH profiles to authorize NSS clients to network security
services.
These profiles reside on the same system as the NSS server. Many of these
profiles are constructed using the name of an NSS client. NSS clients must
authenticate to the NSS server using a valid user ID and password, or a
valid user ID and PassTicket. This user ID must be given access to the
SERVAUTH profiles created on behalf of the NSS client.
For details about how to define the IKE daemon as an NSS client, see “Using
network security services” on page 1102.
Perform the following steps to authorize NSS clients:
a. Define a SAF user ID representing an NSS client to the external security

manager.
An NSS client must present valid credentials to the NSS server before
accessing any services. Valid credentials include a user ID and password,
or a user ID and PassTicket if secured signon is enabled. A SAF user ID
representing an NSS client must be defined to the external security
manager.
Issue the following command:
ADDUSER userid DFLTGRP(OMVSGRP) OMVS(UID(x))

1154 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Rules:

v Multiple NSS clients can use a single user ID. However, each NSS
client must have a unique client name.

v A SAF user ID must have an OMVS segment with either AUTOID or a
specific UID(x) defined for the NSSD to authenticate it as an NSS
client.

Guideline: Because SAF user IDs are used to authorize a client to the
NSS services, avoid sharing a single user ID across NSS disciplines.

b. If you choose to define an NSSD profile in the APPL class with
UACC(NONE), issue the following command to authorize each SAF user
ID to the NSSD application:
PERMIT NSSD CLASS(APPL) ID(userid) ACC(READ)
SETROPTS RACLIST(APPL) REFRESH

c. Authorize the user ID associated with an NSS client for each of the
network security services it will use.
To authorize an NSS client to use a network security service, you must
create a SERVAUTH resource profile for that service that represents the
NSS client. The user ID associated with the NSS client must be permitted
READ access to that profile. Table 50 shows the name of the SERVAUTH
profile for each service, where sysname is the name of the z/OS system
running the NSS server and clientname is the name by which the NSS
server knows the NSS client.

Table 50. SERVAUTH profile names for NSS

Service SERVAUTH profile name

IPSec certificate service EZB.NSS.sysname.clientname.IPSEC.CERT

IPSec remote management
service

EZB.NSS.sysname.clientname.IPSEC.NETMGMT

XMLAppliance certificate
service

EZB.NSS.sysname.clientname.XMLAPPLIANCE.CERT

XMLAppliance private key
service

EZB.NSS.sysname.clientname.XMLAPPLIANCE.PRIVKEY

XMLAppliance SAF access
service

EZB.NSS.sysname.clientname.XMLAPPLIANCE.SAFACCESS

You can authorize the NSS client to a SERVAUTH profile using the
following commands:
RDEFINE SERVAUTH profile_name UACC(NONE)
PERMIT profile_name (SERVAUTH) ID(nssclient) ACCESS(READ)
SETROPTS GENERIC(SERVAUTH) REFRESH
SETROPTS RACLIST(SERVAUTH) REFRESH

Tip: You can use a wildcard in the profiles to reduce the number of
profile entries that must be defined.

d. Create a SERVAUTH resource profile for each NSS IPSec client certificate
added to the NSS server's key ring, and give each NSS IPSec client's user
ID access to the profiles created for its own certificates.
The name of such a resource profile is
EZB.NSSCERT.sysname.mappedlabelname.HOST, where sysname is the name
of the z/OS system running the NSS server and mappedlabelname is the
mapped name of the certificate's label in the key ring. For details about
determining a certificate label's mapped name, see “NSS server certificate
label naming considerations” on page 1158.

Chapter 20. Network security services 1155

This can be accomplished with the following commands:
RDEFINE SERVAUTH EZB.NSSCERT.sysname.mappedlabelname.HOST UACC(NONE)
PERMIT EZB.NSSCERT.sysname.mappedlabelname.HOST CLASS(SERVAUTH) ID(userid) ACCESS(READ)
SETROPTS GENERIC(SERVAUTH) REFRESH
SETROPTS RACLIST(SERVAUTH) REFRESH

e. Create a SERVAUTH resource profile for each certificate authority (CA)
certificate that could be used by an NSS IPSec client, and give the NSS
client's user ID access to the profiles.
When the digital signature mode of authentication is used, an NSS IPSec
client can provide a remote security endpoint with information about
certificate authorities that are trusted by the NSS client. The remote
security endpoint should use this information as a hint to decide which
of its certificates to use when creating its signature.
By default, an NSS IPSec client sends a remote security endpoint
information about all the certificate authorities that the NSS IPSec client is
authorized to advertise. This can result in an NSS IPSec client sending a
large amount of data to a remote security endpoint. Use the CaLabel
parameter on the RemoteSecurityEndpoint statement to reduce the
amount of data sent to specific remote security endpoints. For details
about the RemoteSecurityEndpoint statement, see z/OS Communications
Server: IP Configuration Reference.
A SERVAUTH resource profile is used to authorize NSS IPSec clients to
use a CA. A SERVAUTH resource profile must be created for each CA
certificate that could be used by an NSS IPSec client. The name of such a
resource profile is EZB.NSSCERT.sysname.mappedlabelname.CERTAUTH,
where sysname is the name of the z/OS system running the NSS server
and mappedlabelname is the mapped name of the certificate's label in the
key ring. For details about determining a certificate label's mapped name,
see “NSS server certificate label naming considerations” on page 1158. An
NSS IPSec client's user ID must be given access to this profile before it
can use the corresponding CA certificate.
This can be accomplished with the following commands:
RDEFINE SERVAUTH EZB.NSSCERT.sysname.mappedlabelname.CERTAUTH UACC(NONE)
PERMIT EZB.NSSCERT.sysname.mappedlabelname.CERTAUTH CLASS(SERVAUTH) ID(userid) ACCESS(READ)
SETROPTS GENERIC(SERVAUTH) REFRESH
SETROPTS RACLIST(SERVAUTH) REFRESH

f. Create a SERVAUTH resource profile for each certificate that an NSS
XMLAppliance client could retrieve and give the user ID of the NSS
XMLAppliance client access to the appropriate profiles.
In contrast to the IPSec discipline, the XMLAppliance discipline does not
distinguish between host, site, or certificate authority certificates. For any
given certificate request, the NSS server first checks the
EZB.NSSCERT.sysname.mappedlabelname.HOST profile. If that check fails,
the server then checks the
EZB.NSSCERT.sysname.mappedlabelname.CERTAUTH profile. If the NSS
XMLAppliance client has read access to either profile, the server permits
access to the certificate resource. It is up to the NSS server administrator
to allow or deny access to each certificate, and it is up to the XML
appliance administrator to determine how each certificate should be used.
The user ID of an NSS XMLAppliance client must be given access to one
of these profiles before it can use the corresponding certificate. For
examples on how to define the required profiles and permit access, see
step 7d on page 1155 and step 7e, under “Steps for authorizing resources
for NSS” on page 1152. For details about determining the mapped name
of a certificate label, see “NSS server certificate label naming
considerations” on page 1158.

1156 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

g. Create a SERVAUTH resource profile for the private key of each
certificate to which an NSS XMLAppliance client requires access and give
the user ID of the NSS XMLAppliance client access to the profiles.
Use the SERVAUTH resource profile to authorize NSS XMLAppliance
clients to retrieve the private key from a certificate, and to locally
perform any RSA operations that are based on the private key or to make
ICSF calls requesting RSA operations on System z for ICSF-protected
keys. You must create a SERVAUTH resource profile for each private key
against which the XMLAppliance client needs to perform operations. The
name of such a resource profile is
EZB.NSSCERT.sysname.mappedlabelname.PRIVKEY, where sysname is the
name of the z/OS system running the NSS server and mappedlabelname is
the mapped name of the certificate label in the key ring. Ensure that the
user ID of an NSS XMLAppliance client has appropriate access to this
profile so that it can retrieve the private key or perform any RSA
operations that are based on the private key. This can be accomplished
with the following commands:
RDEFINE SERVAUTH EZB.NSSCERT.sysname.mappedlabelname.PRIVKEY UACC(NONE)
PERMIT EZB.NSSCERT.sysname.mappedlabelname.PRIVKEY CLASS(SERVAUTH) ID(userid) ACCESS(READ)
SETROPTS GENERIC(SERVAUTH) REFRESH
SETROPTS RACLIST(SERVAUTH) REFRESH

For details about determining the mapped name of a certificate label, see
“NSS server certificate label naming considerations” on page 1158.

h. Create the following SERVAUTH profiles to enable users to remotely
monitor (IPSEC.DISPLAY) or manage (IPSEC.CONTROL) NSS clients:
v EZB.NETMGMT.sysname.clientname.IPSEC.DISPLAY
v EZB.NETMGMT.sysname.clientname.IPSEC.CONTROL
For more information, see the information about the -z option of the
ipsec command in “NSS client authorization example” on page 1159. For
more details about managing network security, see z/OS Communications
Server: IP System Administrator's Commands. For details about the network
management interface, see z/OS Communications Server: IP Programmer's
Guide and Reference.

8. If you are using the NSS XMLAppliance private key service with
ICSF-protected private keys, authorize the NSS server to the Integrated
Cryptographic Service Facility (ICSF).
ICSF is required when using the RSA operations in the XMLAppliance
private key service. The XMLAppliance private key service uses ICSF in the
following ways:
v Encrypting signature data for the XMLAppliance private key service RSA

signature generation message flow.
v Decrypting data for the XMLAppliance private key service RSA decryption

message flow.
ICSF provides cryptography support through various cryptographic
hardware features. The cryptographic features that are available to your
applications depend on your processor or server model. For information
about which features are available on your hardware, see the information
about callable service support by hardware configuration in z/OS
Cryptographic Services ICSF Overview. For details about configuring ICSF, see
z/OS Cryptographic Services ICSF Administrator's Guide.
When using a cryptographic coprocessor, the callable ICSF service names that
are used by the XMLAppliance certificate service are as follows:
v CSNDDSG

Chapter 20. Network security services 1157

|

|
|
|
|
|

|
|

v CSNDPKD
Requirement: If you plan to use the RSA operations within the
XMLAppliance private key service, the NSS server must be permitted to
access the ICSF cryptographic services (CSFSERV). Use the following
commands to define the appropriate profiles in the CSFSERV class, give the
NSS server access to the profiles, activate the CSFSERV class, and refresh the
RACF profiles in storage:
RDEFINE service-name CLASS(CSFSERV) UACC(NONE)
PERMIT service-name CLASS(CSFSERV) ID(server-name) ACCESS(READ)
SETROPTS CLASSACT(CSFSERV)
SETROPTS RACLIST(CSFSERV) REFRESH

9. If XMLAppliance clients using the SAF access service are using certificates
for access checks, enable RACF certificate name filtering.
The NSS XMLAppliance SAF access service can use RACF certificate name
filtering to map an X.500 distinguished name to a RACF ID when
performing SAF access checks. The DIGTNMAP class must be active to
perform certificate name filtering. Activate the DIGTNMAP class with the
following commands:
SETOPS CLASSACT(DIGTNMAP)
SETROPTS RACLIST(DIGTNMAP) REFRESH

Create a certificate name filter for each mapping of an X.500 distinguished
name to a RACF ID using the following commands:
RACDCERT ID(userid) MAP SDNFILTER(’x500dn’)
SETROPTS RACLIST(DIGTNMAP) REFRESH

For specific details on enabling RACF certificate name filtering, see z/OS
Security Server RACF Security Administrator's Guide.

10. The NSSD uses ICSF callable services for ECDSA digital signature support.
The services it uses are the PKCS11 private key sign service and the PKCS11
public key verify service. You can control access to these services with RACF,
using the CSFSERV general resource class, and the CSF1PKS and CSF1PKV
profiles. If the CSFSERV class is defined, and the CSF1PKS and CSF1PKV
profiles are defined, grant the NSSD user ID read access to the defined
profiles using the following commands:
PERMIT CSF1PKS CLASS(CSFSERV) ID(NSSD) ACCESS(READ)
PERMIT CSF1PKV CLASS(CSFSERV) ID(NSSD) ACCESS(READ)
SETROPTS RACLIST(CSFSERV) REFRESH

See z/OS Cryptographic Services ICSF Administrator's Guide for more
information about the CSFSERV general resource.

NSS server certificate label naming considerations
During the processing of certificate operations, the NSS server validates that an
NSS client is authorized to access the certificates required to complete the
operation. The NSS server consults SERVAUTH profiles to perform this validation.
The profile names consulted by the NSS server are dynamically constructed by the
NSS server using the following information:
v The system name on which the NSS server is running
v The label of the certificate this is used during a certificate operation
v The certificate operation that is being performed:

– When processing a request to create a signature, the format of the profile that
is consulted is EZB.NSSCERT.sysname.mappedlabelname.HOST.

– When processing a request to obtain a list of CA certificates, the format of the
profile consulted is EZB.NSSCERT.sysname.mappedlabelname.CERTAUTH.

1158 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|
|
|
|
|
|
|

|
|
|

|
|

– When processing a request to retrieve a private key that is not protected by
Integrated Cryptographic Service Facility (ICSF) or to use an ICSF-protected
private key, the format of the profile consulted is
EZB.NSSCERT.sysname.mappedlabelname.PRIVKEY.

The NSS server creates a mapped label name using the following algorithm:
v All lowercase alphabetic characters in a certificate's label are changed to

uppercase. This is necessary because the class descriptor table for the
SERVAUTH profile permits only uppercase profile names.

v The asterisk (*), percent sign (%), and ampersand (&) are replaced by a dollar
sign ($). This is necessary because these characters have special meaning when
generic profile processing is active.

v All embedded blanks are also replaced by a dollar sign ($). This is necessary
because blanks are not allowed in SERVAUTH profile names.

Rules:

v The administrator of the NSS server must define profiles using the mapped label
names generated by this algorithm. When the certificate's label name contains
lowercase characters, the administrator must change each lowercase character to
uppercase. When the certificate's label name contains the characters *, %, &, or a
blank character, the administrator must replace each occurrence with a dollar
sign ($) character.

v When a certificate label contains the period character (.), ensure that the
corresponding SERVAUTH profile contains matching qualifiers. For example, if
you request a certificate with the label CERTIFICATE.123.ABC for a private key
operation, the NSS server checks a SERVAUTH profile named
EZB.NSSCERT.sysname.CERTIFICATE.123.ABC.PRIVKEY; defining a SERVAUTH
profile named EZB.NSSCERT.sysname.CERTIFICATE.*.PRIVKEY does not permit
access to the private key of the certificate.

Using this algorithm, it is possible that multiple certificates can result in the same
mapped name. This is shown in Table 51.

Table 51. Mapped label names

Label Mapped label

CERTIFICATE_123 CERTIFICATE_123

Certificate_123 CERTIFICATE_123

CERTIFICATE 123 CERTIFICATE$123

CERTIFICATE%123 CERTIFICATE$123

CERTIFICATE*123 CERTIFICATE$123

CERTIFICATE&123 CERTIFICATE$123

CERTIFICATE$123 CERTIFICATE$123

Tip: When creating certificates for the NSS server's key ring, avoid using lowercase
alphabetic characters, blanks, and the characters *, %, and & in the certificate's
label.

NSS client authorization example
Consider the configuration shown in Figure 115 on page 1160.

Chapter 20. Network security services 1159

|

|
|
|
|
|
|
|

In this example, note the following:
v Stack STACK1 is defined as an NSS IPSec client in the IKE daemon

configuration file on system SYSTEMA. The client name for STACK1 is
SYSTEMA_STACK1. The user ID associated with SYSTEMA_STACK1 is A1S1.
The user ID A1S1 must be defined to the external security manager on system
SYSTEMB.

v Client SYSTEMA_STACK1 is configured to use the NSS certificate service. On
system SYSTEMB, the user ID A1S1 must be given read access to the following
SERVAUTH profile:
EZB.NSS.SYSTEMB.SYSTEMA_STACK1.IPSEC.CERT

v Client SYSTEMA_STACK1 is configured to use the NSS remote management
service. On system SYSTEMB, the user ID A1S1 must be given read access to the
following SERVAUTH profile:
EZB.NSS.SYSTEMB.SYSTEMA_STACK1.IPSEC.NETMGMT

v The NSS server on system SYSTEMB is configured to use the key ring
EnterpriseRing. This key ring is owned by the NSSD user ID. Certificates for all
NSS IPSec clients are stored on this key ring.
The NSS server's AT-TLS policy must also specify a key ring from which to
obtain the NSS server's personal certificate for use during the TLS negotiation
with an NSS client. The NSS server's AT-TLS policy can specify the same key
ring as the NSS server's configuration file, or it can specify a different key ring.
In either case, the AT-TLS policy should specify which personal certificate to use
to represent the NSS server by using the CertificateLabel parameter on the
TTLSConnectionAdvancedParms statement. If this parameter is not configured,
AT-TLS attempts to use the default certificate, if one exists, on the configured
key ring. If no default certificate exists on the configured key ring and the
CertificateLabel parameter is not configured, the TLS negotiation between the
NSS client and the NSS server will fail.
The IKE daemon's AT-TLS policy also specifies a key ring. This key ring is used
to locate the certificate that was used to sign the NSS server's personal

Figure 115. NSS client authorization example

1160 z/OS V1R12.0 Comm Svr: IP Configuration Guide

certificate. If the IKE deamon's AT-TLS key ring does not contain this signing
certificate, TLS negotiation will fail to verify the NSS server's certificate and the
TLS negotiation between the NSS client and the NSS server will fail.
In this example, there is one Personal certificate stored on the key ring for client
SYSTEMA_STACK1. On system SYSYEMB, the user ID A1S1 must be given read
access to the following SERVAUTH profile before the NSS server can use this
certificate to create a signature for client SYSTEMA_STACK1:
EZB.NSSCERT.SYSTEMB.A1S1_CERT.HOST

In this example, there is also one CertAuth certificate stored on the key ring that
should be advertised to IPSec peers by client SYSTEMA_STACK1. On system
SYSYEMB, the user ID A1S1 must be given read access to the following
SERVAUTH profile before the NSS server can inform client SYSTEMA_STACK1
that it can advertise this CERTAUTH certificate to its peers:
EZB.NSSCERT.SYSTEMB.CA.CERTAUTH

v The user LARRY will issue the ipsec command with the -z option to monitor
and manage client SYSTEMA_STACK1. On system SYSTEMB, the user ID
LARRY must be given read access to the following SERVAUTH profiles:
EZB.NETMGMT.SYSTEMB.SYSTEMA_STACK1.IPSEC.DISPLAY
EZB.NETMGMT.SYSTEMB.SYSTEMA_STACK1.IPSEC.CONTROL

The user LARRY will also issue the ipsec command with the -x option to display
information about the NSS server. On system SYSTEMB, the user ID LARRY
must be given read access to the following SERVAUTH profile:
EZB.NETMGMT.SYSTEMB.SYSTEMB.NSS.DISPLAY

In addition, the user LARRY will issue the ipsec command with the -w option to
display information from the IKE daemon about NSS IPSec clients. On system
SYSTEMA, the user ID LARRY must be given read access to the following
SERVAUTH profile:
EZB.NETMGMT.SYSTEMA.SYSTEMA.IKED.DISPLAY

Tip: A wildcard can be used in the profiles to reduce the number of profile
entries that must be defined.

NSS server configuration considerations
This topic describes configuration issues specific to the NSS server.

Run-time environment
The NSS server is a z/OS UNIX application; it requires the z/OS UNIX file system.
The NSS server can be started from an MVS started procedure, from the z/OS
shell, with the AUTOLOG statement in the TCP/IP profile, or by using the
COMMNDxx member of PARMLIB. The NSS server must be started by a
RACF-authorized user ID, and it must reside in an APF-authorized library. For
more information about how to start the NSS server, see “Starting the NSS server”
on page 1170.

The NSS server uses the MVS operator's console, syslogd, CTRACE, and STDOUT
for its logging and tracing. The MVS operator's console and STDOUT are used for
major events such as initialization, termination, and error conditions. Syslogd is
used for logging events related to the processing of NSS requests. CTRACE is used
for detailed tracing and debugging.

The NSS server uses a standard message catalog. The message catalog must be in
the UNIX file system. The directory location for the message catalog path is set by
the environment variables NLSPATH and LANG.

Chapter 20. Network security services 1161

The NSS server uses ICSF and System SSL for encryption and key management
services to provide certificate services to NSS IPSec clients. If the NSS IPSec clients
are configured in FIPS 140 mode, you must also configure the NSS server in FIPS
140 mode so that it invokes ICSF and System SSL in FIPS 140 mode. This
configuration is required for the entire system to be in FIPS 140 mode.

Language Environment run-time considerations
When starting the NSS server from a started or cataloged procedure, you should
typically start it directly from the SEZALOAD data set using PGM=EZANSSD.
However, there is a situation in which you might want to start the NSS server
using BPXBATCH.

When the NSS server is started using PGM=EZANSSD, the STDENV DD card, if
used, is passed directly to the NSS server program. Language Environment does
not get access to the STDENV environment variables. As a result, any Language
Environment run-time options set in the STDENV DD data set using the
_CEE_RUNOPTS environment variable are ignored. In this case, Language
Environment run-time options must be passed on the PARM parameter, and the
options must be specified before any NSS server options. However, the PARM
parameter allows a maximum of 100 characters. If the Language Environment
run-time options plus NSS server parameters that you want exceed 100 characters,
consider using BPXBATCH to start the NSS server. When PGM=BPXBATCH is
used, the Language Environment variable _CEE_RUNOPTS can be included on the
STDENV DD card to specify run-time options in excess of 100 characters long.

Steps for configuring the NSS server
Perform the following steps to configure the NSS server:

1. Create the NSS server configuration file.

Use the IBM Configuration Assistant for z/OS Communications Server to
establish NSS server settings. Establish the settings using the NSS perspective
of the Configuration Assistant, and then use the Install Configuration File
button on the Image Information tab to store the generated NSS server
configuration file on the z/OS system.
Tip: A sample configuration file is provided in /usr/lpp/tcpip/samples/
nssd.conf.
The following search order is used by the NSS server to locate the
configuration data set or file:
a. If the environment variable NSSD_FILE has been defined, the NSS server

uses the value as the name of an MVS data set or z/OS UNIX file to access
the configuration data.

b. /etc/security/nssd.conf
You can specify statements in the configuration file using a variety of EBCDIC
code pages. Use the NSSD_CODEPAGE environment variable to specify the
code page that you want to use. The default code page is IBM-1047.
The NSS server configuration file allows the URL of a certificate or certificate
bundle that resides on an HTTP Web server to be associated with the label of a
certificate on the key ring of the network security server. See “Using hash and
URL certificate encoding types” on page 1166 for additional details.

2. Optionally, set the _BPX_JOBNAME environment variable.

When starting the NSS server from the z/OS shell, you should set the
environment variable _BPX_JOBNAME. This enables a specific job name to be
used when reserving ports for the NSS server. This name can also be used

1162 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|

|
|
|
|

with the STOP or MODIFY console commands. For more information about
_BPX_JOBNAME, see z/OS UNIX System Services Planning.

3. Authorize the NSS server to the external security manager, as described in
“Steps for authorizing resources for NSS” on page 1152.

4. Configure and start syslogd.

The NSS server uses the local4 facility when writing messages to syslogd. For
performance purposes, syslogd should use zSeries File System as its
underlying file system. For more information about syslogd, see “Configuring
the syslog daemon” on page 185.

5. Optionally, update the NSS server environment variables.

The following environment variables are used by the NSS server and can be
tailored to a particular installation.

NSSD_CODEPAGE
Use the NSSD_CODEPAGE variable to specify the EBCDIC code page
to be used when reading the configuration file. For more information
about NSSD environment variables and the supported code pages, see
z/OS Communications Server: IP Configuration Reference.

NSSD_CTRACE_MEMBER
Used by the NSS server to locate a parmlib member for NSS server
CTRACE customization. For more information about the TCP/IP
services component trace for the NSS server, see z/OS Communications
Server: IP Diagnosis Guide.

NSSD_FILE
Used by the NSS server in the search order for the NSS server
configuration file. For details about the search order used for locating
this configuration file, see step 1 on page 1162.

NSSD_PIDFILE
Used by the NSS server in the search order for the NSS server PID file.
The search order for the NSS server PID file is as follows:
a. NSSD_PIDFILE environment variable
b. /etc/nssd.pid

6. Set up the NSS server key ring.

The NSS server's key ring serves a similar purpose as the IKE daemon's key
ring. It contains certificates that are used in the process of creating and
verifying signatures that are exchanged during digital signature authentication.
A personal certificate or site certificate contained on the key ring of the NSS
server represents the identity of an NSS IPSec client, whereas a certificate
contained on the IKE daemon's key ring represents a local stack's identity.
Certificates for all NSS IPSec clients must reside on this one key ring.
If a personal certificate or site certificate that is contained on the key ring of
the NSS server is signed by a certificate authority, then the certificate of that
certificate authority must also be connected to the key ring of the NSS server.
If the certificate authority is a subordinate certificate authority (such as one
that was created by another certificate authority) you should ensure that all
the certificate authority certificates that make up the trust chain are connected
to the key ring of the NSS server.
The same commands that are used to create and manage the IKE daemon's
key ring also apply to the NSS server's key ring. For examples of how to create
and manage the IKE daemon's key ring, see Appendix E, “Steps for preparing
to run IP security,” on page 1505.

Chapter 20. Network security services 1163

|
|
|
|
|
|
|

You must create a SERVAUTH resource profile for each NSS IPSec client
certificate that is added to the key ring of the NSS server. For details, see step
7d on page 1155.

7. Update the TCP/IP profile and policy files.

You should update the TCP/IP profile to reserve the port on which the NSS
server will listen. If IP security is enabled, consider updating the default IP
filter rules in the TCP/IP profile to enable the NSS server to communicate
with NSS clients. The IP security policy defined in Policy Agent configuration
files must be updated to enable the NSS server to communicate with NSS
clients. AT-TLS should be enabled and rules should be defined to protect NSS
server communication with NSS clients.
For additional details concerning these tasks, see “TCP/IP stack
considerations.”

8. Update the NSS server cataloged procedure (if starting as a started procedure).

If the NSS server is to be started by a procedure, create the cataloged
procedure by copying the sample in SEZAINST(NSSD) to your system. Specify
NSS server parameters and change the data set names to suit your local
configuration. For a copy of the sample, see z/OS Communications Server: IP
Configuration Reference.

If these steps are completed successfully, you should be able to start the NSS
server. For details, see “Starting the NSS server” on page 1170.

TCP/IP stack considerations: This topic describes TCP/IP stack considerations,
including port reservation, IP filtering, and AT-TLS policy.

Port reservation: By default the NSS server uses TCP port 4159, but this value is
configurable using the Port parameter of the NssConfig statement in the NSS
server configuration file. For additional details about the NssConfig statement, see
z/OS Communications Server: IP Configuration Reference.

Tip: Update the PORT statement in the TCP/IP profile to reserve the port that the
NSS server will use when listening for client connections.
PORT

4159 TCP NSSD

IP filtering: The NSS server communicates with NSS clients using the TCP
protocol. The NSS server binds to all stacks using either INADDR_ANY or
in6addr_any as the IP address. IP filters rules must be defined for any IP security
stacks that contain an interface to which the NSS client will connect (for details
about configuring the IKE daemon as an NSS client, see Chapter 19, “IP security,”
on page 923). Remote IPSec clients use an ephemeral port when connecting to the
NSS server. Ephemeral ports are generally in the range 1024–65355.

Two types of IP filter policy can be defined for a z/OS stack:
v You can define a default IP filter policy in the TCP/IP profile. Updating default

IP filter policy to permit communications between the NSS server and NSS
clients is optional. Default IP filter policy is in effect only when IP security filter
policy cannot be loaded or when the ipsec -f default command has been issued.
For details about defining default IP filter policy in the TCP/IP profile, see z/OS
Communications Server: IP Configuration Reference.
Following is a default policy containing IPSECRule definitions that allow IPv4
and IPv6 NSS server traffic with NSS clients:

1164 z/OS V1R12.0 Comm Svr: IP Configuration Guide

IPSEC LOGENable
; Rule SrcAddr DstAddr Logging Protocol SrcPort DestPort Routing Secclass

; OSPF protocol used by Omproute
IPSECRule * * NOLOG PROTO OSPF

; IGMP protocol used by Omproute
IPSECRule * * NOLOG PROTO 2

; DNS queries to UDP port 53
IPSECRule * * NOLOG PROTO UDP SRCPort * DESTport 53

; Administrative access
IPSECRule * 9.1.1.2 LOG SECCLASS 100

; Network security services (NSS) server access to the NSS client
IPSECRule * * LOG TCP SRCPort 4159 DESTport *

; Network security services (NSS) server access to the NSS client
IPSEC6Rule * * LOG TCP SRCPort 4159 DESTport *

ENDIPSEC

Rule: The SRCport value in the filter rules must include the value specified on
the port parameter of the NssConfig statement in the NSS server configuration
file.

v You can define an IP security filter policy in Policy Agent configuration files. IP
security filter policy must be updated to permit communications between the
NSS server and NSS clients.
For details about defining IP security policy files, see the Policy Agent and
policy applications topic in z/OS Communications Server: IP Configuration
Reference.
An example of an IpFilterRule statement for IPv4, an IpFilterRule statement for
IPv6, and an IpGenericFilterAction statement that allows NSS clients to
communicate with the NSS server is as follows:
IpFilterRule NssTrafficIPv4

{
IpSourceAddr all4
IpDestAddrSet all4
IpService
{

SourcePortRange 4159
DestinationPortRange 1024 65535
Protocol tcp
Direction bidirectional InboundConnect
Routing local

}
IpGenericFilterActionRef permit-nolog

}

IpFilterRule NssTrafficIPv6
{

IpSourceAddr all6
IpDestAddrSet all6
IpService
{

SourcePortRange 4159
DestinationPortRange 1024 65535
Protocol tcp
Direction bidirectional InboundConnect
Routing local

}
IpGenericFilterActionRef permit-nolog

}

IpGenericFilterAction permit-nolog

Chapter 20. Network security services 1165

{
IpFilterAction permit
IpFilterLogging no

}

Rule: The DestinationPortRange value on the IpService statements must include
the value specified on the port parameter of the NssConfig statement in the NSS
server configuration file.

AT-TLS policy: Communications between the NSS server and NSS clients must be
secured using Application Transparent Transport Layer Security (AT-TLS). You
must define AT-TLS rules to secure this communication. Enable AT-TLS processing
for a stack by specifying the TTLS parameter on the TCPCONFIG statement in the
TCP/IP profile. Specific AT-TLS policy is configured in Policy Agent configuration
files. For details about enabling AT-TLS and configuring AT-TLS policy, see
Chapter 22, “Application Transparent Transport Layer Security data protection,” on
page 1193.

Tip: Define AT-TLS policy such that only cipher suites requiring TLS encryption
are exchanged with NSS clients. Failure to restrict the cipher suites to those
requiring encryption can result in sensitive information flowing in the clear across
an untrusted network.

Rule: You must define AT-TLS policy for each stack through which the NSS server
will communicate with an NSS client.

Requirement: The NSS server acts as the server during an SSL handshake. To act
in the server role of an SSL handshake, the NSS server must have access to a
private key and certificate verifying its ownership of that private key. For
information about creating and managing keys and certificates for servers using
AT-TLS, see Appendix B, “TLS/SSL security,” on page 1461.

A sample AT-TLS policy is located in /usr/lpp/tcpip/samples/pagent_TTLS.conf.

Rule: The LocalPortRange value on the TTLSRule statement must include the
value specified on the port parameter of the NssConfig statement in the NSS
server configuration file.

Using hash and URL certificate encoding types
During an IKE flow, security endpoints can authenticate each other by exchanging
certificate information in certificate payloads and by performing digital signature
operations on that certificate information. When the IKED negotiates an IKEv2
phase 1 Security Association on behalf of a network security client, the IKED uses
the network security server for these digital signature operations. Encoded
certificate information that is received from a remote security endpoint is
forwarded to the network security server. Encoded certificate information that is
sent to a remote security endpoint by the IKED is obtained from the network
security server.

There are several encoding types defined for use in IKEv1, but the only encoding
type that must be supported by an IKEv1 implementation is an X.509 certificate
signature. Two additional certificate encoding types must be supported by an
IKEv2 implementation:
v Hash and URL of an X.509 certificate
v Hash and URL of an X.509 bundle

1166 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|
|
|
|
|
|
|
|
|

|
|
|
|

|

|

Generally a hash and URL of a certificate or certificate bundle is considerably
smaller than the certificate or the bundle that it represents. Less data is exchanged
between IKE peers and between the IKED and the network security server.
Although smaller message sizes might improve the efficiency of network resources,
using hash and URL encoding requires more processing. The NSSD must
communicate with an HTTP server to retrieve the certificate using the URL, and it
must validate the certificate using the hash. This communication, when needed,
increases the amount of time it takes to complete an IKEv2 phase 1 negotiation.

If you want the NSSD to create hash and URL certificates to send to peers, you
must create files on an HTTP server that contain the certificates and the certificate
bundles. You must also include the URLs of those files in the NSSD configuration
file. See “Enabling the NSSD to generate hash and URL certificate encoding.”

Rule: Even if you put a certificate or a certificate bundle on an HTTP server and
add the URLs to the NSSD configuration file, you still need to store that certificate
on the key ring of the NSSD.

The NSSD can accept hash and URL encoded certificates that it receives from its
peers. In that case, the NSSD uses the URLs sent by the peers to locate the
certificates. The NSSD caches data that it retrieves from an HTTP server using a
URL. See “Enabling the NSSD to process received hash and URL certificate
encoding” on page 1168.

Even when URL information is configured for the NSSD, it is ultimately the
responsibility of the network security client to decide whether the network security
server should use hash and URL encoding. See “Controlling the use of hash and
URL certificate encoding” on page 1168.

Enabling the NSSD to generate hash and URL certificate
encoding
To enable the NSSD to generate hash and URL certificate encoding, perform the
following steps:
1. Export the certificates in CERTDER format from RACF.

Use the RACDCERT EXPORT command with the CERTDER format option to
create a data set that contains the binary DER encoding of a certificate on a key
ring. If the HTTP server is running on the local system, copy the data set to the
location specified by the CertificateURL parameter value. If the HTTP server is
running on a remote system, transfer the data set to the appropriate location
using a utility such as FTP. For more details about the RACDCERT command,
see z/OS Security Server RACF Command Language Reference.
Tip: Do not export the private key when you export the certificate from RACF.

2. Populate the HTTP server with exported certificates.
3. Identify the resources to the NSSD using the CertificateURL parameter.

The CertificateURL parameter in the configuration file of the NSS server
associates a certificate on the key ring of the NSS server with a URL that
identifies an HTTP server and a file on that server that contains the binary DER
encoding of the certificate. For more details about the CertificateURL parameter,
see z/OS Communications Server: IP Configuration Reference.

4. Create the certificate bundles that you need by issuing the certbundle
command.
Use the certbundle command to create a file or data set that contains a
certificate bundle. If the HTTP server is running on the local system, copy the
file or data set to the location specified by the CertificateBundleURL parameter

Chapter 20. Network security services 1167

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|

|
|
|
|
|
|
|

|

|

|

|
|
|
|
|

|
|

|
|
|

value. If the HTTP server is running on a remote system, transfer the file or
data set to the appropriate location using a utility such as FTP. For more details
about the certbundle command, see z/OS Communications Server: IP System
Administrator's Commands. For more details about creating certificate bundles,
see “Creating certificate bundles.”

5. Populate the HTTP server with the certificate bundle files.
6. Identify the resources to the NSSD using the CertificateBundleURL parameter.

The CertificateBundleURL parameter in the configuration file of the network
security server associates a certificate on the key ring of the network security
server with a URL that identifies an HTTP server and a file on that server that
contains the certificate in a certificate bundle. For more details about the
CertificateBundleURL parameter, see z/OS Communications Server: IP
Configuration Reference.

Enabling the NSSD to process received hash and URL certificate
encoding
To enable the NSSD to process received hash and URL certificate encoding,
perform the following steps:
1. Ensure that HTTP traffic is not impeded by IP filter rules.

Tip: If IP filtering is enabled on the system where the network security server
is running, ensure that the correct filter rules are in place to allow
communication with the HTTP servers that are identified on a CertificateURL
or CertificateBundleURL, as well as any HTTP servers used by the remote
security endpoint of the network security client. This communication typically
uses the TCP protocol with an ephemeral source port and a destination port of
80.

2. Use the URLCacheInterval parameter on the IPSecDisciplineConfig statement in
the NSSD configuration file to determine the maximum amount of time that
URL data is cached before being re-fetched from an HTTP server. For more
details about the URLCacheInterval parameter, see z/OS Communications Server:
IP Configuration Reference.

Controlling the use of hash and URL certificate encoding
To control the use of hash and URL certificate encoding, configure IP security
policies to accept hash and URL encoded certificates by setting the
CertificateURLLookupPreference parameter on the KeyExchangePolicy and
KeyExchangeAction statements in the IP security policy configuration file of
network security clients. For more details about the
CertificateURLLookupPreference parameter on the KeyExchangePolicy and
KeyExchangeAction statements, see z/OS Communications Server: IP Configuration
Reference.

Creating certificate bundles
Certificate bundles are used to store a group of related certificate information. A
certificate bundle contains zero or more certificates and zero or more certificate
revocation lists (CRLs). When an IKEv2 negotiation uses a digital signature
authentication method, this certificate information can be exchanged using a
certificate bundle. When information is exchanged using a certificate bundle, a
URL that identifies the certificate bundle and a hash of the data in the certificate
bundle is sent to the remote security endpoint. The remote security endpoint then
retrieves the certificate bundle from an HTTP server, and uses the bundle when it
validates the digital signature.

1168 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|

|

|

|
|
|
|
|
|

|
|
|
|

|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

A certificate bundle can hold in a single location all relevant information about an
entire trust chain. The following types of information can be included in a
certificate bundle:
v The certificate that was used to create a digital signature
v The certificates of certificate authorities in the trust chain
v Certificate revocation lists (CRLs)

Although consolidating this information in one place has advantages, consolidation
might cause the remote security endpoint to retrieve unneeded information. Often
the remote security endpoint already has knowledge of most of the certificates in
the trust chain and is capable of retrieving CRL information using another method.
In such cases, it might be more efficient to use individual certificates, rather than a
certificate bundle.

You can use the certbundle command to create one or more files, each of which
contains one certificate bundle. A certificate bundle options file is required as input
to the certbundle command. The certificate bundle options file identifies how
many certificate bundles are created, as well as the contents of each certificate
bundle.

Guidelines:

v All certificate information in a certificate bundle file should be for the same trust
chain.

v You should not include CRL information in a certificate bundle except when
there is no other way for the remote security endpoint to retrieve the CRL
information. Because certificate authorities periodically issue new CRLs, CRL
information that is stored in a certificate bundle must be constantly updated to
contain the most recent CRL information.

Rule: Do not put the certificate for the root certificate authority in a certificate
bundle. An IKE implementation cannot accept a certificate for the root certificate
authority from an untrusted source and, because certificate bundles are considered
an untrusted source, any root certificates they contain are unusable. In addition,
putting this certificate in the certificate bundle needlessly increases the size of the
certificate bundle.

Steps for creating certificate bundles
Before you begin: Obtain from the certificate authority any certificate revocation
lists (CRLs) that you want to put in a certificate bundle.

Perform the following steps to create certificate bundles:
1. Store the CRLs that you are going to include in a certificate bundle in a file or

data set.
2. Create a certificate bundle options file. See The z/OS UNIX certbundle

command options file in z/OS Communications Server: IP System Administrator's
Commands for more information.

3. For each certificate bundle that you are creating, define a CertBundleOptions
statement:
a. Use the KeyRing parameter to identify the key ring containing any

certificates that you want to include.
b. Use the CertificateChain parameter to specify the label of the certificate that

is lowest in any complete trust chain that you want to include (excluding
the root CA). The CertificateChain parameter generates a certificate bundle
file that contains an optimal set of certificates.

Chapter 20. Network security services 1169

|
|
|

|

|

|

|
|
|
|
|
|

|
|
|
|
|

|

|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|

|

|
|

|
|
|

|
|

|
|

|
|
|
|

c. Use the CertificateLabel parameter to specify the label of any individual
certificates that you want to include. Use the CertificateLabel parameter
only when you need to include fewer certificates than the entire chain.

d. Use the CRLFile parameter to identify the files that contain any CRLs that
you want to include.

e. Use the BundleFile parameter to identify the name of the certificate bundle
file that you are creating.

4. Provide read access to the key rings that are specified in the certificate bundle
options file to the user ID under which the certbundle command is issued. See
z/OS Security Server RACF Command Language Reference for details concerning
access to key rings.

5. Issue the certbundle command, specifying the certificate bundle options file
that you just created.

Controlling the NSS server
This topic describes starting and stopping the NSS server, modifying the
configuration file, and displaying configuration file parameters.

Starting the NSS server
The NSS server can be started in the following ways:
v Using an MVS procedure from the MVS operator console. A sample start

procedure is provided in SEZAINST(NSSD).
v From the z/OS shell, by starting OMVS and then issuing the nssd command.
v Using the COMMNDxx member of PARMLIB. This allows the NSS server to be

automatically started when the system is IPLed. For information about the use
and configuration of the COMMNDxx member of PARMLIB, see z/OS MVS
Initialization and Tuning Reference.

v Using the AUTOLOG statement in the TCP/IP profile.

Tips:

v You should not start the NSS server using the AUTOLOG statement in a stack's
profile. If the NSS server is listed in a stack's AUTOLOG statement, the server is
cancelled if it is already running when that stack starts. This results in the NSS
server losing any cached information that it has in place for NSS clients
previously connected through all stacks, and could increase the overall recovery
time when a TCP/IP stack recycles.

v If you start the NSS server from the z/OS shell and you stop the shell
environment from scrolling, then when the nssd command needs to display data
to the shell, the NSS server might stop and wait indefinitely for the shell to
scroll and make output buffer space available for the data.

v When running from an MVS procedure, set the environment variables using the
STDENV DD statement in the NSS server procedure.

Restriction: Only one instance of the NSS server can run on a z/OS image. If you
attempt to start a second instance, the NSS server will fail.

Stopping the NSS server
Stop the NSS server from MVS by issuing the following command:
STOP procname

If the NSS server was started from a cataloged procedure, the procname value is the
member name of that procedure. If the NSS server was started from the z/OS shell
and the environment variable _BPX_JOBNAME was set, the procname value is the

1170 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|

|
|

|
|

|
|
|
|

|
|

same as the _BPX_JOBNAME value. If the NSS server was started from the z/OS
shell and _BPX_JOBNAME was not set, the procname value is useridX, where X is
the sequence number set by the system. To determine the sequence number, from
the ISPF LOG window on TSO, issue the following:
/d omvs,u=userid

This command displays the programs running under the specified user ID. For
more information about _BPX_JOBNAME, see z/OS UNIX System Services Planning.

To stop the NSS server from the z/OS shell, issue the kill command (from a
superuser ID) to the process ID (PID) that is associated with the NSS server. By
default, the NSS server PID is recorded in /etc/nssd.pid. You can change the
default location using the NSSD_PIDFILE environment variable.

Using the NSS server MODIFY command
The NSS server provides a modify command to do the following:
v Reread the configuration file.

Use the MODIFY procname,REFRESH command to flush all cached URLs and
reread the NSS server configuration file. Not all NSS server configuration
parameters can be updated using this command. For information about which
parameters can be dynamically changed, see the parameter descriptions for the
NssConfig and IPSecDisciplineConfig statements in z/OS Communications Server:
IP Configuration Reference.

v Display the configuration file parameters.
Use the MODIFY procname,DISPLAY command to display configuration values
currently in use by the NSS server.

v Display the contents of the URL cache.
Use the MODIFY procname,DISPLAY,URLCACHE command to display the
current contents of the URL data cache maintained by the NSS server.

For more information on the MODIFY command, see z/OS Communications Server:
IP System Administrator's Commands.

NSS server failover considerations
NSS IPSec clients can use the NSS certificate service when negotiating phase 1
Security Associations. Network monitoring applications can use the NSS remote
management service to display information about NSS IPSec clients. The NSS
server should be treated as an application that requires high availability, an
application that is able to recover quickly from an outage that impacts the ability
of the NSS server to respond to IPSec clients.

Recovery configurations for the NSS server include the following:
v For recovery of NSS server workload by another NSS server within a sysplex,

configure NSS IPSec clients to connect to the NSS server on a non-distributed
dynamic VIPA. TCP/IP stacks configured as backup for the dynamic VIPA must
have the necessary external security manager definitions and certificates to
support the NSS IPSec clients, and an NSS server must be running on the z/OS
system hosting the TCP/IP stack configured as backup.
Guideline: Do not configure NSS IPSec clients to connect to a distributed DVIPA
address on the NSS server. If a distributed DVIPA is used, the ipsec command
and IPSec NMI can manage only NSS IPSec clients that have been distributed to
the system on which the ipsec command is being run or to the system on which
the IPSec NMI is invoked.

Chapter 20. Network security services 1171

|

|

|

|
|

v Alternatively, you can configure an IKE daemon running as an NSS IPSec client
to connect to a backup NSS server with the NetworkSecurityServerBackup
parameter on the IkeConfig statement in the IKE daemon configuration file.
When the IKE daemon is unable to connect to the primary NSS server, or when
it loses its connection with the primary server, the IKE daemon attempts to
connect to the server configured as backup. This recovery configuration can be
used regardless of sysplex configurations. The backup server must be configured
with all necessary external security manager definitions and certificates to
support the NSS IPSec clients. For additional details about the IkeConfig
statement, see z/OS Communications Server: IP Configuration Reference.

NSS server capacity considerations
A single NSS server instance can support a maximum of 500 concurrent NSS client
connections, in addition to 10 concurrent NMI client connections.

NSS server certificate revocation support
The NSS server supports the checking of certificate revocation lists (CRLs) when
verifying a signature. The NSS server obtains the CRL of a certificate from an
HTTP repository, determining the location of the CRL using the
CRLDistributionPoints extension of the certificate. The NSS server uses the first
distribution point that contains an HTTP URL. If a certificate does not contain a
CRLDistributionPoints extension or the CRLDistributionPoints extension does not
contain at least one distribution point that contains an HTTP URL, then the NSS
server is unable to retrieve the CRL.

The NSS server also supports the retrieval of certificate bundles, which can also
contain a CRL. If a CRL cannot be retrieved using the CRLDistributionPoints
extension of a certificate, the NSS server looks for a CRL in any certificate bundle
that has hash and URL information provided by the network security client. The
network security client obtains certificate bundle hash and URL information from
certificate payloads sent by a remote security endpoint.

Managing network security services
Use the ipsec command to display information about NSS IPSec clients that are
connected to the NSS server. You can also use this command to manage NSS IPSec
clients that are enabled to use the NSS IPSec remote management service and that
are currently connected to the NSS server.

Use the -x primary option on the ipsec command to display connection
information about NSS IPSec clients connected to the NSS server.
ipsec -x display

CS V1R12 ipsec NS Client Name: n/a Mon Nov 27 12:40:02 2006
Primary: NS Server Function: Display Format: Detail
Source: Server Scope: n/a TotAvail: 1
SystemName: MVS052

ClientName: client4
ClientAPIVersion: 2
StackName: TCPCS4
SystemName: MVS052
ClientIPAddress: ::ffff:10.10.10.1
ClientPort: 50003
ServerIPAddress: ::ffff:10.10.10.99
ServerPort: 4159
UserID: USER1

1172 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|

RemoteManagementSelected: Yes
RemoteManagementEnabled: Yes
CertificateServicesSelected: Yes
CertificateServicesEnabled: Yes
ConnectState: connected
TimeConnected: 2006/11/27 12:37:08
TimeOfLastMessageFromClient: 2006/11/27 12:37:08

1 entries selected

Use the nssctl command to display information about all of NSS clients that are
connected to the NSS server.
nssctl -d
CS V1R12 nssctl SystemName: MVS046 Mon Jun 9 17:05:16 2008
Function: Display NSSClientName: n/a

ClientName: MVS046_TCPCS
ClientAPIVersion: 2
StackName: TCPCS
SystemName: MVS046
ClientIPAddress: ::ffff:9.42.105.149
ClientPort: 50000
ServerIPAddress: ::ffff:9.42.105.149
ServerPort: 4159
UserID: user1
ConnectState: connected
TimeConnected: 2008/06/09 12:22:32
TimeOfLastMessageFromClient: 2008/06/09 12:22:48
Discipline: IPSec

CertificateServiceSelected: Yes
CertificateServiceEnabled: Yes
RemoteManagementSelected: Yes
RemoteManagementEnabled: Yes

ClientName: XMLAllClient1
ClientAPIVersion: 3
StackName: Any
SystemName: dpsys01
ClientIPAddress: ::ffff:9.42.105.149
ClientPort: 1026
ServerIPAddress: ::ffff:9.42.105.149
ServerPort: 4159
UserID: USER1
ConnectState: connected
TimeConnected: 2008/06/09 17:05:11
TimeOfLastMessageFromClient: 2008/06/09 17:05:11
Discipline: XMLAppliance

CertificateServiceSelected: Yes
CertificateServiceEnabled: Yes
PrivateKeyServiceSelected: Yes
PrivateKeyServiceEnabled: Yes
SAFAccessServiceSelected: Yes
SAFAccessServiceEnabled: Yes

2 entries selected

Use the -z option on the ipsec command to specify the name of an NSS client
rather than a name of a local TCP/IP stack. When the -z option is specified, the
ipsec command obtains information about the NSS client from the NSS server. The
-z option is valid only on the system running the NSS server. The NSS client
identified by the -z option must be connected to the NSS server. The NSS client
must also be enabled to use the NSS remote management service. Following is an

Chapter 20. Network security services 1173

|

example using the -z option to display phase 2 Security Association information
about the NSS client client4, where the name client4 was obtained from the
previous ipsec -x display command.
ipsec -y display -z client4

CS V1R12 ipsec NS Client Name: client4 Mon Nov 27 12:44:35 2006
Primary: Dynamic tunnel Function: Display Format: Detail
Source: Stack Scope: Current TotAvail: 1

TunnelID: Y2
Generation: 1
IKEVersion: 1.0
ParentIKETunnelID: K1
VpnActionName: Dvpn
LocalDynVpnRule: mvs052_192
State: Active
HowToEncap: Tunnel
LocalEndPoint: 10.10.10.1
RemoteEndPoint: 10.10.10.2
LocalAddressBase: 10.10.10.1
LocalAddressPrefix: n/a
LocalAddressRange: n/a
RemoteAddressBase: 10.10.10.2
RemoteAddressPrefix: n/a
RemoteAddressRange: n/a
HowToAuth: AH
AuthAlgorithm: Hmac_Sha
AuthInboundSpi: 2401615039
AuthOutboundSpi: 1971620597
HowToEncrypt: 3DES
EncryptInboundSpi: 4088723240
EncryptOutboundSpi: 445063417
Protocol: ALL(0)
LocalPort: 0
LocalPortRange: n/a
RemotePort: 0
RemotePortRange: n/a
Type: n/a
TypeRange: n/a
Code: n/a
CodeRange: n/a
OutboundPackets: 0
OutboundBytes: 0
InboundPackets: 0
InboundBytes: 0
Lifesize: 0K
LifesizeRefresh: 0K
CurrentByteCount: 0b
LifetimeRefresh: 2006/11/27 14:09:19
LifetimeExpires: 2006/11/27 14:44:19
CurrentTime: 2006/11/27 12:44:35
VPNLifeExpires: 2007/03/07 12:44:19
NAT Traversal Topology:

UdpEncapMode: No
LclNATDetected: No
RmtNATDetected: No
RmtNAPTDetected: No
RmtIsGw: n/a
RmtIsZOS: n/a
zOSCanInitP2SA: n/a
RmtUdpEncapPort: n/a
SrcNATOARcvd: n/a
DstNATOARcvd: n/a
PassthroughDF: No

1174 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

PassthroughDSCP: No

1 entries selected

For details about the ipsec command, see z/OS Communications Server: IP System
Administrator's Commands.

Chapter 20. Network security services 1175

1176 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Chapter 21. Defensive filtering

An external security information and event manager, by analyzing and correlating
messages from multiple sources and systems in the network, can take action to
block attacks by installing defensive filters in your TCP/IP stack. A defensive filter
is an IP filter rule to discard packets, separate from IP security filters, and is
typically installed for a short duration (for example, 30 minutes) to block a specific
attack or a pattern of attacks. If traffic being blocked by a defensive filter should be
blocked on a long-term basis, update your configured IP security policy to add an
IP security deny rule.

A defensive filter uses a combination of the following characteristics to target
traffic to be discarded:
v IP source or destination address
v IP protocol
v Source or destination port
v ICMP type or code
v Direction of flow
v Type of traffic: Routed or local

For example, a defensive filter might be installed to block all TCP traffic from IP
address 10.1.1.1 that is destined for the Telnet server. The characteristics of this
filter are the following:
v IP source address is 10.1.1.1.
v IP protocol is TCP.
v Destination port is 23.
v Direction of flow is inbound.
v Traffic is local.

Defensive filters are given higher priority than IP security filters. That is, IP filter
processing first checks any installed defensive filters for a match against a packet,
before checking the IP security filters. When a defensive filter is added to a
TCP/IP stack, it is placed at the top of the filter search order.

Figure 116 on page 1178 provides an overview of defensive filtering.

© Copyright IBM Corp. 2000, 2011 1177

Defensive filters are added and managed using the z/OS UNIX ipsec command
with the -F primary option.
v Defensive filters are typically added as an automated action resulting from an

external security information and event manager's analysis. The manager issues
the set of ipsec commands that install the required defensive filters.

v You can also add a defensive filter by manually issuing the ipsec command.
v After a defensive filter is created, you can use the ipsec command to update

some attributes of the filter, such as its lifetime, and also to display and delete
defensive filters.

For more information about the ipsec command, see z/OS Communications Server:
IP System Administrator's Commands.

Requirements:

v You must enable the IP security function for defensive filters to be installed in a
stack. If you do not have the IP security function enabled, see “Enabling the IP
security function” on page 1186.

v The Defense Manager daemon (DMD) plays an integral role in managing
defensive filters, and must be active for defensive filters to be added, updated,
or deleted. One instance of the DMD manages all eligible stacks on a z/OS
image. An eligible stack is one that is enabled for IP security and that is
included in the DMD configuration file with a mode of Active or Simulate. For
information about configuring the DMD, see “Steps for configuring the DMD”
on page 1187. You can refresh most of the DMD configuration parameters so that
options can be changed without recycling the DMD.

Guideline: The DMD can support a maximum of 10 concurrent ipsec command
connections.

Restriction: Remote management of defensive filters using a network security
services (NSS) server is not supported. Management of defensive filters is provided
only through the local ipsec command.

Figure 116. Defensive filtering overview

1178 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Global and stack-specific defensive filters
A defensive filter has either a global or stack-specific scope.
v A global defensive filter, identified by the -G option on the ipsec command, is

installed in all eligible stacks on the z/OS image.
v A stack-specific defensive filter is installed in the stack specified by the -p

stackname option on the ipsec command, if the stack is eligible.

When a defensive filter is created, the DMD installs the defensive filter in the
eligible stacks and maintains a copy of the filter. The DMD maintains a persistent
record of all active defensive filters, global and stack-specific, and the stacks into
which those filters are installed.

This persistence enables the DMD to maintain the correct set of installed defensive
filters across startup and shutdown activities for TCP/IP stacks, as well as across
startup and shutdown of the DMD itself. If the DMD is already running when an
eligible TCP/IP stack starts, the DMD installs all applicable defensive filters, global
and stack-specific, to that stack. If, when the DMD starts up, it detects that eligible
stacks are already running, it ensures that they have or receive the correct set of
defensive filters.

After a global defensive filter is created and installed in one or more stacks, you
can update it as a global filter, resulting in all copies of the filter being updated.
You can also update it in an individual TCP/IP stack, resulting in only that stack's
copy of the filter being updated. Similarly, you can delete a global defensive filter
globally or only from an individual TCP/IP stack.

Defensive filter names
A defensive filter receives its name from the -N DefensiveFilterName option when
the filter is created. All copies of a global defensive filter have the same name.
Global filters and stack-specific filters share the same filter namespace, so a filter
name cannot be used for both a global filter and a stack-specific filter. The creation
of a stack-specific filter fails if the filter name conflicts with a global filter of the
same name, or if there is already a stack-specific filter of the same name in the
target stack. The creation of a global filter fails if the filter name conflicts with a
global filter of the same name, or if there is already a stack-specific filter of the
same name in any stack. This check includes filter names that are in the DMD's
persistent memory, even if the corresponding stack is not active.

Tip: If you are manually creating defensive filters, avoid conflicts between global
and stack-specific filter names by choosing a distinct naming convention for each,
such as starting all global filter names with a G.

Defensive filter modes
Each defensive filter has a mode setting of block or simulate. The defensive filter's
mode is set when the filter is created or updated by the ipsec command.

By default, defensive filters are in block mode, causing traffic to be discarded. A
defensive filter in simulate mode simulates a block and lets you monitor the
impact of enabling defensive filters without discarding traffic.

When a packet matches a defensive filter and the mode is simulate, a message is
logged indicating that the packet would have been discarded, but the packet is not

Chapter 21. Defensive filtering 1179

discarded and IP filtering continues. The packet can subsequently match a
defensive filter that is in block mode and be discarded, but the packet will not
match another simulation filter.

The DMD configuration file also provides the mode settings Active, Simulate, or
Inactive on the DmStackConfig statement.
v Active enables defensive filtering and honors the mode setting of the individual

filters.
v Simulate enables defensive filtering and overrides the mode setting of the

individual filters; simulate mode is used for all defensive filters installed in the
stack.

v Inactive disables defensive filtering.

Table 52 summarizes the interaction between the mode setting on the
DmStackConfig statement and the mode setting in individual filters set by the
ipsec command.

Table 52. Interaction between the mode setting on the DmStackConfig statement and the
mode setting in individual filters

Mode setting on the DmStackConfig statement

Active Simulate Inactive

Individual filter
mode set by the
ipsec command

Block Block the packet Simulate
blocking the
packet

No defensive
filters

Simulate Simulate
blocking the
packet

Simulate
blocking the
packet

No defensive
filters

Tips:

v You might want to specify Mode Simulate on the DmStackConfig statement
when you are first implementing defensive filtering. All defensive filters in the
TCP/IP stack will be treated as if the mode was simulate. When a packet
matches a defensive filter, syslog message EZD1722I is generated and IP filtering
continues. Defensive filters added to this stack retain the mode setting with
which they were added, block or simulate. In most cases, you should use the
default mode, block, on the individual filter.

v After completing defensive filter testing in simulate mode, specify Mode Active
on the DmStackConfig statement. If there are defensive filters installed in the
stack when the mode is changed from simulate to active, the mode on the
individual defensive filters is used.

v If defensive filtering is active (DmStackConfig statement with Mode Active) and
you want to implement and test additional automation, you can revert to an
overall mode of simulate for the whole stack. However, you might want only
defensive filters added by the new automation to have a mode of simulate. The
automation action can add individual defensive filters with a mode of simulate
using the mode keyword on the ipsec -F add command. After testing, you can
update the automation action to add defensive filters with a mode of block
using the mode keyword on the ipsec -F add command.

For more information about the DmStackConfig statement, see z/OS
Communications Server: IP Configuration Reference. For more information about
adding or updating a defensive filter with the -F option of the ipsec command, see
z/OS Communications Server: IP System Administrator's Commands.

1180 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Allowing administrative access
Defensive filters are checked before IP security filters. To ensure that an
administrator is not blocked by a defensive filter, you can exclude the
administrator's IP address from defensive filter processing by specifying the
administrator's address on the Exclude parameter of the DmStackConfig statement
in the DMD configuration file. For more information about the DmStackConfig
statement and its parameters, see z/OS Communications Server: IP Configuration
Reference.

Filter-match logging
When a packet matches a defensive filter during IP filter processing, a message can
be logged indicating that the packet was discarded based on this filter. When a
defensive filter is added, filter-match logging can be enabled or disabled for the
filter; it is enabled by default. The filter-match logging setting can be updated with
the ipsec command for an existing defensive filter.

When a defensive filter is simulating a block, filter match logging is always
performed to indicate that a packet would have been discarded based on the
defensive filter.

TRMD
The Traffic Regulation Manager daemon (TRMD) is responsible for logging
defensive filter events that are detected by the stack. These events include
filter-match logging and the creation, deletion, and updating of defensive filters.

TRMD and syslogd provide the logging service for defensive filtering. In a
Common INET environment, you must configure one instance of TRMD for each
stack on a z/OS system. For information about configuring TRMD, see “TRMD”
on page 919.

Disabling defensive filters for a single stack
To disable defensive filtering for a TCP/IP stack, while continuing to support
defensive filtering for other stacks on the system, do the following:
1. Update the DMD configuration file and change the mode of the stack to

Inactive on the DmStackConfig statement.
2. Issue the MODIFY REFRESH command for the DMD.

Results:

v All defensive filters are removed from the stack.
v The DMD's persistent memory of defensive filters for the stack is cleared.
v Additional defensive filters cannot be added to this stack.

Tips:

v If you cannot update your DMD configuration file, you can issue the MODIFY
FORCE_INACTIVE command for the DMD to disable defensive filtering for the
stack. However, a later MODIFY REFRESH command will use the DMD
configuration file, so if you want defensive filtering to remain disabled, you
should update the DMD configuration file as soon as possible.

v Removing the DmStackConfig statement from the DMD configuration file does
not delete existing defensive filters from the stack. If you remove the

Chapter 21. Defensive filtering 1181

DmStackConfig statement, the defensive filters remain in the stack until they
expire. To remove the defensive filters from the stack immediately, add the
DmStackConfig statement back to the DMD configuration file and specify mode
Inactive, or issue the MODIFY FORCE_INACTIVE command for the stack.

Relationship between Intrusion Detection Services and defensive
filters

Communication Server's Intrusion Detection Services (IDS) support enables you to
detect scans of your TCP/IP stack and possible attacks. It also provides traffic
regulation for TCP connections and UDP sockets. One action that can be taken
when a scan or attack is detected, or traffic regulation is enforced, is to generate a
message to report the event.

An external security information and event manager that is configured to receive
messages from the TCP/IP stack's IDS function can analyze the messages and
correlate the information with other information that it has received.
Communication Server's IDS messages can be one of a number of inputs that an
external security information and event manager uses to make the decision to add
a defensive filter to the stack. If the external security information and event
manager detects an attack, it can add defensive filters to the stack to block the
attack. Defensive filter support can be enabled without enabling Communication
Server's IDS support.

For more information about IDS support, see Chapter 18, “Intrusion Detection
Services,” on page 897.

Comparison of IP security filters and defensive filters
Table 53 compares IP security filters and defensive filters.

Table 53. Comparison of IP security filters and defensive filters

Topic
IP security filters
(policy)

IP security filters
(default) Defensive filters

Configuring Configured in a
Policy Agent flat file.

Configured in the
TCP/IP profile.

Not configured. The
ipsec command is
used to create
defensive filters,
either automatically
or manually.

Installing in the
TCP/IP stack

Installed by the
Policy Agent.

Installed by TCP/IP
profile processing.

Installed by the
Defense Manager
daemon (DMD).

Filter search order The order in the
configuration file.

The order in the
configuration file.

Defensive filters are
searched before IP
security filters.

When a defensive
filter is created, it is
installed at the top of
the search order.

1182 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Table 53. Comparison of IP security filters and defensive filters (continued)

Topic
IP security filters
(policy)

IP security filters
(default) Defensive filters

Displaying a filter Use pasearch and
ipsec -f display.

The ipsec -f display
-c current command
displays all installed
filters, both defensive
filters and IP security
filters.

Use ipsec -f display
-c profile.

Use ipsec -F display.

Filter display order The order in the
configuration file.

The pasearch
command displays IP
security filters as
complex filter rules,
not split filters as
they are in the stack.

The ipsec -f display
command displays IP
security filters as
split filters, like they
are in the stack.

IPv4 IP security
filters are shown
first, followed by
IPv6 IP security
filters.

The order in the
configuration file.

The ipsec -f display
command displays IP
security filters as
split filters, like they
are in the stack. A
single profile filter in
the configuration file
is split into an
inbound and
outbound filter in the
stack.

IPv4 IP security
filters are shown
first, followed by
IPv6 IP security
filters.

The ipsec -F display
command displays
defensive filters from
the stack in four
groups:

v IPv4 inbound
filters

v IPv4 outbound
filters

v IPv6 inbound
filters

v IPv6 outbound
filters

Within each group,
the filters are
displayed from most
recently installed to
least recently
installed.

The ipsec -F display
-G command
displays global
defensive filters from
the DMD. The global
filters are displayed
from most recently
installed to least
recently installed.

Chapter 21. Defensive filtering 1183

Table 53. Comparison of IP security filters and defensive filters (continued)

Topic
IP security filters
(policy)

IP security filters
(default) Defensive filters

Deleting a filter Remove the filter
rule from the
configuration file.
When Policy Agent
detects the
configuration file
change, the filter rule
is removed from the
stack. Policy Agent
detects the change in
one of the following
ways:

v If Policy Agent
was started with
the -i startup
option, an
immediate refresh
picks up the
change.

v You issue a
MODIFY
REFRESH
command.

v You issue a
MODIFY UPDATE
command.

v Policy Agent
checks for
configuration
changes using an
update interval
defined in the
policy
configuration file.

Use a VARY
TCPIP,,OBEYFILE
command with a
data set that contains
a new IPSEC
statement with the
filter rule removed.

Use ipsec -F delete.

Defensive filters are
also deleted when
their lifetime expires.

Updating a filter Update the filter rule
in the configuration
file. When the Policy
Agent detects the
configuration file
change, the filter rule
is updated in the
stack.

Use a VARY
TCPIP,,OBEYFILE
command with a
data set that contains
a new IPSEC
statement with the
filter rule updated.

Use ipsec -F update.

A defensive filter's
lifetime, mode, and
logging values can be
updated.

Specifying time
conditions

Specify time
conditions in the
policy. The Policy
Agent installs an IP
security filter when it
becomes active, and
deletes the filter
when it becomes
inactive due to time.

Not supported. Not supported.

Defensive filters have
a lifetime that is
minutes in length. A
defensive filter is
deleted when its
lifetime expires.

1184 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Table 53. Comparison of IP security filters and defensive filters (continued)

Topic
IP security filters
(policy)

IP security filters
(default) Defensive filters

Simulation mode Not supported. Not supported. Controlled by the
DMD configuration
file and the ipsec -F
add and ipsec -F
update commands.

Global filters IP security filters
defined in a
CommonIPSecConfig
file are added to all
eligible stacks.

Not supported. Defensive filters
added with the -G
option of the ipsec
command are added
to all eligible stacks
on the z/OS system.

Filter-match logging Controlled by
settings in the policy
flat file.

Controlled by
settings in the
TCP/IP profile.

Set when the filter is
added or updated
with the ipsec
command.

The DMD run-time environment
The DMD is a z/OS UNIX application; it requires the z/OS UNIX file system. You
can start the DMD from an MVS started procedure, from the z/OS UNIX shell,
with the AUTOLOG statement in the TCP/IP profile, or by using the COMMNDxx
member of parmlib. The DMD must be started by a RACF-authorized user ID, and
it must reside in an APF-authorized library. For more information about how to
start the DMD, see “Starting the DMD” on page 1190.

The DMD uses the MVS operator's console, syslogd, CTRACE, and STDOUT for its
logging and tracing. The MVS operator's console and STDOUT are used for major
events such as initialization, termination, and error conditions. Syslogd is used for
logging events related to the processing of defensive filter requests. CTRACE is
used for detailed tracing and debugging.

The DMD uses a standard message catalog. The message catalog must be in the
UNIX file system. The directory location for the message catalog path is set by the
environment variables NLSPATH and LANG.

The DMD and Language Environment run-time options
When you start the DMD from a started or cataloged procedure, you typically start
it directly from the SEZALOAD data set using PGM=EZADMD. However, you can
also start the DMD using BPXBATCH.

When you start the DMD using PGM=EZADMD, the STDENV DD card, if used, is
passed directly to the DMD. Language Environment does not have access to the
STDENV environment variables. As a result, any Language Environment run-time
options set in the STDENV DD data set using the _CEE_RUNOPTS environment
variable are ignored. In this case, Language Environment run-time options must be
passed on the PARM parameter, and the options must be specified before any
DMD options. However, the PARM parameter allows a maximum of 100
characters. If the Language Environment run-time options plus the DMD
parameters that you want to specify exceed 100 characters, consider using
BPXBATCH to start the DMD. When you use PGM=BPXBATCH to start the DMD,

Chapter 21. Defensive filtering 1185

you can include the Language Environment variable _CEE_RUNOPTS on the
STDENV DD card to specify run-time options in excess of 100 characters long.

For more information about how to start the DMD, see “Starting the DMD” on
page 1190.

Enabling defensive filtering
To enable defensive filtering, first do both of the following:
v Enable the IP security function.

See “Enabling the IP security function.”
v Configure the Defense Manager daemon (DMD).

See “Steps for configuring the DMD” on page 1187.

After configuring the DMD and enabling IP security, start the DMD. For details,
see “Starting the DMD” on page 1190.

Enabling the IP security function
The IP security function must be enabled for defensive filters to be installed in a
stack. If you do not have the IP security function enabled and want to use
defensive filters, perform the following steps.
1. Specify the IPSECURITY parameter on the IPCONFIG statement in the TCP/IP

profile.
2. If you have IPv6 traffic in your network and want to use defensive filters for

IPv6, specify the IPSECURITY parameter on the IPCONFIG6 statement in the
TCP/IP profile.

3. Configure a default IP security filter policy in the TCP/IP profile using the
IPSEC statement in the TCP/IP profile.
Tip: To permit all IPv4 traffic, you can configure a single rule for the IPSEC
statement that allows all traffic. The following example allows all IPv4 traffic,
without logging filter matches.
IPSEC
; Rule SourceIp DestIp Logging Prot SrcPort DestPort Routing Secclass
;
; Permit all local and routed IPv4 traffic, no logging.
IPSECR * * NOLOG PROTO * ROUTING EITHER

ENDIPSEC

For more information about the IPSEC statement, see z/OS Communications
Server: IP Configuration Reference.

4. Optionally, configure a more comprehensive IP security policy in a flat file for
the Policy Agent to install and manage.
You can configure IPSec encryption and authentication only in a Policy Agent
flat file.
Tip: You can use the Configuration Assistant for z/OS Communications Server
to create an IP security policy flat file.
For more information about configuring an IP security policy, see Chapter 16,
“Policy-based networking,” on page 829 and Chapter 19, “IP security,” on page
923.

Attention: You must configure an IP security policy if you enable the IP security
function. If you specify IPSECURITY in your TCP/IP profile and do not configure
an IP security policy, all inbound and outbound traffic will be discarded.

1186 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Steps for configuring the DMD
Perform the following steps to configure the DMD:

1. Authorize the DMD to the external security manager.

See “Steps for authorizing resources for the DMD and the ipsec command” on
page 1189.

2. Create the directories that the DMD needs.

a. Create the directory /var/dm for use by the DMD. The DMD user ID must
have permission to create, delete, read, and write files to this directory.

b. If you set the PID file location with the DMD_PIDFILE environment
variable, ensure that the path portion of the file name exists and that the
DMD user ID has permission to create and write files to that directory. If
you use the default PID file location, /var/dm/dmd.pid, you have already
created the directory and given the DMD user ID the appropriate access in
the previous step.

c. Create the directory that will hold the persistent defensive filters for each
stack, as well as the global defensive filters.
The DMD configuration file parameter DefensiveFilterDirectory points to
this directory. The default value is /var/dm/filters. Ensure that the DMD
user ID is authorized to create, delete, read from, and write to files in this
directory. The directory should have sufficient space to support at least 1
MB of data for each TCP/IP stack, plus another 1 MB for the global filter
definitions. For more information about the DefensiveFilterDirectory
parameter in the DMD configuration file, see z/OS Communications Server:
IP Configuration Reference.

3. Create the DMD configuration file.

Do one of the following:
v Use the IBM Configuration Assistant for z/OS Communications Server.

The IBM Configuration Assistant for z/OS Communications Server, an
optional GUI-based tool, provides a guided interface for configuring TCP/IP
policy-based networking functions. You can use the Configuration Assistant
to generate the DMD configuration file.
The Configuration Assistant is available in either of the following forms:
– As a task in IBM z/OS Management Facility (z/OSMF)

z/OSMF provides a Web browser interface for a variety of z/OS system
management functions. When you invoke the Configuration Assistant in
z/OSMF, the Configuration Assistant runs natively in the z/OS system
and you can access it through a Web browser. To use the Configuration
Assistant in z/OSMF, your system must be z/OS V1R11 or later.

– As a standalone application that you can run on your workstation
You can download the Configuration Assistant from the z/OS
Communications Server product support Web page.

You can use the Configuration Assistant on your workstation and then later
migrate your work to the z/OSMF environment. For information about
transferring Configuation Assistant data to z/OSMF, see IBM z/OS
Management Facility Configuration Guide.
Through a series of wizards and online help panels, you can use the GUI to
create DMD configuration files for any number of z/OS images with any
number of TCP/IP stacks per image.

v Configure the file manually.

Chapter 21. Defensive filtering 1187

|

|
|

|

|

|

|
|
|
|

http://www.ibm.com/software/network/commserver/zos/support/
http://www.ibm.com/software/network/commserver/zos/support/

A sample configuration file is in /usr/lpp/tcpip/samples/dmd.conf.
For a description of the DMD configuration file, see z/OS Communications
Server: IP Configuration Reference.
If the DMD was defined to the external security manager with a nonzero
UID, ensure that the DMD has permission to read the configuration file. The
DMD user ID must have both read access to the configuration file and
execute access to the directory containing the configuration file.
Tip: You can create the configuration file in the /var/dm directory and use
the DMD_FILE environment variable to specify the configuration file. You
set up the /var/dm directory in step 2 to allow DMD to create, delete, read,
and write files to this directory.
The following search order is used by the DMD to locate the configuration
data set or file:
a. If the environment variable DMD_FILE is defined, the DMD uses the

value as the name of an MVS data set or z/OS UNIX file to access the
configuration data.

b. /etc/security/dmd.conf
You can specify statements in the configuration file using a variety of
EBCDIC code pages. Use the DMD_CODEPAGE environment variable to
specify the code page that you want to use. The default code page is
IBM-1047.

4. Optionally, set the _BPX_JOBNAME environment variable.

When you start the DMD from the z/OS UNIX shell, set the environment
variable _BPX_JOBNAME. This enables a specific job name to be used with the
STOP or MODIFY console commands. For information about
_BPX_JOBNAME, see z/OS UNIX System Services Planning.

5. Configure and start syslogd.

The DMD uses the local4 facility when writing messages to syslogd. For
performance purposes, syslogd should use zSeries File System as its
underlying file system. For more information about syslogd, see “Configuring
the syslog daemon” on page 185.

6. Optionally, update the DMD environment variables.

The DMD uses the following environment variables. You can modify them for
your installation.

DMD_CODEPAGE
Use the DMD_CODEPAGE variable to specify the EBCDIC code page
to be used when reading the configuration file. For details about the
supported code pages, see z/OS Communications Server: IP Configuration
Reference.

DMD_CTRACE_MEMBER
Used by the DMD to locate a parmlib member for DMD CTRACE
customization. For more information about the TCP/IP services
component trace for the DMD, see z/OS Communications Server: IP
Diagnosis Guide.

DMD_FILE
Used by the DMD in the search order for the DMD configuration file.
For details about the search order used for locating this configuration
file, see step 3 on page 1187.

1188 z/OS V1R12.0 Comm Svr: IP Configuration Guide

DMD_PIDFILE
Used by the DMD in the search order for the file that should contain
the DMD process ID (PID). The search order for the DMD PID file is
as follows:
a. DMD_PIDFILE environment variable
b. /var/dm/dmd.pid

7. If you are starting the DMD as a started procedure, update the DMD cataloged
procedure.
Create the cataloged procedure by copying the sample in SEZAINST(DMD) to
your system. Specify the DMD parameters and change the data set names to
suit your local configuration. A copy of the DMD cataloged procedure can also
be found in z/OS Communications Server: IP Configuration Reference.
If the DMD was defined to the external security manager with a nonzero UID
and the cataloged procedure specifies an HFS file containing environment
variables, ensure that the DMD has permission to read the HFS file.

You know you are done when you can start the DMD. For details, see “Starting the
DMD” on page 1190.

Steps for authorizing resources for the DMD and the ipsec command
RACF is used as the external security manager in the following examples.
However, you can use any SAF-compliant security product. RACF commands
shown in these examples are also provided in the EZARACF member of the
SEZAINST data set. In these examples, it is assumed that the DMD is running
under the user ID DMD.

Perform the following steps to authorize access to the appropriate resources:

1. Define and authorize the DMD user ID.

The DMD is a z/OS UNIX application that you can start from the z/OS UNIX
shell or from an MVS started procedure. Before starting the DMD, you must
define the DMD user ID to the external security manager. If you start the
DMD from an MVS started procedure, the DMD user ID must also be
authorized to the STARTED class. In the following example, the DMD user ID
is defined with UID 0:
ADDUSER DMD DFLTGRP(OMVSGRP) NOPASSWORD OMVS(UID(0) HOME(’/’))
RDEFINE STARTED DMD.* STDATA(USER(DMD))
SETROPTS RACLIST(STARTED) REFRESH
SETROPTS GENERIC(STARTED) REFRESH

You can define the DMD with a nonzero UID. For additional steps that you
must take when the DMD UID is nonzero, see “Steps for configuring the
DMD” on page 1187.

2. Permit the DMD user ID to SYS1.PARMLIB.

The DMD uses the TCP/IP component trace (CTRACE) to perform
service-level tracing. The default DMD component trace parmlib member is
stored in SYS1.PARMLIB. The DMD user ID must be permitted to access
SYS1.PARMLIB.
Issue the following command:
PERMIT SYS1.PARMLIB ID(DMD) ACCESS(READ)

3. Define SERVAUTH profiles to control the users that are allowed to manage
defensive filters.

Chapter 21. Defensive filtering 1189

For information about defining the SERVAUTH profiles needed for a user to
be able to add, update, delete, and display defensive filters, see “Step 3:
Authorizing the ipsec command to the external security manager” on page
1506. Additional information about ipsec command security and the
SERVAUTH profile is available in z/OS Communications Server: IP System
Administrator's Commands.

Starting the DMD
You can start DMD in any of the following ways:
v By using an MVS procedure from the MVS operator console. A sample start

procedure is provided in SEZAINST(DMD).
v By issuing the dmd command from the z/OS UNIX shell.
v By using the COMMNDxx member of parmlib. This member enables the DMD

to be automatically started after an IPL of the system. For information about
configuring and using the COMMNDxx member of parmlib, see z/OS MVS
Initialization and Tuning Reference.

v By using the AUTOLOG statement in the TCP/IP profile. For information about
the AUTOLOG statement, see z/OS Communications Server: IP Configuration
Reference.

Tips:

v Do not start the DMD using the AUTOLOG statement in a stack's profile if you
are running in a CINET environment with more than one stack configured. If a
stack is configured using AUTOLOG to start and stop the DMD each time the
stack starts and stops, it is difficult to maintain a stable running instance of the
DMD in a multi-stack environment. In a multi-stack environment, you should
use another method to automate starting the DMD when the system is started,
such as using the COMMNDxx member of parmlib.

v When you start the DMD from an MVS procedure, set the environment variables
using the STDENV DD statement in the DMD procedure.

v If you start the DMD from the z/OS shell and you stop the shell environment
from scrolling, when the daemon needs to display data to the shell, it might stop
and wait indefinitely for the shell to scroll and make output buffer space
available for the data.

Restriction: Only one instance of the DMD can run on a z/OS image. If you
attempt to start a second instance, the second DMD will fail.

Stopping the DMD
Stop the DMD in one of the following ways:
v From MVS, stop the DMD by issuing the following command:

STOP procname

where procname is one of the following:
– If the DMD was started from a cataloged procedure, the procname value is the

member name of that procedure.
– If the DMD was started from the z/OS UNIX shell and the environment

variable _BPX_JOBNAME was set, the procname value is the same as the
_BPX_JOBNAME value.

1190 z/OS V1R12.0 Comm Svr: IP Configuration Guide

– If the DMD was started from the z/OS UNIX shell and _BPX_JOBNAME was
not set, the procname value is useridX, where X is the sequence number set by
the system. To determine the sequence number, from the ISPF LOG window
on TSO, issue the following:
/d omvs,u=userid

This command displays the programs running under the specified user ID.
For more information about _BPX_JOBNAME, see z/OS UNIX System Services
Planning.

v From the z/OS shell, issue the kill command from a superuser ID for the
process ID (PID) that is associated with the DMD. By default, the DMD PID is
recorded in /var/dm/dmd.pid. You can change the default location using the
DMD_PIDFILE environment variable.

Using the DMD MODIFY command
The DMD provides a MODIFY command to do the following:
v Reread the configuration file.

Use the MODIFY procname,REFRESH command to reread the DMD
configuration file. You can use this command to update some DMD
configuration file parameters. For information about the DMD configuration file
parameters that can be dynamically changed, see z/OS Communications Server: IP
Configuration Reference.

v Display the configuration file parameters.
Use the MODIFY procname,DISPLAY command to display configuration values
currently in use by the DMD.

v Disable defensive filtering.
Use the MODIFY procname,FORCE_INACTIVE,stackname command to disable
defensive filtering for stack stackname. All defensive filters for the stack are
removed from the DMD's persistent memory and from the stack. No additional
defensive filters are added to the stack while the stack's mode is inactive. The
change to the stack's mode persists until the next successful MODIFY
procname,REFRESH command.

For more information about the MODIFY command for DMD, see z/OS
Communications Server: IP System Administrator's Commands.

Chapter 21. Defensive filtering 1191

1192 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Chapter 22. Application Transparent Transport Layer Security
data protection

The Transport Layer Security (TLS) protocol defined in RFC 2246 provides
communications privacy over the Internet. The protocol enables client and server
applications to communicate in a way that is designed to prevent eavesdropping,
tampering, and message forgery. To implement TLS protocols, typically,
applications must be modified to incorporate a TLS toolkit. Modifying applications
requires significant development overhead, ongoing maintenance for each
application, and application-specific knowledge of the parameters needed to
implement TLS for that application.

Application Transparent Transport Layer Security (AT-TLS) consolidates TLS
implementation in one location, reducing or eliminating application development
overhead, maintenance, and parameter specification. AT-TLS is based on z/OS
System SSL, and transparently implements these protocols in the TCP layer of the
stack. As shown in Figure 117, most applications do not need any awareness of the
security negotiations and encryption done by TCP/IP on its behalf. However, you
might want some applications to be aware of AT-TLS or have control over the
security functions being performed by TCP/IP. For example, if the application is a
server requesting client authentication, you might want the application to get the
partner certificate or the user ID associated with the partner certificate, or the
application might negotiate in cleartext with its partner to decide whether a secure
session is necessary. If both agree to a secure session, the application needs to tell
AT-TLS to set up a secure session. The SIOCTTLSCTL ioctl provides the interface
for the application to query or control AT-TLS.

In all cases, an application using a socket enabled with AT-TLS continues to send
and receive text data in the clear while encrypted data flows over the network.
This allows the use of TLS with applications that cannot be modified or that
cannot incorporate one of the available tool kits. The partner application must also
support TLS protocols, either by using AT-TLS or an available TLS toolkit.

Not Enabled
Appl

(toolkit)

AT-TLS
Basic
Appl

AT-TLS
Aware
Appl

AT-TLS
Controlling

Appl

Sockets API

TCP
(System SSL)

IPencrypted

clear clear +
SIOCTTLSCTL

Appl
config
trace

AT-TLS
policy
trace

Figure 117. Application Transparent TLS

© Copyright IBM Corp. 2000, 2011 1193

AT-TLS configuration in PROFILE.TCPIP
AT-TLS support is controlled by the TTLS or NOTTLS parameter on the
TCPCONFIG statement in PROFILE.TCPIP. AT-TLS is enabled by specifying TTLS.
The information required to negotiate secure connections is provided to the stack
by AT-TLS policies configured in Policy Agent. When AT-TLS is enabled and a
newly established connection is first used, the TCP layer of the stack searches for a
matching AT-TLS policy installed from the Policy Agent. If no policy is found, the
connection is made without AT-TLS involvement.

TCP/IP stack initialization access control
A TCP/IP stack initializes before Policy Agent installs configured policies into the
stack. This leaves a window of time where connections that should be covered by
AT-TLS are clear text connections. The RACF resource
EZB.INITSTACK.sysname.tcpname in the SERVAUTH class is used to block stack
access, except for the user IDs permitted to the resource. While in this initialization
window, any socket request from an unauthorized application receives the same
errno (EAGAIN with JrTcpNotActive) received prior to the stack coming up.

Checking is done only if the TCP/IP profile activates AT-TLS. If there is no profile
in the SERVAUTH class covering this resource name, all socket requests fail,
including those from Policy Agent. Checking ceases the first time that the Policy
Agent indicates AT-TLS policy is complete, or if a TCP/IP profile change
deactivates AT-TLS.

When the limited access window begins, non-scrollable message EZZ4248E is
written to the system console stating that TCP/IP is waiting for Policy Agent to
install AT-TLS policies. The message is released when the restriction ends. You can
delay the start of AUTOLOG procedures during this window of time by specifying
the optional DELAYSTART parameter with the TTLS subparameter on the
AUTOLOG entry for that procedure; when specified, the procedure will start after
the EZZ4248E message is deleted and message EZZ4250I is issued indicating that
AT-TLS services are available.

You must permit a limited set of administrative applications to the profile to
ensure full initialization of the stack. If Policy Agent is dependent on other
applications in your environment, they must also be permitted. You can permit
other applications that do not require AT-TLS and that you want to start prior to
general applications. At a minimum, the following applications should be
permitted to the profile:
v Policy Agent
v OMPROUTE
v SNMP agent and subagents
v NAMED

For examples of the security product commands needed to create this resource
profile name and grant users access to it, see member EZARACF in sample data
set SEZAINST.

1194 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Options for configuring AT-TLS security
AT-TLS is configured using a set of configuration statements and parameters coded
into a flat file, which is parsed by the Policy Agent to establish the AT-TLS policy
for each TCP/IP stack. In a complex environment, this file can become large. For
this reason, there are two alternatives for creating the Policy Agent files.

Option 1: Use the IBM Configuration Assistant for z/OS
Communications Server

The IBM Configuration Assistant for z/OS Communications Server, an optional
GUI-based tool, provides a guided interface for configuring TCP/IP policy-based
networking functions. You can use the Configuration Assistant to generate the
Policy Agent files.

The Configuration Assistant is available in either of the following forms:
v As a task in IBM z/OS Management Facility (z/OSMF)

z/OSMF provides a Web browser interface for a variety of z/OS system
management functions. When you invoke the Configuration Assistant in
z/OSMF, the Configuration Assistant runs natively in the z/OS system and you
can access it through a Web browser. To use the Configuration Assistant in
z/OSMF, your system must be z/OS V1R11 or later.

v As a standalone application that you can run on your workstation
You can download the Configuration Assistant from the z/OS Communications
Server product support Web page.

You can use the Configuration Assistant on your workstation and then later
migrate your work to the z/OSMF environment. For information about
transferring Configuation Assistant data to z/OSMF, see IBM z/OS Management
Facility Configuration Guide.

Through a series of wizards and online help panels, you can use the Configuration
Assistant to create AT-TLS configuration files for any number of z/OS images with
any number of TCP/IP stacks per image. Using the Configuration Assistant, there
are three types of reusable objects:
v Traffic descriptors that define the local application, by describing the TCP traffic

with ports or identifying the application using its jobname.
v Security levels that define the different ways to protect data, such as the

encryption level.
v Requirement maps that map traffic descriptors to security levels. A single

requirement map should contain a complete set of security requirements that
will govern the level of security for multiple IP traffic types.

For each TCP/IP stack, you create a set of connectivity rules that indicate the data
endpoints and indicate which requirement map will govern security between the
data endpoints.

The Configuration Assistant comes with a number of IBM-supplied traffic
descriptors, security levels, and requirement maps that are easily applied, or you
can use the IBM-supplied definitions as the basis for your own set of reusable
objects.

The Configuration Assistant can dramatically reduce the amount of time that is
required to create AT-TLS policy files, contributing to ease of configuration and

Chapter 22. Application Transparent Transport Layer Security data protection 1195

|

|
|

|

|

|

|
|
|
|

|
|
|

|

|

http://www.ibm.com/software/network/commserver/zos/support/
http://www.ibm.com/software/network/commserver/zos/support/

maintenance. Because of the inherently complex nature of z/OS security, using the
GUI can help you ensure that you have a consistent and easily manageable
interface for implementing AT-TLS security.

This information primarily describes option 2, manual configuration. However, if
you are using the Configuration Assistant, reading this information will help you
understand security concepts and the relationship between Policy Agent and
AT-TLS function.

Option 2: Manual configuration
You can manually create the AT-TLS policy configuration files by coding all the
required statements in a z/OS UNIX file or MVS data set. There are a large
number of configuration options provided by AT-TLS policy statements that permit
advanced users to carefully fine-tune AT-TLS policy on a per-stack basis. This
information describes the procedure for creating an AT-TLS policy by manually
creating and editing the configuration files. For details about the AT-TLS policy
statements, see z/OS Communications Server: IP Configuration Reference.

Specifying the AT-TLS configuration file based on Policy
Agent role

The Policy Agent can act as a policy server, a policy client, or neither. For more
information on these different roles, see “Policy types and infrastructure overview”
on page 829. Regardless of which option is used to configure AT-TLS policies, the
resulting configuration files need to be specified using different statements,
depending on the role of the Policy Agent.
v If you are using the Policy Agent as a policy client that retrieves AT-TLS policies

from the policy server, specify the configuration files using the
DynamicConfigPolicyLoad statement on the policy server.

v If you are using the Policy Agent as a policy client, but the policy client does not
retrieve AT-TLS policies from the policy server, specify the configuration files
using the TTLSConfig statement on the policy client.

v If you are not using a policy client/policy server environment, specify the
configuration files using the TTLSConfig statement on the single Policy Agent.

When this information refers to configuration files, keep in mind where the files
should exist, based on the role of the Policy Agent.

AT-TLS policy configuration
AT-TLS policy is provided to the stack by the Policy Agent. The Policy Agent main
configuration file contains a TcpImage statement for each stack that is to receive
policy, and can optionally contain a CommonTTLSConfig statement that identifies
a local shared AT-TLS policy file.

The TcpImage statement identifies the z/OS UNIX file or MVS data set that
contains policy for that stack. This policy file can contain a TTLSConfig statement
to identify the z/OS UNIX file or MVS data set that contains the local AT-TLS
policy. The TTLSConfig statement is required for each stack that is to receive
AT-TLS policy. If both a TTLSConfig statement and a CommonTTLSConfig
statement are defined, the specified CommonTTLSConfig file is processed before
the TTLSConfig policy file specified for that stack.

1196 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

On the policy server, use the DynamicConfigPolicyLoad statement to specify the
remote AT-TLS policies. On the policy client, use the PolicyServer statement to
retrieve the remote AT-TLS policies from the policy server.

Within the AT-TLS policy file, AT-TLS rules define a set of conditions that are
compared to connections when policy is mapped during connect, or at the first
select for readable or writable, poll for readable or writable, send, receive, or
SIOCTTLSCTL ioctl. If a rule match is found, AT-TLS transparently provides TLS
protocol control for the connection based on the security attributes specified in the
actions associated with the rule.

AT-TLS rules
A TTLSRule statement consists of a set of conditions that are compared against the
connection being checked. When a match is found, policy lookup stops and the
connection is assigned the actions associated with the rule. The rule conditions are:
v LocalAddr - Local IP address or addresses
v RemoteAddr - Remote IP address or addresses
v LocalPortRange - Local port or ports
v RemotePortRange - Remote port or ports
v Jobname - Job name of the owning application or wildcard job name
v Userid - User ID of the owning process or wildcard user ID
v Direction - Inbound if applied to a passive socket (established by accept),

Outbound if applied to an active socket (established by connect), or Both

Direction and at least one other condition must be specified. Other rule
considerations include:
v If a condition is not specified, that condition is not considered when comparing

the rule and the connection for a match.
v Multiple values can be specified for the IP address and port conditions, either

directly in the condition or as a referenced group.
v IPv6 addresses are valid in all environments.

Each TTLSRule statement can also have a priority. Priority values can be integers
in the range 1 to 2 000 000 000, with 2 000 000 000 being the highest priority. When
assigning priorities, you should skip some values to allow for future rule insertion
between existing rules. Policy Agent orders rules in alphabetical order within
priority.

Tip: If connections can map to more than one rule, always use priority and leave
priority space between rules.

AT-TLS actions
A TTLSRule statement can reference up to three actions:
v The TTLSGroupActionRef parameter includes the name of a globally defined

TTLSGroupAction statement
v The TTLSEnvironmentActionRef parameter includes the name of a globally

defined TTLSEnvironmentAction statement
v The TTLSConnectionActionRef parameter includes the name of a globally

defined TTLSConnectionAction statement

The TTLSGroupActionRef parameter is required, and the TTLSGroupAction
statement must specify TTLSEnabled ON or TTLSEnabled OFF. If TTLSEnabled

Chapter 22. Application Transparent Transport Layer Security data protection 1197

OFF is specified, no additional specifications are needed. Otherwise, the AT-TLS
environment action is required and the AT-TLS connection action is optional. Each
action represents a scope of control.

When an AT-TLS action statement is deleted or replaced, it is considered stale.
New connections will not map to a stale action. Connections that mapped to an
action that later becomes stale continue to use the resources associated with the
stale action until the connection closes.

AT-TLS group action
This action defines whether AT-TLS is enabled, allows trace settings, and provides
the ability to set unique Language Environment variables for the Language
Environment process that will be started for the action. Many TTLSRule statements
can reference the same TTLSGroupAction statement. In a simple implementation of
AT-TLS, you need to specify only TTLSEnabled ON on the TTLSGroupAction
statement.

The AT-TLS group action represents a single Language Environment process and
enclave, and initializes one instance of the System SSL DLL. Global attributes are
owned by this action. Each AT-TLS group has a main task, a logging task, and a
dynamic pool of pthreads that handle System SSL secure environment and secure
connection management. When a stale group has no remaining connections, the
pthreads, tasks, and Language Environment process are removed.

Guideline: Use as few AT-TLS group actions as necessary.

AT-TLS environment action
This action requires a key ring name (either RACF or gskkyman format), and the
handshake role (client or server) this half of the connection will assume. Cipher
suites and trace settings can also be set. There are several advanced parameters
available if needed, but in a simple implementation of AT-TLS, you need to specify
only a key ring and the handshake role.

The AT-TLS environment action is used to create System SSL environments. A key
ring and SSL Session ID (SID) cache are examples of attributes owned by a System
SSL environment. The AT-TLS environment action initializes a System SSL
environment within the Language Environment process that was created to
represent an AT-TLS group action. Several System SSL environments can exist
within a single AT-TLS group. The same TTLSEnvironmentAction statement can be
used to create similar System SSL environments in the same or different groups.
AT-TLS dynamically creates instances of System SSL environments as needed.
AT-TLS deletes System SSL environments when they have had no connections
using them for a period of ten to twenty minutes. If the TTLSEnvironmentAction
statement used to create a System SSL environment becomes stale, AT-TLS deletes
the environment when it has no remaining connections. Connections associated
with the same server application or same client user ID can share a System SSL
environment. Connections that share an existing System SSL environment avoid
the processing required to initialize an environment, such as opening a key ring.
Connections between the same partners can also reuse recent session information
in the SID cache, allowing them to use the SSL short handshake that requires less
processing. System SSL connection resources are released when the connection
closes.

AT-TLS connection action
The AT-TLS connection action represents attributes at the connection level. This
action is optional, and is needed only when a subset of connections within an

1198 z/OS V1R12.0 Comm Svr: IP Configuration Guide

AT-TLS environment must have different parameters. Handshake role, security
version, cipher suites, and tracing are examples of attributes that can be changed at
the connection level. In a simple implementation of AT-TLS, you do not need to
specify this action.

System SSL connections are initialized within a System SSL environment. Use the
AT-TLS connection action to override attributes specified at the SSL environment
layer. System SSL connection resources are released when the connection closes.

Getting started with AT-TLS
Assume you have a TCP client and server application pair running on z/OS
platforms. This application handles sensitive data, and you want this application to
be used only with the TLS protocol. The server application runs under the job
name of XYZSRV, and creates a passive TCP socket bound to IP address
INADDR_ANY and port 5000. The client application runs as a command, issued
by TSO or z/OS UNIX interactive users, and connects to port 5000.

To complete AT-TLS security setup for this sample environment, you need to create
both server and client key rings. The server key ring needs to contain a server
certificate, and any certificates used to sign it. The server needs access to the
private keys of the server certificate. The client key ring needs the root certificate
used to sign the server certificates. For a TLS/SSL primer and some step-by-step
examples, see Appendix B, “TLS/SSL security,” on page 1461. For more
information on managing key rings and certificates with RACF and the
RACDCERT command, see z/OS Security Server RACF Security Administrator's
Guide. For detailed information on managing key rings and certificates with
gskkyman, see z/OS Cryptographic Services System SSL Programming.

Configuring the server system
On each z/OS system where you run the server application, see Table 54 for the
tasks needed to configure the server.

Table 54. AT-TLS configuration for the server system

Task Specification

Create key ring Create server key ring with server certificate and necessary certificate
authority certificates.

Create Policy Agent files 1. Create a Policy Agent main configuration file containing a TcpImage
statement for the server stack.

2. Create a Policy Agent image configuration file for the server stack.

3. If AT-TLS policies are to be retrieved from the policy server, create
image-specific AT-TLS configuration files, and optionally, common
AT-TLS configuration files, on the policy server.

Chapter 22. Application Transparent Transport Layer Security data protection 1199

Table 54. AT-TLS configuration for the server system (continued)

Task Specification

Add AT-TLS configuration 1. For local AT-TLS policies, add a TTLSConfig statement to the Policy
Agent image configuration file, identifying the TTLSConfig policy
file location:

TTLSConfig serverpath

2. For remote AT-TLS policies, add a PolicyServer statement to the
policy client image configuration file:

PolicyServer
{

ClientName name
PolicyType TTLS
{

...
}
...

}

Add a DynamicConfigPolicyLoad statement to the policy server
main configuration file:

DynamicConfigPolicyLoad clientname
{

PolicyType TTLS
{

PolicyLoad serverpath
}
...

}

Add statements to the AT-TLS policy file Add the AT-TLS policy statements to the serverpath file:

TTLSRule XYZServerRule
{

LocalPortRange 5000
JobName XYZSRV
Direction Inbound
TTLSGroupActionRef XYZGroup
TTLSEnvironmentActionRef XYZServerEnvironment

}
TTLSGroupAction XYZGroup
{

TTLSEnabled On
}

TTLSEnvironmentAction XYZServerEnvironment
{

TTLSKeyRingParms
{

Keyring server_key_ring
}

HandshakeRole SERVER
Trace 7

}

1200 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Table 54. AT-TLS configuration for the server system (continued)

Task Specification

Set up InitStack access control 1. Define the EZB.INITSTACK.sysname.tcpname profile for each AT-TLS
stack.

2. Permit administrative applications to use the stack before AT-TLS is
initialized.

For examples of the security product commands needed to create this
resource profile name and grant users access to it, see member
EZARACF in sample data set SEZAINST.

Enable AT-TLS Set TCPCONFIG TTLS in PROFILE.TCPIP.

Configuring the client systems
On each z/OS system where you run the client application, see Table 55 for the
tasks needed to configure the client.

Table 55. AT-TLS configuration for the client system

Task Specification

Create key ring Create a client key ring for each client with necessary certificate
authority certificates. If using client authentication, also attach each
client's certificate to their key ring.

Tip: To simplify AT-TLS policy, use the same RACF key ring name for
every client. SystemSSL will qualify the key ring name with the current
UserID when accessed.

Create Policy Agent files 1. Create a Policy Agent main configuration file containing a TcpImage
statement for the client stack.

2. Create a Policy Agent image configuration file for the client stack.

3. If AT-TLS policies are to be retrieved from the policy server, create
image-specific AT-TLS configuration files, and optionally, common
AT-TLS configuration files, on the policy server.

Chapter 22. Application Transparent Transport Layer Security data protection 1201

Table 55. AT-TLS configuration for the client system (continued)

Task Specification

Add AT-TLS configuration 1. For local AT-TLS policies, add a TTLSConfig statement to the Policy
Agent image configuration file, identifying the TTLSConfig policy
file location:

TTLSConfig clientpath

2. For remote AT-TLS policies, add a PolicyServer statement to the
policy client image configuration file:

PolicyServer
{

ClientName name
PolicyType TTLS
{

...
}
...

}

Add a DynamicConfigPolicyLoad statement to the policy server
main configuration file:

DynamicConfigPolicyLoad clientname
{

PolicyType TTLS
{

PolicyLoad clientpath
}
...

}

Add statements to the AT-TLS policy file Add the AT-TLS policy statements to the clientpath file:

TTLSRule XYZClientRule
{

RemotePortRange 5000
Direction Outbound
TTLSGroupActionRef XYZGroup
TTLSEnvironmentActionRef XYZClientEnvironment

}
TTLSGroupAction XYZGroup
{

TTLSEnabled On
}

TTLSEnvironmentAction XYZClientEnvironment
{

TTLSKeyRingParms
{

Keyring client_key_ring
}

HandshakeRole CLIENT
Trace 7

}

Set up InitStack access control 1. Define the EZB.INITSTACK.sysname.tcpname profile for each AT-TLS
stack.

2. Permit administrative applications to use the stack before AT-TLS is
initialized.

For examples of the security product commands needed to create this
resource profile name and grant users access to it, see member
EZARACF in sample data set SEZAINST.

1202 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Table 55. AT-TLS configuration for the client system (continued)

Task Specification

Enable AT-TLS Set TCPCONFIG TTLS in PROFILE.TCPIP.

Steps for starting AT-TLS and verifying its operation
You are now ready to start the sample AT-TLS environment and verify its
operation.

Before you begin:

1. Perform the tasks in Table 54 on page 1199 and Table 55 on page 1201.
2. Review your syslogd configuration to verify that messages written by Policy

Agent and TCP/IP stacks are saved in the desired files. AT-TLS syslogd
messages are written to the daemon facility by default.

3. Start syslogd.

Perform the following steps to start AT-TLS and verify its operation:

1. Start the TCP/IP stacks.

2. Start the administrative applications required for successful Policy Agent
execution, such as OMPROUTE, LDAP, and the name server.

3. Start Policy Agent on all participating systems and verify that there were no
policy errors in processing the policy files.

4. Verify that the participating TCP/IP stacks have received AT-TLS policy and
released console message EZZ4248E.

5. Start server application and verify that it starts without errors.

6. Start client applications. Review the AT-TLS trace messages in the syslogd
output on both the client and server systems. Verify that connections are
mapping to the intended policy and no handshake errors occur. The info
messages EZD1281I TTLS Map and EZD1283I TTLS Initial Handshake show the
policy used and result of TLS handshake negotiation. The error message
EZD1286I TTLS Error shows any failures.

For information on common AT-TLS startup errors, see z/OS Communications Server:
IP Diagnosis Guide.

Application compatibility with AT-TLS
Most applications can use AT-TLS. However, some applications should not be
configured to use AT-TLS. Any application that is already configured to use SSL or
TLS protocols should not use AT-TLS. Use of AT-TLS would result in encrypting
data that is already encrypted. The receiving partner would not be able to decipher
the data that had been encrypted twice. If the application can be configured to use
clear text or the application uses the SIOCTTLSCTL ioctl, AT-TLS can provide
support.

TCP/IP applications that already support the TLS protocol include:
v TN3270E Telnet server

Use the TTLSPort statement to configure the TN3270E Telnet server to support
AT-TLS. See “Configuring Telnet security using AT-TLS” on page 585.

v FTP server

Chapter 22. Application Transparent Transport Layer Security data protection 1203

Code the TLSMECHANISM statement in FTP.DATA to configure the FTP server
to support AT-TLS. See “Steps for migrating the FTP server and client to use
AT-TLS” on page 700.

v FTP client
Code the TLSMECHANISM statement in FTP.DATA to configure the FTP client
to support AT-TLS. See “Steps for migrating the FTP server and client to use
AT-TLS” on page 700.

v Sendmail
v DCAS (Express Logon server)
v Bind 9.x, which uses open SSL

AT-TLS does not support Web servers using the Fast Response Cache Accelerator
(FRCA) support in TCP/IP. AT-TLS ignores policy for connections using FRCA.
The sockets are treated as if they did not match any AT-TLS rules.

AT-TLS does not support applications that use the Pascal sockets API. AT-TLS
ignores all Pascal sockets. The sockets are treated as if they did not match any
AT-TLS rules. TCP/IP applications that use the Pascal API include:
v TSO TN3270E Telnet client
v SMTP server
v LPD server

Policy considerations
Policy is a powerful tool for configuring and managing your applications that use
AT-TLS. Before configuring the AT-TLS policy, review the general syntax rules in
the Policy Agent and policy applications topic in z/OS Communications Server: IP
Configuration Reference.

Reusable objects
With several of the AT-TLS rule conditions and action parameters, you can
reference named objects. If you are going to use the same definition in several
rules or actions, it is easier to create a single named object and refer to it, rather
than repeating the definition. This also makes changing these definitions easier and
more accurate. For example, the IpAddrGroup statement can be used to identify
groups of IP addresses that are used in several rules. You might find it useful to
define TTLSRule statements that reference an IP address group with a name, such
as LocalHost. In each stack's AT-TLS policy file, you would define that IP address
group with all of the addresses local to that stack. That single reference can then be
used throughout the policy to easily represent all local IP addresses, without
re-coding the local addresses in each rule condition.

Common AT-TLS configuration file
The common AT-TLS configuration file should contain all of the policy that is
common to multiple stacks. When the policy agent reads a policy file for a given
stack, the contents of the common AT-TLS configuration file are logically added
before the contents of the stack-specific file. Rules and actions in the common
AT-TLS configuration file can reference objects, such as a local IpAddrGroup
statement, that are defined in the stack-specific AT-TLS configuration file. Rules
and actions in the stack-specific file can also reference objects that are defined in
the common file.

1204 z/OS V1R12.0 Comm Svr: IP Configuration Guide

If Policy Agent encounters multiple objects of the same type and name, the last
occurrence is the one that is used. You can take advantage of this by defining an
object that is used on many stacks in the common file, and then overriding it in
the stack-specific file of a specific stack.

Exempting specific connections from AT-TLS
In some cases, you might want to have the majority of users of an application
using AT-TLS, but then exempt a small group of users. You might find that it is
simpler to define a broad AT-TLS policy for the application, and then define a
higher priority rule for the exempt users. The simplest way to do this is to define a
TTLSGroupAction statement with the TTLSEnabled parameter set to OFF. The
exempt user rule would then reference this action. When the TTLSGroupAction
statement specifies the TTLSEnabled parameter as OFF, the
TTLSEnvironmentActionRef parameter on the corresponding rule is not required.

Action refresh
When Policy Agent is stopped and restarted, or when policy files are changed,
policy objects that are currently in use might be deleted or replaced. When an
AT-TLS action is deleted or replaced, connections using the old object continue
processing without change. Connections that search AT-TLS policy after the change
use the new action objects. A change to an AT-TLS group action causes a new
Language Environment process to be created, along with new SSL environments
for each user or application environment associated with that group. A change to
an AT-TLS environment action causes new SSL environments to be initialized
within each group with which that environment is associated. System SSL reopens
key rings and certificates, and creates an empty session ID cache when it initializes
an SSL environment.

There are cases when a change is made that is not reflected by a change in the
action. For example, the default certificate in a key ring might change. The key
ring name has not changed, but there is a need to open a new environment.
Simply refreshing policy will not refresh the AT-TLS environment action in AT-TLS,
because no values within the action have changed. To force a refresh in AT-TLS,
some parameter must be changed. The EnvironmentUserInstance parameter can be
used for this purpose. Incrementing the instance number forces a refresh of AT-TLS
without changing any of the security parameters. Similarly, changes to the contents
of the environment file named in a group action will not be applied until the
group action is changed. The GroupUserInstance parameter can be used to force an
AT-TLS refresh of the group, creating a new Language Environment process using
the new environment file contents.

Sometimes after you have made a change to an AT-TLS policy, the changed policies
are not automatically reinstalled by the Policy Agent; new connections might fail
until the policies are reinstalled. If you see AT-TLS connection setup errors with
message EZD1286I or EZD1287I after you made an AT-TLS configuration change,
you can force all AT-TLS policies to be reinstalled by refreshing the Policy Agent.
From the MVS console, issue the MODIFY procname,REFRESH command. For more
information about controlling the refresh of polices using the TcpImage and
PEPInstance statements, see z/OS Communications Server: IP Configuration Reference.

Chapter 22. Application Transparent Transport Layer Security data protection 1205

Achieving the basic level of security
To achieve the basic level of security, do the following:
1. Pick the handshake roles.
2. Specify the key ring.

Picking the handshake roles
Every secure connection must have one end using the HandshakeRole Client, and
the other end using the HandShakeRole Server or HandShakeRole
ServerWithClientAuth.

In the SSL and TLS protocols, the client side sends a ClientHello handshake record
and the server side responds with a ServerHello handshake record. If both sides
send ClientHello records, the handshake fails. If both sides wait for a ClientHello,
the handshake times out.

The role played in the handshake is independent of whether the application is
used as the client, server, or peer. It is also independent of which application does
the listen() and accept() and which does the connect(). The primary consideration
for deciding which role an application should play is certificate management.
v An application designated as HandshakeRole Server must have a user or site

certificate on its key ring. It must have access to the private keys of its user or
site certificate. It might also need other certificates on its key ring, required for
authentication.
The partner application designated as HandshakeRole Client must have a key
ring that contains the root certificates required to authenticate the server’s
certificate. The client does not need access to the private keys of any certificate.
Clients can share this key ring.

v An application designated as HandshakeRole ServerWithClientAuth might need
additional root certificates on its key ring to authenticate client certificates. The
server decides whether a client must present a user certificate and what
constitutes an acceptable certificate.
The partner application designated as HandshakeRole Client decides whether to
present a user certificate when challenged. To present a user certificate, it must
have a private key ring with that user certificate. It must have access to the
private keys of the user certificate. The client key ring must also contain the root
certificates required to authenticate the server’s certificate.

When the HandshakeRole parameter is set to ServerWithClientAuth, a certificate
request is sent to the client during the handshake. The client can send its certificate
to the server, which can then validate the certificate. The level of validation done
by the server is controlled by the setting of the ClientAuthType parameter. The
following chart summarizes the differences between the parameter settings:

Table 56. ClientAuthType parameter settings

ClientAuthType
Client certificate required or
optional Certificate validation

PassThru Optional None

Full Optional Certificate is validated
against keyring, if provided

Required Required Certificate is validated
against keyring

1206 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Table 56. ClientAuthType parameter settings (continued)

ClientAuthType
Client certificate required or
optional Certificate validation

SAFCheck Required Certificate is validated
against keyring and must be
associated with a user ID in
the security product

If the certificate fails validation, the secure connection does not initialize
successfully. The default setting for ClientAuthType is Required. For applications
that do not issue AT-TLS ioctl calls to obtain the certificate or user ID of the client,
the Required setting ensures that any client that connects provides a valid client
certificate. The ClientAuthType setting of PassThru should only be used for
applications that will get the certificate from AT-TLS using the SIOCTTLSCTL ioctl
call and implement their own security methods to validate the certificate. The
ClientAuthType setting of Full can be used for applications that want to validate
the client certificate if provided, but do not require a client certificate to establish a
secure connection. The ClientAuthType setting of SAFCheck provides an additional
level of security when using client authentication by requiring AT-TLS to derive a
user ID associated with the certificate. An application can then get the user ID
from AT-TLS using the SIOCTTLSCTL ioctl after the secure connection has been
established. The user ID can be used to either verify the user ID presented by the
client during the application's protocol flows or eliminate the need for a user ID to
be sent by the client.

Specifying the key ring
AT-TLS configuration can be simplified by using key rings with a common name
stored in RACF. The SAF key ring name is specified as userid/keyring. The current
user ID is used if only the key ring name is specified. A value that begins with a
forward slash is interpreted as the path name of a gskkyman key ring. A PKCS #11
token name is specified as *TOKEN*/token-name. *TOKEN* indicates that the
specified key ring is actually a token name.

Configuring more sophisticated security
This topic describes decisions you can make to achieve more elaborate levels of
security.

Protocol versions
SSLv3, TLSv1, and TLSv1.1 provide stronger security than SSLv2. Support for
SSLv2 is off by default in AT-TLS policy. You should turn it on only if you must
support older applications that do not support the newer protocols.

Cipher suite specification
The set of SSL protocol cipher specifications to be allowed for the secure session
can be set. You should not include any that you do not want to allow. Order is
important. System SSL selects ciphers according to the server’s order of usage
preference. The first cipher in the server’s list that is also in the client’s list is
selected. Other implementations might work differently.

AT-TLS does not pass any cipher suites to System SSL by default. For the list of
cipher suites supported and the default order used if none is specified, see z/OS
Cryptographic Services System SSL Programming.

Chapter 22. Application Transparent Transport Layer Security data protection 1207

Certificate validation
You can specify that certificates should be validated using only the method
described in RFC 2459, using only the method described in RFC 3280, or using
either method.

FIPS 140-2 support
You can configure AT-TLS to support FIPS 140-2. Specify On for the FIPS140
statement of the TTLSGroupAction statement.

For information about configuring System SSL to run in FIPS140 mode, see z/OS
Cryptographic Services System SSL Programming.

LDAP servers
Applications using HandshakeRole ServerWithClientAuth can optionally use a
Certificate Revocation List (CRL) service. This service is provided by an LDAP
server. The TTLSGskLdapParms statement is used to configure System SSL so that
it can contact a CRL service. Connections used by System SSL to contact the CRL
service should not fall under an enabled AT-TLS policy because these connections
can be made before AT-TLS policy has been installed.

Encryption key refresh
The SSLv3, TLSv1, and TLSv1.1 protocols allow the encryption key to be
renegotiated during a secure connection. This can provide a higher level of security
for long running connections. The AT-TLS default is to not reset the cipher. You
can specify a time interval to cause AT-TLS to request a reset of the cipher in the
range 1 to 1440 seconds using the ResetCipherTimer statement. The cipher reset is
requested when the timer expires and the next application read or write completes.
The time interval is restarted when the cipher has been changed. Both ends of the
secure connection must agree to perform another handshake to renegotiate the
cipher. The HandshakeRole Client end must initiate this handshake. The
HandshakeRole Server can send an alert to the client requesting another
handshake. The client is free to ignore or postpone the request. The server is free
to refuse a re-handshake request sent by the client.

Additional security customization considerations
This topic provides additional information that you might want to use to
customize security for your environment.

Handshake timer
Certain configuration or application protocol mismatches can lead to stalled
connections. The TLS handshake protocol always expects the end of the connection
configured as HandshakeRole Client to send the first message. One connection stall
scenario results when both ends of the connection are configured as
HandshakeRole Server and wait for a ClientHello record from the other end.
Another connection stall scenario results when the end of the connection that
normally sends the first application data is configured as HandshakeRole Server,
but the partner application is not configured to use a secure connection. The
HandshakeRole Server end is waiting for a ClientHello, and the nonsecure end is
waiting for application data.

You can use the HandshakeTimer action parameter to control the time that AT-TLS
should wait during TLS handshake negotiation before resetting the connection.

1208 z/OS V1R12.0 Comm Svr: IP Configuration Guide

AT-TLS times two different handshake intervals, handshake start and handshake
completion. The handshake start interval is intended to detect configuration
problems that result in neither partner sending data. The handshake completion
interval is intended to detect problems that might stall a handshake in one of the
TLS protocol implementations.

The handshake start interval begins when AT-TLS is ready to begin a TLS
handshake, and ends when the hello handshake record is received from the
partner. On the initiating or active side of the connection, the handshake start
interval used is five times the specified HandshakeTimer value, because it includes:
v The network time for the ClientHello record to reach the partner if

HandshakeRole is Client.
v The time a connection spends on the partner’s listen backlog.
v The time before the partner causes the connection to be mapped.
v The time spent on the partner AT-TLS work queue.
v The time spent by the partner initializing a new System SSL environment, if

necessary.
v The network time for the partner’s ServerHello or ClientHello record to be

returned.

On the listening or passive side of the connection, the handshake start interval
used is the specified HandshakeTimer value, because it includes only the network
time for one or both hello records. Handshake start interval timeouts result in
AT-TLS return code 5004 and a connection reset.

The handshake completion interval begins when the hello handshake record is
received from the partner, and ends when the System SSL
gsk_secure_connection_init() service returns to AT-TLS. The handshake completion
interval used is the specified HandshakeTimer value on either active or passive
connections. Handshake completion interval timeouts result in AT-TLS return code
5005 and a connection reset.

The HandshakeTimer action parameter has a default value of 10 seconds. If you
determine that you are getting handshake time-outs that are caused by network
delays or application workload rather than configuration or application errors, you
should increase the value. On the other hand, if you determine that handshakes
normally complete much faster in your environment and you would like to detect
the occasional incorrectly configured partner more quickly, you can decrease the
value.

Diagnostic traces
In addition to the steps for diagnosing AT-TLS problems described in z/OS
Communications Server: IP Diagnosis Guide, you might need to collect a System SSL
trace when you are diagnosing an AT-TLS problem. The only method for collecting
this trace is by using GSKSRVR CTRACE, as described in z/OS Cryptographic
Services System SSL Programming. You cannot use the GSK_TRACE environment
variable because it causes an abend if it is used with AT-TLS. When you use
GSKSRVR CTRACE to diagnose AT-TLS problems, the job name that you specify
on the JOBNAME parameter of the CTRACE command should be the TCP/IP job
name rather than the application job name.

If you are not using any other features provided by the GSKSRVR started task,
then you can use the sample procedure provided in the SGSKSAMP library
without any changes.

Chapter 22. Application Transparent Transport Layer Security data protection 1209

|
|
|
|
|

Diagnosis considerations
Applications that implement SSL or TLS can control whether non-encrypted
application data is included in diagnostic traces. Lower layers have access to only
encrypted data. When using AT-TLS, the TCP, PFS, and SOCKAPI layers have
access to non-encrypted data. The AT-TLS default is to suppress this data in
CTRACE records generated by these layers to protect the application’s users. If you
need to see this data in these records to diagnose a problem, you can set
CtraceClearText ON.

AT-TLS writes trace messages to syslogd. The AT-TLS default behavior is to write
syslogd messages to the daemon facility. Other TCP/IP functions, such as the
SNMP TCP/IP subagent, also specify the daemon facility name when writing
records to syslogd. The job name and syslog facility name are the same. Filters
cannot be used to direct the records to different output files. If you want AT-TLS
records to go to a different output file, you can change the syslog facility name in
the TTLSGroupAction statement to direct the messages from that group to the
Auth facility instead. You can then set up filtering based on the job name and
facility in the syslogd configuration file to direct AT-TLS records to a different
output file.

The Trace value is interpreted by AT-TLS as a bit map. Each of the options is
assigned a value that is a power of 2. You should add together the values of each
option that you want to activate.

The default Trace value is 2, which provides error messages to syslogd. While you
are deploying a new policy, you might find it beneficial to specify a Trace value of
6 or 7. This provides connection info messages, in addition to error messages in
syslogd. The info messages provide positive feedback that connections are
mapping to the intended policy.

Trace options event (8), flow (16), and data (32) are intended primarily for
diagnosing problems. Trace values larger than 7 can cause a large number of trace
records to be dropped instead of being sent to syslogd.

Tip: Use a TTLSConnectionAction with a higher Trace value to diagnose problems
in a production environment. You can temporarily define a high priority TTLSRule
with conditions that cover only a small number of problem connections. This
temporary rule can reference the same TTLSGroupAction and
TTLSEnvironmentAction that your production rule references, and a
TTLSConnectionAction with the Trace level you want for diagnosis.

TLS function negotiation
TLS protocols enable the TLS client and TLS server to negotiate additional
functionality for a connection. If either the TLS client or TLS server does not
understand a function, the function is not used on the connection. However, the
TLS client or TLS server might require that the function be supported by the
remote partner. If the remote partner does not support the function, the connection
can be closed. Each function can be configured as Required, Optional, or Off.
v Required

The connection ends if the remote endpoint does not accept the TLS function.
v Optional

The function is negotiated on the connection, but the connection does not end if
the remote partner does not support the function.

v Off

1210 z/OS V1R12.0 Comm Svr: IP Configuration Guide

The function is not supported on the connection. If the remote partner requires
this function, the remote partner closes this connection.

Guideline: For TLS servers, configure the functions as Optional to prevent remote
partners that require this extension from being unable to connect.

Wireless performance
AT-TLS supports the following negotiated functions:
v Maximum SSL fragment length

This TLS function negotiates the maximum size of unencrypted data that can be
sent in a single SSL fragment. Without this function, 16 K is the maximum
fragment length. A TLS client can negotiate a size of 512, 1 K, 2 K or 4 K. Some
clients need to use the smaller size because of memory or bandwidth limitations.

v Truncated HMAC
TLS cipher suites use the MAC construction HMAC with either MD5 or SHA-1
(RFC 2104) to authenticate record layer communications. The truncated HMAC
function saves bandwidth by truncating the HMAC to 80 bits.

Certificate selection
When AT-TLS supports a server, the certificate designated as the default for the
key ring is used. Use the CertificateLabel parameter to explicitly identify a
different certificate that you want to use.

If the SSL server needs to support multiple host names and multiple certificates,
you can use the Server Name Indication function. The Server Name Indication
function enables you to define pairs of certificate labels and host names. Use the
HandshakeServerCertLabel parameter to specify these pairs.

The SSL client must support the Server Name Indication function as well. The SSL
client includes a host name during the SSL handshake, which allows the matching
certificate to be used.

When AT-TLS supports a client, you can use the HandshakeServerName parameter
to specify the host name to be included in the SSL handshake.

For more information on configuring the HandshakeServerNameInd function, see
“TLS function negotiation” on page 1210.

Session caching
SSL can cache session information based on the Session ID (SID). SSL connections
can request that a previous session be resumed. When session information is found
in the cache, connections can use the SSL short handshake, which requires less
processing. The number of SIDs cached, the length of time that a SID is held in the
cache, and whether the cache is available across the sysplex can be configured
using the TTLSGskAdvancedParms statement.

AT-TLS access control considerations
Access to key rings and certificates is verified by System SSL when SSL
environments are initialized. Access to certificate private keys is verified by ICSF
when asymetric encryption services are requested that require the private keys.
AT-TLS invokes System SSL services that cause these access control checks to occur
on tasks created in the TCP/IP address space. TCP/IP replicates the security
environment of the user running the application that owns the socket at the time
AT-TLS policy is mapped, before invoking these System SSL services.

Chapter 22. Application Transparent Transport Layer Security data protection 1211

Several common application models were considered to determine the most
appropriate time for replicating the security environment. Replication occurs when
AT-TLS policy is mapped. Policy mapping occurs during processing of the first
occurrence of connect, a SIOCTTLSCTL IOCTL, select for socket readable or
writable, poll for socket readable or writable, or call that sends or receives data
over the socket. This defers security environment replication for applications such
as INETD until after the accept(), fork(), setuid(), and exec() sequence of services
has established the server application process.

In the CICS socket environment, transaction security environments are not visible
to AT-TLS support. The CICS job and all of its transactions appear to the stack as a
single server application with a single z/OS UNIX process ID running in the
security environment of the CICS job. All AT-TLS policy lookups, System SSL key
ring authorization checks, and ICSF private key authorization checks are processed
using the identity of the CICS job. Connections established, whether active or
passive, can perform TLS handshake processing as either the client or server. All of
the connections established by a single CICS job are able to share the session ID
cache in the SSL environment. The CICS job should use a private key ring with a
server certificate. The key ring used must contain the chain of root certificates
needed to validate the server certificate it presents to the client. If the server
requires client authentication, it must also have any other root certificates
necessary to validate client certificates presented on its key ring.

Application model considerations
AT-TLS support provides for several typical socket application models. Socket
applications with significantly different models might not benefit from AT-TLS.

Client application model
As shown in Figure 118 on page 1213, this type of application runs entirely within
the security environment of a single user. Many users might use the application,
but each usage is independent, runs in a separate process, and should not share
System SSL information with other processes. All socket calls for each usage of the
application are made from the same z/OS UNIX process. Most connections are
active connections initiated with the connect() service by this application to a
server. Some client applications, such as Web browsers, repeatedly connect to
servers at the same or different IP addresses.

Some client applications, such as FTP or REXEC, support a second parallel
connection with the server. This is often a passive connection, established by
binding to an ephemeral port and listening for a single connection back from the
server's IP address. For a description of an alternative method of mapping policy
for these special cases, see “Secondary connection application model” on page
1217.

1212 z/OS V1R12.0 Comm Svr: IP Configuration Guide

All connections established by this application, whether active or passive, perform
TLS handshake processing as a client. All of the connections established by a single
process under the same user ID should be able to share the session ID cache in the
SSL environment. If the server does not require client authentication, this client can
use a shared key ring containing only the root certificates needed to validate the
server's certificate. If the server does require client authentication, each user ID
needs to own a key ring that contains that user's certificate, in addition to the
necessary root certificates. RACF key ring names are qualified with the owning
user IDand are specified as userid/keyring. If the user ID is not explicitly specified
on the AT-TLS key ring parameter, the current user ID is used. Therefore, key ring
names can be the same across different user IDs . If the same key ring name is
used by all client user IDs, a single TTLSEnvironmentAction keyring parameter
can represent all clients required to support client authentication. AT-TLS policy
administration is simplified if the individual key rings all have the same key ring
name.

Server application model
As shown in Figure 119 on page 1214, this type of application runs entirely within
a single z/OS UNIX process. Connections can be either passive connections
returned from a listening socket by the accept() service, or active connections
initiated with the connect() service. Communication partners can be client
applications or peer servers. Connections can be processed by subtasks or pthreads
within the server process. The initial read or write of data on the connection is
done under the primary security environment of the server process. Some server
applications allow a client to log in with a user ID on the server system and can
place this client-specified identity on the subtask or pthread used to access
resources on behalf of the client. The user ID associated with the server is used for
AT-TLS purposes, regardless of this ability to change to the client-specified identity.

user
shell

process user
client

application
process

user
client

application
process

server
application

fork

fork

connect()

connect()

Figure 118. Client application model

Chapter 22. Application Transparent Transport Layer Security data protection 1213

Connections established by this application, whether active or passive, can perform
TLS handshake processing as either a client or server. All of the connections
established by a single process, under the same user ID and performing the
handshake as a client or as a server, should be able to share a session ID cache in
the SSL environment. The server process should use a private key ring with a
server certificate. The key ring used must contain the chain of root certificates
needed to validate the server certificate it presents to the client. If the server
requires client authentication, it must also have any other root certificates
necessary to validate the client certificates presented on its key ring.

Forked server application model
As shown in Figure 120 on page 1215, this type of application is forked by a
daemon application, such as INETD, to handle a single passive connection to a
socket that the daemon is listening on. The daemon invokes the bind(), listen(), and
accept() services on the parent socket. It then forks a new process to handle each
child connection, optionally changes the new process to a different identity, and
optionally execs a configured server application. The server application reads and
writes data on the child connection.

Some server applications support a second parallel connection with the client. This
is often an active connection, established by connecting back to an ephemeral port
opened by the client at the client's IP address. For a description of an alternative
method of mapping policy for these special cases, see “Secondary connection
application model” on page 1217.

server
application

job

client
application

client
application

backend
server

application

accept()

connect()

Figure 119. Server application model

1214 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Many server applications allow the client to log in with a user ID on the server
system. Some server applications change the security environment of the server
process to the client-specified identity prior to accessing resources on behalf of the
client. Other server applications set up another communications path (pseudo
terminal, named pipe, UNIX domain socket, and so on) and then fork an
additional client process. The server changes the security environment in this client
process to the client-specified identity, and then execs a client-specified program or
login shell.

The initial child connection transferred by the daemon to the server process, and
any additional connections established by the server process, perform TLS
handshaking as the server, optionally requiring client authentication. Each forked
server process runs under the same user ID. All of the server processes forked to
handle child connections of the same parent connection should be able to share the
session ID cache in the SSL environment. The server processes can use a shared
key ring with a site certificate or a private key ring with a server certificate. The
key ring used must contain the chain of root certificates needed to validate the site
or server certificate it presents to the client. If the server requires client
authentication, it must also have any other root certificates necessary to validate
client certificates presented on its key ring.

Any client process forked by the server process is treated as a new application by
AT-TLS. New connections established will not share an SSL environment with the
server process that created them.

CICS transaction model
TCP/IP CICS socket support provides a CICS resource manager that invokes z/OS
UNIX socket services. It also provides a CICS Listener transaction that accepts
passive connections from a listening socket. Each listening socket has a configured
transaction that is launched to process a single established connection.

For more information on configuring TCP/IP CICS socket support, see z/OS
Communications Server: IP CICS Sockets Guide.

client
application

client
application

INETD
daemon

server
application

process

server
application

process

client
requested
application

client
requested
application

forksetuidexec

fork

se
tuid

exe
c

fork

se
tuid

exe
c

forksetuidexec

connect()

connect()

accept()

send()
recv()

send()
recv()

Figure 120. Forked server application model

Chapter 22. Application Transparent Transport Layer Security data protection 1215

Advanced application considerations
Some applications need to be aware of when a secure connection is being used or
examine the certificate presented by the partner. Other applications need to control
if and when the TLS handshake occurs. These applications typically support both
TLS and non-TLS connections over the same port. They define an application
protocol for negotiating whether to use TLS and when to begin. In both cases,
these applications need to be aware that TLS is being used on the connection.
However, you might not want to, or might not be able to, use any SSL toolkits in
the application. AT-TLS support provides the SIOCTTLSCTL ioctl commands that
can be used in these situations.

Some applications establish a second connection using ephemeral ports or after the
server has changed to a client supplied identity. These secondary connections need
to be associated with the policy and security environment used on the primary
connection. AT-TLS provides special support for these applications.

AT-TLS aware application considerations
Applications that need to examine the partner's certificate can issue the
SIOCTTLSCTL IOCTL with request type TTLS_RETURN_CERTIFICATE to get the
certificate at any time during a secure connection. Applications that are running
under a policy with the HandshakeRole parameter set to CLIENT receive the
server's certificate. Applications that are running under a policy with the
HandshakeRole parameter set to ServerWithClientAuth receive the client's
certificate if provided.

Applications configured as HandshakeRole ServerWithClientAuth that need to
examine or use the user ID associated with the certificate in SAF can issue the
SIOCTTLSCTL ioctl with request type TTLS_QUERY_ONLY or
TTLS_RETURN_CERTIFICATE. If a partner certificate is available on the secure
connection, AT-TLS uses a RACF service to extract the associated user ID. If no
client certificate is available, or no user ID has been associated, the ioctl returns
zero as the associated user ID length.

AT-TLS controlling application considerations
Applications that need to control AT-TLS behavior, using the SIOCTTLSCTL IOCTL
with the TTLS_INIT_CONNECTION, TTLS_RESET_SESSION, or
TTLS_RESET_CIPHER request flags, must have the ApplicationControlled
parameter set to ON in their TTLSEnvironmentAdvancedParms or
TTLSConnectionAdvancedParms statement. This causes AT-TLS to postpone the
TLS handshake. After the connection is established, the application can issue the
SIOCTTLSCTL IOCTL to get the current AT-TLS connection status and determine
whether or not AT-TLS support is available on this connection. When the
application is ready for AT-TLS to perform the TLS handshake, it issues the
SIOCTTLSCTL IOCTL with request type TTLS_INIT_CONNECTION. The
SIOCTTLSCTL IOCTL initiates an AT-TLS policy lookup, if one has not yet been
done, and assigns a rule and actions to the connection if a match is found. For
more IOCTL information, see z/OS Communications Server: IP Programmer's Guide
and Reference.

Some application protocols provide a way for the client and server programs to
negotiate whether to use the TLS or SSL protocol to protect data on the connection.
This cleartext negotiation typically occurs very early in the connection. When both
partners agree to use TLS, they initiate the handshake. These applications can take
advantage of AT-TLS. The policy must indicate ApplicationControlled ON. After

1216 z/OS V1R12.0 Comm Svr: IP Configuration Guide

the connection is established, the application can use the SIOCTTLSCTL IOCTL to
determine whether AT-TLS support is configured, policy covers the connection,
and the policy specifies ApplicationControlled ON. The application can then send
and receive cleartext data to negotiate the use of TLS. When both partners agree,
they each must initiate a secure connection. The AT-TLS application can use the
SIOCTTLSCTL ioctl with TTLS_INIT_CONNECTION to initialize the secure
connection. AT-TLS performs the initial handshake and provides encryption and
decryption services for the application. The application can simply send and
receive cleartext over the socket as it would if it were not a secure connection.

The application can also use the SIOCTTLSCTL IOCTL to reset the cipher or the
session. Resetting the cipher causes AT-TLS to initiate another handshake. If the
session is reset first, the subsequent handshake is a full handshake. If the session
has not been reset, a short handshake is attempted for the subsequent handshake.
The partner application must agree to the short handshake.

Secondary connection application model
Some applications create two connections between the client and server programs.
These applications typically have a single primary connection that is bound to a
well-known port on the server side. After exchanging some information, a second
connection is established. This second connection often uses dynamically assigned
ports on both ends. Examples of this behavior include the stderr connection in the
rsh, rexec, and rlogin family of applications, as well as the firewall-friendly FTP
data connection. It is often not possible to define a set of policy rule conditions to
correctly map these secondary connections on the client side or when the server
forks a new process, with a dynamic job name, for each connected client.

In other cases, this second connection is established after the server has changed to
a client-supplied identity. Mapping this second connection to AT-TLS policy as a
new and independent connection would force the use of a different System SSL
environment. The client-supplied identity would need to have access to the
certificate private keys. Normal FTP data connections are an example of this
behavior.

AT-TLS provides an alternate method of mapping policy for these secondary
connections. This alternate method causes the secondary connection to share the
System SSL environment and security environment of the associated primary
connection.

To activate the alternate policy mapping method, define a policy rule using
conditions that will map the primary connection. In this policy, specify the
SecondaryMap parameter with a value of ON. When this policy is mapped to a
primary connection, an entry is made in an internal table. Future connections do a
normal policy lookup, and then look in the internal table for an entry with the
same process ID and pair of IP addresses. If a matching entry is found and the
new connection has no mapped policy, or has a mapped policy with a lower
priority than the matching entry, the new connection is marked as a secondary
connection and uses the same policy and user ID as the primary connection.

You should use this alternate policy mapping method only for client applications
and server applications that have a single primary connection. Careful
consideration should be given before using it for non-forking server applications
that accept multiple primary connections, such as MVRSHD (TCP/IP's combined
rsh and rexec server for the TSO environment). The alternative method of policy
mapping always associates secondary connections with the most recent primary

Chapter 22. Application Transparent Transport Layer Security data protection 1217

connection mapped by this process. When the process establishes multiple primary
connections, the alternate mapping method is not able to reliably associate
secondary connections with the correct primary connection. You should not use
this alternate policy mapping method when the primary connections can map to
different policies based on client IP address or multiple server listening port
numbers. You should use normal policy mapping with a job name condition for
the secondary connections of non-forking servers.

1218 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Chapter 23. z/OS Load Balancing Advisor

The z/OS Load Balancing Advisor communicates with external load balancers and
one or more Load Balancing Agents. The main function of the Load Balancing
Advisor is to provide external TCP/IP load balancing solutions, such as the Cisco
Content Switching Module (CSM), with recommendations on which TCP/IP
applications and target z/OS systems within a z/OS sysplex are best equipped to
handle new TCP/IP workload requests. These recommendations can then be used
by the load balancer to determine how to route new requests to the target
applications and systems (that is, how many requests should be routed to each
target). The recommendations provided by the Advisor are dynamic, and can
change as the conditions of the target systems and applications change. The
recommendations include several key components:
v State of the target application and system

This includes an indication of whether the target application and target system is
currently active. This enables the load balancer to exclude systems that are not
active or do not have the desired application running.

v z/OS Workload Management (WLM) system-wide recommendations
WLM recommendations provide a relative measure of a target system's ability to
handle new workload, as compared to other target systems in the sysplex. The
WLM recommendations are derived using several measures, including each
system's available general CPU capacity, which is used for both system members
and application members. For application members, the amount of available
System z Application Assist Processor (zAAP) capacity and System z9 Integrated
Information Processor (zIIP) capacity can also be considered.
If systems are 100% utilized, a WLM recommendation is a measurement of
available displaceable capacity (capacity that can be displaced by higher
importance workloads). The latter is important for scenarios where systems
might be 100% utilized, but some might be running a larger portion of lower
importance work (as defined by the WLM policy) that can therefore be displaced
by higher importance workloads.

v z/OS WLM server-specific recommendations
These recommendations are similar to the WLM system-wide recommendations,
but are more specific as they are based on the following:
– How well individual server applications are doing compared to the WLM

policy goals that have been specified for that workload.
– The amount of displaceable capacity of the general, zAAP, and zIIP CPU

work on each system, based on the following:
- The workload's importance (as defined by the WLM policy).
- The proportion of each CPU type that is currently being consumed by the

application's workload.

These recommendations can be very useful in helping the load balancers avoid
selecting application servers that are experiencing performance problems (that is,
not meeting the specified WLM policy goals).

v Application server health from a TCP/IP perspective
TCP/IP statistics for target applications are monitored to determine whether
specific server applications are encountering problems keeping up with the
current workload. For example, is a target TCP server application keeping up
with TCP connection requests? Or are requests being rejected because the

© Copyright IBM Corp. 2000, 2011 1219

backlog queue is full? In scenarios where this occurs, the recommendations
passed back to the load balancers are adjusted appropriately, so that the load
balancer can direct fewer connections to any application that is experiencing
these problems. These recommendations are provided for both UDP and TCP
server applications. These recommendations are referred to as Communication
Server weights in this information.

z/OS Load Balancing Advisor system overview
Figure 121 illustrates the relationship between the load balancer, a z/OS Load
Balancing Advisor, and Load Balancing Agents.

The load balancer is configured with a list of systems and applications that it will
balance. The load balancer tells the Load Balancing Advisor about the applications
by specifying an IP address, port, and protocol, or about the systems by specifying
an IP address. The Advisor is configured with a poll interval at which the Agents
update the Advisor's data. You can configure the Advisor with a list of authorized
load balancers and a list of authorized Load Balancing Agents with which it can
gather data, or you can use AT-TLS support to provide the authorization for the
load balancers and Load Balancing Agents. Each Agent gathers data on its own
z/OS system about the TCP/IP stacks and applications running on that system.

The Agent is configured with the information it needs to contact the Advisor. The
Advisor consolidates the data from all its Agents, and returns the data to the load
balancer to advise the load balancer about the status of the systems and
applications.

TLS/SSL enablement for the z/OS Load Balancing Advisor
As you plan to use the z/OS Load Balancing Advisor, consider whether you need
to use TLS/SSL (using AT-TLS on z/OS). The z/OS Load Balancing Advisor acts
as a TCP server application, listening on two distinct ports that allow both Load
Balancing Agents and external load balancers [or automated domain name

Server instance

z/OS LB agent

W
requests

ork

W
requests

ork

Pr
protocol
control
flo

ivate

ws

SASP
control
flows

Load
Balancer

z/OS
Sysplex

z/OS LB
advisor

Server instance

z/OS LB agent

Server instance

z/OS LB agent

Figure 121. z/OS Load Balancing Advisor

1220 z/OS V1R12.0 Comm Svr: IP Configuration Guide

registration (ADNR)] to connect to it. You need to restrict the ability to establish a
connection to either of these ports, because sensitive interfaces can be exploited
after a connection is accepted by the Load Balancing Advisor. For the agent
listening port, you need to ensure that only authorized agents are allowed to
connect, because these agents are responsible for providing sensitive information
that indicates server application availability, health, and performance. For the
external load balancer Server/Application State Protocol (SASP) port, you need to
ensure that only authorized load balancers and ADNR are allowed to connect,
because this interface can be used to obtain sensitive information regarding
TCP/IP applications in a sysplex, CPU utilization information for each system, and
so on. You can use AT-TLS to encrypt data between the external load balancer and
the Advisor's TCP/IP stack, and between the Agent's TCP/IP stack and the
Advisor's TCP/IP stack.

You can use one or both of the following methods to authorize connections to the
z/OS Load Balancing Advisor:
v You can explicitly configure the following lists:

– The list of IP addresses of all the external load balancers (including ADNR)
that are allowed to connect to the Load Balancing Advisor

– The list of source IP addresses and source ports that each of the Load
Balancing Agents use to connect to the Load Balancing Advisor

v You can establish policies using the z/OS Policy Agent so that the Agents,
ADNR, or both are required to use TLS/SSL through AT-TLS, and load balancers
are required to use TLS/SSL.

Although the configuration parameters might be sufficient in certain environments
in which the Load Balancing Advisor, Agents, and external load balancers all
reside inside a secure network (that is, isolated by a firewall and so on), they
might not be sufficient in environments in which the network is not considered to
be as secure or in which the need to protect against IP address spoofing attacks is
important.

With AT-TLS, the z/OS Load Balancing Advisor provides you with a more secure
way to authorize access to critical Load Balancing Advisor resources using
industry-standard network security standards like TLS/SSL. The AT-TLS approach
also provides some additional benefits:
v Ease of use

– Reduces the number of IP address and port lists that need to be maintained
in the Load Balancing Advisor and coordinated with the external load
balancers and Load Balancing Agents.

– Eliminates the need for defining a source IP address and port for each Load
Balancing Agent. This includes the Agent configuration file, the TCP ports
that need to be reserved in the TCP/IP profile, and the DVIPAs that are
recommended for the source IP address that is used for Agent connections.

v Outage avoidance
If you do not use AT-TLS, adding an Agent instance into the sysplex requires
updates to the Load Balancing Advisor configuration, which in turn requires a
recycle of the Load Balancing Advisor so that it can process the configuration
changes. With AT-TLS, you can add an Agent instance into the sysplex without
recycling the Advisor.

For more information about using AT-TLS, see Chapter 22, “Application
Transparent Transport Layer Security data protection,” on page 1193.

Chapter 23. z/OS Load Balancing Advisor 1221

Steps for configuring the z/OS Load Balancing Advisor
Before you begin: You must meet the following requirements:
v You must have at least one external load balancer that supports the

Server/Application State Protocol (SASP). This load balancer must have IP
connectivity to each z/OS system in the sysplex that is to participate in load
balancing. If you are using TLS/SSL (through AT-TLS on z/OS) for incoming
connections to the Load Balancing Advisor, the load balancer must also be
capable of using TLS/SSL on its SASP communication flows.

v Read Chapter 22, “Application Transparent Transport Layer Security data
protection,” on page 1193 and Chapter 16, “Policy-based networking,” on page
829 to decide how you want the Advisor and Agents to use AT-TLS policies. To
use AT-TLS, AT-TLS must be enabled and the Policy Agent must be configured
and activated for each TCP/IP stack where the Load Balancing Advisors and
Load Balancing Agents might run.

Perform the following steps to configure the z/OS Load Balancing Advisor and
one or more Load Balancing Agents. References are included regarding special
considerations for the following configurations:
v For configurations that include multiple TCP/IP stacks on a single system

image, references are made to “Configuring the z/OS Load Balancing Advisor in
a multiple TCP/IP stack environment” on page 1245.

v For configurations in which the z/OS Load Balancing Advisor is running in a
sysplex subplexing environment, references are made to “Configuring the z/OS
Load Balancing Advisor with subplexing” on page 1247.

1. Evaluate TCP/IP workloads to be load balanced and select a load balancing
solution. (optional)

2. Decide who will have authority to start the Advisor. (optional)

3. Decide who will have authority to start the Agents. (optional)

4. Authorize the Agents to use WLM services

5. Optionally configure the Advisor and Agents to automatically restart in case
of application or system failure. (optional)
v For CINET considerations for this step, see “Step 5 (CINET): Configure the

Advisor and Agents to automatically restart in case of application or
system failure (optional)” on page 1245.

v For information about the changes you need to make to this step to use
subplexing, see “Step 5 (subplex): Configure the Advisor and Agents to
automatically restart in case of application or system failure (optional)” on
page 1248.

6. Configure and start syslogd.

For information about the changes you need to make to this step to use
subplexing, see “Step 6 (subplex): Configure and start syslogd” on page 1249.

7. Configure one Advisor per sysplex.

v For CINET considerations with DVIPAs and regarding stack termination,
see “Step 7 (CINET): Configure one Advisor per sysplex” on page 1245.

v For information about the changes you need to make to this step to use
subplexing, see “Step 7 (subplex): Configure one Advisor per sysplex” on
page 1249.

8. Configure one Agent per z/OS system in the sysplex.

1222 z/OS V1R12.0 Comm Svr: IP Configuration Guide

v For CINET considerations regarding the host_connection statement, see
“Step 8 (CINET): Configure one Agent per z/OS system in the sysplex” on
page 1246. Also see “Step 7 (CINET): Configure one Advisor per sysplex”
on page 1245 for CINET considerations regarding unique
application-instance DVIPAs and stack affinity.

v For information about the changes you need to make to this step to use
subplexing, see “Step 8 (subplex): Configure one Agent per z/OS system
in the sysplex” on page 1250.

9. Customize the TCP/IP profiles of the TCP/IP stacks that the Advisor and
Agents will run on. (optional)
v For CINET considerations regarding the lb_connection_v4 and

lb_connection_v6 statements, see “Step 9 (CINET): Customize the TCP/IP
profiles of the TCP/IP stacks that the Advisor and Agents will run on
(optional)” on page 1247.

v For information about the changes you need to make to this step to use
subplexing, see “Step 9 (subplex): Customize the TCP/IP profiles of the
TCP/IP stacks that the Advisor and Agents will run on (optional)” on
page 1250.

10. Start the TCP/IP stacks that the Advisor and the Agents will use.

For CINET considerations regarding Agent recovery after stack failure, see
“Step 10 (CINET): Start the TCP/IP stacks that the Advisor and the Agents
will use” on page 1247.

11. Start the target applications that will be the targets of load balancing.

12. Customize WLM policies for the Advisor and Agents. (optional)

13. Start one Agent on each sysplex system that you want to participate in this
method of workload balancing.
For information about the changes you need to make to this step to use
subplexing, see “Step 13 (subplex): Start one Agent on each sysplex system
you want to participate in this method of workload balancing” on page 1251.

14. Start the one instance of the Advisor in the sysplex.

For information about the changes you need to make to this step to use
subplexing, see “Step 14 (subplex): Start the one instance of the Advisor in
the sysplex” on page 1251.

15. Configure the external load balancers.

For information about the changes you need to make to this step to use
subplexing, see “Step 15 (subplex): Configure the external load balancers” on
page 1251.

16. Start the load balancers.

17. Verify that the Advisor system is functioning correctly. (optional)

Step 1: Evaluate TCP/IP workloads to be load balanced and
select a load balancing solution (optional)

The first steps involve identifying the TCP/IP applications that you want to load
balance, the systems that these applications will be running on, and ensuring that
these applications can exploit load balancing. When this is done, evaluate the load
balancing techniques that best meet your requirements. You might want to use a
combination of workload balancing solutions.

Chapter 23. z/OS Load Balancing Advisor 1223

There are various technology choices for performing IP load balancing in a sysplex
environment. For a discussion of some of these choices, see “Workload balancing”
on page 462.

Step 2: Decide who will have authority to start the Advisor
(optional)

Explicit authority should be granted to all users that can start the Advisor, to
prevent unauthorized users from starting it. If you do not grant explicit authority,
any user able to issue the START command can start the Advisor.

Tip: You might want to combine this step with the next two steps, “Step 3: Decide
who will have authority to start the Agents (optional),” and “Step 4: Authorize the
Agents to use WLM services” on page 1225, since these steps use similar
commands.

Steps for granting authority to start the Advisor
Perform the following steps to grant authority to start the Advisor:

1. Ensure that the OPERCMDS class is active and RACLISTed, and RACLIST
processing is enabled:
SETROPTS CLASSACT(OPERCMDS)
SETROPTS RACLIST (OPERCMDS)

2. Define the following OPERCMDS class profile using a security product like
RACF:
RDEFINE OPERCMDS (MVS.SERVMGR.LBADV) UACC(NONE)

3. Grant the Advisor access to the OPERCMDS class:

PERMIT MVS.SERVMGR.LBADV CLASS(OPERCMDS) ACCESS(CONTROL) -
ID(userid)

4. Refresh the OPERCMDS class:

SETROPTS RACLIST(OPERCMDS) REFRESH

5. See the EZARACF sample in SEZAINST for specific instructions.

All commands that you can issue against the Advisor are MODIFY commands,
with the exception of the STOP command used to stop the Advisor. Therefore,
you might also want to limit which users are able to issue MODIFY and STOP
commands.

Step 3: Decide who will have authority to start the Agents
(optional)

Explicit authority should be granted to all users that can start the Agents, to
prevent unauthorized users from starting them. If you do not grant explicit
authority, any user able to issue the START command can start the Agents.

Steps for granting authority to start the Agents
Perform the following steps to grant authority to start the Agents:

1. Ensure that the OPERCMDS class is active and RACLISTed, and RACLIST
processing is enabled. If you have already done this for the Advisor, you can
skip this step.
SETROPTS CLASSACT(OPERCMDS)
SETROPTS RACLIST (OPERCMDS)

2. Define the following OPERCMDS class profile using a security product like
RACF:

1224 z/OS V1R12.0 Comm Svr: IP Configuration Guide

RDEFINE OPERCMDS (MVS.SERVMGR.LBAGENT) UACC(NONE)

3. Grant the Agents access to the OPERCMDS class:

PERMIT MVS.SERVMGR.LBAGENT CLASS(OPERCMDS) ACCESS(CONTROL) -
ID(userid)

4. Refresh the OPERCMDS class:

SETROPTS RACLIST(OPERCMDS) REFRESH

5. See the EZARACF sample in SEZAINST for specific instructions.

All commands that you can issue against the Agents are MODIFY commands,
with the exception of the STOP command used to stop the Agents. Therefore,
you might also want to limit which users are able to issue MODIFY and STOP
commands.

Step 4: Authorize the Agents to use WLM services
You might want or need to define the BPX.WLMSERVER resource profile to your
security product and grant the Agents access to it. If you are using RACF and
already have the resource profile defined and the FACILITY class is enabled,
permit the Agents to the resource profile. If you are using a security product other
than RACF that by default denies access to the resource profile, grant the Agents
access to the resource profile. If you do not already have the resource profile
defined and you are using RACF, consult the documentation of other programs
and products that require WLM services and coordinate any potential changes
with these programs and products.

Steps for defining the resource profile with RACF
Perform the following steps for RACF if you choose to define the resource profile:

1. Ensure that the FACILITY class is active and RACLISTed, and RACLIST
processing is enabled:
SETROPTS CLASSACT(FACILITY)
SETROPTS RACLIST (FACILITY)

2. Define the following FACILITY class profile:

RDEFINE FACILITY (BPX.WLMSERVER) UACC(NONE)

3. Grant the Agent access to the FACILITY class:

PERMIT BPX.WLMSERVER CLASS(FACILITY) ACCESS(READ) -
ID(userid)

4. Refresh the FACILITY class:

SETROPTS RACLIST(FACILITY) REFRESH

For more information, see the EZARACF sample in SEZAINST.

Step 5: Configure the Advisor and Agents to automatically
restart in case of application or system failure (optional)

Although this step is optional, performing it will provide high availability to your
target applications. In the event that an Agent fails, the Advisor would indicate
that it has no information for any applications running on that system. As a result,
target applications on the failing system would cease to receive new workload
requests, in most cases, until the Agent is restarted. Automatically restarting the
Agent on the same system would minimize this perceived outage. This can be
accomplished using automation software or by defining an automatic restart
manager (ARM) policy. For more information on defining ARM policies, see z/OS
MVS Setting Up a Sysplex. In a sysplex subplexing environment, this step requires

Chapter 23. z/OS Load Balancing Advisor 1225

additional actions. For information about the changes to this step, see “Step 5
(subplex): Configure the Advisor and Agents to automatically restart in case of
application or system failure (optional)” on page 1248.

The Agent registers with ARM using the following values:
ELEMTYPE=SYSTCPIP
ELEMNAME=EZBsyscloneLBAGENT
TERMTYPE=ELEMTERM

where sysclone is a 1- or 2-character shorthand notation for the name of the MVS
system. For example, if the sysclone value is 02, the resulting ELEMNAME value is
EZB02LBAGENT. For a complete description of the SYSCLONE static system
symbol, see z/OS MVS Initialization and Tuning Reference.

This indicates that if the Agent fails on this system, it should be restarted on this
system only.

If the Advisor or its underlying system were to fail, the load balancer might
continue to distribute workload requests according to the last set of information
received from the Advisor, it might resort to preconfigured weights, or it might
even stop distributing new work requests to the cluster. (The behavior depends
upon the load balancer implementation; consult the load balancer documentation
for details.) Therefore, it is important that the Advisor be restarted as soon as
possible when a failure occurs, so that it can begin communicating with the load
balancer and workload request distribution can resume normally. This restart
capability should cover scenarios where the Advisor itself fails, and where the
system that the Advisor is running on fails. The Advisor can run on any system in
the sysplex and thus can be restarted on any system in the sysplex, as long as it is
configured to use dynamic VIPAs and dynamic routing is in effect. The Advisor
registers with ARM using the following values:

ELEMTYPE=SYSTCPIP
ELEMNAME=EZBLBADV
TERMTYPE=ALLTERM

This indicates that the Advisor should be restarted only on the same system in
cases where the Advisor itself fails, and also restarted on a different system if the
system fails. Using an ARM policy, you can indicate which systems are eligible for
running the Advisor in the case of system failures. You also need to ensure that the
specified backup systems have all the necessary configuration in place to enable
the Advisor to be restarted there.

Some special considerations exist for scenarios where ARM is used and the TCP/IP
stack address space terminates, as the result of a failure or of a planned operation.
When the TCP/IP stack becomes unavailable, the Advisor also terminates, as it can
no longer establish any TCP/IP communications. An ARM restart of the Advisor
will likely fail, as the TCP/IP protocol stack will not be available when the restarts
occur. You can handle these scenarios in the following ways:
v Planned outages of the TCP/IP stack

Manually start the Advisor on another system, as soon as the Advisor terminates
on the system where TCP/IP is stopped.

v Unplanned outages of the TCP/IP stack
Ensure that an ARM policy (or other automation) is in place to quickly restart
the TCP/IP stack on the same system. The Advisor also needs to be quickly
restarted on the same system. This can be done by using an automation software
package, or by using the TCP/IP profile AUTOLOG statement.

1226 z/OS V1R12.0 Comm Svr: IP Configuration Guide

The AUTOLOG statement also has some important considerations:
v You should place the Advisor in the AUTOLOG statement list to ensure that it is

started when TCP/IP is started on that system. However, you should specify the
NOAUTOLOG parameter on the PORT reservation statements for the Advisor
ports in the TCP/IP profile. This prevents TCP/IP from monitoring and
attempting to restart the Advisor, as that could interfere with your automation
logic or the ARM policy that you have put in place.

v The AUTOLOG function works best on systems where a single TCP/IP stack is
active (INET environment). For CINET considerations, see “Step 5 (CINET):
Configure the Advisor and Agents to automatically restart in case of application
or system failure (optional)” on page 1245.

Guideline: Establish an ARM policy with TCP/IP at a lower level than the
Advisor and Agent, so that TCP/IP is restarted before the Advisor and Agent are
restarted. For more information, see z/OS MVS Setting Up a Sysplex.

Requirement: The Load Balancing Advisor and Agent do not run using a system
key. Therefore, if you are using ARM registration, the started task IDs need to be
permitted with UPDATE authority to the associated
IXCARM.SYSTCPIP.EZBLBADV and IXCARM.SYSTCPIP.EZBLBAGENT profiles in
the FACILITY class within the SAF product on your system. To enable the Advisor
and Agent to register with ARM, use the following RACF commands to define the
profiles and grant update access to the user IDs that are assigned to start the
Advisor and Agent:
RDEFINE FACILITY IXCARM.SYSTCPIP.EZBLBADV UACC(NONE)
RDEFINE FACILITY IXCARM.SYSTCPIP.EZBLBAGENT UACC(NONE)
PERMIT IXCARM.SYSTCPIP.EZBLBADV CLASS(FACILITY) ID(LBADV) ACCESS(UPDATE)
PERMIT IXCARM.SYSTCPIP.EZBLBAGENT CLASS(FACILITY) ID(LBAGENT) ACCESS(UPDATE)
SETROPTS RACLIST(FACILITY) REFRESH

Restrictions:

v If using AUTOLOG for the Agent, code the NOAUTOLOG parameter on the
PORT reservation statement for the Agent port in the TCP/IP profile. This
prevents the Agent from automatically being cancelled and restarted because the
Agent does not listen on the port.

v If the Advisor is using IPv6 for the load balancer connections, or if any Agents
are using IPv6 to connect to the Advisor, movement of the Advisor is limited to
IPv6–enabled TCP/IP stacks.

Step 6: Configure and start syslogd
The Advisor and Agent write most log messages and trace data to the syslog
daemon (syslogd). A limited number of messages are written to the MVS console,
but these are unaffected by syslogd configuration. For the Advisor and Agent to be
able to write their log messages and trace data to syslogd, syslogd must be
properly configured and started before the Advisor and Agent are started.

Because it is likely that you will be running an Agent on the same system as the
Advisor, for better readability, you might want to configure syslogd to place
Advisor and Agent log output in separate files. For further information, see
“Configuring the syslog daemon” on page 185. In a sysplex subplexing
environment, this step requires additional actions. For information about the
changes to this step, see “Step 6 (subplex): Configure and start syslogd” on page
1249.

Chapter 23. z/OS Load Balancing Advisor 1227

Tip: As more data is logged by the Advisor and Agent, performance of the
Advisor and Agent can be adversely affected. The amount of data that is logged by
the Advisor and Agent is determined by the debug_level statement. Backing the
syslogd output file with a zSeries File System instead of an HFS file system can
minimize performance impacts caused by logging.

Step 7: Configure one Advisor per sysplex
There can be only one Advisor active in the sysplex at any given time, unless you
are using sysplex subplexing. In a sysplex subplexing environment, this step
requires additional actions. For information about the changes to this step, see
“Step 7 (subplex): Configure one Advisor per sysplex” on page 1249.

The Advisor reads configuration data from one file, which might exist as a z/OS
UNIX file, a PDS or PDSE member, or a sequential data set. If you plan on
allowing the Advisor to move within the sysplex in the case of failure, you
probably want the Advisor configuration file or data set to exist on shared DASD,
to make it accessible to all systems in the sysplex if necessary. The Advisor
configuration file is specified on the CONFIG DD statement in the Advisor start
procedure. A sample start procedure is provided in EZBLBADV in SEZAINST.

The Advisor configuration file serves three basic purposes:
v Defines the listening sockets for the load balancers and Agents
v Provides an access control list for specifying which load balancers and Agents

can connect to the Advisor
v Customizes some optional parameters

A sample Advisor configuration file is provided in EZBLBADC in SEZAINST.

Define listening sockets/ports (required)
The Advisor maintains at least two, and up to three, listening sockets/ports, one
for Agents to connect to and up to two for load balancers to connect to. There are
separate IPv4 and IPv6 listening sockets for load balancers. If your TCP/IP stack is
not IPv6 enabled, you will not be able to use the IPv6 listening socket.

The Advisor and Agent statements define addresses and ports on the local system
and on remote systems. At times, it can be difficult to remember which statements
refer to local sockets and which statements refer to remote addresses and ports.

Tip: Any statement containing the word connection refers to a local socket, and any
statement containing the word id refers to a remote address and possibly a port.

Specify the local IPv4 address and port that the Advisor listens on for IPv4 load
balancer connections with the lb_connection_v4 configuration statement. The
default port for communications with load balancers is 3860.

The lb_connection_v6 statement does the equivalent for IPv6 that lb_connection_v4
does for IPv4. You can specify either or both of these statements. For CINET
considerations regarding stack termination, see “Step 7 (CINET): Configure one
Advisor per sysplex” on page 1245.

Guideline: To enable movement of the Advisor to another system in the sysplex or
to another TCP/IP stack on the same system in the event of failure of the Advisor
or its underlying system, use a dynamic VIPA (DVIPA) for the address specified on
the lb_connection_v4 and lb_connection_v6 statements. Furthermore, make this
DVIPA a unique application-instance DVIPA (defined through VIPARANGE) rather

1228 z/OS V1R12.0 Comm Svr: IP Configuration Guide

than a multiple application-instance DVIPA (defined through VIPADEFINE), to
enable movement of the Advisor if the Advisor itself failed. For CINET
considerations with DVIPAs, see “Step 7 (CINET): Configure one Advisor per
sysplex” on page 1245.

Restriction: If the Advisor is using IPv6 for the load balancer connections, or if any
Agents are using IPv6 to connect to the Advisor, movement of the Advisor is
limited to IPv6–enabled TCP/IP stacks.

Specify the local port that the Advisor listens on for Agent connections with the
agent_connection_port statement. If the Advisor's TCP/IP stack is IPv6 enabled,
the Advisor opens a listening socket for Agents on the IPv6 unspecified address (::)
on the port specified by this statement. This enables Agents to connect to the
Advisor using either IPv4 or IPv6, and by using any address on the Advisor's
system. If the TCP/IP stack is not IPv6 enabled, the Advisor opens a listening
socket on the IPv4 unspecified address, 0.0.0.0. This enables Agents to connect to
the Advisor using any IPv4 address on the Advisor's system.

Guideline: The port number used on the agent_connection_port statement should
not be the same as the port used on the lb_connection_v4 statement or the
lb_connection_v6 statement.

Rules:

v The port number specified on the agent_connection_port statement must match
the port number specified on the Agents' advisor_id statement.

v If at least one IPv4 address is specified in the lb_id_list statement, the
lb_connection_v4 statement must be specified. Similarly, if at least one IPv6
address is specified in the lb_id_list statement, the lb_connection_v6 statement
must be specified.

Define the access control list
You can use one or both of the following methods for z/OS Load Balancing
Advisor security:
v Access control list configuration statements

The Advisor can control which load balancers and which Agents are allowed to
connect to it by maintaining an access control list. The access control list
specifies the remote IP address of the connecting load balancers and the remote
IP address and port of the Agents that are allowed to connect.
Specify the list of load balancers that are allowed to connect to the Advisor in
the lb_id_list statement. Specify the list of Agents that are allowed to connect in
the agent_id_list statement.
Rules:

– Specify only complete IP addresses in access control lists; subnetworks, IP
prefixes, or other types of wildcards are not allowed.

– The addresses in the agent_id_list statement must match the addresses in the
host_connection statement of the Agents. For the purposes of high availability,
the addresses specified in the agent_id_list statement of the Advisor and the
host_connection statement of the Agents should be static or dynamic VIPAs,
to tolerate individual link outages on the hosts.

Restriction: There is a maximum limit of 100 load balancers that can be
connected to an Advisor at any given time.

v Policies

Chapter 23. z/OS Load Balancing Advisor 1229

You can establish policies using the z/OS Policy Agent so that the Agents,
ADNR, or both are required to use TLS/SSL through AT-TLS for connections to
the Advisor, and load balancers are required to use TLS/SSL.
When you are using AT-TLS for all connections to the Advisor, the Advisor's
lb_id_list and agent_id_list statements and the Agents' host_connection
statements are optional. If you use these statements, the rules for access control
list configuration statements still apply. AT-TLS is an alternative to using these
statements, but you can still specify the statements. If you specify these
statements and you are using AT-TLS, the statements are not required to match
on the Advisor. For example, if an Agent connects using AT-TLS, the Advisor
allows the connection to succeed even if the agent_id_list statement does not list
that Agent.

Customizing optional statements
Customize the optional statements in the Advisor's configuration file.

The update_interval statement controls how often each Agent updates the Advisor
with data, and depending upon load balancer implementation and configuration,
can control how often load balancers are updated with information from the
Advisor. The default value is 60 seconds. At each update interval, each Agent
refreshes the Advisor with the status of each registered member for which the
Agent is responsible. This information includes the status of the target application
(active or not), whether it is an application member, the operator quiesce state of
the member, and various weights that measure the target system and application's
ability to handle additional workload requests. The lower the update interval, the
more up-to-date the load balancer's data will be with respect to the target's
availability and capability to handle additional workload requests. Of course, the
lower the update interval, the higher the network traffic and CPU overhead is.

Depending upon load balancer implementation and configuration, the
update_interval statement might also determine how often the load balancer is
updated with data from the Advisor. If the load balancer supports the SASP push
flag, and it has been specified in the load balancer, the Advisor sends data to the
load balancer at least every update interval. Regardless of what the update interval
is set to, if this push flag is supported and configured in the load balancer, certain
events might cause the Advisor to update the load balancer with information
before the update interval timer expires. These events include the starting or
stopping of a target application, or the addition or deletion of a member's IP
address on the Agent host.

Therefore, the update interval is a key factor in determining the latency period
between when changes occur on the target application system, and when the load
balancer is informed of them. Each Agent updates the Advisor with new
information every update interval. The Advisor, in turn, updates the load balancer
with changes in weights every update interval, if the load balancer supports the
push flag. In addition, if the push flag is supported and configured by the load
balancer, the Advisor updates the load balancer with any change in the target's
availability status as soon as it discovers such a change from the Agent, instead of
waiting for the update interval to expire. Therefore, when the load balancer
supports and configures the push flag, the maximum amount of latency expected
between a change in a member's weight and when the load balancer is informed of
it is twice the update interval (that is, one update interval for the Agent to report it
to the Advisor and one update interval for the Advisor to report it to the load
balancer). However, on the average, it should take one update interval for a
change in the target application weight to reach the load balancer.

1230 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Use the optional wlm statement to specify the default type of WLM
recommendation to be used for all groups. There are two choices for this, the
basewlm and serverwlm values. If you do not specify this statement, the default is
basewlm. If you want a specific group of applications to use a type of WLM
recommendation other than the default, you can override the default WLM
recommendation type for that group on a port number basis using the port_list
statement. The WLM recommendation is a key component used in determining the
net weight assigned to a member.

The type of WLM recommendation represented by the basewlm value indicates the
overall displaceable capacity (general, zAAP, and zIIP) of the system where the
application represented by the member resides, relative to the other systems in the
sysplex. This is referred to as a WLM system weight recommendation. Use the
optional proctype parameter with basewlm to specify the proportion of general,
zAAP, and zIIP CPU that is consumed by an application's workload.

The serverwlm value represents a different type of WLM recommendation, in that
it reflects how well an individual server application is performing from a WLM
perspective (based on the WLM policy). This type of recommendation is a
server-specific recommendation and is referred to as a server-specific WLM
recommendation. Server-specific WLM recommendations are composed of two key
elements:
v The amount of displaceable capacity (general, zAAP, and zIIP) available on the

target system based on the importance level of the application, and the
proportion of general, zAAP, and zIIP CPU that is currently being consumed by
the application's workload. For example, if the application is utilizing only
general and zAAP CPU, the displaceable zIIP capacity is not considered.

v How well the application is performing compared to the WLM goals for that
application workload.

In addition, WLM provides an interface that enables applications to report the
following additional information:
v Abnormal transaction completion rate, or the rate of abnormal completions per

1000 total transactions
v Application health, a value in the range 0–100% (100% being optimal),

representing the overall health of the application

Using this additional information, WLM might reduce the server-specific
recommendation. For more information, see “Sysplex distributor” on page 469.

Evaluate whether you can use WLM server-specific distribution as an alternative to
WLM system weight distribution for an application. In addition to the above
reasons, server-specific distribution has the added advantage that processor
proportions are automatically determined and dynamically updated by WLM,
based on the actual CPU usage by the application. If you need to use system
weight distribution, to determine the processor proportions to configure, study the
workload usage of assist processors by analyzing SMF records, using performance
monitors reports such as RMF, and so on.

System members (port and protocol are zero) always use WLM system weight
recommendations and cannot be configured to consider zAAP and zIIP CPU,
because the type of workload is unknown. This is true even if proctype is coded
on the wlm statement.

Application members can use either type.

Chapter 23. z/OS Load Balancing Advisor 1231

It is important that you choose the type of WLM recommendation that is best
suited to each group of applications. Some types of applications are better suited to
using WLM system weight recommendations rather than server-specific WLM
recommendations. For most applications, server-specific WLM recommendations
provide a more accurate way to distribute workload to their servers. However,
when a server acts as an access point to applications that run in other address
spaces (and therefore in a different service class), WLM system weight
recommendations might be the preferred distribution method; if expected usage of
general, zAAP, and zIIP processors is known, this recommendation can be further
refined by using the proctype parameter. The sysplex distributor function can also
use server-specific WLM recommendations or WLM system weight
recommendations. For examples of some applications that might be better
represented by WLM system weight recommendations, see “Sysplex distributor”
on page 469.

The optional port_list statement enables you to override or specify parameters for
members on a port number basis. The wlm parameter of the port_list statement
enables you to override the value defined (or specified by default) on the wlm
statement, for all members that use the port number specified. The actual WLM
recommendation type used is still dependent upon the value specified and the
z/OS level of the Agents owning the members of the group.

When selecting the type of WLM recommendation to use for a given group, it is
important to consider the following requirements:
v All members in a group must specify the same type of WLM recommendation

(using the wlm or port_list statement).
v To use server-specific recommendations, no Agent reporting on behalf of a

member of a group can be at a release level prior to z/OS V1R7.

For any groups where these requirements are not met, the Advisor uses WLM
system weight recommendations, and a warning message is written to syslogd.
The main rationale behind this is that WLM system weight recommendations and
server-specific WLM recommendations cannot be directly compared to one another.

The Advisor can detect dynamically whether or not these requirements are being
met. For example, if all owning Agents of a group, except one, support
server-specific WLM recommendations, and the application on that one system is
brought down, the WLM recommendation type would change dynamically from
WLM system weight recommendations to server-specific WLM recommendations,
provided the Advisor was configured to request server-specific WLM
recommendations for that group. Similarly, if that same application is brought back
up, the WLM recommendation type would dynamically switch back to WLM
system weight recommendations. A similar circumstance would arise if the
member owned by the Agent that does not support server-specific WLM
recommendations was quiesced by the z/OS operator or the load balancer
administrator.

The optional debug_level statement determines how much trace data is captured in
the Advisor's log file.

Restriction: In most cases, you should not customize the debug_level statement,
unless directed to do so by an IBM Service representative. Adding additional types
of trace data can cause the amount of data captured to become voluminous.
Reducing the amount of trace data from the default might make diagnosing a
problem more difficult.

1232 z/OS V1R12.0 Comm Svr: IP Configuration Guide

For more details on the Advisor configuration file statements, see z/OS
Communications Server: IP Configuration Reference.

Step 8: Configure one Agent per z/OS system in the sysplex
There can be only one Agent active per z/OS system in the sysplex at any point in
time, unless sysplex subplexing is used. When operating in a sysplex subplexing
environment, this step requires additional actions. For information about the
changes to this step, see “Step 8 (subplex): Configure one Agent per z/OS system
in the sysplex” on page 1250.

The Agent reads configuration data from one file, which can exist as a z/OS UNIX
file, a PDS or PDSE member, or a sequential data set. The Agent configuration file
is specified on the CONFIG DD statement in the Agent start procedure. A sample
start procedure is provided in EZBLBAGE in SEZAINST.

The Agent configuration file serves three basic purposes:
v Defines the IP address and port that the Agent binds to for communication with

the Advisor
v Identifies the location (IP address and port) of the Advisor
v Customizes optional parameters

A sample Agent configuration file is provided in EZBLBAGC in SEZAINST.

The Advisor and Agent statements define addresses and ports on the local system
and on remote systems. At times, it can be difficult to remember which statements
refer to local sockets and which statements refer to remote addresses and ports.

Tip: Any statement containing the word connection refers to a local socket, and any
statement containing the word id refers to a remote address and possibly port.

Defining the IP address and port to bind to for communications
with the Advisor
Specify the local IP address and port that the Agent binds to for communications
with the Advisor on the host_connection statement. This is used as part of the
Advisor's access control enforcement.

Rules:

v The IP address on the host_connection statement can be an IPv6 address, if the
Agent's system is running an IPv6-enabled TCP/IP stack and the Advisor has an
IPv6-enabled TCP/IP stack available.

v If an IPv4 address is specified on the host_connection statement, an IPv4 address
must be specified on the advisor_id statement. Similarly, if an IPv6 address is
specified on the host_connection statement, an IPv6 address must be specified
on the advisor_id statement.

Guidelines:

v For simplicity and consistency, you might want to specify the same port on the
host_connection statement for each Agent, and reserve the same port for the
Agent on each TCP/IP stack that an Agent will run on. For more information
about port reservation, see “Step 9: Customize the TCP/IP profiles of the
TCP/IP stacks that the Advisor and Agents will run on (optional)” on page 1235.

v The address in the host_connection statement (and therefore, also in the
Advisor's agent_id_list statement) should be a static VIPA. For CINET

Chapter 23. z/OS Load Balancing Advisor 1233

considerations regarding the host_connection statement, see “Step 8 (CINET):
Configure one Agent per z/OS system in the sysplex” on page 1246.

The Agent host_connection statement and the Advisor agent_id_list statement are
optional if AT-TLS is used for all Agent-Advisor connections. If you specify these
statements, the rules and guidelines previously stated still apply. AT-TLS is an
alternative to using these statements, but you can still specify the statements. If
you specify these statements and you are using AT-TLS, the statements are not
required to match on the Advisor. For example, if an Agent connects using AT-TLS,
the Advisor allows the connection to succeed even if the agent_id_list statement
does not list that Agent.

Also see “Step 7 (CINET): Configure one Advisor per sysplex” on page 1245 for
CINET considerations regarding unique application-instance DVIPAs and stack
affinity.

Restriction: If the Advisor is using IPv6 for the load balancer connections, or if any
Agents are using IPv6 to connect to the Advisor, movement of the Advisor is
limited to IPv6–enabled TCP/IP stacks.

Identifying the location of the Advisor (required)
Specify the location of the Advisor on the advisor_id statement. This statement
contains an IP address and port that the Advisor uses to listen for connections
from Agents in the sysplex.

Guideline: Use a dynamic VIPA for this address, to enable the Advisor to be
moved within the sysplex in the event of a failure of the Advisor or the Advisor's
underlying system.

Rules:

v The port specified on the advisor_id statement must match the port specified on
the Advisor's agent_connection_port statement.

v If an IPv4 address is specified on the advisor_id statement, an IPv4 address
must be specified on the host_connection statement. Similarly, if an IPv6 address
is specified on the advisor_id statement, an IPv6 address must be specified on
the host_connection statement.

Customizing optional statements
Similar to the Advisor, the optional debug_level statement determines how much
trace data is captured in the Agent's log file.

Restriction: In most cases, you should not customize this statement, unless
directed to do so by an IBM Service representative. Adding additional types of
trace data can cause the amount of data captured to become voluminous. Reducing
the amount of trace data from the default might make diagnosing a problem more
difficult.

For more details on the Agent configuration file statements, see z/OS
Communications Server: IP Configuration Reference.

1234 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Step 9: Customize the TCP/IP profiles of the TCP/IP stacks
that the Advisor and Agents will run on (optional)

When operating in a sysplex subplexing environment, this step requires additional
actions. For information about the changes to this step, see “Step 9 (subplex):
Customize the TCP/IP profiles of the TCP/IP stacks that the Advisor and Agents
will run on (optional)” on page 1250.

There are several things to do to customize the TCP/IP profile to accommodate the
Advisor and Agents.
v In the appropriate TCP/IP profiles that they will use, including the TCP/IP

stacks that they could potentially move to, reserve the ports that the Advisor
and Agents will use. All ports for the Advisor and Agent utilize the TCP
protocol, and thus should be reserved for TCP. The Advisor has at least two
ports, and potentially three ports, to reserve, including the ports specified on the
following statements:
– lb_connection_v4
– lb_connection_v6
– agent_connection_port
For CINET considerations regarding the lb_connection_v4 and lb_connection_v6
statements, see “Step 9 (CINET): Customize the TCP/IP profiles of the TCP/IP
stacks that the Advisor and Agents will run on (optional)” on page 1247.

v If you use dynamic VIPAs for the Advisor as recommended, you need to
configure the appropriate TCP/IP profiles in the sysplex for the DVIPA
definition and usage. The preferred definitions would include VIPADEFINE with
MOVEABLE IMMEDIATE, or VIPARANGE with MOVEABLE
NONDISRUPTIVE. For more specific information, see “Using dynamic VIPAs”
on page 359.
Restriction: Do not mix sysplex distributor functions with these DVIPAs.

v If you are currently using the SHAREPORT or SHAREPORTWLM parameters on
the TCP/IP profile PORT statement to enable multiple TCP applications to share
the same port, some additional considerations might apply to your
configuration. For example, if the TCP applications sharing the same port are
also members of groups that are being reported to external load balancers with
SASP, it is important to ensure that consistent criteria are used by the various
load balancing components.
When using the z/OS Load Balancing Advisor, all instances of a TCP application
sharing the same port on a target system are reported to external load balancers
using a single member entry, and therefore, a single recommendation. This
recommendation reflects the average net weight calculated for all the servers
sharing the same port on a target system, and is based on the type of WLM
recommendation configured on the Advisor. When the TCP connection requests
reach a target TCP/IP stack and multiple applications are sharing the same port,
the connections are then load balanced by TCP/IP across the multiple
application server instances. How this load balancing is performed depends on
whether the SHAREPORT or SHAREPORTWLM parameter is specified on the
PORT statement. For more details on the PORT statement, see z/OS
Communications Server: IP Configuration Reference.
Guideline: If server-specific WLM recommendations are configured within the
Advisor for a given group that contains servers that share the same port on a
given system or TCP/IP stack, the SHAREPORTWLM parameter should also be
specified on the PORT statement in the TCP/IP profile for these servers. This
enables both the external load balancers and the internal TCP/IP load balancer
to operate with the same type of recommendations when load balancing work

Chapter 23. z/OS Load Balancing Advisor 1235

requests to these servers. Similarly, if WLM system weight recommendations
were configured in the Advisor for a group, the SHAREPORT parameter would
probably be more appropriate.

Enabling TLS/SSL for z/OS Load Balancing Advisor (optional)
For AT-TLS, the following customization tasks are required before starting the
TCP/IP stacks and the Advisor and Agent applications:
v Enable AT-TLS in the TCP/IP stack.

Specify the TTLS parameter on the TCPCONFIG statement in the TCP/IP
profile. For additional information about AT-TLS, see Chapter 22, “Application
Transparent Transport Layer Security data protection,” on page 1193. For
information about the TCPCONFIG statement, see z/OS Communications Server:
IP Configuration Reference.

v Set up authorization for the pasearch command, if the command will not be
issued from a superuser.
Create a SERVAUTH profile of EZB.PAGENT.sysname.image.ptype, where the
ptype value is set to TTLS or to a wildcard value. For more information, see
“Steps for configuring the Policy Agent” on page 848 and z/OS Security Server
RACF Security Administrator's Guide.

v Enable AT-TLS configuration for the Policy Agent.
Specify the CommonTTLSConfig and TTLSConfig statements in the Policy Agent
configuration file for each stack. On the TTLSConfig statement, specify the path
of the stack-specific AT-TLS policy file to be installed for the server. For
additional information about the CommonTTLSConfig and TTLSConfig
statements, see z/OS Communications Server: IP Configuration Reference.

v Define AT-TLS policies in new or existing Policy Agent configuration files.
Specify the AT-TLS policies in the configuration files that are identified with the
CommonTTLSConfig and TTLSConfig statements. Ensure that the Load
Balancing Advisor policy definitions are defined on all systems in the sysplex on
which the Advisor can run.
The Load Balancing Advisor is a server application. For general information
about setting up AT-TLS for a server, see Table 54 on page 1199.
Following is an example of the TTLSConfig policy file statements in the path file
for the load balancer connections to the Advisor. Port 3860 is the default port.
TTLSRule LBAdvisorLBRule
{

LocalPortRange 3860
Direction Inbound
TTLSGroupActionRef LBAdvisorLBGroup
TTLSEnvironmentActionRef LBAdvisorLBEnvironment

}
TTLSGroupAction LBAdvisorLBGroup
{

TTLSEnabled On
}
TTLSEnvironmentAction LBAdvisorLBEnvironment
{

TTLSKeyRingParms
{

Keyring server_key_ring
}
TTLSEnvironmentAdvancedParms
{

TTLS will verify a user ID is associated with certificate
ClientAuthType SAFCheck
ApplicationControlled On

}

1236 z/OS V1R12.0 Comm Svr: IP Configuration Guide

HandshakeRole ServerWithClientAuth
TTLSCipherParmsRef RequireEncryption
Trace 7

}

In this example, all external load balancers must use TLS/SSL and supply a
client certificate that will be validated in the key ring and must be associated
with a user ID on the SAF-compliant security product on the local z/OS system.
This type of policy allows additional finer-grain SAF checks using optional
SERVAUTH profiles. You can use other, less restrictive, policies; however, if you
use less restrictive policies, the Advisor, Agent, and ADNR require that you
specify the configuration parameters for those connections (lb_id_list or
agent_id_list statements in the Advisor configuration file, host_connection
statement in the Agent configuration file, and host_connection_addr statement in
the ADNR configuration file).
Following is an example of the TTLSConfig policy file statements in the path file
for the Agent connections to the Advisor. Port 8100 is the port used in the
sample Advisor configuration file:
TTLSRule LBAdvisorAgentRule
{

LocalPortRange 8100
Direction Inbound
TTLSGroupActionRef LBAdvisorAgentGroup
TTLSEnvironmentActionRef LBAdvisorAgentEnvironment

}
TTLSGroupAction LBAdvisorAgentGroup
{

TTLSEnabled On
}
TTLSEnvironmentAction LBAdvisorAgentEnvironment

{
TTLSKeyRingParms
{

Keyring server_key_ring
}
TTLSEnvironmentAdvancedParms
{

TTLS will verify a user ID is associated with certificate
ClientAuthType SAFCheck
ApplicationControlled On

}
HandshakeRole ServerWithClientAuth
TTLSCipherParmsRef RequireEncryption
Trace 7

}

Set of TLS Ciphers with Encryption
TTLSCipherParms RequireEncryption
{

V3CipherSuites TLS_RSA_WITH_RC4_128_MD5
V3CipherSuites TLS_RSA_WITH_RC4_128_SHA
V3CipherSuites TLS_RSA_WITH_DES_CBC_SHA
V3CipherSuites TLS_RSA_WITH_3DES_EDE_CBC_SHA

}

The Load Balancing Agent is a client application. For general information about
setting up AT-TLS for a client, see Table 55 on page 1201.
You must configure the policy on the TCP/IP stack where the Agents will run
with the same SSL protocol, key ring, and cipher suite (if encrypting data) for
which the Advisor is configured.
Following is an example of the TTLSConfig policy file statements for a Load
Balancing Agent. On the TTLSConfig statement, specify the path of the
stack-specific AT-TLS policy file to be installed for the client. For additional

Chapter 23. z/OS Load Balancing Advisor 1237

information about the TTLSConfig statement, see z/OS Communications Server: IP
Configuration Reference. Port 8100 is the port used in the sample Agent
configuration file.
TTLSRule LBAgentRule
{

RemotePortRange 8100
Direction Outbound
TTLSGroupActionRef LBAGroup
TTLSEnvironmentActionRef LBAgentEnvironment

}
TTLSGroupAction LBAGroup
{

TTLSEnabled On
}
TTLSEnvironmentAction LBAgentEnvironment
{

TTLSKeyRingParms
{

Keyring client_key_ring
}
HandshakeRole CLIENT
TTLSCipherParmsRef RequireEncryption
Trace 7

}

Set of TLS Ciphers with Encryption
TTLSCipherParms RequireEncryption
{

V3CipherSuites TLS_RSA_WITH_RC4_128_MD5
V3CipherSuites TLS_RSA_WITH_RC4_128_SHA
V3CipherSuites TLS_RSA_WITH_DES_CBC_SHA
V3CipherSuites TLS_RSA_WITH_3DES_EDE_CBC_SHA

}

For additional information, see:
– Chapter 16, “Policy-based networking,” on page 829.
– Chapter 22, “Application Transparent Transport Layer Security data

protection,” on page 1193. Table 54 on page 1199 is for the Advisor, and
Table 55 on page 1201 is for the Agent and for load balancers.

– AT-TLS policy statements in z/OS Communications Server: IP Configuration
Reference

– CommonTTLSConfig and TTLSConfig statements in z/OS Communications
Server: IP Configuration Reference.

– Online help for the IBM Configuration Assistant for z/OS Communications
Server

v Create z/OS server (Advisor) and client (Agent, ADNR, external load balancer)
key rings and necessary certificate authority certificates.
The server key ring needs to contain a server certificate, and any certificates that
are used to sign it. The server needs access to the private keys of the server
certificate. The client key ring needs the root certificate that is used to sign the
server certificates.
For a TLS/SSL primer and some step-by step examples, see Appendix B,
“TLS/SSL security,” on page 1461. For more information about managing key
rings and certificates with RACF and the RACDCERT command, see z/OS
Security Server RACF Security Administrator's Guide. For detailed information
about managing key rings and certificates with gskkyman, see z/OS
Cryptographic Services System SSL Programming.

v Send the external load balancer's certificate to the z/OS host.

1238 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

v Associate each user ID (for the Advisor, Agents, ADNRs, and external load
balancers) with a certificate.
Use the RACDCERT ADDRING command to define a key ring in RACF and to
associate it with your application's user ID. Use the RACDCERT CONNECT
command to connect certificates to the key ring. For detailed information about
setting up your certificate environment, see z/OS Security Server RACF Security
Administrator's Guide.

v Create client side certificates for the external load balancers. See the load
balancer documentation for instructions.

v Define client user IDs on the TCP/IP stacks on which the Advisor will run by
issuing security product commands to establish authorization for the user IDs.
You can configure the Advisor's clients (Agents, ADNR, and external load
balancers) to present security credentials, including a user ID. If you configure
this, you must set up the security manager on the Advisor system to accept
these credentials.
Using a security product like RACF, perform the following steps to control
access to the Load Balancing Advisor, Agents, and ADNR.
1. Use the following commands to ensure that the SERVAUTH class is active

and RACLISTed, and that RACLIST processing is enabled:
SETROPTS CLASSACT(SERVAUTH)
SETROPTS RACLIST (SERVAUTH)

2. Use the following commands to define the following SERVAUTH class
profiles on each system on which the Advisor might run.
RDEFINE SERVAUTH EZB.LBA.LBACCESS.sysname.tcpsysplexgroupname UACC(NONE)
RDEFINE SERVAUTH EZB.LBA.AGENTACCESS.sysname.tcpsysplexgroupname UACC(NONE)

where sysname is the MVS system name or a wildcard (*) and
tcpsysplexgroupname is the TCP/IP sysplex group name. If you are not using
subplexing, use the default subplex identifier EZBTCPCS or a wildcard (*).
For example, on system MVSSYS using the default subplex, the profile name
is EZB.LBA.LBACCESS.MVSSYS.EZBTCPCS.

3. Use the following commands to grant access to the SERVAUTH class for the
user IDs associated with the Agents, ADNR, and the external load balancers
on each system on which the Advisor might run:
PERMIT EZB.LBA.LBACCESS.sysname.tcpsysplexgroupname -

CLASS(SERVAUTH) ACCESS(READ) ID(userid)
PERMIT EZB.LBA.AGENTACCESS.sysname.tcpsysplexgroupname -

CLASS(SERVAUTH) ACCESS(READ) ID(userid)

4. Use the following command to refresh the SERVAUTH class:
SETROPTS RACLIST(SERVAUTH) REFRESH

For specific instructions, see the EZARACF sample in SEZAINST.
Requirements:

– The AT-TLS policies and SERVAUTH profiles must be coordinated to provide
the appropriate level of security. For example:
- If a connection is presented to the Advisor and the AT-TLS check indicates

that this is not a secure connection, then no subsequent SAF check is
performed but an IP address ACL check (using the statements in the Load
Balancer Advisor configuration files) is performed. If the IP address ACL
check is successful, the connection is accepted.

- If you always want a SAF level check to be performed, then ensure that the
AT-TLS policy requires client certificates that are associated with user IDs
defined on the local SAF-compliant security product. Also ensure that the
SAF profile is defined and the correct user IDs are permitted READ access

Chapter 23. z/OS Load Balancing Advisor 1239

to the profile. If a secure connection is presented to the Advisor, and the
SAF profile exists but the user ID is not authorized to the profile, then the
connection will fail and no ACL check will be performed.

- If the SERVAUTH profile is not defined, then the Load Balancer Advisor
performs the IP Address (and port where appropriate) access control list
checks before permitting a connection to the Load Balancer Advisor.

– If the Advisor might run on more than one system, perform set up on all
those systems or use a wildcard (*).

For additional information, see z/OS Security Server RACF Security Administrator's
Guide.

Step 10: Start the TCP/IP stacks that the Advisor and the
Agents will use

The TCP/IP stacks that the Advisor will use must be started prior to starting the
Advisor. An Agent can be started before the TCP/IP stack it uses is started. If the
TCP/IP stack that an Agent uses terminates, the Agent remains active and
reestablishes communication with the TCP/IP stack once it becomes active again.
For CINET considerations regarding Agent recovery after stack failure, see “Step 10
(CINET): Start the TCP/IP stacks that the Advisor and the Agents will use” on
page 1247.

Step 11: Start the target applications that will be the targets of
load balancing

No modifications are necessary to these applications, their configurations, or start
procedures, unless the load balancer is using dispatch mode for packet forwarding.
For more information on dispatch mode, see “Step 15: Configure the external load
balancers” on page 1241.

Step 12: Customize WLM policies for the Advisor and Agents
(optional)

It is important that the Advisor and Agents receive an adequate amount of system
resources to properly balance workloads. Part of this task involves making the
Advisor and Agent run non-swappable. In addition, WLM can control the amount
of system resources allocated to the Advisor and Agents.

Guideline: The Advisor and Agents should be assigned to the WLM SYSSTC
service class to receive the proper dispatching priority. For more information on
categorizing work into service classes, see z/OS MVS Planning: Workload
Management.

Step 13: Start one Agent on each sysplex system you want to
participate in this method of workload balancing

It does not matter whether the Agents are started before the Advisor, or whether
the Advisor is started before the Agents. If the Advisor is started after the Agents
are started, the Agent periodically attempts to connect to the Advisor. Only one
Agent can be started per z/OS system. Agents must be started from a start
procedure as a started program (EXEC PGM=). They cannot be started under
BPXBATCH. The IBM-supplied program properties table has entries to make the
Agents run non-swappable. You should not override this entry to make the Agents
run swappable.

1240 z/OS V1R12.0 Comm Svr: IP Configuration Guide

When operating in a sysplex subplexing environment, this step requires additional
actions. For information about the changes to this step, see “Step 13 (subplex): Start
one Agent on each sysplex system you want to participate in this method of
workload balancing” on page 1251.

Step 14: Start the one instance of the Advisor in the sysplex
As Agents connect to the Advisor, MVS console messages appear on the Advisor's
MVS console and on the Agents' MVS consoles. Verify that each Agent you expect
to connect to the Advisor has connected. You can also use the NETSTAT,CONN
command on the Advisor's TCP/IP stack to see which Agents are currently
connected. The Advisor must be started from a start procedure as a started
program (EXEC PGM=). It cannot be started under BPXBATCH. The IBM-supplied
program properties table has entries to make the Advisor run non-swappable. You
should not override this entry to make the Advisor run swappable.

When operating in a sysplex subplexing environment, this step requires additional
actions. For information about the changes to this step, see “Step 14 (subplex): Start
the one instance of the Advisor in the sysplex” on page 1251.

Step 15: Configure the external load balancers
Configure the load balancers with the location (IP address and port) of the
Advisor. For maximum availability, this address should be defined as a DVIPA.

In a sysplex subplexing environment, this step requires additional actions. For
information about the changes to this step, see “Step 15 (subplex): Configure the
external load balancers” on page 1251.

If you are using TLS/SSL, the load balancers are client applications in a z/OS
Load Balancing Advisor environment. You must configure the load balancers with
the same TLS/SSL protocol and cipher suite (if encrypting data) with which the
Advisor is configured. Client certificates should be configured on the load balancer,
and also defined in the z/OS SAF-compliant security product if that level of
authentication is required. See the load balancer documentation for instructions.

Restrictions:

v If the Advisor is using IPv6 for the load balancer connections, or if any Agents
are using IPv6 to connect to the Advisor, movement of the Advisor is limited to
IPv6–enabled TCP/IP stacks.

v There is a maximum limit of 100 load balancers that can be connected to an
Advisor at any given time.

You might be able to customize features of the load balancer's communication with
the Advisor. The SASP protocol defines two features that the load balancer
implementation might or might not allow to be configured. One determines
whether the load balancer polls the Advisor for updated data, or whether updated
data is pushed to the load balancer. The other determines whether only members
that have updated data should be sent to the load balancer, or whether all
members should be sent to the load balancer regardless of whether their data has
changed or not. To determine whether these features can be customized, and how
to perform the customization if available, consult your load balancer's
documentation. If the load balancer is capable and configured to request that the
Advisor push updated information to the load balancer, the Advisor will update
the load balancer at least every update interval. If the load balancer is capable and
configured to poll the Advisor for updated information, the Advisor will

Chapter 23. z/OS Load Balancing Advisor 1241

recommend to the load balancer that it poll every update interval. However, the
load balancer can choose to disregard this guideline. Consult the load balancer
documentation for the expected behavior in these circumstances.

You might want to consider having redundant load balancers configured alike for
availability reasons. If so, you need to be aware of the load balancer's unique load
balancer identifier (LB UID), sometimes referred to as the UID or UUID, which
uniquely identifies a load balancer. Duplicate LB UIDs are not allowed and
connection attempts to the Advisor from a load balancer using the same LB UID as
an existing connection will force the existing connection to be broken and replaced
by the new connection. Redundantly configured load balancers either need to have
unique LB UIDs, if you want them to serve as hot standbys that are connected
simultaneously along with the load balancer they are backing up, or if they are
configured with the same LB UID, they must remain unconnected from the
Advisor until the original load balancer fails.

Some load balancers might be capable of using either dispatch or directed mode
when forwarding packets to their destinations. External load balancers typically
use a cluster IP address to represent the set of applications being load balanced.
Client applications use this cluster IP address as the destination IP address for
their requests. When a load balancer uses dispatch mode, the destination IP
addresses for incoming IP packets is not changed. Instead, the load balancer
forwards the packet to a target z/OS system by using the MAC address of a
network adapter on that system. The receiving z/OS system inspects the
destination IP address of the packet, and if it matches one of the IP addresses in its
HOME list, accepts the packet. As a result, with dispatch mode, all target z/OS
systems must have the load balancer's cluster IP address defined in their HOME
list. However, it is important that these addresses are not advertised externally
through dynamic routing protocols. One way to accomplish this is by defining
these IP addresses as loopback addresses on z/OS.

With directed mode, the load balancer converts the destination IP address (that is,
the cluster IP address) to an IP address owned by the target z/OS system, using
technologies such as network address translation (NAT). When IP packets for these
connections are sent back to clients, the load balancer converts the source IP
address (that is, the target z/OS system's IP address) back to the cluster IP address
that the application had used on its request.

While dispatch mode eliminates the need for performing NAT, it does have some
special considerations. For example, in Figure 125 on page 1267, both SYSA and
SYSB have the same server, FTPD, bound to the same port number using
INADDR_ANY. The packet will have the cluster IP address (both SYSA and SYSB
are in the same cluster), so the load balancer will use the MAC address to decide
to send the packet to SYSA or SYSB, and TCP/IP will then route the packet to the
server.

Restrictions: When using dispatch mode, for the load balancer to function
correctly, there are the following limitations:
v An OSA can be shared among LPARs only if Virtual MAC (VMAC) addressing

is configured for each TCP/IP target stack sharing the OSA.
v All target applications must bind to the IP address specified by INADDR_ANY

or in6addr_any, and the cluster IP address must be defined to the stack;
however, this must be done so that the address is not advertised (as in a
loopback address).

1242 z/OS V1R12.0 Comm Svr: IP Configuration Guide

If these restrictions are not met, load balancing will not be optimal because some
servers will not get work routed to them.

With directed mode, either the destination IP address (server NAT) is modified in
the packet itself, or both the destination and source IP addresses (server NAT and
client NAT) are modified in the packet. The packet must return through the same
load balancer that will recognize the changes and do the reverse mapping, so a
packet can flow from the original destination to the original source.

Configure each load balancer with the members that represent the individual target
application instances, or system members that generically represent a system in the
sysplex, or both. Members that can share the same type of workload are defined
under the same group. For example, TN3270E Telnet servers are defined under one
group, and HTTP servers in another. Application members are defined by
specifying an IP address, a nonzero port, and a nonzero protocol. System members
are defined by specifying an IP address, and specifying the port and protocol to be
zero. Members that have only a port of zero or only a protocol of zero (that is, one
but not both are zero) are not considered valid members and will not receive any
data from the Advisor. The IP addresses of the members must represent valid,
reachable addresses within the sysplex that are unique to a specific sysplex system.
This excludes such addresses as the loopback addresses, and other non-advertised
addresses.

Tip: The Advisor does not check for improperly configured members. After the
entire z/OS Load Balancing Advisor system is operational, display all members
registered by each load balancer and verify each member you expect to be
available is flagged as available. Screen any unavailable members for coding errors
in the member, such as incorrect IP addresses, ports, or protocols.

Guideline: For availability reasons, the IP addresses configured for each member
should be VIPA addresses (static or dynamic). If the IP address of a physical
interface fails and a member specifies that IP address, the Advisor still indicates
that the member is available, as alternate routing paths to that member might exist.
However, if no alternate routing paths exist, workload requests cannot be delivered
to the target system. By using static or dynamic VIPAs in members, the chance of
an alternate route being available when a physical interface fails is greatly
increased, as long as at least one physical interface is still available.

Restrictions:

v All IP addresses configured in members belonging to the same group must exist
within the same sysplex.

v All members belonging to the same group must be of the same type. That is, all
members must be application members or all must be system members.

v Certain classes of IP addresses must not be coded for members in the load
balancer. This includes the following classes of addresses:
– Distributed DVIPAs (the address specified on a VIPADISTRIBUTE statement).

Defining members with these addresses would combine two load balancing
methodologies for the same workload, wasting system resources.

– Deprecated IPv6 addresses. These are flagged as such in a NETSTAT HOME
display. It is probably safest to not code any autoconfigured IPv6 addresses
within members.

– Addresses that are not unique within the sysplex.
– Addresses that are not reachable from the load balancer, including:

- Loopback addresses.

Chapter 23. z/OS Load Balancing Advisor 1243

- Unavailable IPv6 addresses. These might be marked as unavailable if
duplicate address detection is in progress, has failed, or the interface ID is
unknown. These addresses are displayed in a NETSTAT HOME display,
including the reason they are marked unavailable.

Step 16: Start the load balancers
When a load balancer has connected, messages appear on the Advisor's MVS
console. You can also use the Advisor's MODIFY procname,DISPLAY,LB command
to see which load balancers are connected to the Advisor. For details on the
Advisor's MODIFY command, see z/OS Communications Server: IP System
Administrator's Commands.

Restriction: There is a maximum limit of 100 load balancers that can be connected
to an Advisor at any given time.

Step 17: Verify that the Advisor system is functioning
correctly (optional)

View the MVS console of the Advisor and Agent systems after they are started to
verify that the applications started correctly and are still running. If there are any
failure messages, see the appropriate message description for the proper corrective
action. View the syslogd files of the Advisor and Agent systems to see whether any
error or warning messages were issued.

Use the following commands to verify that the Advisor system is functioning
correctly:
v Verify that the Advisor is started and connected to the expected load balancers

by issuing the Advisor's MODIFY procname,DISPLAY,LB command. Verify that
each load balancer is displayed. Take note of the LB INDEX displayed for each
load balancer. This identifier is needed to display details of the load balancer,
including its registered groups and members.
Tip: Individual load balancers are identified in displays by their load balancer
index (LB Index), which is generated by the Advisor when the load balancer first
connects. To display the details of a particular load balancer, first obtain the LB
Index by displaying the list of all load balancers using the Advisor's MODIFY
procname,DISPLAY,LB command. When you have the LB Index, display the
details of a particular load balancer using the appropriate LB Index on the
INDEX parameter as follows:
MODIFY procname,DISPLAY,LB,INDEX=lb_index

v Verify that each load balancer configured and registered the proper groups and
members with the Advisor by issuing the following command:
MODIFY procname,DISPLAY,LB,INDEX=assigned_lb_index

This display should show all groups and members defined to the load balancer.
v Verify that each Agent has started properly and is communicating with the

Advisor. On each Agent, issue the following command:
MODIFY procname,DISPLAY,MEMBERS

Each member that has an IP address owned by this Agent should appear in the
display.

v Verify that the target applications that you want to load balance to are actually
available for load balancing. On the Advisor, for each load balancer connected to
the Advisor, issue the following command:
MODIFY procname,DISPLAY,LB,INDEX=assigned_lb_index

1244 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Check for the AVAIL flag for each member in the display. The flag is either YES,
meaning the member is available for load balancing, or NO, meaning it is not
available for load balancing. To be available for load balancing, all of the
following must be true:
– The Agent owning the member's IP address must be active and

communicating with the Advisor.
– The application must be active, if the member represents an application

member, and must be on a TCP/IP stack that has not had eventual action
message EZD1973E issued by sysplex problem detection and recovery. For
more information, see “Problem detection” on page 450.

– The member must not be quiesced by the Agent operator or the load balancer.
The z/OS Agent operator is able to quiesce any member that is owned by
that Agent. Also, depending upon load balancer implementation, it might be
possible for the load balancer administrator to quiesce individual members.

If one of the above conditions is false, correct the situation and repeat the
display command until you are satisfied that all members that you intend to
have available for load balancing are displayed as being available.

v Verify that the Advisor system is functioning correctly when using AT-TLS:
– Use the pasearch command from the z/OS UNIX shell to query information

from the Policy Agent. For example, pasearch -t -r displays active AT-TLS rule
details. For more information about displaying policy based networking
information, see z/OS Communications Server: IP System Administrator's
Commands.

– Use the Netstat TTLS/-x command to display z/OS Load Balancing Advisor,
Agent, and ADNR AT-TLS policies. For more information about the Netstat
TTLS/-x report, see z/OS Communications Server: IP System Administrator's
Commands.

Configuring the z/OS Load Balancing Advisor in a multiple TCP/IP
stack environment

To configure the z/OS Load Balancing Advisor in a multiple TCP/IP stack
(CINET) environment, see “Steps for configuring the z/OS Load Balancing
Advisor” on page 1222. This topic provides special CINET considerations that are
referenced from those steps. Subtopics are provided only for steps that have special
CINET considerations.

Step 5 (CINET): Configure the Advisor and Agents to
automatically restart in case of application or system failure
(optional)

If you are considering using the AUTOLOG statement to restart the Advisor in a
CINET environment, and you placed the Advisor in the AUTOLOG statement list
of each TCP/IP stack, each stack attempts to start the Advisor during initialization.
Only the first one will succeed, as only a single instance can be active at any time
within a system or within a sysplex.

To return to the configuration steps, see “Steps for configuring the z/OS Load
Balancing Advisor” on page 1222

Step 7 (CINET): Configure one Advisor per sysplex
You must define listening sockets and ports, as described in “Define listening
sockets/ports (required)” on page 1228.

Chapter 23. z/OS Load Balancing Advisor 1245

|
|
|

Rule: If you use a unique application-instance DVIPA for the Advisor in a CINET
environment, all TCP/IP stacks on that system must code the VIPARANGE
statement for that DVIPA. Alternatively, and less desirably, you can establish stack
affinity to one of the TCP/IP stacks that are coded with the VIPARANGE
statement for that DVIPA, if you do not have VIPARANGE coded for that DVIPA
on all of the TCP/IP stacks on that system. This alternative, of course, does not
enable the Advisor to be moved to another TCP/IP stack in the event of failure,
unless you are able to restart the Advisor with a different start procedure that can
establish stack affinity to another TCP/IP stack that has the DVIPA defined in a
VIPARANGE statement. For information on the use of the
_BPXK_SETIBMOPT_TRANSPORT environment variable that can be used to
establish stack affinity, see “Generic server versus server with affinity for a specific
transport provider” on page 51.

The lb_connection_v6 statement does for IPv6 what the lb_connection_v4 statement
does for IPv4. You can specify either or both of these statements. If you run the
Advisor on a CINET system, be aware that the address or addresses you choose
for these statements tie the Advisor to the stack owning those addresses.
Consequently, termination of that stack results in termination of the Advisor.

To return to the configuration steps, see “Steps for configuring the z/OS Load
Balancing Advisor” on page 1222

Step 8 (CINET): Configure one Agent per z/OS system in the
sysplex

If the system where the Agent is running is a CINET system, the address in the
host_connection statement (and therefore, also in the Advisor's agent_id_list
statement) should be a dynamic VIPA (DVIPA) to facilitate movement of the Agent
to another TCP/IP stack on that system.

Rule: If you use a unique application-instance DVIPA (coded with VIPARANGE)
for the Agent in a CINET environment, all TCP/IP stacks on that system must
code the VIPARANGE statement for that DVIPA. When configured in this manner,
if the TCP/IP stack that currently owns the DVIPA fails, the Agent remains up and
automatically attempts to bind again to the DVIPA. The next available default
TCP/IP stack becomes the new owner of the DVIPA. (If this is a sysplex
subplexing environment, all TCP/IP stacks on that system that are within the same
subplex as the Agent must code the same VIPARANGE statement for that DVIPA.
This allows the Agent to reestablish connectivity with the Advisor through another
stack in the same subplex on that system.) Alternatively, and less desirably (see
following restriction), you can establish stack affinity to one of the TCP/IP stacks
that are coded with the VIPARANGE statement for that DVIPA, if you do not have
VIPARANGE coded for that DVIPA on all of the TCP/IP stacks on that system. Of
course, this does not enable the Agent to be automatically moved to another
TCP/IP stack in the event of failure. To recover the Agent in this type of
configuration, manual intervention (or automation) is required. Because the Agent
remains active if its TCP/IP stack fails, you must manually terminate the Agent.
Then you must restart the Agent with a different start procedure that can establish
stack affinity to another available TCP/IP stack. For information on the use of the
_BPXK_SETIBMOPT_TRANSPORT environment variable that can be used to
establish stack affinity, see “Generic server versus server with affinity for a specific
transport provider” on page 51.

Restriction: When running in a CINET environment, establishing stack affinity
between the Agent and one of the TCP/IP stacks on that system enables only

1246 z/OS V1R12.0 Comm Svr: IP Configuration Guide

resources on that TCP/IP stack to participate in workload balancing. The Agent
running on that system is not aware of resources on the other TCP/IP stacks on
that system. If you want to enable resources on all TCP/IP stacks in a CINET
environment to participate in workload balancing, do not establish stack affinity
with the Agent.

To return to the configuration steps, see “Steps for configuring the z/OS Load
Balancing Advisor” on page 1222

Step 9 (CINET): Customize the TCP/IP profiles of the TCP/IP
stacks that the Advisor and Agents will run on (optional)

The Advisor can use multiple TCP/IP stacks in a CINET environment. The
addresses specified in the lb_connection_v4 and lb_connection_v6 statements can
belong to different TCP/IP stacks. Moreover, because the socket that listens for
Agent connections uses the IPv4 or IPv6 unspecified address, the TCP/IP stack or
stacks that incoming Agent connections utilize depends upon the IP addresses
specified in the Agents' agent_id_list statements. To simplify your configuration
and to make Advisor outages that are the result of a TCP/IP stack failure or
termination more predictable and recoverable, all incoming connections to the
Advisor should use a single TCP/IP stack. Therefore, the addresses you specify in
the lb_connection_v4 and lb_connection_v6 statements should belong to the same
TCP/IP stack, and you should configure all load balancers and Agents to use these
same IP addresses when connecting to the Advisor. The addresses you specify
should be dynamic VIPAs to enable the movement of the Advisor in case of
failure. This implies that these dynamic VIPAs should be defined in the TCP/IP
profiles of all the stacks using a VIPARANGE statement. If the Advisor is restarted
as a result of failure in a given TCP/IP stack, the dynamic VIPAs are then
activated on another TCP/IP stack in that system. If you decide to use the IPv4 or
IPv6 unspecified addresses for the lb_connection_v4 and lb_connection_v6
statements, you should use the BIND parameter on the PORT reservation
statement to bind these sockets to the dynamic VIPA on the one TCP/IP stack you
have decided to use.

To return to the configuration steps, see “Steps for configuring the z/OS Load
Balancing Advisor” on page 1222

Step 10 (CINET): Start the TCP/IP stacks that the Advisor and
the Agents will use

In a CINET environment, certain configurations might necessitate manual
intervention for recovery if the Agent's TCP/IP stack fails. For more information,
see the rule in “Step 8 (CINET): Configure one Agent per z/OS system in the
sysplex” on page 1246.

To return to the configuration steps, see “Steps for configuring the z/OS Load
Balancing Advisor” on page 1222

Configuring the z/OS Load Balancing Advisor with subplexing
Before you begin: Read the following:
v Chapter 24, “Automated domain name registration,” on page 1275, if you are

also using Automated Domain Name Registration (ADNR), for some additional
considerations for configuring ADNR in a subplexing environment.

v “Sysplex subplexing” on page 430, to decide how you want the Advisor and
Agents to interact in a subplexing environment:

Chapter 23. z/OS Load Balancing Advisor 1247

– You need to determine what set of subplexes will exist in your sysplex, both
how many VTAM subplexes and how many TCP/IP subplexes within a
VTAM subplex.

– You need to decide which subplexes will need Load Balancing Agents and a
Load Balancing Advisor.

To configure the z/OS Load Balancing Advisor in a subplexing environment, see
“Steps for configuring the z/OS Load Balancing Advisor” on page 1222. This topic
provides special subplexing considerations that are referenced from those steps.
Subtopics are provided only for steps that have special subplexing considerations.

Step 5 (subplex): Configure the Advisor and Agents to
automatically restart in case of application or system failure
(optional)

When running the Load Balancing Advisor in a subplexing environment, there is
one Load Balancing Advisor for each subplex that participates in load balancing.
The subplex is determined by both the VTAM and TCP/IP subplex group IDs,
which are denoted by vv for VTAM and tt for TCP/IP. These subplex group IDs
are reflected in the TCP/IP sysplex group name, which is of the format EZBTvvtt.
Each Load Balancing Advisor registers with ARM with the following parameters:

ELEMTYPE=SYSTCPIP
ELEMNAME=EZBTvvttLBADV
TERMTYPE=ALLTERM

You must define an ARM policy. For the EZBTvvttLBADV element name, you must
specify the TARGET_SYSTEM keyword to indicate the systems on which the
Advisor can be restarted. This ensures that the Load Balancing Advisor for a
subplex is restarted only on a system that is in the same subplex. That is, it is
restarted on a system that has a VTAM that was started with the same XCFGRPID
(vv) and that has an available TCP/IP stack with the same XCFGRPID (tt).

In a subplexing environment, there must be one Load Balancing Agent per subplex
that participates in load balancing on each z/OS system. Each Load Balancing
Agent registers with ARM with the following parameters:

ELEMTYPE=SYSTCPIP
ELEMNAME=EZBsysclonevvttLBAGENT
TERMTYPE=ELEMTERM

where:
v sysclone is a 1- or 2-character shorthand notation for the name of the MVS

system. For a complete description of the SYSCLONE static system symbol, see
z/OS MVS Initialization and Tuning Reference.

v vvtt is the last 4 characters of the sysplex_group_name parameter in the Agent
configuration file. If this parameter is not specified, vvtt is omitted.

For example, if the sysclone value is 02 and the sysplex_group_name is EZBTCPCS,
the resulting ELEMNAME value is EZB02CPCSLBAGENT.

Requirement: When ARM registration is used, the started task IDs for each Agent
and each Advisor must be permitted with UPDATE authority to the
IXCARM.SYSTCPIP.elemname profiles in the FACILITY class in the SAF-compliant
security product on your system. The elemname value is the EZBTvvttLBADV value
or the EZBsysclonevvttLBAGENT value previously described. You can use the

1248 z/OS V1R12.0 Comm Svr: IP Configuration Guide

following RACF commands to define the profiles and grant update access to the
user IDs that are assigned to the Advisors and Agents. For each Advisor:
RDEFINE FACILITY IXCARM.SYSTCPIP.EZBTvvttLBADV UACC(NONE)
PERMIT IXCARM.SYSTCPIP.EZBTvvttLBADV CLASS(FACILITY) ID(advisor_userid) ACCESS(UPDATE)
SETROPTS CLASSACT(FACILITY)

For each Agent:
RDEFINE FACILITY IXCARM.SYSTCPIP.EZBsysclonevvttLBAGENT UACC(NONE)
PERMIT IXCARM.SYSTCPIP.EZBsysclonevvttLBAGENT CLASS(FACILITY) ID(agent_userid) ACCESS(UPDATE)
SETROPTS CLASSACT(FACILITY)

To return to the configuration steps, see “Steps for configuring the z/OS Load
Balancing Advisor” on page 1222

Step 6 (subplex): Configure and start syslogd
When you are using subplexing, if you will be starting more than one instance of
an Advisor or Agent on the same system, you can configure the syslog daemon
(syslogd) to place the output from the different instances of the Advisor and Agent
into separate files based on job name, or you can use the syslogd -u start option to
cause the user ID and job name to be displayed on each line of the syslog. For
more information, see “Configuring the syslog daemon” on page 185.

To return to the configuration steps, see “Steps for configuring the z/OS Load
Balancing Advisor” on page 1222

Step 7 (subplex): Configure one Advisor per sysplex
When you are using subplexing, there can be more than one Advisor active in the
sysplex at any given time. In fact, there should be one Advisor active for each
subplex in the sysplex that you want to participate in load balancing through the
Load Balancing Advisor. Each Advisor reads configuration data from a file, which
can exist as a z/OS UNIX file, a PDS or PDSE member, or a sequential data set. In
the configuration file for each Advisor, the sysplex_group_name statement specifies
the TCP/IP sysplex group name, in the form EZBTvvtt, where vv is the VTAM
subplex group ID specified on the VTAM XCFGRPID start option, and tt is the
TCP/IP subplex group ID specified by the XCFGRPID parameter on the
GLOBALCONFIG statement in the TCP/IP profile. If no VTAM subplex ID is
specified when VTAM is started, then vv is CP. If no TCP/IP subplex ID is
specified in the TCP/IP profile, then tt is CS. If you have a default subplex in your
sysplex (that is, a subplex in which both the VTAM and TCP/IP subplex IDs are
not specified), configure the Load Balancing Advisor for that subplex with a
sysplex group name of EZBTCPCS.

Requirement: In a subplexing environment, the IP address of the Advisor's
listening socket must exist on a TCP/IP stack belonging to the subplex that
corresponds to the TCP/IP sysplex group name specified in the Advisor's
configuration file. If there is more than one TCP/IP stack in a subplex, the IP
address must be a DVIPA defined within a VIPARANGE statement on each of the
stacks in the subplex. This enables the Advisor to connect regardless of the order
that the TCP/IP stacks in the subplex are started.

Tip: In a subplexing environment, if you will have more than one Advisor started
on the same z/OS system (in different subplexes), create unique start procedures
for them or ensure that they have unique job names when they are started (for
example, S LBADV.ADV0105 or S LBADV,JOBNAME=ADV0105).

Chapter 23. z/OS Load Balancing Advisor 1249

To return to the configuration steps, see “Steps for configuring the z/OS Load
Balancing Advisor” on page 1222

Step 8 (subplex): Configure one Agent per z/OS system in the
sysplex

When you are using subplexing, there can be more than one Agent per z/OS
system in the sysplex. In fact, there should be one Agent active for each subplex
with a TCP/IP stack on a system that you want to participate in load balancing
through the Load Balancing Advisor. Each Agent reads configuration data from a
file, which can exist as a z/OS UNIX file, a PDS or PDSE member, or a sequential
data set. In the configuration file for each Agent, the sysplex_group_name
statement specifies the TCP/IP sysplex group name, in the form EZBTvvtt, where
vv is the VTAM subplex group ID specified with the VTAM XCFGRPID start
option, and tt is the TCP/IP subplex group ID specified with the XCFGRPID
parameter on the GLOBALCONFIG statement in the TCP/IP profile. If no VTAM
subplex ID is specified when VTAM is started, then vv is CP. If no TCP/IP subplex
ID is specified in the TCP/IP profile, then tt is CS. If you have a default subplex in
your system (that is, a subplex in which both the VTAM and TCP/IP subplex IDs
are not specified), configure the Load Balancing Agent for that subplex with a
sysplex group name of EZBTCPCS.

Tip: In a subplexing environment, if you will have more than one Agent started on
the same z/OS system (in different subplexes), create unique start procedures for
them or ensure that they have unique job names when they are started (for
example, S LBAGENT.AGE0105 or S LBAGENT,JOBNAME=AGE0105).

Requirements:

v In a subplexing environment, the IP address used by the Agent to connect to the
Advisor must exist on a TCP/IP stack belonging to the subplex that corresponds
to the TCP/IP sysplex group name specified in the Agent's configuration file. If
there is more than one TCP/IP stack in a subplex, the IP address must be a
DVIPA defined within a VIPARANGE statement on each of the stacks in the
subplex. This enables the Agent to connect regardless of the order that the
TCP/IP stacks in the subplex are started.

v If you have more than one stack on a system, those stacks are not all in the
same subplex, and you will be starting Load Balancing Agents on that system,
the system must not be at a level prior to V1R10.

To return to the configuration steps, see “Steps for configuring the z/OS Load
Balancing Advisor” on page 1222

Step 9 (subplex): Customize the TCP/IP profiles of the TCP/IP
stacks that the Advisor and Agents will run on (optional)

In a subplexing environment, each Advisor and Agent must use a TCP/IP stack
that is in its associated subplex. That stack should specify the TCP/IP subplex
group ID that corresponds to the TCP/IP part (tt) of the sysplex_group_name
(EZBTvvtt) for which the Advisor or Agent has been configured. The DVIPA for
the Advisor must be defined in all the stacks that are associated with the subplex,
where a restart of the Advisor can occur.

To return to the configuration steps, see “Steps for configuring the z/OS Load
Balancing Advisor” on page 1222

1250 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Step 13 (subplex): Start one Agent on each sysplex system
you want to participate in this method of workload balancing

You can start more than one Agent on a z/OS system, if there are TCP/IP stacks
for more than one subplex on that system.

To return to the configuration steps, see “Steps for configuring the z/OS Load
Balancing Advisor” on page 1222

Step 14 (subplex): Start the one instance of the Advisor in the
sysplex

You can start more than one Advisor in the sysplex, one for each subplex in the
sysplex.

To return to the configuration steps, see “Steps for configuring the z/OS Load
Balancing Advisor” on page 1222

Step 15 (subplex): Configure the external load balancers
You might configure separate load balancers for each subplex, if the subplexes
represent connectivity to networks with different security domains. When
configuring a load balancer with the IP address of a Load Balancing Advisor,
ensure that you have connectivity from the load balancer to the subplex that the
Load Balancing Advisor is handling. In addition, groups and target applications
that the external load balancer requests information on should belong to the same
subplex that the Load Balancing Advisor is handling.

To return to the configuration steps, see “Steps for configuring the z/OS Load
Balancing Advisor” on page 1222

Operating the z/OS Load Balancing Advisor
When the Advisor and Agent are operational, you can monitor and customize the
following:
v Change the logging level of the Advisor and Agents to suit your needs

(optional)
v Interpret Agent and Advisor display information
v Stop distributing new workload requests (QUIESCE) to particular members or

resume distribution (ENABLE) to those members (optional)

Changing the logging level of the Advisor and Agents
Optionally, you can change the logging level of the Advisor and Agents to suit
your needs. The amount of information that is logged by the Advisor and Agents
can be modified dynamically using the following command:
MODIFY procname,DEBUG,LEVEL=debug_level

However, modifying the logging level is not a step that should be taken lightly.
The IBM default of 7 should not be changed unless instructed to do so by an IBM
Service representative. For things to consider before modifying this value, see
“Customizing optional statements” on page 1230.

Interpreting Agent and Advisor display information
Successfully interpreting the various flags and indicators that appear in Advisor
and Agent displays can help you identify configuration problems, or might help

Chapter 23. z/OS Load Balancing Advisor 1251

explain why workloads are not being distributed as expected. For information on
each field in the Advisor and Agent displays, see z/OS Communications Server: IP
System Administrator's Commands. Some portions of the displays are described in
more depth in Table 57, Table 58 on page 1255, and the subtopics that follow.

Table 57. Summary of selected Advisor display output fields and flags

Flag or field
name Location Description

ABNORM A field of the member area of the
MODIFY
procname,DISPLAY,LB,INDEX=nn
command output

The rate of abnormal transaction
completions per 1000 total
transaction completions for this
application. This value is
optionally provided to WLM by
the application. WLM provides
this value along with the
server-specific recommendation on
the system where the member
resides. For 1000 total transactions
completed, it displays the number
of those transactions that could not
successfully complete. If the value
is nonzero, WLM uses it to reduce
the server-specific recommendation
(WLM weight).

AVAIL A field of the member area of the
MODIFY
procname,DISPLAY,LB,INDEX=nn
command output

Indicates whether the member is
available for workload balancing
requests.

BASEWLM GROUP FLAGS field of the group
area of the MODIFY
procname,DISPLAY,LB,INDEX=nn
command output

WLM system weight
recommendations were configured
or specified by default for the
members of this group, and are
being used as a component of the
net weight.

BASEWLM* GROUP FLAGS field of the group
area of the MODIFY
procname,DISPLAY,LB,INDEX=nn
command output

Server-specific WLM
recommendations were configured
or specified by default for the
members of this group. However,
WLM system weight
recommendations are actually
being used as a component of the
net weight.

CP A field of the member area of the
MODIFY
procname,DISPLAY,LB,INDEX=nn
command output

When shown on the next line after
ProcType, indicates the proportion
that is applied against the CP
weight.

When shown on the line starting
with RAW, indicates the raw CP
weight that was returned by
WLM.

When shown on the line starting
with Proportional, indicates the
proportionally adjusted raw CP
weight that was used to determine
the BASEWLM or SERVERWLM
composite weight.

1252 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Table 57. Summary of selected Advisor display output fields and flags (continued)

Flag or field
name Location Description

CS WEIGHT A field of the member area of the
MODIFY
procname,DISPLAY,LB,INDEX=nn
command output

Communications Server weight. A
value calculated by the Agent that
owns the member, representing the
health of the application with
respect to its ability to process the
work that has recently been
received.

HEALTH A field of the member area of the
MODIFY
procname,DISPLAY,LB,INDEX=nn
command output

The general health of the
application. This value is
optionally provided to WLM by
the application. WLM provides
this value along with the
server-specific recommendation on
the system where the member
resides. If the value is less than
100, WLM uses it to reduce the
server-specific recommendation
(WLM weight).

LB INDEX For the MODIFY
procname,DISPLAY,LB and
MODIFY
procname,DISPLAY,LB,INDEX=nn
commands, an output field of the
load balancer area

A unique identifier assigned to a
load balancer for the purpose of
referencing the load balancer in
subsequent operator commands

LBQ FLAGS field of the member area of
the MODIFY
procname,DISPLAY,LB,INDEX=nn
command output

The load balancer has quiesced the
member.

NET WEIGHT A field of the member area of the
MODIFY
procname,DISPLAY,LB,INDEX=nn
command output

The weight the Advisor passes to
the load balancer, representing the
desirability of the member to
receive additional workload
requests relative to the other
members of the same group. The
net weight is calculated using the
WLM weight and Communications
Server weight.

NOCHANGE For the MODIFY
procname,DISPLAY,LB and
MODIFY
procname,DISPLAY,LB,INDEX=nn
command output, the FLAGS field
of the load balancer area

The load balancer has requested
that it be sent only information
about members that have changed
their status or weights since the
last time the load balancer
received information on its
members.

NODATA FLAGS field of the member area of
the MODIFY
procname,DISPLAY,LB,INDEX=nn
command output

A transient flag indicating that the
responsible Agent has not had
enough time to calculate a
Communications Server weight.

NOTARGETAPP FLAGS field of the member area of
the MODIFY
procname,DISPLAY,LB,INDEX=nn
command output

The target application of this
application member is not active.

Chapter 23. z/OS Load Balancing Advisor 1253

Table 57. Summary of selected Advisor display output fields and flags (continued)

Flag or field
name Location Description

NOTARGETIP FLAGS field of the member area of
the MODIFY
procname,DISPLAY,LB,INDEX=nn
command output

This is an unusable system
member.

NOTARGETSYS FLAGS field of the member area of
the MODIFY
procname,DISPLAY,LB,INDEX=nn
command output

The Advisor is not aware of the
system that owns the IP address of
the member.

OPQ FLAGS field of the member area of
the MODIFY
procname,DISPLAY,LB,INDEX=nn
command output

The z/OS operator has quiesced
the member.

ProcType A field of the group area of the
MODIFY
procname,DISPLAY,LB,INDEX=nn
command output

Indicates that CP, zAAP, and zIIP
proportions were configured.
These proportions are applied
against the processor weights to
determine the composite
BASEWLM weight.

PUSH For the MODIFY
procname,DISPLAY,LB and
MODIFY
procname,DISPLAY,LB,INDEX=nn
command output, the FLAGS field
of the load balancer area

The load balancer has requested to
receive information from the
Advisor on a scheduled basis,
rather than having to poll the
Advisor for the information.

SERVERWLM GROUP FLAGS field of the group
area of the MODIFY
procname,DISPLAY,LB,INDEX=nn
command output

Server-specific WLM
recommendations are being used
for the members of this group as a
component of the net weight.

TRUST For the MODIFY
procname,DISPLAY,LB and
MODIFY
procname,DISPLAY,LB,INDEX=nn
command output, the FLAGS field
of the load balancer area

The load balancer will allow other
system components besides itself
to register members with the load
balancer. The z/OS Load Balancing
Advisor does not currently exploit
this feature.

WLM WEIGHT A field of the member area of the
MODIFY
procname,DISPLAY,LB,INDEX=nn
command output

WorkLoad Manager weight. The
value received from WLM on the
system where the member resides,
representing the displaceable
capacity of that system relative to
other systems in the sysplex
(system weight), or the value
received from WLM representing
how well the server is performing
relative to its WLM policies
(server-specific weight). This
weight is a composite weight
determined from the displayed CP,
zAAP, and zIIP weights.

1254 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Table 57. Summary of selected Advisor display output fields and flags (continued)

Flag or field
name Location Description

zAAP A field of the member area of the
MODIFY
procname,DISPLAY,LB,INDEX=nn
command output

When shown on the next line after
ProcType, indicates the proportion
that is applied against the zAAP
weight.

When shown on the line starting
with RAW, indicates the raw zAAP
weight that was returned by
WLM.

When shown on the line starting
with Proportional, indicates the
proportionally adjusted raw zAAP
weight that was used to determine
the BASEWLM or SERVERWLM
composite weight.

zIIP A field of the member area of the
MODIFY
procname,DISPLAY,LB,INDEX=nn
command output

When shown on the next line after
ProcType, indicates the proportion
that is applied against the zIIP
weight.

When shown on the line starting
with RAW, indicates the raw zIIP
weight that was returned by
WLM.

When shown on the line starting
with Proportional, indicates the
proportionally adjusted raw zIIP
weight that was used to determine
the BASEWLM or SERVERWLM
composite weight.

Table 58. Summary of selected Agent display output flags

Flag or field
name Location Description

ANY FLAGS field of the member area of
the MODIFY
procname,DISPLAY,MEMBERS
command output

The target application is bound to
the unspecified address, 0.0.0.0 for
IPv4 or :: for IPv6.

V6 FLAGS field of the member area of
the MODIFY
procname,DISPLAY,MEMBERS
command output

The target application was bound
using the IPV6_V6ONLY socket
option.

MODIFY procname,DISPLAY,LB
This command displays all load balancers that are currently connected to the
Advisor. In Figure 122 on page 1256, the line numbers appearing in the left margin
are for reference purposes only, and are used in the subtopics following the figure.

Chapter 23. z/OS Load Balancing Advisor 1255

LB INDEX: The LB index is generated by the Advisor to uniquely identify a load
balancer, and is used in other MODIFY commands to display details of a particular
load balancer. The LB index that is assigned to the next load balancer that connects
can be difficult to predict at times, in case your automation attempts to predict
them. Each time a load balancer connects, it is assigned a different LB index. At
first, the numbers are assigned in order from 0 to 99, and then the numbers are
reused. The next number assigned after 99 is based on a least-recently-used
algorithm. Thus, of the load balancer connections that used the numbers 0-99, the
index of the load balancer connection that ended first would be the next number
assigned as the next LB index. This is done to prevent the confusion that could
result if new load balancer connections obtained the lowest available index. If that
were the case, it might be difficult to ascertain whether different load balancer
displays referred to the same or different load balancer connection instances. If the
Advisor is brought down and back up, the indexes start from zero again. Lines 3
and 6 in Figure 122 show two LB indexes. For more information on the LB INDEX
field, see z/OS Communications Server: IP System Administrator's Commands.

NOCHANGE, PUSH, TRUST: All of these flags are set only by the load balancer.
Whether they appear or not depends upon whether the particular load balancer
implementation supports them, and if they are configured in the load balancer. The
z/OS administrator has no control over the settings of these flags.

The NOCHANGE flag can affect the amount of data transferred between the load
balancer and the Advisor. If this flag is set, only data that has changed since the
last time data was sent to the load balancer is included. Consult the load balancer
documentation to determine whether this setting is supported.

The PUSH flag can have an effect on how soon the load balancer is informed of
certain events. If the PUSH flag is not on, the load balancer must poll the Advisor
periodically for updates. If this flag is on, certain events can be communicated to
the load balancer earlier than would be possible if polling were in effect. Those
events include quicker notification of a target application being taken out of
service, and quicker notification of when the member's IP address has been moved
to another system in the sysplex (VIPA takeover) or removed entirely. When the
PUSH flag is on, the Advisor also sends the load balancer updated information
about weights and status at least every update interval, if new information is
available. Consult the load balancer documentation to determine whether this
setting is supported.

The TRUST flag indicates that the load balancer allows other system components
besides itself to register members with the load balancer. The z/OS Load Balancing
Advisor does not currently exploit this feature.

Line 5 of Figure 122 shows all of these flags. For more information on the
NOCHANGE, PUSH, and TRUST flags, see z/OS Communications Server: IP System
Administrator's Commands.

1 MODIFY LBADV,DISPLAY,LB
2 EZD1242I LOAD BALANCER SUMMARY
3 LB INDEX : 00 UUID : 637FFF175C
4 IPADDR..PORT : 10.42.154.105..50005
5 HEALTH : 20 FLAGS : NOCHANGE PUSH TRUST
6 LB INDEX : 01 UUID : 207FFF175C
7 IPADDR..PORT : 10.42.105.60..50006
8 HEALTH : 7F FLAGS : PUSH TRUST
9 2 OF 2 RECORDS DISPLAYED

Figure 122. Sample output for the MODIFY procname,DISPLAY,LB command

1256 z/OS V1R12.0 Comm Svr: IP Configuration Guide

MODIFY procname,DISPLAY,LB,INDEX=lbindex
This command displays details about a particular load balancer, including its
registered groups and members. In Figure 123 on page 1258, the line numbers
appearing in the left margin are for reference purposes only, and are used in the
subtopics following the figure.
1 MODIFY LBADV,DISP,LB,INDEX=0
2 EZD1243I LOAD BALANCER DETAILS
3 LB INDEX : 00 UUID : 637FFF175C
4 IPADDR..PORT : 10.42.154.105..50005
5 HEALTH : 20 FLAGS : NOCHANGE PUSH TRUST
6 GROUP NAME : SYSTEMFARM
7 GROUP FLAGS : BASEWLM
8 IPADDR..PORT: 10.42.105.154..0
9 SYSTEM NAME: MVS209 PROTOCOL : 000 AVAIL : YES
10 WLM WEIGHT : 00040 CS WEIGHT : 100 NET WEIGHT: 00001
10a RAW CP: 40 zAAP: 60 zIIP: 00
10b Proportional CP: 40 zAAP: 00 zIIP: 00
11 FLAGS :
12 IPADDR..PORT: 10.42.105.60..0
13 SYSTEM NAME: VIC007 PROTOCOL : 000 AVAIL : YES
14 WLM WEIGHT : 00050 CS WEIGHT : 100 NET WEIGHT: 00002
14a RAW CP: 50 zAAP: 00 zIIP: 00
14b Proportional CP: 00 zAAP: 00 zIIP: 00
15 FLAGS :
16 IPADDR..PORT: 10.42.105.22..0
17 SYSTEM NAME: N/A PROTOCOL : 000 AVAIL : NO
18 WLM WEIGHT : 00000 CS WEIGHT : 000 NET WEIGHT: 00000
18a RAW CP: 00 zAAP: 00 zIIP: 00
18b Proportional CP: 00 zAAP: 00 zIIP: 00
19 FLAGS : NOTARGETSYS
20 IPADDR..PORT: 10:1::4:5..0
21 SYSTEM NAME: MVS209 PROTOCOL : 000 AVAIL : NO
22 WLM WEIGHT : 00040 CS WEIGHT : 000 NET WEIGHT: 00000
22a RAW CP: 40 zAAP: 60 zIIP: 00
22b Proportional CP: 40 zAAP: 00 zIIP: 00
23 FLAGS : NOTARGETIP
24 GROUP NAME : UDP_SERVER_FARM
25 GROUP FLAGS : SERVERWLM
26 IPADDR..PORT: 10.42.105.154..7777
27 SYSTEM NAME: MVS209 PROTOCOL : UDP AVAIL : YES
28 WLM WEIGHT : 00021 CS WEIGHT : 100 NET WEIGHT: 00001
28a RAW CP: 20 zAAP: 22 zIIP: 00
28b Proportional CP: 10 zAAP: 11 zIIP: 00
28c ABNORM : 00200 HEALTH : 100
29 FLAGS :
30 IPADDR..PORT: 2001:DB8::10:5:6:2..7777
31 SYSTEM NAME: MVS209 PROTOCOL : UDP AVAIL : YES
32 WLM WEIGHT : 00021 CS WEIGHT : 100 NET WEIGHT: 00001
32a RAW CP: 25 zAAP: 18 zIIP: 00
32b Proportional CP: 10 zAAP: 11 zIIP: 00
33 FLAGS :
34 IPADDR..PORT: 10.42.105.60..7777
35 SYSTEM NAME: VIC007 PROTOCOL : UDP AVAIL : YES
36 WLM WEIGHT : 00045 CS WEIGHT : 100 NET WEIGHT: 00002
36a RAW CP: 50 zAAP: 18 zIIP: 00
36b Proportional CP: 30 zAAP: 15 zIIP: 00
37 FLAGS :
38 GROUP NAME : DNS_GROUP
39 GROUP FLAGS : BASEWLM*
40 IPADDR..PORT: 10.42.103.75..53
41 SYSTEM NAME: MVSW PROTOCOL : TCP AVAIL : NO
42 WLM WEIGHT : 00064 CS WEIGHT : 100 NET WEIGHT: 00000
42a RAW CP: 64 zAAP: 00 zIIP: 00
42b Proportional CP: 64 zAAP: 00 zIIP: 00
43 FLAGS : LBQ OPQ
44 IPADDR..PORT: 10.42.105.60..53

Chapter 23. z/OS Load Balancing Advisor 1257

45 SYSTEM NAME: VIC007 PROTOCOL : TCP AVAIL : NO
46 WLM WEIGHT : 00050 CS WEIGHT : 000 NET WEIGHT: 00000
46a RAW CP: 50 zAAP: 00 zIIP: 00
46b Proportional CP: 50 zAAP: 00 zIIP: 00
47 FLAGS : NOTARGETAPP
48 IPADDR..PORT: 10.42.105.154..53
49 SYSTEM NAME: MVS209 PROTOCOL : TCP AVAIL : YES
50 WLM WEIGHT : 00040 CS WEIGHT : 100 NET WEIGHT: 00021
50a RAW CP: 40 zAAP: 00 zIIP: 00
50b Proportional CP: 40 zAAP: 00 zIIP: 00
51 FLAGS : NODATA
52 GROUP NAME : CICS_SERVER_FARM
53 GROUP FLAGS : BASEWLM
54 ProcType :
54a CP : 060 zAAP: 040 zIIP: 000
55 IPADDR..PORT: 10.42.154.105..8888
56 SYSTEM NAME: MVS209 PROTOCOL : TCP AVAIL : YES
57 WLM WEIGHT : 00048 CS WEIGHT : 100 NET WEIGHT: 00001
57a RAW CP: 40 zAAP: 60 zIIP: 00
57b Proportional CP: 24 zAAP: 24 zIIP: 00
58 FLAGS :
59 IPADDR..PORT: 10.42.105.60..8888
60 SYSTEM NAME: VIC007 PROTOCOL : TCP AVAIL : YES
61 WLM WEIGHT : 00054 CS WEIGHT : 100 NET WEIGHT: 00001
61a RAW CP: 50 zAAP: 60 zIIP: 00
61b Proportional CP: 30 zAAP: 24 zIIP: 00
62 FLAGS :
63 IPADDR..PORT: 10.42.105.22..8888
64 SYSTEM NAME: N/A PROTOCOL : TCP AVAIL : NO
65 WLM WEIGHT : 00000 CS WEIGHT : 000 NET WEIGHT: 00000
65a RAW CP: 00 zAAP: 00 zIIP: 00
65b Proportional CP: 00 zAAP: 00 zIIP: 00
66 FLAGS : NOTARGETSYS
67 IPADDR..PORT: 10:1::4:5..8888
68 SYSTEM NAME: MVS209 PROTOCOL : TCP AVAIL : NO
69 WLM WEIGHT : 00048 CS WEIGHT : 000 NET WEIGHT: 00001
69a RAW CP: 40 zAAP: 60 zIIP: 00
69b Proportional CP: 24 zAAP: 24 zIIP: 00
70 FLAGS : NOTARGETIP
71 14 OF 14 RECORDS DISPLAYED

Group flags - BASEWLM, BASEWLM*, and SERVERWLM: The BASEWLM flag
indicates that WLM system weight recommendations were configured or specified
by default for this group, and are being used to calculate the net weight. The
BASEWLM* flag indicates that server-specific WLM recommendations were
configured for this group, but WLM system weight recommendations are being
used instead. This occurs when at least one of the Agents owning members within
the group does not support server-specific WLM recommendations. The
SERVERWLM flag indicates that server-specific WLM recommendations are being
used to calculate the net weight for each member in the group. Line 7 in Figure 123
shows the BASEWLM flag, line 39 shows the BASEWLM* flag, and line 25 shows
the SERVERWLM flag. For more information on the BASEWLM, BASEWLM*, and
SERVERWLM flags, see z/OS Communications Server: IP System Administrator's
Commands.

Member flags - LBQ and OPQ: The LBQ flag indicates that the load balancer has
quiesced the member. For details on what this entails, see “Stopping or resuming
workload distribution to particular members (QUIESCE and ENABLE)” on page
1264. Do not confuse this with the OPQ flag, which indicates that the z/OS

Figure 123. Sample output for the MODIFY procname,DISPLAY,LB,INDEX=lbindex command

1258 z/OS V1R12.0 Comm Svr: IP Configuration Guide

operator has quiesced the member at the z/OS Agent. In both cases, the member is
ineligible for future workloads through the external load balancer. Line 43 in
Figure 123 on page 1258 shows the LBQ flag and the OPQ flag. For more
information on the LBQ and OPQ flags, see z/OS Communications Server: IP System
Administrator's Commands.

Member flags - NOTARGETSYS, NOTARGETIP, and NOTARGETAPP: These
flags indicate that the Advisor will advise the load balancer that the member
should not currently receive new workload requests because a resource is
unavailable. If the IP address in the member is not present on any TCP/IP stack
within the sysplex or subplex, NOTARGETSYS is displayed for that member. This
flag can also appear if the Agent owning the IP address in the member has lost
contact with the Advisor or has yet to be started. There might be rare instances
where the load balancer might decide to go ahead and route workload requests to
members that have the NOTARGETSYS flag displayed, if it has no better
candidates within the group to route workload requests to. If the member
represents an application member and the application is not active,
NOTARGETAPP is displayed for that member. If the member is a system member
and the IP address is unusable, NOTARGETIP is displayed. This includes
distributed VIPAs (DVIPAs), deprecated IPv6 addresses, and unavailable IPv6
addresses. If you ever see the NOTARGETIP flag, you should update the IP
address in the member at the load balancer. If application members are coded with
any of these addresses, you will always see NOTARGETAPP displayed for these
members. Line 19 in Figure 123 on page 1258 shows the NOTARGETSYS flag, line
23 shows the NOTARGETIP flag, and line 47 shows the NOTARGETAPP flag. For
more information on the NOTARGETSYS, NOTARGETIP, and NOTARGETAPP
flags, see z/OS Communications Server: IP System Administrator's Commands.

Member flag - NODATA: This flag is transient and indicates that not enough
time has elapsed for the reporting Agent to calculate a Communications Server
weight for the member. Therefore, only the WLM weight is used to calculate the
net weight, until such time that the Agent can report a Communications Server
weight. Until that time, the CS WEIGHT is displayed as 100. When a
Communications Server weight has been calculated and transmitted to the Advisor,
the NODATA flag is turned off. This flag appears when new members are
registered by the load balancer, when the target application that the member
represents first becomes active, or shortly after a target application has been moved
within the sysplex or subplex. Line 51 in Figure 123 on page 1258 shows the
NODATA flag. For more information on the NODATA flag, see z/OS
Communications Server: IP System Administrator's Commands.

Member field - AVAIL: This field is always displayed for each registered
member, and has a value of YES or NO. YES indicates that the member is available
for workload request distribution. NO indicates that the member is not available
for workload request distribution. For the member to be available for workload
request distribution, the target application must be active (if the member represents
an application member) on a TCP/IP stack that has not had eventual action
message EZD1973E issued by sysplex problem detection and recovery, an Agent
must be active on the target system and connected to the Advisor, and the member
must not be quiesced by the z/OS operator or by the load balancer. Line 9 in
Figure 123 on page 1258 shows an example of the AVAIL field set to YES, and line
17 shows an example of the AVAIL field set to NO. For more information on the
AVAIL field, see z/OS Communications Server: IP System Administrator's Commands.

Member field - NET WEIGHT: This field is always present for each registered
member, and is the only weight that the load balancer actually receives. It is

Chapter 23. z/OS Load Balancing Advisor 1259

|
|

calculated by applying the Communications Server weight as a percentage of the
WLM weight, and then the weight is normalized within its group. Normalization
involves reducing the weight values while largely preserving the ratios between
the weights. Normalization is performed within a group only if there is more than
one available member within the group. Net weights can be in the range 0 – 64. A
higher net weight means that member is capable of receiving more work than a
member within the same group that has a lower weight. There are certain
situations where the net weight can be 0 when neither the WLM weight or the
Communications Server weight is 0. This can happen if the member has been
quiesced by the z/OS operator or the load balancer. Conversely, there is one case
where the WLM weight or the Communications Server weight can be zero, but the
net weight is nonzero. This can happen if the net weight of every member in the
group calculates to zero, and at least one member of the group is available. In this
case, the net weights of all of the available members in the group are changed to 1
to force round-robin distribution among the members in the group, rather than to
stop sending new workloads to the group entirely. Line 10 in Figure 123 on page
1258 shows an example of the NET WEIGHT field set to a nonzero value, while
line 18 shows an example of the field set to zero. For more information on the NET
WEIGHT field, see z/OS Communications Server: IP System Administrator's
Commands.

Member field - WLM WEIGHT: This field is always present for each registered
member, and represents the desirability of the system owning the member, relative
to the other systems in the sysplex or subplex (system weight), or a measure of
how well the individual application is meeting its WLM policies (server-specific
weight). Like the Communications Server weight and net weight, a higher value
means it is more desirable. WLM weights can be in the range 0 – 64. The WLM
weight is used as a key component of the net weight. The WLM weight is the
composite weight, and is the sum of the modified CP, zAAP, and zIIP weights
displayed on the next line. Line 10 in Figure 123 on page 1258 is one of many lines
that contain the WLM WEIGHT field, and Lines 10a and 10b are some of the many
lines that contain the modified CP, zAAP, and zIIP weights described in Table 59.

Table 59. WLM WEIGHT - CP, zAAP, and zIIP fields

Processor DISTMETHOD BASEWLM
DISTMETHOD
SERVERWLM

CP The first value is the WLM
system general CP weight
recommendation. It is based
on the amount of
displaceable general CPU
capacity on this system, as
compared to the other target
systems.

The second value is the first
value modified by the
expected general CP
utilization proportion
configured on the PORTLIST
and WLM statement for this
application.

The first value is the WLM
server-specific general CP
recommendation. This is the
amount of displaceable
general CPU capacity, based
on the application
workload's importance (as
defined by the WLM policy)
as compared to the other
target systems.

The second value is the first
value modified by the
proportion of general CP
capacity that is currently
being consumed by the
application's workload, as
compared to the other
processors (zAAP and zIIP).

1260 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Table 59. WLM WEIGHT - CP, zAAP, and zIIP fields (continued)

Processor DISTMETHOD BASEWLM
DISTMETHOD
SERVERWLM

zAAP The first value is the WLM
system zAAP weight
recommendation. It is based
on the amount of
displaceable zAAP capacity
on this system, as compared
to the other target systems.

The second value is the first
value modified by the
expected zAAP utilization
proportion configured on the
PORTLIST and WLM
statement for this
application.

The first value is the WLM
server-specific zAAP
recommendation. This is the
amount of displaceable
zAAP capacity, based on the
importance (as defined by
the WLM policy) of the
application's workload, as
compared to the other target
systems.

The second value is the first
value modified by the
proportion of zAAP capacity
that is currently being
consumed by the
application's workload, as
compared to the other
processors (general CPU and
zIIP).

zIIP The first value is the WLM
system zIIP weight
recommendation. It is based
on the amount of
displaceable zIIP capacity on
this system, as compared to
the other target systems.

The second value is the first
value modified by the
expected zIIP utilization
proportion configured on the
PORTLIST and WLM
statement for this
application.

The first value is the WLM
server-specific zIIP
recommendation. This is the
amount of displaceable zIIP
capacity, based on the
importance (as defined by
the WLM policy) of the
application's workload, as
compared to the other target
systems.

The second value is the first
value modified by the
proportion of zIIP capacity
that is currently being
consumed by the
application's workload, as
compared to the other
processors (general CPU and
zAAP).

Restriction: This information is available to be displayed only if no systems in the sysplex
are prior to z/OS V1R9. If any systems in the sysplex are not at this release level, only CP
weights are considered when determining a composite weight recommendation.

For more information on the WLM WEIGHT field, see z/OS Communications Server:
IP System Administrator's Commands.

Member field - CS WEIGHT: This CS WEIGHT field is always present for each
registered member, and represents the health of the server with respect to its
ability to satisfy recent requests. As with the WLM weight and the net weight, the
higher the value the better the health. The Communications Server weight can
range from 0 to 100, and is used as a component of the net weight. Line 10 in

Chapter 23. z/OS Load Balancing Advisor 1261

Figure 123 on page 1258 is one of many lines that contains the CS WEIGHT field.
For more information on the CS WEIGHT field, see z/OS Communications Server: IP
System Administrator's Commands.

Member field - ABNORM: This field is displayed if the GROUP FLAGS field
indicates that server-specific (SERVERWLM) WLM recommendations are being
used. The ABNORM value is a nonzero value if the server application is
experiencing conditions in which transactions are completing abnormally, and
represents a rate of abnormal transaction completions per 1000 total transaction
completions. It is applicable only for target applications that act as Subsystem
Work Managers, reporting transaction status using Workload Management
Services, such as IWMRPT. For example, the value of 200 in this example (see Line
28c in Figure 123 on page 1258) indicates that 20% of all transactions processed by
the server application are completing abnormally. Under normal conditions or if
the server is not providing this information to WLM, this value is 0.

A nonzero value indicates that the server application has reported abnormal
transaction completions to WLM and that WLM has reduced the server-specific
recommendation for this server instance. The higher the value of this field, the
greater the reduction in the recommendation provided by WLM. For more
information regarding the conditions leading to abnormal transaction completions
for a given server application, see the documentation provided by the server
application.

Restriction: Although WLM uses the abnormal transaction completion rate
provided by the application to reduce the server-specific recommendation, this
information is available for display on an Advisor only if the Load Balancing
Agents and the Advisor are running on a z/OS V1R8 system. A z/OS V1R7 Load
Balancing Agent does not provide this information to the Load Balancing Advisor.
In this situation, a z/OS V1R8 Advisor shows a normal abnormal transaction
completion rate of 0, even if WLM is reducing the server-specific recommendation
because of a nonzero abnormal transaction completion rate reported from the
application.

Member field - HEALTH: This field is displayed if the GROUP FLAGS field
indicates that server-specific (SERVERWLM) WLM recommendations are being
used. This health indicator is available only for applications that provide this
information to WLM using the IWM4HLTH or IWMSRSRG services, and it
indicates the general health for an application or subsystem. Under normal
circumstances, or if the server is not providing this information to WLM, the value
of this field is 100, meaning the server is 100% healthy.

Any value less than 100 indicates that the server is experiencing problem
conditions that are preventing it from processing new work requests successfully,
which causes WLM to reduce the server-specific recommendation for this server
instance. The lower the value of this field, the greater the reduction in the
recommendation provided by WLM.

Restriction: Although WLM uses the health indicator provided by the application
to reduce the server-specific recommendation, this information is available for
display on an Advisor only if the Load Balancing Agents and the Advisor are
running on a z/OS V1R8 system. A z/OS V1R7 Load Balancing Agent does not
provide this information to the Load Balancing Advisor. In this situation, a z/OS
V1R8 Advisor shows a normal health indicator of 100, even if WLM is reducing
the server-specific recommendation because of an abnormal health indication from
the application.

1262 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Member field - ProcType: Indicates that CP, zAAP, and zIIP proportions were
configured. These proportions are applied against the processor weights to
determine the composite BASEWLM weight. For a description of the CP, zAAP,
and zIIP fields for ProcType, see Table 57 on page 1252. Lines 54 and 54a in
Figure 123 on page 1258 contain these fields.

MODIFY procname,DISPLAY,MEMBERS,DETAIL
This command displays details about members that are owned by the Agent. In
Figure 124, the line numbers appearing in the left margin are for reference
purposes only, and are used in the subtopics following the figure. For information
about every field displayed by the Agent MODIFY command, see z/OS
Communications Server: IP System Administrator's Commands.

Member flag - ANY: The ANY flag means that the application represented by the
port in the member is bound to INADDR_ANY or the IPv6 unspecified address
(in6addr_any). This means that in an INET (one TCP/IP stack) environment, any
externally available IP address owned by that TCP/IP stack might be used to reach
the target application, not just the IP address coded in this member. Therefore,
there is the potential that multiple members might exist in the load balancer or
other load balancers that actually represent the same application, if members were
coded with the same port, protocol, and an IP address owned by the same TCP/IP
stack. You need to be aware of this if you want to issue operator commands to
quiesce that application. If this were the case, quiescing the application at the port
level, but specifying the individual IP address of the member, might not quiesce all
new workload requests to that application. Quiescing the application at the port
level without specifying an IP address would be required to accomplish that task.
If the application is running in a CINET (multiple TCP/IP stack) environment, any
externally available IP address on the z/OS system can be used to reach the target
application, unless the application has stack affinity. If the application has stack
affinity, the Advisor only indicates the member is available if the IP address coded
in the member belongs to the TCP/IP stack that the application has affinity to.
Line 18 in Figure 124 shows an example of this flag. For more information on the
ANY flag, see z/OS Communications Server: IP System Administrator's Commands.

1 MODIFY LBAGENT,DISPLAY,MEMBER,DETAILS
2 EZD1245I MEMBER DETAILS
3 LB INDEX : 00 UUID : 637FFF175C
4 GROUP NAME : SYSTEMFARM
5 GROUP FLAGS : BASEWLM
6 IPADDR..PORT: 10.42.105.154..0
7 TCPNAME : TCPCS MATCHES : 001 PROTOCOL : 000
8 FLAGS :
9 JOBNAME : N/A ASID : N/A RESOURCE : N/A
10 IPADDR..PORT: 10:1::4:5..0
11 TCPNAME : TCPCS5 MATCHES : 000 PROTOCOL : 000
12 FLAGS :
13 JOBNAME : N/A ASID : N/A RESOURCE : N/A
14 GROUP NAME : UDP_SERVER_FARM
15 GROUP FLAGS : SERVERWLM
16 IPADDR..PORT: 10.42.105.154..7777
17 TCPNAME : TCPCS MATCHES : 001 PROTOCOL : UDP
18 FLAGS : ANY
19 JOBNAME : TESTD1 ASID : 0035 RESOURCE : 000000A3
20 IPADDR..PORT: 2001:DB8::10:5:6:2..7777
21 TCPNAME : TCPCS2 MATCHES : 001 PROTOCOL : UDP
22 FLAGS : ANY V6
23 JOBNAME : TESTD2 ASID : 002A RESOURCE : 00000031
24 4 OF 4 RECORDS DISPLAYED

Figure 124. Sample output for the MODIFY procname,DISPLAY,MEMBERS,DETAIL
command

Chapter 23. z/OS Load Balancing Advisor 1263

Member flag - V6: The V6 flag indicates that the application that the member
refers to has set the IPV6_V6ONLY socket option. This socket option disallows
connections to the server application using an IPv4 address as the destination IP
address when the server application has bound to the IPv6 unspecified address
(in6addr_any). If a member is coded with an IPv4 address and intends to represent
an application that has the IPV6_V6ONLY socket option set, the member will not
be available for workload balancing and the V6 flag is displayed for this member.
Conversely, for any member that represents this target application and is coded
with an IPv6 address that can be used to reach the target application, the member
will be available for workload balancing and the V6 flag is displayed. Line 22 in
Figure 124 on page 1263 shows an example of this flag. For more information on
the V6 flag, see z/OS Communications Server: IP System Administrator's Commands.

Stopping or resuming workload distribution to particular
members (QUIESCE and ENABLE)

At least one and possibly two methods exist to stop sending new workload
requests to particular members, referred to as quiescing. Quiescing does not
disrupt existing connections with the target applications, but does prevent new
workload requests from being distributed to those members from load balancers.
Requests sent directly to applications that do not go through the load balancer are
unaffected by quiescing. Quiescing certain members can be useful for a planned
outage of a particular system in the sysplex, a particular TCP/IP stack, a particular
application, or a homogeneous group of applications, such as all HTTP servers.
The first method of quiescing is done using the MODIFY procname,QUIESCE
operator command available at each Agent. The second potential method is
through the load balancer administrator, if the load balancer implementation
supports this function. Only the MODIFY procname,QUIESCE command is
described in detail in this topic.

The MODIFY procname,QUIESCE command is available only on the Agents,
because they own the IP addresses that belong to TCP/IP stacks on that z/OS
system. Therefore, the scope of the quiesce operation cannot affect members that
are not owned by the Agent that is issuing the command.

There are three major scopes or target options for the MODIFY procname,QUIESCE
command:
v SYSTEM

Every member owned on that z/OS system can be quiesced
v TCPNAME=tcpname

Every member on one of the Agent's TCP/IP stacks can be quiesced
v PORT=portnum

All members using a particular port can be quiesced

The last target option, quiescing by port, enables you to refine the quiesce to an
individual member instead of quiescing all members using the port. For more
information on how to specify individual members using the Agent's MODIFY
procname,QUIESCE command, see z/OS Communications Server: IP System
Administrator's Commands.

When ready for new workloads, use the MODIFY procname,ENABLE command to
make the quiesced members available again. Like the quiesce command, this
command is only an Agent command, and also has the same target options as the
quiesce command.

1264 z/OS V1R12.0 Comm Svr: IP Configuration Guide

The quiesce and enable commands are hierarchical. The system level (SYSTEM
target option) is at the top of the hierarchy, the stack level (TCPNAME=tcpname
target option) is the next highest, and the member level (PORT=portnum target
option) is the lowest.

Rules:

v In the quiesce and enable hierarchy, a member quiesced at one level of the
hierarchy cannot be enabled at a lower or higher level of the hierarchy. For
example, if the MODIFY procname,QUIESCE,TCPNAME=tcpname command has
been issued, a MODIFY procname,ENABLE,SYSTEM command or a MODIFY
procname,ENABLE,PORT=portnum command will not be accepted.

v An enable command must be issued at the same level of the hierarchy as the last
quiesce command that affected the member.

v When a member has been quiesced at one level of the hierarchy, it can be
quiesced at a higher level of the hierarchy. This promotes the quiesce level of the
member from the lower hierarchy level to the higher hierarchy level, and any
history of it being quiesced at the lower level of the hierarchy is erased. When
subsequently issuing an enable command in these circumstances, the enable
command must be issued at the higher, promoted level of the hierarchy. For
example, if member A was quiesced at the port level, a subsequent command to
quiesce all members of the TCP/IP stack would be accepted. Furthermore, only
a subsequent enable command at the TCP/IP stack level would be accepted to
re-enable the member.

Table 60 shows which quiesce and enable commands are valid for a member after a
previous quiesce command has affected that same member. A dot at the
intersection of the prior command column and the current command row indicates
that the current command would be valid for that member. Absence of a dot
indicates that the current command would not be valid after the prior command
had affected that member.

Table 60. Allowed quiesce and enable command sequences for members

Prior command

QUIESCE,SYSTEM QUIESCE,TCPNAME= QUIESCE,PORT=

Current
command

QUIESCE,SYSTEM * *

QUIESCE,TCPNAME= *

QUIESCE,PORT=

ENABLE,SYSTEM *

ENABLE,TCPNAME= *

ENABLE,PORT= *

Rules:

v A quiesce command is rejected if any member it applies to has already been
quiesced by a command at a higher level of the hierarchy. For example, if you
are running in a CINET configuration and you quiesce all members under stack
A, which includes a member on stack A that used port 80, you cannot
subsequently issue a quiesce command at the port level hoping to quiesce
members using port 80 on stacks B and C, because the member on stack A that
used that port was already quiesced at the stack level. Because the command
would fail for one member, the entire command fails for all members.

v Quiesce commands at the system and stack level apply to currently registered
members and also members that are registered in the future, provided that the

Chapter 23. z/OS Load Balancing Advisor 1265

IP addresses of those future members are owned by the Agent that issued the
command. For quiesce commands issued at the stack level, the specified stack
must exist at the time the command is issued.

v Quiesce commands at the port level can apply to members registered in the
future, if a member currently exists at that port number. For example, if a
member is registered by one load balancer at port 80 and the Agent operator
quiesces all members at port 80, and then another load balancer registers that
same member (same IP address, port, and protocol), the newly registered
member would inherit the quiesce performed at the port level.

When a member represents a shareport group (that is, multiple server application
instances sharing the same TCP port on the same TCP/IP stack), members cannot
be defined to distinguish between the individual server application instances. That
is, the combination of the IP address, port, and protocol represents all of the
applications sharing the port. Therefore, you cannot selectively quiesce workload
requests to only some of the applications sharing the port. Consequently, if you
quiesce a member that represents a shareport group, all of the application instances
in the group are quiesced.

If an Agent is stopped or fails and is restarted, the quiesce states of any members it
might have previously owned are lost. If this occurs, reenter the appropriate
quiesce commands to regain the quiesce states that existed during the previous
instance of the Agent.

If a member is moved from one system in a sysplex to another using sysplex
functions such as VIPA backup, the quiesce state does not move with it. For
example, if quiesced member A is using IP address 1.1.1.1 on system X and system
X fails, IP address 1.1.1.1 could be moved to system Y. Member A would no longer
be quiesced on the new system and, assuming that the application that member A
is assigned to is available and active on system Y, new workload requests would
be distributed to this application.

If you plan to take a sysplex system out of service, simply stopping the Agent
running on that system is not always a wise alternative to issuing a system-level
quiesce command on that system's Agent. If an Agent is simply shut down, there
are rare cases where a load balancer might choose to continue routing new
workload requests to the applications on that system.

z/OS Load Balancing Advisor configuration example
This topic includes a specific configuration example of the z/OS Load Balancing
Advisor, two Load Balancing Agents, and some customization of PROFILE.TCPIP
considerations.

In this example, as shown in Figure 125 on page 1267, load balancer LB1
distributes workload requests to two z/OS systems in a sysplex, SYSA and SYSB.
SYSA is a CINET configuration with two TCP/IP stacks. SYSB is an INET
configuration with one TCP/IP stack. The load balancer is connected to a LAN
that also connects to each target TCP/IP stack in the sysplex, including the TCP/IP
stack where the Advisor is running. All addresses in this example are IPv4, but the
Advisor and Agents are enabled for IPv6.

This example configuration does not use subplexing or AT-TLS.

1266 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Load balancer configuration details
The load balancer distributes two types of workload requests in this example, FTP
and HTTP traffic, both of which use the TCP protocol. (Keep in mind that UDP
workload requests can also be distributed if desired.) On SYSA, one FTP server is
running, which is shared as a generic server between the two TCP/IP stacks. Also
on SYSA, an HTTP server is bound to stack S1. On SYSB, an FTP and HTTP server
are running.

The load balancer must be configured with the IP address and port of the
Advisor's load balancing connection socket. In this example, the TCP/IP stack on
SYSB has defined 10.1.5.1 as a dynamic VIPA. In addition, this same address and
port is defined to the Advisor on the lb_connection_v4 statement in the Advisor's
configuration file. The load balancer also uses one of its interfaces to communicate
with the Advisor. The IP address assigned to this interface must be coded in the
Advisor's lb_id_list statement. In this example, the load balancer uses the interface
assigned to the address 10.1.10.11. For information on how to determine which
interface the load balancer will use to communicate with the Advisor, consult the
specific load balancer documentation.

The load balancer advertises its cluster IP address, 10.2.1.21, so that clients that
want to connect to specific applications in the sysplex will connect to this cluster
IP address as a proxy. Once the connection reaches the load balancer, to determine
the actual target of the request, the load balancer consults the information that the
Advisor has provided as well as possibly examining the content of the packet. The
load balancer might substitute the target IP address in the packet header with the
IP address of the member that is best suited to receive the new workload requests,

SYSA SYSB

W
L
M

W
L
M

TCP/IP S1
D

10.1.5.22
(VIP

VIPA=

ARANGE)
TCP/IP S2

TCP/IP S1
D
10.1.5.1

(VIP
Static
VIP

10.1.1.1

VIPA=

ARANGE),

A=FTPD FTPD

10.1.10.22 10.1.10.3 10.1.10.1

Gener
ser

ic
ver

Loadbalancer: LB1

Port 3860

Port 8100Sr
P=8000

cIP=10.1.5.22 Sr
P=8000

cIP=10.1.1.1

z/OS LB Agent z/OS LB Agent

z/OS LB
Advisor

SASP_Client

HTTPD

HTTPD

10.1.10.11

10.2.1.21

Advisor IP Address and por
Source IP Address = 10.1.10.11
Cluster IP address=10.2.1.21
Group=FtpSer t=21,protocol=TCP
IP=10.1.10.22,P
IP=10.1.10.3,P
IP=10.1.10.1,P
Group=W t=80,protocol=TCP
IP=10.1.10.22,P
IP=10.1.10.1,P

t= 10.1.5.1..3860

verFarm: por
ort=21

ort=21
ort=21

ebSrvrFarm: por
ort=80

ort=80

LB1
FtpSer

10.1.10.22..21
10.1.10.3..21
10.1.10.1..21

W
10.1.10.22..80
10.1.10.1..80

Agent_10.1.5.22
SYSA
10.1.10.22..21
10.1.10.3..21
10.1.10.22..80

Agent_10.1.1.1
SYSB
10.1.10.1..21
10.1.10.1..80

verFarm

ebSrvrFarm

Advisor IP Address and por
recommended) 10.1.5.1..8100

Agent source IP address and por
(D
10.1.5.22..8000

t (DVIPA

t
VIPA recommended for CINET)

Advisor IP Address and por
recommended) 10.1.5.1..8100

Agent source IP address and por
10.1.1.1..8000

t (DVIPA

t

AgentSrc:10.1.5.22..8000
AgentSrc:10.1.1.1..8000
AgentsConnectT
LbSrc:10.1.10.11
LbConnectsT
P

oPort:8100

o:10.1.5.1..3860
oll interval = 60

Figure 125. z/OS Load Balancing Advisor configuration example

Chapter 23. z/OS Load Balancing Advisor 1267

or simply forward the packet as is using the proper MAC address. For example, if
a connection request came to the load balancer (10.2.1.21) for port 21 using
protocol TCP, the load balancer would forward the packet to either 10.1.10.22,
10.1.10.3, or 10.1.10.1, depending upon which member is the better candidate at
that point in time.

To distribute FTP workload requests to the sysplex, a group called FtpServerFarm
is defined to the load balancer. The load balancer maps the cluster IP address,
10.2.1.21, port 21, and protocol TCP to this group. In other words, if the load
balancer receives a TCP connection with destination 10.2.1.21, port 21, it consults
this group to find a member to which it can forward the connection. Within this
group are three members that can handle FTP connections, representing target
applications within the sysplex. One target can be reached at 10.1.10.22 on port 21,
the second at 10.1.10.3 on port 21, and the third at 10.1.10.1 on port 21. The target
applications represented by these members do not necessarily all have to be
available at all times. The load balancer avoids trying to forward connections to
target applications that are not currently available. Therefore, the list of target
applications represented by the members in the group should be the entire set of
possible members that could handle this workload, now or in the foreseeable
future.

To distribute HTTP workload requests to the sysplex, a group called WebSrvrFarm
is defined to the load balancer. The load balancer maps the cluster IP address,
10.2.1.21, port 80, and protocol TCP to this group. In other words, if the load
balancer receives a TCP connection with destination 10.2.1.21, port 80, it consults
this group to find a member to which it can forward the connection. Within this
group are two members that can handle HTTP connections, representing target
applications within the sysplex. One target can be reached at 10.1.10.22 on port 80,
and the second can be reached at 10.1.10.1 on port 80.

Advisor configuration details
There are two aspects of Advisor configuration, the Advisor configuration file
itself, and the underlying PROFILE.TCPIP changes that go along with the
remainder of the z/OS Load Balancing Advisor system configuration.

Following is an example Advisor configuration file:
debug_level 7 # Error, Warning, Events-- the default

update_interval 60 # Agents update every minute-- the default

wlm serverwlm # Request server-specific WLM weights

port_list
{

21 wlm basewlm # Use system WLM weights for FTP
}

lb_connection_v4 10.1.5.1..3860 # DVIPA load balancer connects to

lb_id_list
{

10.1.10.11 # Load balancer’s SASP client interface
}

agent_connection_port 8100 # Port Agents connect to

agent_id_list

1268 z/OS V1R12.0 Comm Svr: IP Configuration Guide

{
10.1.1.1..8000 # This system’s Agent source
10.1.5.22..8000 # SYSA’s Agent source

}

In this example Advisor configuration file, the debug level is set to 7 in the
optional debug_level statement. The value of 7 is the default value, so this
statement is redundant but is shown for completeness. At the default level of 7,
messages are written to the log if they are at error, warning, or event level.
Messages at other debug levels, such as info or debug, are not written to the log
file.

The optional update_interval statement is set to 60 seconds, which is also the
default. This means that each Agent updates the Advisor with new information
every minute. For some load balancer implementations, depending upon load
balancer configuration, it might also determine how often the load balancer is
updated with new information from the Advisor.

The wlm statement specifies the default WLM recommendation type to be used for
all groups when calculating the net weights. The value of severwlm indicates that
server-specific WLM recommendations will be requested of each Agent, unless
overridden by the port_list statement (see next paragraph). Although
server-specific WLM is the WLM recommendation type to be used for all groups
except FTP in this example, there is still a possibility that WLM system weights
might have to be used for some or all groups. For further details on the serverwlm
value on the wlm statement, see z/OS Communications Server: IP Configuration
Reference.

The port_list statement contains one port number, 21. The wlm keyword indicates
that the WLM recommendation type will be overridden for all members using port
21 (FTP), to use WLM system weights rather than server-specific WLM weights
when calculating the net weight. Multiple port numbers can appear in the port_list
statement on separate lines, if you want to use WLM system weights for other
groups of members.

The lb_connection_v4 statement includes DVIPA 10.1.5.1 and port 3860 (the
default) as the address and port that load balancers use to connect to the Advisor.
The load balancer specifies this address and port when defining the location of the
Advisor.

The lb_id_list statement contains the address 10.1.10.11, which is the source IP
address of the load balancer when the load balancer connects to the Advisor as a
SASP client. If more than one load balancer is used to distribute workload requests
to the sysplex, each load balancer needs to be represented in this statement list.

The agent_connection_port statement specifies that port 8100 is used to listen for
connections from Agents in the sysplex. This same port appears on each Agent's
advisor_id statement. This port is reserved on the TCP/IP stack that the Advisor
runs on, and on any TCP/IP stacks that the Advisor could be moved to in the
event of failure. Using this port, the Advisor opens a listening socket on the IPv4
or IPv6 unspecified address (0.0.0.0 or ::, respectively), depending upon the
TCP/IP stack's IPv6 capability.

The agent_id_list statement contains the source IP address and port of each Agent
in the sysplex. The 10.1.1.1 address and the associated port of 8000 represent the
source IP address and port that the Agent on SYSB uses to communicate with the
Advisor. This same address and port combination appears on the agent_connection

Chapter 23. z/OS Load Balancing Advisor 1269

statement in the Agent's configuration file on SYSB. The 10.1.5.22 address and the
associated port of 8000 represent the source IP address and port that the Agent on
SYSA uses to communicate with the Advisor. This same address and port
combination appears on the agent_connection statement in the Agent's
configuration file on SYSA.

Agent configuration file on SYSB
Following is the example Agent configuration file on SYSB:
debug_level 7 # Error, Warning, Events

advisor_id 10.1.5.1..8100 # DVIPA of Advisor Agent connects to

host_connection 10.1.1.1..8000 # Source address and port this Agent
uses to connect to the Advisor

In this example Agent configuration file for SYSB, the debug level is set to 7 in the
optional debug_level statement. The debug_level statement for an Agent functions
similarly to the way it functions for the Advisor.

The advisor_id statement is configured with the address 10.1.5.1 and port 8100.
This tells the Agent which address and port the Advisor is using for connections
from Agents. The address 10.1.5.1 is configured as a DVIPA on the Advisor's
TCP/IP stack. The port of 8100 also appears on the agent_connection_port
statement in the Advisor's configuration file, and is also reserved on the Advisor's
TCP/IP stack.

The host_connection statement is configured with the address 10.1.1.1 and port
8000. This is the source IP address and port that this Agent uses when connecting
to the Advisor. The address is defined as a static VIPA on the TCP/IP stack that
the Agent will run on. This address and port must also be specified in the
agent_id_list statement in the Advisor's configuration file. The port, 8000, is also
reserved in PROFILE.TCPIP of stack S1 on system SYSB.

Agent configuration file on SYSA
Following is the example Agent configuration file on SYSA:
debug_level 7 # Error, Warning, Events

advisor_id 10.1.5.1..8100 # DVIPA of Advisor Agent connects to

host_connection 10.1.5.22..8000 # Source DVIPA and port this Agent
uses to connect to the Advisor

This Agent configuration file is for the Agent running on SYSA. The debug_level
and advisor_id statements are identical to the Agent configuration file on SYSB.
The host_connection statement is configured with the address 10.1.5.22 and port
8000. This is the source IP address and port that this Agent uses when connecting
to the Advisor. This address and port must also be specified on the agent_id_list
statement in the Advisor's configuration file. The port, 8000, is also reserved in
PROFILE.TCPIP of stack S1 and S2 on system SYSA. This address is defined as a
dynamic VIPA on both TCP/IP stacks on SYSA, in the event that one of the
TCP/IP stacks fails.

Customization of PROFILE.TCPIP
Each TCP/IP profile in the sysplex must be updated to accommodate the z/OS
Load Balancing Advisor.

1270 z/OS V1R12.0 Comm Svr: IP Configuration Guide

The updated portion of PROFILE.TCPIP for stack S1 on system SYSB follows:
VIPADYNAMIC

;Address LB & Agents use to reach Advisor fall into this subnet
VIPARANGE DEFINE 255.255.255.0 10.1.5.0

ENDVIPADYNAMIC

DEVICE VIPA41 VIRTUAL 0 ; Static VIPA for Agent’s source address
LINK LVIPA41 VIRTUAL 0 VIPA41
HOME 10.1.1.1 LVIPA41

PORT
3860 TCP LBADV ; SASP Workload Advisor (LB connections)
8100 TCP LBADV ; SASP Workload Advisor (Agent connections)
8000 TCP LBAGENT ; SASP Workload Agent (Advisor connection)

In this example, the address 10.1.5.1 would be within the subnetwork that has been
reserved for dynamic VIPAs in the VIPARANGE statement. The load balancer and
the Agents use this address to reach the Advisor. Using a dynamic VIPA (DVIPA)
facilitates the movement of the Advisor to another TCP/IP stack in the event of
failure. This address is defined in the lb_connection_v4 statement in the Advisor's
configuration file, in the load balancer as the location of the Advisor [known
generically as the SASP Global Workload Manager (GWM)], and on the advisor_id
statement in each of the Agent's configuration files.

The address 10.1.1.1 is a static VIPA. The Agent on this system uses this address as
its source IP address. Since SYSB is a single stack system (INET), a static VIPA is
sufficient. If this were a CINET system like SYSA, a DVIPA would be best. This
address appears on the agent_id_list statement in the Advisor's configuration file,
as well as on the agent_connection statement in the Agent's configuration file on
SYSB.

The ports used for the Advisor and Agent are reserved, as advised. Port 3860 is
reserved for the Advisor and is used to communicate with load balancers. This
port appears on the lb_connection_v4 statement in the Advisor's configuration file.
Port 8100 is also reserved for the Advisor, and is the port that the Agents use to
connect to the Advisor. This port appears on the agent_connection_port statement
in the Advisor's configuration file, as well as on the advisor_id statement in each
of the Agents' configuration files. Port 8000 is reserved for the Agent on this
system and is used as the source port for the connection with the Advisor. This
port appears on the agent_id_list statement in the Advisor's configuration file, as
well as on the agent_connection statement in the Agent's configuration file on this
system.

The updated portion of PROFILE.TCPIP for stack S1 on system SYSA follows:
VIPADYNAMIC

;Address Agent uses as source will fall into this subnet
VIPARANGE DEFINE 255.255.255.0 10.1.5.0

ENDVIPADYNAMIC

PORT
3860 TCP LBADV ; SASP Workload Advisor LB connections,

; in case Advisor is moved to this stack
8100 TCP LBADV ; SASP Workload Advisor Agent connections,

; in case Advisor is moved to this stack
8000 TCP LBAGENT ; SASP Workload Agent Advisor connection

In Figure 125 on page 1267, the DVIPA that the Agent uses as a source IP address
on this system is shown belonging to stack S1. It could just as easily belong to
stack S2, but for the purposes of this example the DVIPA belongs to stack S1.

Chapter 23. z/OS Load Balancing Advisor 1271

In this updated portion of PROFILE.TCPIP, the address that the Agent uses as a
source address when connecting to the Advisor, 10.1.5.22, is within the subnetwork
that has been reserved for dynamic VIPAs on the VIPARANGE statement. Using a
dynamic VIPA (DVIPA) facilitates the movement of the Agent to another TCP/IP
stack on the same system in the event of failure. This address is defined on the
host_connection statement in this Agent's configuration file, and in the
agent_id_list statement in the Advisor's configuration file. The DVIPA that the
Advisor would use, should the Advisor be moved to this stack, would also fall
within this subnetwork.

The port that is used for the Agent is reserved, as advised. Additionally, ports that
the Advisor would use if it were to be moved to this TCP/IP stack are also
reserved.

The updated portion of PROFILE.TCPIP for stack S2 on system SYSA follows:
VIPADYNAMIC

;Address Agent uses as source will fall into this subnet
VIPARANGE DEFINE 255.255.255.0 10.1.5.0

ENDVIPADYNAMIC

PORT
3860 TCP LBADV ; SASP Workload Advisor LB connections,

; in case Advisor is moved to this stack
8100 TCP LBADV ; SASP Workload Advisor Agent connections,

; in case Advisor is moved to this stack
8000 TCP LBAGENT ; SASP Workload Agent Advisor connection

This updated portion of the TCP/IP profile is identical to that of stack S1 on SYSA.
This TCP/IP stack is capable of supporting the Advisor and the Agent running on
this z/OS system, should it be necessary to move either to this TCP/IP stack.

Example displays
The following display is from the SYSB Advisor:
F LBADV,DISPLAY,LB,INDEX=03
EZD1243I LOAD BALANCER DETAILS 738
LB INDEX : 03 UUID : 4C4231
IPADDR..PORT : 10.1.10.11..50004
HEALTH : 7F FLAGS : PUSH
GROUP NAME : FTPSERVERFARM
GROUP FLAGS : BASEWLM
ProcType :

CP : 001 zAAP: 000 zIIP: 000
IPADDR..PORT: 10.1.10.22..21
SYSTEM NAME: SYSA PROTOCOL : TCP AVAIL : YES
WLM WEIGHT : 00032 CS WEIGHT : 100 NET WEIGHT: 00001
Raw CP : 32 zAAP: 00 zIIP: 00
Proportional CP : 32 zAAP: 00 zIIP: 00

FLAGS :
IPADDR..PORT: 10.1.10.3..21
SYSTEM NAME: SYSA PROTOCOL : TCP AVAIL : YES
WLM WEIGHT : 00032 CS WEIGHT : 100 NET WEIGHT: 00001

Raw CP : 32 zAAP: 00 zIIP: 00
Proportional CP : 32 zAAP: 00 zIIP: 00

FLAGS :
IPADDR..PORT: 10.1.10.1..21
SYSTEM NAME: SYSB PROTOCOL : TCP AVAIL : YES
WLM WEIGHT : 00031 CS WEIGHT : 100 NET WEIGHT: 00001

Raw CP : 31 zAAP: 00 zIIP: 00
Proportional CP : 31 zAAP: 00 zIIP: 00

FLAGS :
GROUP NAME : WEBSRVRFARM

1272 z/OS V1R12.0 Comm Svr: IP Configuration Guide

GROUP FLAGS : SERVERWLM
IPADDR..PORT: 10.1.10.22..80
SYSTEM NAME: SYSA PROTOCOL : TCP AVAIL : YES
WLM WEIGHT : 00032 CS WEIGHT : 100 NET WEIGHT: 00001

Raw CP : 30 zAAP: 00 zIIP: 44
Proportional CP : 10 zAAP: 00 zIIP: 22

ABNORM : 00000 HEALTH : 100
FLAGS :
IPADDR..PORT: 10.1.10.1..80
SYSTEM NAME: SYSB PROTOCOL : TCP AVAIL : YES
WLM WEIGHT : 00031 CS WEIGHT : 100 NET WEIGHT: 00001

Raw CP : 30 zAAP: 00 zIIP: 42
Proportional CP : 10 zAAP: 00 zIIP: 21

FLAGS :
5 OF 5 RECORDS DISPLAYED

The following display is from the SYSB Agent:
F LBAGENT,DISPLAY,MEMBERS,DETAIL
EZD1245I MEMBER DETAILS 741
LB INDEX : 03 UUID : 4C4231
GROUP NAME : FTPSERVERFARM
IPADDR..PORT: 10.1.10.1..21
TCPNAME : S1 MATCHES : 001 PROTOCOL : TCP
FLAGS : ANY
JOBNAME : FTPD1 ASID : 001D RESOURCE : 0000001A

GROUP NAME : WEBSRVRFARM
IPADDR..PORT: 10.1.10.1..80
TCPNAME : S1 MATCHES : 001 PROTOCOL : TCP
FLAGS : ANY
JOBNAME : HTTPD6 ASID : 0030 RESOURCE : 00000053

2 OF 2 RECORDS DISPLAYED

The following display is from the SYSA Agent:
F LBAGENT,DISPLAY,MEMBERS,DETAIL
EZD1245I MEMBER DETAILS 598
LB INDEX : 03 UUID : 4C4231
GROUP NAME : FTPSERVERFARM
IPADDR..PORT: 10.1.10.22..21
TCPNAME : S1 MATCHES : 001 PROTOCOL : TCP
FLAGS : ANY
JOBNAME : FTPD1 ASID : 002C RESOURCE : 0000007D
IPADDR..PORT: 10.1.10.3..21
TCPNAME : S2 MATCHES : 001 PROTOCOL : TCP
FLAGS : ANY
JOBNAME : FTPD1 ASID : 002C RESOURCE : 00000047

GROUP NAME : WEBSRVRFARM
IPADDR..PORT: 10.1.10.22..80
TCPNAME : S1 MATCHES : 001 PROTOCOL : TCP
FLAGS : ANY
JOBNAME : HTTPD5 ASID : 0033 RESOURCE : 0000005D

3 OF 3 RECORDS DISPLAYED

Chapter 23. z/OS Load Balancing Advisor 1273

1274 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Chapter 24. Automated domain name registration

The automated domain name registration (ADNR) application is a function that
dynamically updates name servers with information about sysplex resources in
near real time. As resources in the sysplex become available, Domain Name System
(DNS) resource records are added to one or more name servers. As those resources
become unavailable, the corresponding DNS resource records are removed from
the name server. Clients that connect to sysplex resources using DNS names have a
greater likelihood of connecting to an available resource in the sysplex. ADNR also
removes the administrative burden of manually configuring and updating a name
server to represent sysplex resources.

The DNS names managed by ADNR can be application-specific names. All
instances of the same application within the sysplex can be represented by the
same DNS name. Clients can therefore use one DNS name to connect to any
available application instance within the sysplex. ADNR can also manage DNS
names that map to specific application instances. These names are used when a
client desires affinity to one particular application instance.

In addition to application-specific names, ADNR can also manage DNS names that
generically represent the entire sysplex, as well as names that represent individual
systems within the sysplex.

How connections are distributed within the sysplex is determined by name server
and ADNR configuration. Typically, connections are fairly evenly spread out
among the available application instances over time. Connections are not load
balanced within the sysplex, as they are with load balancing solutions such as
sysplex distributor and the z/OS Load Balancing Advisor.

ADNR supports both IPv4 and IPv6 addresses.

System overview
Figure 126 on page 1276 shows a z/OS sysplex containing four systems, a name
server external to the sysplex, a name server in the sysplex, and several clients in
the network. The z/OS Load Balancing Advisor and ADNR are running on one of
the systems in the sysplex. An instance of the z/OS Load Balancing Agent is active
on three of the sysplex systems. Three instances of a server application are active
within the sysplex.

© Copyright IBM Corp. 2000, 2011 1275

ADNR is configured with information about sysplex resources to which you want
to assign DNS names. These resources are configured on a group basis. For
example, to have ADNR manage DNS names in a name server for a sysplex
containing several instances of a CICS listener application, all potential CICS
listener instances for a given port in the sysplex are defined under the same group
in the ADNR configuration file.

ADNR registers its configured information about sysplex resources with a z/OS
Load Balancing Advisor application. The Advisor application disseminates this
information to the z/OS Load Balancing Agents (Agents), which report back to the
Advisor about the availability of the resources registered by ADNR. The Advisor
then reports back to ADNR about which of its registered resources are active and
which are not. The Advisor subsequently reports to ADNR any changes in the
availability of those resources.

For each group of resources that the Advisor reports as available, ADNR adds a
DNS name to the name server that represents the entire group of resources in that
group, and maps that name to the IP addresses of the available resources in that
group. Continuing with the CICS listener example, the IP address of each active
CICS listener application is mapped to the name representing the entire group of
CICS listener applications. The IP address of each inactive CICS application is not
mapped to that DNS name. Clients then connect to their application using the
name that ADNR added to the name server. The address or addresses returned to
the client's resolver reflect only active application instances. Thus, the client can
use one DNS name to connect to any active instance of an application. As
application instances become unavailable, the addresses of those unavailable
application instances are disassociated from that DNS name in the name server. If
all application instances in that group become unavailable, the DNS name
representing that group of applications is removed from the name server.

You can also configure ADNR to update the name server with the names of
individual server instances, which map to IP addresses that can be used to reach
those server instances as those server instances become available. Thus, if a client

Server instance

z/OS LB Agent

DNS
queries

Private

protocol

control

flows

DNS
updates

DNS
name
server

z/OS
Sysplex

Server instance

z/OS LB Agent

Server instance

z/OS LB Agent

client /
server

connections

z/OS LB
Advisor

ADNR
DNS name server

DNS
updatesSASP

Figure 126. System overview

1276 z/OS V1R12.0 Comm Svr: IP Configuration Guide

needs to connect to a specific server instance, that name can be used to make the
connection. As each individual server instance becomes unavailable, the DNS name
representing the unavailable server instance is removed from the name server.

The name servers that ADNR manages can reside on z/OS or other platforms, as
long as the name server supports RFC 2136, Dynamic Updates in the Domain Name
System (DNS UPDATE). On z/OS, the BIND 9 name server supports this standard.
For information about accessing RFCs, see Appendix G, “Related protocol
specifications,” on page 1555.

For administrative purposes, it is advantageous to run ADNR within the same
sysplex as the resources it manages. ADNR should run in a sysplex so that it can
be moved to provide optimal availability. You can reduce network traffic between
ADNR and the Advisor by running ADNR on the same system where the Advisor
is running. If ADNR is managing z/OS name servers, network traffic between
ADNR and the name server can also be reduced by running the name server on
the same system as ADNR. In addition, the possibility of network outages
disrupting communication between ADNR and the Advisor, and between ADNR
and the name server, is eliminated by this configuration. In a steady-state sysplex
environment, there is more traffic between the Advisor and ADNR than there is
between ADNR and the name servers it manages. So, if you do not want to run
both on the same system, it is more important that ADNR run on the same system
as the Advisor than it is for the name server to run on the same system as ADNR.

Interaction with name servers
The name servers that ADNR manages require a one-time setup. These name
servers must be configured as the primary master name servers for the zones
managed by ADNR. The name servers can exist on z/OS or elsewhere. The name
servers must support RFC 2136, Dynamic Updates in the Domain Name System (DNS
UPDATE). For information about accessing RFCs, see Appendix G, “Related
protocol specifications,” on page 1555.

Tip: The z/OS BIND 9 name server supports this standard.

For more background information about DNS, see Chapter 15, “Domain Name
System,” on page 775.

For more information about name server configuration considerations, see “Name
server configuration considerations” on page 1294.

Interaction with the z/OS Load Balancing Advisor
The ADNR function is provided by the ADNR application, which uses the z/OS
Load Balancing Advisor function.

Requirement: You must configure and deploy the z/OS Load Balancing Advisor
and Agent to use ADNR.

An external load balancer is not required.

The ADNR application communicates with the Advisor using the
Server/Application State Protocol (SASP). In SASP protocol terms, the Advisor is
known as a Global Workload Manager (GWM). The terms Advisor and GWM are
used interchangeably. From the GWM's perspective, the ADNR application appears
as a load balancer. Despite its appearance as a load balancer to the GWM, ADNR
does not perform load balancing. The z/OS Load Balancing Advisor supplies

Chapter 24. Automated domain name registration 1277

sysplex resource availability and weight information to what it views as load
balancers, including ADNR. ADNR uses the availability information but does not
use the weight information.

For more information about this function, see Chapter 23, “z/OS Load Balancing
Advisor,” on page 1219.

For more information about z/OS Load Balancing Advisor configuration
considerations, see “z/OS Load Balancing Advisor configuration considerations”
on page 1292.

Enabling TLS/SSL for ADNR
Consider whether to use AT-TLS for security between ADNR and the z/OS Load
Balancing Advisor. AT-TLS provides the ability to authenticate a client, check
authorizations, and encrypt data. You must restrict the ability to establish a
connection to the Advisor, because sensitive interfaces can be exploited after a
connection is accepted by the Load Balancing Advisor. Because ADNR acts as a
client to the Load Balancing Advisor SASP port, it must be explicitly authorized to
establish its connection to the Load Balancing Advisor.

You can use one or both of the following methods to authorize connection to the
z/OS Load Balancing Advisor:
v You can explicitly configure the host_connection_addr keyword on the gwm

statement in the ADNR configuration file, and the corresponding lb_id_list
statement in the Advisor's configuration file.

v You can establish policies using the z/OS Policy Agent so that ADNR is required
to use AT-TLS.

Although the configuration parameters might be sufficient in certain environments
where the Load Balancing Advisor and ADNR reside inside a secure network (that
is, isolated by a firewall and so on), they might not be sufficient in environments
in which the network is not considered to be as secure or in which the need to
protect against IP address spoofing attacks is important. For more information
about using AT-TLS, see Chapter 22, “Application Transparent Transport Layer
Security data protection,” on page 1193. For more information about the Advisor,
see Chapter 23, “z/OS Load Balancing Advisor,” on page 1219.

Steps for configuring automated domain name registration
Perform the following steps to configure the automated domain name registration
(ADNR) application.

1. Decide which sysplex resources should be managed by ADNR.

2. Decide on one or more domain names to be managed by ADNR.

3. Decide which name server or name servers are to be managed by ADNR.

4. Configure the selected name servers to be the primary master name servers
for the domain names that ADNR is to manage.

5. Delegate the domain names to be managed by ADNR to the selected name
servers from the parent domain's name server.

6. Configure the z/OS Load Balancing Advisor (LBA) function.

7. Define security server profiles for ADNR.

1278 z/OS V1R12.0 Comm Svr: IP Configuration Guide

8. Configure ADNR to automatically restart in case of application or system
failure. (optional)

9. Configure and start syslogd. (optional, but required to have ADNR write log
messages and trace data to syslogd)

10. Configure one ADNR application per sysplex.

11. Customize the TCP/IP profiles of the TCP/IP stacks on which ADNR and
the LBA applications are to run. (optional)

12. Start the TCP/IP stacks on which ADNR and the LBA applications are to
run.

13. Start the z/OS Load Balancing Advisor and Agent.

14. Start the target applications that are to be managed by ADNR.

15. Start the ADNR application.

16. Verify that the ADNR system is functioning correctly. (optional)

These steps are described in detail in the following subtopics.

Step 1: Decide which sysplex resources should be managed
by ADNR

ADNR can manage two types of sysplex resources, including server applications
and the traditional DNS mappings of host names to IP addresses. Server
applications are represented in ADNR as server groups using the server_groups
statement. Traditional DNS host name-to-IP address mappings are represented as
host groups using the host_groups statement. For more information about server
groups and host groups, see “Identifying the sysplex resources to be managed by
ADNR” on page 1286.

ADNR can dynamically create application-specific host names in a name server to
represent a cluster of equivalent servers in the sysplex. For example, the name
ztelnet.mvsplex.mycorp.com can represent all TN3270E Telnet server applications
in the sysplex. Any TCP or UDP server application in the sysplex can be managed
by ADNR and have application-specific host names dynamically added and
removed from a name server to represent active instances of those servers. As
server applications become available, ADNR dynamically adds resource records
representing those instances to the name servers managed by ADNR. As those
server applications or their systems become unavailable, ADNR dynamically
deletes resource records representing those instances from the name servers it
manages. These types of DNS names can be used to connect to any active instance
of a particular type of server. ADNR also dynamically creates and removes
application-specific host names that represent individual instances of server
applications as they become available and unavailable.

Most IP addresses in the home lists of sysplex hosts can be dynamically added to
the name server as traditional DNS name-to-IP address mappings. As IP addresses
are removed from a home list (for example, by issuing a VARY TCPIP,,OBEYFILE
command), the DNS resource records representing those IP addresses are
dynamically removed from the ADNR-managed name servers. These types of DNS
names can be used to connect to any resource in the sysplex, or on a particular
sysplex host without regard to which servers are available on that system, such as
when using the ping or traceroute commands.

Chapter 24. Automated domain name registration 1279

The IP addresses that are added to DNS by ADNR can be interface addresses,
static VIPAs, or dynamic VIPAs (DVIPAs). A small set of addresses cannot be
managed by ADNR because of z/OS Load Balancing Advisor restrictions. For
more information, see “Step 15: Configure the external load balancers” on page
1241 and the restriction that certain classes of IP addresses must not be coded for
members in the load balancer.

You might want to make some sysplex resources visible to some set of clients and
not visible to other sets of clients. For example, you might want to add DNS
entries to make some sysplex resources visible to intranet clients, but not make the
resources visible to Internet clients. There are several ways to accomplish this.
Some methods can be accomplished with only name server configuration, others
might involve ADNR configuration. For more information, see “Split DNS (views)”
on page 1297.

Step 2: Decide on one or more domain names to be managed
by ADNR

All resource records added to a name server have a domain suffix related to a
name server zone. Typically, an enterprise's domain suffix is something like
mycorp.com. Subdomains can exist under a domain, which have the subdomain
name added before the parent's domain suffix, such as raleigh.mycorp.com and
austin.mycorp.com.

Guideline: Because ADNR should be the only entity updating the zones it
manages, ADNR should manage one or more unique sub-zones. For example, if
your enterprise has a domain name of mycorp.com, ADNR can be configured to
manage resources in a domain called mvsplex.mycorp.com.

The domain suffix of the resource records that ADNR creates is determined by the
domain_suffix keyword of the zone keyword of the dns statement in the ADNR
configuration file.

Step 3: Decide which name server or name servers are to be
managed by ADNR

The name servers that ADNR manages can reside on z/OS or other platforms, as
long as the name server supports RFC 2136, Dynamic Updates in the Domain Name
System (DNS UPDATE). On z/OS, the BIND 9 name server supports this RFC. For
information about accessing RFCs, see Appendix G, “Related protocol
specifications,” on page 1555.

The name servers that ADNR communicates with can be existing name servers, or
name servers you set up exclusively for ADNR. Each name server that ADNR is to
communicate with is identified on the dns_id keyword of the dns statement.

You might also want to configure one or more secondary name servers for the
ADNR-managed zones. Secondary name servers replicate zone data information
from the master name server for those zones. Typically, secondary name servers
are configured to avoid a single point of failure if a name server fails, and to
reduce network traffic by locating secondary name servers in strategic areas of a
network so that name server lookups traverse fewer hops in the network. For more
information, see “Configuring a secondary name server” on page 800.

ADNR does not communicate directly with secondary name servers. Secondary
name servers communicate directly with the master name server by performing

1280 z/OS V1R12.0 Comm Svr: IP Configuration Guide

zone transfers. Ideally, because of the dynamic nature of the data in the zones that
ADNR manages, secondary name servers need to be updated as soon as the
master name server is updated by ADNR. Otherwise, the secondary name server
contains stale information that does not accurately reflect the current availability of
sysplex resources. Some name server implementations can minimize the latency
with which secondary name servers are updated from their masters, if they have
implemented RFC 1996, A Mechanism for Prompt Notification of Zone Changes (DNS
NOTIFY). The z/OS BIND 9 name server supports this standard. For more
information on z/OS BIND 9 name server options, see z/OS Communications Server:
IP Configuration Reference. For information about accessing RFCs, see Appendix G,
“Related protocol specifications,” on page 1555.

Step 4: Configure the selected name servers to be the primary
master name servers for the domain names that ADNR is to
manage

The name servers that ADNR communicates with must be configured as the
primary master name servers of the zones that ADNR will manage. For more
information and further references about configuring the zones that ADNR is to
manage in the name server, see “Initial zone configuration” on page 1294.

Step 5: Delegate the domain names to be managed by ADNR
to the selected name servers from the parent domain's name
server

Typically, the DNS domains that ADNR manages are subdomains of an existing
DNS domain. For resolvers to reliably find resource records in the ADNR-managed
subdomains, the ADNR-managed subdomain must be delegated by its parent
domain. This enables resolvers to find resource records in the ADNR-managed
subdomain if those resolvers are not pointing directly to the ADNR-managed name
server. DNS queries from resolvers can follow the DNS delegation tree downward
from the root domain, if necessary, and find an authoritative name server for the
ADNR-managed subdomain.

Delegating a subdomain from a parent involves updating the parent domain's zone
data file. In the parent's zone data file, an NS record and an associated A or AAAA
glue record is added to represent each authoritative name server for the child
domain. For example, to delegate the ADNR-managed mvsplex.mycorp.com zone
from the mycorp.com zone, the following resource records are added to the zone
data file for the mycorp.com zone:
mvsplex 86400 IN NS mvsnameserver.mvsplex.mycorp.com.

86400 IN NS networknameserver.mvsplex.mycorp.com.
mvsnameserver.mvsplex.mycorp.com. 86400 IN A 10.5.1.1
networknameserver.mvsplex.mycorp.com. 86400 IN AAAA 2001:0DB8:0:0:8:800:200C:417A

The example resource records delegate the mvsplex.mycorp.com zone to two
authoritative name servers, one of which must be the master name server and the
other a secondary name server.

Step 6: Configure the z/OS Load Balancing Advisor function
Configuring and running the z/OS Load Balancing Advisor (LBA) function is a
corequisite to implementing ADNR. The z/OS Load Balancing Advisor application
communicates with ADNR and serves as ADNR's Global Workload Manager
(GWM). The z/OS Load Balancing Agents communicate with the Advisor
application and supply it, and ultimately ADNR, with information about the
availability of the resources that ADNR has registered with the Advisor. Therefore,

Chapter 24. Automated domain name registration 1281

each system in the sysplex that contains resources that you want ADNR to manage
must be running an Agent, and one system in the sysplex must be running an
Advisor.

The Advisor views ADNR as a load balancer, although ADNR does not perform
load balancing. ADNR merely uses the information to update the name servers
based on the resource availability that the Advisor provides. Therefore, to enable
ADNR to connect to the Advisor, the source IP address that ADNR uses to connect
to the Advisor must be configured in the Advisor's lb_id_list statement, if AT-TLS
is not used. For information about the lb_id_list statement, see z/OS
Communications Server: IP Configuration Reference.

For complete information about configuring the Advisor and Agents, see “Steps for
configuring the z/OS Load Balancing Advisor” on page 1222. While following
those steps, you should skip step 10 to start the TCP/IP stacks that the Advisor
and Agents will use until completing the TCP/IP profile customization for those
stacks, described in “Step 11: Customize the TCP/IP profiles of the TCP/IP stacks
on which ADNR and the LBA applications are to run (optional)” on page 1289.
You should also skip steps 13 and 14 in those steps, starting the Agents and
Advisor, until you reach “Step 13: Start the z/OS Load Balancing Advisor and
Agent” on page 1290.

Step 7: Define security server profiles for ADNR
Create a USERID profile for ADNR as follows:
ADDUSER ADNR DFLTGRP(OMVSGRP) NOPASSWORD OMVS(UID(nn) -

HOME(’/RDWR_working_directory’) PROGRAM(’/bin/sh’))

ADNR must have read and write access to the directory specified on the HOME
keyword. This directory becomes ADNR's working directory. ADNR creates and
deletes temporary files in this directory during its operation. The UID value, nn,
can be zero or nonzero.

ADNR is a multi-threaded application. If you define an unusually large number of
name servers or zones to ADNR, you should check to determine whether the
maximum number of threads allowed per process, represented by the
THREADSMAX value in BPXPRMxx, is going to be exceeded. The number of
threads required for ADNR is determined in the following way: (number of dns
statements) + (number of zone keywords within all dns statements) + 3. You can
customize the maximum number of threads allowed for ADNR by specifying the
THREADSMAX keyword on the ADDUSER command.

The program specified on the user ID assigned to run ADNR must be /bin/sh. For
more information about specifying a user program and the ADDUSER command,
see z/OS Security Server RACF Command Language Reference.

Add ADNR to the STARTED class profile:
RDEFINE STARTED ADNR.* STDATA(USER(ADNR))

Grant explicit authority to all users that can start ADNR, to prevent unauthorized
users from starting it. If you do not grant explicit authority, any user able to issue
the START command can start ADNR.

Steps for granting authority to start ADNR
Perform the following steps to grant authority to start ADNR.

1282 z/OS V1R12.0 Comm Svr: IP Configuration Guide

1. Ensure that the OPERCMDS class is active and RACLISTed, and that RACLIST
processing is enabled:
SETROPTS CLASSACT(OPERCMDS)
SETROPTS RACLIST (OPERCMDS)

2. Define the following OPERCMDS class profile using a security product like
RACF:
RDEFINE OPERCMDS (MVS.SERVMGR.ADNR) UACC(NONE)

3. Grant ADNR access to the OPERCMDS class:

PERMIT MVS.SERVMGR.ADNR CLASS(OPERCMDS) ACCESS(CONTROL) -
ID(userid)

4. Refresh the OPERCMDS class:

SETROPTS RACLIST(OPERCMDS) REFRESH

5. See the EZARACF sample in SEZAINST for specific instructions.

All commands that you can issue against ADNR are MODIFY commands, with
the exception of the STOP command used to stop ADNR. Therefore, you might
also want to limit which users are able to issue MODIFY and STOP
commands.

Step 8: Configure ADNR to automatically restart in case of
application or system failure (optional)

Automatically restarting ADNR minimizes the period of time that name servers do
not accurately reflect the status of sysplex resources. This can be accomplished
using automation software or by defining an automatic restart manager (ARM)
policy. For more information about defining ARM policies, see z/OS MVS Setting
Up a Sysplex.

ADNR registers with ARM using the following values:
ELEMTYPE=SYSTCPIP
ELEMNAME=EZBADNRelemsuffix
TERMTYPE=ALLTERM

The elemsuffix value is specified in the arm_element_suffix configuration statement.
ADNR registers the element name EZBADNR concatenated with the elemsuffix
value. If there is no arm_element_suffix statement, the ELEMNAME is EZBADNR.
For example, if the following statement is configured:
arm_element_suffix SYS1

ADNR registers ELEMNAME=EZBADNRSYS1.

When ADNR registers with ARM using these values, then if ADNR fails or the
system fails, ADNR can be restarted on any system in the sysplex.

An ARM policy or other automation software should be in place to quickly restart
the TCP/IP stack that ADNR is running on if the TCP/IP stack fails. ADNR
continues to run after its TCP/IP stack fails, and reconnects to its GWM once the
TCP/IP stack is recovered.

Although this step is optional, performing it provides high availability to your
target applications. In the event that ADNR fails, the name servers it manages are
no longer updated with sysplex resource availability information. As a result, client
connections might fail because the name server might resolve their requests to
application instances that are not available, or be unable to resolve DNS requests to

Chapter 24. Automated domain name registration 1283

any application when active application instances might actually exist. When
ADNR is restarted, it again accurately reflects the availability of sysplex resources
after its convergence period. The convergence period is twice the interval at which
the Advisor normally updates ADNR with new information. The interval is
determined by the update_interval statement in the Advisor's configuration file.

Guidelines:

v Each ADNR instance should have a unique ARM element name within a
sysplex.

v Establish an ARM policy with TCP/IP at a lower level than ADNR, so that
TCP/IP is restarted before ADNR is restarted. For more information, see z/OS
MVS Setting Up a Sysplex.

v To enable ADNR to continue operating on another TCP/IP stack in a Common
INET (CINET) environment in the case of TCP/IP stack failure, or to restart on
another system in case of system failure, configure ADNR with a unique
application-instance DVIPA. The unique application-instance DVIPA is coded on
the host_connection_addr keyword of the gwm statement. For more information
about unique application-instance DVIPAs, see “Configuring the unique
application-instance scenario” on page 364.

Rule: AUTOLOG can be used to start ADNR when the TCP/IP stack is started, but
it cannot be used for ADNR recovery. Using AUTOLOG for recovery requires port
reservation, but ADNR does not listen on a port. Therefore, ADNR can appear in
the TCP/IP AUTOLOG statement, but it cannot appear on the PORT statement.
ADNR uses ephemeral ports when connecting to its GWM.

Requirement: ADNR does not run using a system key. Therefore, if you are using
ARM registration, the started task ID needs to be permitted with UPDATE
authority to the associated IXCARM.SYSTCPIP.EZBADNR* profile in the FACILITY
class within the SAF product on your system. To enable ADNR to register to ARM,
use the following RACF commands to define the profile and grant update access to
the user ID that is assigned to start ADNR:
RDEFINE FACILITY IXCARM.SYSTCPIP.EZBADNR* UACC(NONE)
PERMIT IXCARM.SYSTCPIP.EZBADNR* CLASS(FACILITY) ID(ADNR) ACCESS(UPDATE)
SETROPTS REFRESH RACLIST(FACILITY)

Restriction: If ADNR is using IPv6 for the GWM connection, or if ADNR is using
IPv6 to connect to a name server, movement of ADNR is limited to those TCP/IP
stacks that are enabled and configured for IPv6. For considerations for configuring
z/OS for IPv6, see z/OS Communications Server: IPv6 Network and Application Design
Guide.

Step 9: Configure and start syslogd (optional, but required to
have ADNR write log messages and trace data to syslogd)

ADNR writes most log messages and trace data to the syslog daemon (syslogd). A
limited number of messages are written to the MVS console, but these are
unaffected by syslogd configuration. For ADNR to be able to write log messages
and trace data to syslogd, syslogd must be properly configured and started before
ADNR is started.

Because you might be running ADNR on the same system as the Advisor, for
better readability, you might want to configure syslogd to place Advisor and
ADNR log output in separate files. For further information, see “Configuring the
syslog daemon” on page 185.

1284 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Step 10: Configure one ADNR application per sysplex
ADNR reads configuration data from one file, which can exist as a z/OS UNIX
file, a PDS or PDSE member, or a sequential data set. If you plan to enable ADNR
to move within the sysplex in the case of failure, the ADNR configuration file or
data set should be on shared DASD, to make it accessible to all systems in the
sysplex if necessary. The ADNR configuration file is specified on the CONFIG DD
statement in the ADNR start procedure. A sample start procedure is provided in
EZBADNRS in SEZAINST.

The ADNR configuration file serves five basic purposes:
v Identifies the name servers to update and the zones to be updated in those name

servers
v Identifies the GWM to connect to and IP address to bind to for communications

with the GWM
v Identifies the sysplex resources to be managed by ADNR
v Uniquely identifies the ADNR instance
v Customizes optional statements

A sample ADNR configuration file is provided in EZBADNRC in SEZAINST.

Tip: Consistent with the Advisor and Agent configuration terminology, any
statement or keyword containing the word connection refers to a local socket, and
any statement containing the word id refers to a remote address and possibly a
port.

The ADNR configuration file contains statements or keywords that reference other
statements or keywords. All such references are made using labels.

Identifying the name servers to update and the zones to be
updated in those name servers
Use the dns statement to identify the location of a name server to be managed by
ADNR. This statement has a dns_id keyword that contains the IP address of a
name server and optionally a port. You can code multiple dns statements.

Rule: In general, for data integrity reasons, multiple dns statements should not
refer to the same name server. However, if you are configuring ADNR to work
with a split DNS configuration, this is acceptable. For more information, see “Split
DNS (views)” on page 1297.

The dns statement also contains one or more zone keywords that identify a zone in
the name server to be updated. The domain suffix specified on the domain_suffix
parameter must represent a zone previously configured in the name server that is
being updated. For more information, see “Initial zone configuration” on page
1294.

The zone keyword contains three optional parameters, update_key, transfer_key,
and ttl.
v The update_key parameter and the transfer_key parameter enable the use of

digital signatures on requests sent from ADNR to the name server. The digital
signatures provide a way for the name server to authenticate ADNR as a client
that is authorized to update the name server and to receive zone transfer
information. These digital signatures are called transaction signatures (TSIG).
Use of TSIGs requires coordination between ADNR configuration and name

Chapter 24. Automated domain name registration 1285

server configuration. For more information about TSIG security, see
“Authorizing dynamic updates” on page 1294 and “Authorizing zone transfers”
on page 1296.

v The ttl parameter determines how long resolvers and non-authoritative name
servers keep ADNR-managed resource records cached. For more information, see
“Near real-time availability information of sysplex resources” on page 1292.

Identifying the GWM to connect to and IP address to bind to for
communications with the GWM
Specify the location of the GWM on the gwm_id keyword of the gwm statement.
This keyword contains an IP address and optionally a port that the GWM uses to
listen for connections from load balancers. From the GWM's point of view, ADNR
is considered a load balancer.

Specify the IP address that ADNR will bind to for communications with the GWM
on the host_connection_addr keyword of the gwm statement. If you are using
AT-TLS, the host_connection_addr keyword is optional.

Rules:

v The IP address specified on the gwm_id keyword of the gwm statement must
match the address specified on the lb_connection_v4 statement or the
lb_connection_v6 statement in the Advisor configuration file.

v The port specified on the gwm_id keyword of the gwm statement must match
the port specified on the Advisor's lb_connection_v4 or lb_connection_v6
statement, depending upon whether you specify an IPv4 or IPv6 address,
respectively, on the gwm_id keyword.

v If an IPv4 address is specified on the gwm_id keyword of the gwm statement,
an IPv4 address must be specified on the host_connection_addr keyword of the
gwm statement. Similarly, if an IPv6 address is specified on the gwm_id
keyword of the gwm statement, an IPv6 address must be specified on the
host_connection_addr keyword of the gwm statement.

Guideline: For high availability, use a unique application-instance DVIPA for the
address on the host_connection_addr keyword. This enables ADNR to be moved to
another TCP/IP stack or another system in the event of TCP/IP stack or system
failure.

Identifying the sysplex resources to be managed by ADNR
Specify which sysplex resources should be managed by ADNR using the
host_group and server_group statements.

Host groups: The host_group statement identifies the set of IP addresses to
update in a name server that represents a group of hosts. ADNR updates the name
server with the intersection between the IP addresses configured to ADNR in the
host_group statement and the IP addresses that exist in the home lists of the hosts
in the sysplex. The DNS names that are dynamically added to the name server
take the form host_group_name.domain_suffix, where host_group_name is the ADNR
administrator-defined name of the group of hosts being registered to the GWM,
and domain_suffix is the domain suffix name specified in a zone parameter on a
dns statement. To construct the DNS name, the value of the host_group_name
keyword of the host_group statement is used, followed by the value of the
domain_suffix keyword of the zone referenced in the host_group statement. The
intervening dot is supplied by ADNR; do not explicitly code the dot.

1286 z/OS V1R12.0 Comm Svr: IP Configuration Guide

ADNR can also update name servers with DNS names representing individual
host instances within the sysplex, using the member keyword. ADNR updates
name servers with the intersection between the IP addresses configured for the
member and the set of IP addresses that exist in the home list of a particular host
in the sysplex. The DNS names that are dynamically added to the name server
take the form host_name.domain_suffix, where host_name is the ADNR
administrator-defined name of the member being registered to the GWM, and
domain_suffix is the domain suffix name specified in a zone parameter on a dns
statement. To construct the DNS name, the value of the host_name keyword of the
host_group statement is used, followed by the value of the domain_suffix keyword
of the zone referenced in the host_group statement. The intervening dot is supplied
by ADNR; do not explicitly code the dot. If the host_group statement contains a
member keyword containing an optional host_name parameter, the name server is
updated with these types of DNS names.

A host_group statement can have multiple member keywords within it. One of the
coded member keywords does not have to have a host_name parameter. The
member without a host_name parameter is sometimes referred to as the unnamed
member, while members with a host_name parameter are sometimes referred to as
named members. The IP addresses associated with the unnamed member are ones
that can potentially be dynamically added to the name server with the DNS name
of the form host_group_name.domain_suffix. Configuring an unnamed member is not
required. However, a virtual unnamed member is created for you if you do not
configure one.

Result: The IP addresses associated with the unnamed member are the union of all
IP addresses explicitly configured in the unnamed member (if configured), and all
IP addresses configured to all named members in that host group. In contrast, only
the IP addresses explicitly configured in a named member are associated with the
named member.

Typically, you configure one named member per system in the sysplex. Each
named member contains IP addresses that cannot move to other systems in the
sysplex.

Guideline: To provide reachability to the sysplex or system in case of interface
failure, configure named members of host_group statements with static VIPAs. In
addition, you can also code an unnamed member, and associate with it IP
addresses that could potentially be moved from one system to another (DVIPAs).

Host names added to a name server using ADNR might be useful for situations
when you want connectivity to the sysplex or a host in the sysplex, but the
presence of a particular server is not required. For this reason, host group names
would be useful for utilities such as ping or traceroute.

Server groups: The server_group statement identifies the set of IP addresses to
update in a name server that represents a cluster of equivalent servers in the
sysplex. ADNR updates the name server with the intersection between the IP
addresses configured to ADNR in the server_group statement and the IP addresses
on which each server in the group can be reached in the sysplex. The DNS names
dynamically added to the name server take the form
server_group_name.domain_suffix, where server_group_name is the ADNR
administrator-defined name of the group of servers being registered to the GWM,
and domain_suffix is the domain suffix name specified in a zone parameter on a
dns statement. To construct the DNS name, the value of the server_group_name
keyword of the server_group statement is used, followed by the value of the

Chapter 24. Automated domain name registration 1287

domain_suffix keyword of the zone referenced in the server_group statement. The
intervening dot is supplied by ADNR; do not explicitly code the dot.

ADNR can also update name servers with DNS names representing individual
server instances within the sysplex, using the member keyword. ADNR updates
name servers with the intersection between the IP addresses configured for the
member and the set of IP addresses on which the server can be reached on a
particular host in the sysplex. The DNS names dynamically added to the name
server take the form server_name.server_group_name.domain_suffix, where server_name
is the ADNR administrator-defined name of the member being registered to the
GWM, server_group_name is the ADNR administrator-defined name of the group of
servers being registered to the GWM, and domain_suffix is the domain suffix name
specified in a zone parameter on a dns statement. To construct the DNS name, the
value of the server_name parameter of the server_group statement is used,
followed by the value of the server_name keyword of the server_group statement,
followed by the value of the domain_suffix keyword of the zone referenced in the
host_group statement. The intervening dot is supplied by ADNR; do not explicitly
code the dot. If the server_group statement contains a member keyword containing
an optional server_name parameter, the name server is updated with these types of
DNS names.

A server_group statement can have multiple member keywords within it. One of
the coded member keywords does not have to have a server_name parameter. The
member without a server_name parameter is sometimes referred to as the unnamed
member, while members with a server_name parameter are sometimes referred to
as named members. The IP addresses associated with the unnamed member are ones
that can be dynamically added to the name server with the DNS name of the form
server_group_name.domain_suffix. Configuring an unnamed member is not required.
However, a virtual unnamed member is created for you if one is not configured.

Result: The IP addresses associated with the unnamed member are the union of all
IP addresses explicitly configured in the unnamed member (if configured), and all
IP addresses configured to all named members in that server group. In contrast,
only the IP addresses explicitly configured in a named member are associated with
the named member.

Typically, if affinity to a particular server instance is important, you configure one
named member per server instance in the sysplex. If affinity to a particular server
instance is not important, configuring only an unnamed member suffices.

Guideline: For high availability to the target applications to prevent reachability
problems in the event of interface failure, IP addresses in server_group statements
should either be static or dynamic VIPAs. If the target application is enabled to
move from one TCP/IP stack to another, DVIPAs are appropriate for the server
group. Otherwise, static VIPAs are appropriate.

Uniquely identifying this ADNR instance
ADNR appears as a load balancer to the GWM that it connects to. Each load
balancer must uniquely identify itself to the GWM. Therefore, each ADNR instance
must be uniquely identified, to distinguish it from other ADNR instances, as well
as external load balancers that connect to a GWM using SASP. Use the uuid
(universally unique ID) statement of the ADNR configuration file to uniquely
identify an ADNR instance.

1288 z/OS V1R12.0 Comm Svr: IP Configuration Guide

According to the SASP protocol, each load balancer should be universally unique
from all other load balancers. In practical terms, only load balancers that connect
to the same GWM must be unique.

Guideline: To prevent possible future uuid conflicts among load balancer and
ADNR, the uuid configured for each ADNR instance should be universally unique.

Customizing optional statements
Customize the optional statements in the ADNR configuration file.

The optional debug_level statement determines how much log data is captured in
the ADNR's log file.

Restriction: In most cases, you should not customize the debug_level statement,
unless directed to do so by an IBM Service representative. Adding additional types
of trace data can cause the amount of data captured to become voluminous.
Reducing the amount of trace data from the default value might make diagnosing
a problem more difficult.

Technically, the host_group and server_group statements are optional. They can be
omitted to flush a name server of all ADNR-managed resource records. However,
if you omit these statements, ADNR will not manage name servers for the sysplex
until the ADNR configuration file is updated with host_group and server_group
statements and the MODIFY REFRESH command is issued. When no host_group
or server_group statements are configured, the ipaddrlist statement is also
optional. For more information, see “Flushing a zone” on page 1300.

The key statement defines the key file used in creating digital signatures, which is
used when specifying transaction signatures (TSIGs) for zone updates and zone
transfers. For more information about keys, see “Authorizing dynamic updates” on
page 1294 and “Authorizing zone transfers” on page 1296.

Guideline: Key files must have access permissions that allow ADNR to read the
file, either as the file's owner or as a member of the associated group.

Step 11: Customize the TCP/IP profiles of the TCP/IP stacks
on which ADNR and the LBA applications are to run (optional)

The TCP/IP profiles can optionally be customized to better accommodate ADNR,
the Advisor, and Agents. For information about Advisor and Agent TCP/IP profile
customization, see “Step 9: Customize the TCP/IP profiles of the TCP/IP stacks
that the Advisor and Agents will run on (optional)” on page 1235. You might have
already performed the steps for customizing the Advisor and Agent TCP/IP
profiles in “Step 6: Configure the z/OS Load Balancing Advisor function” on page
1281.

If you use dynamic VIPAs for ADNR, you need to configure the appropriate
TCP/IP profiles in the sysplex for the DVIPA definition and usage. The preferred
definitions include VIPARANGE with MOVEABLE NONDISRUPTIVE. For more
specific information, see “Using dynamic VIPAs” on page 359.

If you are using AT-TLS, you need to perform several steps to set up the z/OS
Policy Agent, enable ADNR's TCP/IP stack for AT-TLS, and so on. For more
information, see “Step 9: Customize the TCP/IP profiles of the TCP/IP stacks that
the Advisor and Agents will run on (optional)” on page 1235. For ADNR, you

Chapter 24. Automated domain name registration 1289

need to customize the AT-TLS policies that are identified with the
CommonTTLSConfig and TTLSConfig statements.

Tip: Because ADNR and the Agent are both client applications to the Advisor, you
can define AT-TLS policy rules similar to the LBAdvisorAgentRule and the
LBAgentRule for ADNR.

Step 12: Start the TCP/IP stacks on which ADNR and the LBA
applications are to run

You can start ADNR before or after you start the TCP/IP stack it uses. If the
TCP/IP stack that ADNR uses terminates or is not yet started, ADNR remains
active and establishes communication with the TCP/IP stack when it becomes
active. For additional information about the Advisor and Agents, see “Step 10:
Start the TCP/IP stacks that the Advisor and the Agents will use” on page 1240.

Step 13: Start the z/OS Load Balancing Advisor and Agent
You can start the z/OS Load Balancing Advisor and Agents before or after you
start ADNR. If you start ADNR before you start the Advisor, an eventual action
message, EZD1272E, is displayed until the Advisor is active and a connection is
successful. When a successful connection is established, ADNR issues message
EZD1270I, and the Advisor issues message EZD1263I indicating that a load
balancer connected. At the same time, the eventual action message is converted to
a non-action message (DOMed). If Agents were not active at the time that ADNR
and the Advisor established a connection, Agents report on any ADNR-registered
resources that the Agent owns when the Agent becomes active. ADNR updates its
name servers with that information at that time.

Step 14: Start the target applications that are to be managed
by ADNR

ADNR can manage TCP and UDP server applications. No modifications are
necessary to these applications, their configurations, or start procedures.

Step 15: Start the ADNR application
As ADNR connects to the Advisor, an MVS console message appears on the MVS
console of the system on which ADNR is running. Simultaneously, a message
appears on the Advisor's MVS console, indicating that a load balancer connected. If
ADNR fails to connect to the Advisor, an eventual action message is displayed on
ADNR's MVS console until the connection is successful. ADNR must be started
from a job control procedure residing in a procedure library. It cannot be started
under BPXBATCH. The IBM-supplied program properties table has entries to make
ADNR run non-swappable. You should not override this entry to make ADNR run
swappable.

Step 16: Verify that the ADNR system is functioning correctly
(optional)

View the MVS console of the ADNR system after you have started it to verify that
the application started correctly and is still running. If there are any failure
messages, see the appropriate message description for the proper corrective action.
View the syslogd file of the ADNR system to see whether any error or warning
messages were issued.

Use the following commands to verify that ADNR is functioning correctly:

1290 z/OS V1R12.0 Comm Svr: IP Configuration Guide

v If connectivity cannot be established, ADNR issues the eventual action message
EZD1272E, ADNR CONNECTION ATTEMPT TO GWM gwmipaddress FAILED. If this
message is issued and the GWM is active, verify that routing exists between the
IP addresses used by the GWM and ADNR.

v Verify that ADNR is started and connected to the expected Advisor by issuing
ADNR's MODIFY procname,DISPLAY,GWM,DETAIL command. Verify that the
GWM IP address and port is the expected IP address and port of the Advisor to
which you intended to connect.

v From the Advisor, issue the MODIFY procname,DISPLAY,LB command to list the
LB indexes known to the Advisor. Identify the LB index representing ADNR,
and then issue the Advisor MODIFY procname,LB,INDEX=lb-index command.
Verify that each member you have registered that you expect to be available in
the sysplex displays as available in the AVAIL field. If there is a discrepancy in
the availability status, check the FLAGS field for possible reasons why a member
is not available. For more information about the flags in the FLAGS field for the
Advisor, see z/OS Communications Server: IP System Administrator's Commands.

v Verify that server and host groups have been properly registered to the GWM by
issuing ADNR's MODIFY procname,DISPLAY,GWM,GROUPS,DETAIL command.
Verify that each member you have registered that you expect to be available in
the sysplex displays as available in the AVAIL field. If there is a discrepancy in
the availability status, check the FLAGS field for possible reasons why a member
is not available. For more information about the flags in the FLAGS field for
ADNR, see z/OS Communications Server: IP System Administrator's Commands.

v Verify that Agents are aware of members that they own by issuing the MODIFY
procname,DISPLAY,MEMBERS Agent command. Any ADNR-registered IP
addresses owned by the system where the Agent is running should appear in
the display.

v Verify that ADNR is able to communicate properly with the name servers it
manages by issuing ADNR's MODIFY
procname,DISPLAY,DNS,ZONES,SUMMARY command. Verify that the ZONE
STATUS field is or changes to SYNCHRONIZED after the convergence period
expires. For the definition of the convergence period, see “Step 8: Configure
ADNR to automatically restart in case of application or system failure
(optional)” on page 1283. If any zone status begins with the value
NOT_RESPONSIVE, there is either a connectivity problem between ADNR and
the name server, or there is a configuration mismatch between ADNR and the
name server. For more information about diagnosing unresponsive zones, see
z/OS Communications Server: IP Diagnosis Guide. If ADNR is unable to properly
communicate with a name server, ADNR issues eventual action message
EZD1278E, which remains until the problem is resolved.

v Verify that name servers reflect the availability status of the sysplex resources
that you have configured with ADNR. Issue ADNR's MODIFY
procname,DISPLAY,ZONES,ZONEID=zone_label,DETAIL command for each zone
configured to ADNR, or issue the MODIFY procname,DISPLAY,ZONES,DETAIL
to view all zones. Verify that the DNS RR STATUS field for each resource record
display is PRESENT for each resource that is available in the sysplex.

v Use the z/OS UNIX dig command to perform a zone transfer of the
ADNR-managed zones, and verify that the zone contents match the expected
content, based on the members configured to ADNR and the availability status
of those members in the sysplex. The dig command to use has the following
form:
dig @name_server_address domain_name axfr

Tip: If zone transfers were restricted by name server configuration to clients
from specific IP addresses or from clients that have digitally signed their

Chapter 24. Automated domain name registration 1291

requests (TSIG), you might have to issue the dig command with the -b option or
the -k option to, respectively, force the request to originate from a specific IP
address or be digitally signed with the proper signature. For more information
about the dig command, see z/OS Communications Server: IP System
Administrator's Commands.

v Verify that ADNR is functioning correctly when using AT-TLS:
– Use the pasearch command from the z/OS UNIX shell to query information

from the Policy Agent. For more information about displaying policy based
networking information, see z/OS Communications Server: IP System
Administrator's Commands.

– Use the Netstat TTLS/-x command to display z/OS Load Balancing Advisor
and ADNR AT-TLS policies. For more information about the Netstat TTLS/-x
report, see z/OS Communications Server: IP System Administrator's Commands.

z/OS Load Balancing Advisor configuration considerations
The z/OS Load Balancing Advisor solution consists of a z/OS Load Balancing
Advisor application, and one or more z/OS Load Balancing Agents, per sysplex.
For more information about the z/OS Load Balancing Advisor solution, see
Chapter 23, “z/OS Load Balancing Advisor,” on page 1219.

Connectivity considerations
ADNR connects to the Advisor. The Advisor can use an access control list (ACL) to
determine which load balancers are permitted to connect to it. From the Advisor's
perspective, ADNR is considered to be a load balancer.

Rules:

v If you are not using AT-TLS, the Advisor's lb_id_list statement must include the
IP address coded on the host_connection_addr keyword of the ADNR gwm
statement. If you are using AT-TLS for all ADNR-Advisor connections, the
lb_id_list statement and host_connection_addr keyword are ignored. If you are
defining external load balancers that are not using TLS/SSL, the lb_id_list
statement is required.

v The IP address and port coded on the Advisor's lb_connection_v4 or
lb_connection_v6 statement must match the IP address and port coded on the
gwm_id keyword of the ADNR gwm statement, depending on the address
family used.

Guideline: For availability reasons, the IP address coded on the gwm_id keyword
of the ADNR gwm statement should be a unique application-instance DVIPA.

Near real-time availability information of sysplex resources
To take advantage of the near real-time availability information that ADNR can
provide regarding sysplex resources, clients must query the ADNR-managed name
servers relatively frequently rather than use cached information from a previous
name server query. The length of time that name server information is cached is
typically controlled by the Time To Live (TTL) value received from the name
server. A TTL is associated with each resource record in a name server, and the
TTL information is part of the information that the resolver receives when the
name server successfully responds to a query. ADNR provides a mechanism to
define the TTL for name server resources it manages.

1292 z/OS V1R12.0 Comm Svr: IP Configuration Guide

ADNR permits the TTL to be defined to a specific value per zone, or it can be set
to a value determined by the GWM, which is the default. When the TTL value is
the default value determined by the GWM, it takes on the update_interval value in
the Advisor's configuration file.

Guideline: Allowing the GWM to set the TTL for an ADNR zone by using the
default TTL value enables clients to obtain the most accurate, near real-time
sysplex resource availability information, without wasting network resources with
unnecessary DNS queries.

Because ADNR can be configured to use a GWM-defined interval to set the TTL
value, the GWM can dynamically change this interval. The z/OS Load Balancing
Advisor does not support dynamically changing this interval, but a future Advisor
implementation or other future GWM implementations might. If this occurs,
ADNR has the capability to find out about the new GWM interval only when the
connection to the GWM is re-established.

z/OS Load Balancing Advisor and Agent operational considerations
Several operational characteristics of the z/OS Load Balancing Advisor and Agent
can affect ADNR.

Advisor operational considerations
For ADNR to accurately maintain the resource records that represent available
sysplex resources in its managed name servers, the Advisor and all Agents in the
sysplex need to be active. If the Advisor stops, ADNR can no longer receive
information about the current availability of sysplex resources, and consequently,
the resource records in the name servers that ADNR manages eventually become
stale. That is, resource records are left in the name server representing sysplex
resources that are no longer available, or resource records are not added to the
name server to represent sysplex resources that have become available. Because of
the ramifications of the Advisor becoming unavailable, you should perform the
necessary configuration for optimal availability of the Advisor. For more
information, see “Step 5: Configure the Advisor and Agents to automatically restart
in case of application or system failure (optional)” on page 1225.

Agent operational considerations
If an Agent in the sysplex stops, all resource records in the ADNR-managed name
servers that represent sysplex resources managed by that Agent are removed from
the name server. This makes it appear as though the resources are unavailable
when they actually might be available. For this reason, it is important to perform
the necessary configuration for optimal availability of each Agent. For more
information, see “Step 5: Configure the Advisor and Agents to automatically restart
in case of application or system failure (optional)” on page 1225.

The Agent is also capable of making resources appear unavailable to ADNR by
quiescing them with the Agent's MODIFY QUIESCE command. All resource
records in a name server associated with a quiesced member are removed and are
not added back until the member is enabled with the Agent's MODIFY ENABLE
command, or if the Agent is stopped and restarted.

Chapter 24. Automated domain name registration 1293

Name server configuration considerations
The name servers that ADNR manages can reside on z/OS or other platforms, as
long as the name server supports RFC 2136, Dynamic Updates in the Domain Name
System (DNS UPDATE). On z/OS, the BIND 9 name server supports this RFC. For
information about accessing RFCs, see Appendix G, “Related protocol
specifications,” on page 1555.

Many of the subjects discussed in this topic are applicable to other name server
implementations. For the z/OS BIND 9 name server, specific instructions are
provided for how to accomplish configuration objectives. For other name server
implementations, consult the appropriate product documentation.

Initial zone configuration
ADNR cannot create a zone in a name server. It can only add and delete resource
records from an existing zone. The zones that ADNR manages must initially be
configured to the appropriate name servers. This involves defining the zone and a
small set of resource records in the zone. This includes the SOA record, the
appropriate NS records, and the A or AAAA glue records.

For the z/OS BIND 9 name server, see “Step 1: Create the configuration file for
BIND 9–DNS” on page 784 and “Step 4: Create the domain data files (master name
server only)” on page 787.

Rule: Do not configure any valuable A or AAAA resource records in the zone data
files that ADNR will manage. ADNR deletes any type A or AAAA resource records
that were not added by ADNR, with the exception of glue resource records (see
“Updates to an ADNR-managed zone” on page 1295). These resource records are
deleted when ADNR starts, or during MODIFY REFRESH processing.

Restriction: ADNR does not support DNSSEC signed zones.

Authorizing dynamic updates
Name servers can be configured to allow dynamic updates from only specific
entities. If a name server that ADNR updates is configured to restrict which
entities can update the name server, ADNR must be specifically permitted to
update that name server. Name servers typically permit dynamic updates from a
predetermined set of source IP addresses, sometimes referred to as an access
control list (ACL), or they might require authentication with digital signatures,
sometimes referred to as transaction signatures (TSIG). Authentication using digital
signatures is much more secure than authenticating by source IP address, because
the latter is subject to address spoofing. Furthermore, the source IP address that
ADNR uses might not be entirely predictable, unless deliberate steps are taken in
the TCP/IP profile to make it predictable through mechanisms like job-specific
source IP address specification or other forms of SOURCEVIPA configuration.
Other possible options for lessening the impact of the unpredictability of the
source IP address that ADNR uses include using a subnet in the name server's
ACL. However, this allows updates from any entity in that subnet, which
compromises security.

Guideline: Digital signatures (TSIG authentication) provide more robust
authentication than source IP address permissions (ACL).

1294 z/OS V1R12.0 Comm Svr: IP Configuration Guide

For the z/OS BIND 9 name server, dynamic updates are allowed by ACL using the
allow-update statement, or by digital signatures using the update-policy or the
allow-update statement.

When dynamic updates are permitted using digital signatures (TSIG), the name
server and ADNR must be configured with the same shared cryptographic key.
You can generate the key using the dnssec-keygen utility. Then you define the key
to the name server and reference the key from name server zone definitions that
want to use it.

For z/OS BIND 9, for information about how to create a TSIG key and define it to
the name server, see “TSIG” on page 821.

You must also define the TSIG key to ADNR using the key configuration
statement, and then reference the TSIG key from the update_key keyword of the
zone keyword of the dns statement. The key file should be protected from
unauthorized access. ADNR must have read access to the file. Both the .key and
the .private key files generated by the dnssec-keygen utility must be present for
ADNR to properly communicate with the name server, even though only the .key
key file name is actually specified on the update_key keyword.

Updates to an ADNR-managed zone
Typically, zones managed by ADNR should not be updated by any entity other
than ADNR. This includes manual editing of the zone data file, or dynamic
updates from any other source. Many name server implementations strongly
advise against manually editing the zone data file of a dynamic zone, such as the
zones managed by ADNR. Editing these files has the potential to corrupt the file,
or the updates can be lost. However, in general from a name server perspective,
dynamic updates using a tool such as nsupdate are allowed for dynamic zones. In
the case of ADNR-managed zones, certain types of dynamic updates can be made
by entities other than ADNR. Table 61 shows which types of resource records can
be dynamically added and deleted by entities other than ADNR.

Table 61. Dynamic updates of ADNR-managed zones by other entities

Allowed dynamic updates Disallowed dynamic updates

All resource record types other than A and
AAAA

A and AAAA resource records that are not
considered glue records

A and AAAA resource record types that are
considered glue records

Tip: Glue records are A or AAAA records that store the IP addresses of authoritative name
servers.

Any disallowed resource records that appear in dynamic update requests to
ADNR-managed zones are accepted by the name server, but are subject to being
deleted by ADNR at a later time.

Rule: ADNR uses a special domain name for determining whether a name server
is active and configured correctly to allow dynamic updates. At times, ADNR
dynamically performs an update-add and an update-delete of the following
resource record:
ibmsaspddnsdnsprobe IN A 0.0.0.0

Chapter 24. Automated domain name registration 1295

In the unlikely event that this same resource record is added to an
ADNR-managed zone by an entity other than ADNR, it is subject to being deleted
by ADNR in the future.

Update forwarding
Update forwarding is a DNS concept in some name server implementations that
enables dynamic updates to be sent to a name server that is not the primary
master name server for the zone being updated. The name server that receives the
dynamic update request forwards the update to the primary master name server.

Rule: To avoid possible zone data-integrity issues, ADNR must be configured to
update only the primary master name server for a zone. That is, the IP address of
a name server on the dns_id keyword of the dns statement must be an address of
the primary master name server for the zone identified on the domain_suffix
keyword, and must not be the IP address of a secondary name server for that
zone.

Authorizing zone transfers
Zone transfers are operations that are typically performed between authoritative
name servers of a particular zone. A zone transfer occurs when all or part of the
contents of a zone is sent from the name server to the requester. ADNR requests
zone transfers from the primary master name server of the zones it manages.
Name servers can be configured to allow zone transfers only from specific entities.
If the name servers that ADNR is to update are configured to restrict which
entities can perform zone transfers, ADNR must be specifically permitted to
perform them. Name servers typically permit zone transfers from a predetermined
set of source IP addresses, sometimes referred to as an access control list (ACL), or
they can require authentication using digital signatures, sometimes referred to as
transaction signatures (TSIG). Authentication using digital signatures is much more
secure than authenticating by source IP address, because the latter is subject to
address spoofing. Furthermore, the source IP address that ADNR uses might not
be entirely predictable, unless deliberate steps are taken in the TCP/IP profile to
make it predictable through mechanisms like job-specific source IP address
specification or other forms of SOURCEVIPA configuration.

Guideline: Digital signatures (TSIG authentication) provide more robust
authentication than source IP address permissions (ACL).

For the z/OS BIND 9 name server, zone transfers are allowed by ACL or by digital
signatures, both by using the allow-transfer statement.

You must define the TSIG key to ADNR using the key configuration statement,
and then reference the key from the transfer_key keyword of the zone keyword of
the dns statement. The key file should be protected from unauthorized access.
ADNR must have read access to the file. Both the .key and the .private key files
generated by the dnssec-keygen utility must be present for ADNR to properly
communicate with the name server, even though only the .key key file name is
actually specified on the transfer_key keyword.

Limiting the duration of an outbound zone transfer
With some name server implementations, you can limit the amount of time that an
outbound zone transfer is allowed to run. Setting this time interval to a value that
is too short can have adverse affects on ADNR's ability to communicate with the
name server. ADNR must request full zone transfers from the name servers it
manages. If the period of time allowed for a zone transfer is shorter than the

1296 z/OS V1R12.0 Comm Svr: IP Configuration Guide

amount of time it normally takes to transfer an ADNR-managed zone, ADNR
cannot successfully manage that zone; adjust the name server configuration to
provide adequate time for a full zone transfer.

For the z/OS BIND 9 name server, the amount of time to allow for an outbound
zone transfer is specified on the max-transfer-time-out option.

Limiting the total number of simultaneous outbound zone
transfers

With some name server implementations, you can limit the total number of
simultaneous zone transfer requests that are served. Setting this number too low
can have adverse affects on ADNR's ability to communicate with the name server.
When setting this limit, take into account the number of secondary name servers
that use this name server as the master name server for their zones, as well as the
number of ADNR-managed zones that are configured under this name server.
During ADNR initialization and after a MODIFY REFRESH command, ADNR
requests simultaneous zone transfer requests for each zone it manages. Consider
the number of zones configured under the same dns statement when you are
setting zone transfer limits in the name server.

For the z/OS BIND 9 name server, the total number of simultaneous outbound
zone transfers allowed is specified on the transfers-out option.

The .digrc file
ADNR uses the z/OS UNIX dig command to perform zone transfers from
managed zones. The z/OS UNIX .digrc file can provide defaults for each user for
the dig command. This file is read and used if it appears in the user's home
directory. Because this file can cause ADNR to function incorrectly, ADNR fails
initialization if this file is found in ADNR's working directory. However, ADNR
does not search for this file after initialization. ADNR's working directory is
specified when ADNR is defined to the security server (RACF).

Rule: Do not put the .digrc file in ADNR's home directory.

Split DNS (views)
Split DNS is a method in some name server implementations that enables zone
data to appear differently depending on which client queries the name server. For
example, Internet clients might be restricted to a subset of resource records in a
zone, while intranet clients might have access to all resource records in a zone.

The z/OS BIND 9 name server implementation supports split DNS through the
view statement. For information about the view statement, see z/OS
Communications Server: IP Configuration Reference.

If you want to configure split DNS for an ADNR-managed zone, there are some
special considerations. When implementing split DNS for a domain, the zone data
is kept in separate files in the name server for each view of the zone. This implies
that the data is disjointed, and in many respects ADNR must treat each view like a
separate zone. When performing dynamic updates to a split DNS zone, the name
server might determine which view to update based upon the source IP address of
the nsupdate client. The z/OS BIND 9 name server uses this criteria to determine
which view to update, and ADNR is the update client in this regard. Therefore,
ADNR must use separate source IP addresses to update each view. This can be
accomplished in the following ways:

Chapter 24. Automated domain name registration 1297

v Configure separate ADNR applications for each view.
By configuring an ADNR application for each view, a unique source IP address
can be associated with each ADNR instance using job-specific source IP
addressing. The source IP address assigned to ADNR needs to be configured
appropriately in the name server. For the z/OS BIND 9 name server, the source
IP address of the ADNR instance that you want to have update a specific view
would appear in that view's match-clients statement.
The easiest way for each ADNR instance to use unique source IP addresses is to
run each instance on separate systems or TCP/IP stacks. If each ADNR instance
must run on the same TCP/IP stack, you can use job-specific source IP
addressing to provide unique source IP addresses. This involves mapping the
ADNR job names to the source IP address to be used using the JOBNAME entry
in the SRCIP statement block of the TCP/IP profile. However, each ADNR
instance spawns multiple address spaces, whose job names are the ADNR start
procedure name with a numerical digit appended (for example, the ADNR job
spawns the ADNR1 and ADNR2 jobs). To use this method, job-specific source IP
addressing has to specify the ADNR start procedure name followed by a
wildcard when specifying the job name. Also, to avoid conflicting job names of
the spawned address spaces among the multiple ADNR instances, you need to
name the start procedures of the ADNR jobs so that the spawned job names do
not conflict. For example, the start procedure names of ADNRP and ADNRT
spawn unique job names among their instances, such as ADNRP1 and ADNRT1;
create unique source IP addresses by coding JOBNAME ANDRP*
source_ip_address1 and JOBNAME ADNRT* source_ip_address2.

v Understand and exploit TCP/IP's source IP address selection algorithm.
By understanding and exploiting TCP/IP's source IP address selection algorithm
you can configure ADNR and locate name servers in the network, so that ADNR
uses appropriate source IP addresses to dynamically update the appropriate
views. For more information, see “Source IP address selection” on page 218.
This technique involves coding separate dns statements in the ADNR
configuration file, specifying different IP addresses for each dns statement (of the
same multi-homed name server) and using the separate dns statements to
update different views. If configured correctly, and depending on the IP address
of the name server, the source IP address of ADNR can be influenced to match
the IP address in the match-clients statement of the appropriate view in the
name server.
The most predictable way to assign the correct source IP address for each
separate view in this scenario is to use the DESTINATION entry in the SRCIP
statement block of the TCP/IP profile. For example, if two dns statements with
different IP addresses are coded in the ADNR configuration file, where each
represents different views in the same name server, two DESTINATION entries
are coded in the SRCIP statement of the TCP/IP profile. One DESTINATION
entry contains the IP address from one of the dns statements as the destination
IP address, and the second DESTINATION entry contains the IP address from
the other dns statement as the destination IP address. The source IP address
contained in each DESTINATION entry matches one of the IP addresses in the
match-clients statement in the name server configuration file of the appropriate
view to be updated.

Zone transfer formats
Some name server implementations have the capability to send multiple resource
records in a DNS message during a zone transfer operation, instead of just one
resource record per DNS message. The process of sending multiple resource

1298 z/OS V1R12.0 Comm Svr: IP Configuration Guide

records per DNS message is described in RFC 2671, Extension Mechanisms for DNS
(EDNS0). For information about accessing RFCs, see Appendix G, “Related protocol
specifications,” on page 1555.

Sending multiple resource records per DNS message is more efficient than sending
just one. ADNR performs zone transfer requests from the name servers it manages.
ADNR supports receiving zone transfers in either format, but is more efficient at
processing the format that contains multiple resource records per DNS message.

The z/OS BIND 9 name server sends multiple resource records per DNS message
by default. However, some name server implementations do not support receiving
zone transfers using this format. For this reason, some name servers might be
configured to use the less efficient format when sending zone data to a secondary
name server. The z/OS BIND 9 name server supports specification of the zone
transfer format on the transfer-format option. This option can be specified on a
server statement, which can be used to set the option only when sending zone
transfer information to ADNR, so that other name servers are unaffected by the
setting.

ADNR configuration considerations
This topic describes ways to change the ADNR configuration file and how to
maintain zone data integrity.

Changing the ADNR configuration file
The ADNR MODIFY procname,REFRESH command provides a way to dynamically
change the ADNR configuration file. Because the command does not support a file
name or dataset specification, changes must be made to the same configuration file
that was used when ADNR was started.

Restriction: Make all changes to the ADNR configuration file dynamically while
ADNR is running. Changing the configuration file without using the MODIFY
REFRESH command can create orphaned resource records in a name server.
Orphaned resource records are resource records that are left in a name server and
that ADNR has lost the ability to manage. The presence of these orphaned resource
records might inaccurately direct client connections to sysplex resources that are
not actually available.

Tip: Before making changes to the ADNR configuration file, save a backup copy of
the original file under a different file name or dataset name.

You can make changes to the ADNR configuration file while ADNR is stopped,
instead of using the MODIFY REFRESH command, if you take precautions to
prevent orphaned resource records or you are sure that clients will no longer have
their resolvers pointing to a name server with orphaned resource records. Unless
you use the MODIFY REFRESH command to make changes, the following types of
changes to the ADNR configuration file create orphaned resource records in name
servers:
v Removing a dns statement
v Removing a zone keyword from a dns statement
v Changing the domain_suffix keyword value on a dns statement
v Changing the IP address or port of a name server on the dns_id keyword of a

dns statement

Chapter 24. Automated domain name registration 1299

Flushing a zone
Flushing a zone refers to deleting all ADNR-managed resource records from an
ADNR-managed zone. Flushing a zone is not a normal occurrence, but might be a
useful administrative tool in certain situations. You can flush all zones, or just
specific zones.

Flush all zones by removing all host_group and server_group statements from the
ADNR configuration file and issuing a MODIFY REFRESH command. You might
flush all zones when resource records are inadvertently orphaned in a name server.
The orphans can be removed by ADNR by restoring a copy of the previous
configuration file, removing all host_group and server_group statements, and then
issuing a MODIFY REFRESH command. When the command has completed, you
can issue another MODIFY REFRESH command using the latest ADNR
configuration file to return to the configuration that you want to use.

You flush individual zones in much the same way as you flush all zones. Instead
of removing all host_group and server_group statements from the ADNR
configuration file, you remove only those statements that reference the zone or
zones that you want to flush.

Maintaining zone data integrity
To ensure the integrity of resource records in the name server zones that ADNR is
managing, several guidelines should be followed.

Guidelines:

v Use the MODIFY REFRESH command to change the ADNR configuration.
v If you have modified the ADNR configuration, issue a MODIFY REFRESH

command before stopping ADNR. Do not stop and restart ADNR before issuing
this command.

v Do not stop ADNR until a MODIFY REFRESH command has completed.
v If message EZD1273I is issued indicating that ADNR was unable to delete a

zone during a MODIFY REFRESH operation, take other steps to delete the
resource records added by ADNR. This might include flushing the zone, after
the underlying problem that prevented ADNR from deleting the zone is
resolved. For more information, see “Flushing a zone.”

v Do not configure multiple zones for the same domain suffix that references the
same multi-homed name server.

v Do not manually edit the name server's zone data file for any zone managed by
ADNR.

v Do not allow any entity other than ADNR to perform dynamic updates to the
zones managed by ADNR.

v Do not employ update forwarding for ADNR-managed zones.

Steps for using the ADNR application in a sysplex subplexing
environment

Before you begin: In a sysplex subplexing environment, there are some additional
considerations for using ADNR. Each subplex containing resources that were
managed by ADNR before the sysplex was split into subplexes requires its own set
of z/OS Load Balancing Advisor and Agent applications, and its own ADNR
application, to continue to enable ADNR to manage DNS names for those subplex
resources. Each subplex ADNR instance will communicate with the Advisor
application in its subplex. Each subplex ADNR instance will update separate DNS

1300 z/OS V1R12.0 Comm Svr: IP Configuration Guide

zones. The ADNR instances for different subplexes cannot update the same zone,
because each zone can be updated by only one ADNR application and ADNR can
communicate with only one Advisor instance. There must be a one-to-one
correspondence between a subplex and a DNS zone.

Perform the following steps to use ADNR in a sysplex subplexing environment.

1. Plan how the new subdomains representing each subplex will fit into your
DNS hierarchy.

2. Configure the name servers that will be updated for the new subplex
domains.

3. Define and configure one Advisor per subplex.

4. Update the Agent configuration files to communicate with the Advisor
running in its subplex.

5. Define one ADNR application per subplex.

6. Assign the host_group and server_group statements from the sysplex ADNR
configuration to their correct subplex domains.

7. Configure the new ADNR instances to update the name server and zone for
its subplex.

8. Configure the new ADNR instances to communicate with the subplex
Advisor.

9. (Optional) Update resolver configuration files.

10. Start the TCP/IP stacks, Advisor, Agent, ADNR, and target applications that
ADNR will manage.

11. Verify that each subplex ADNR is functioning correctly.

These steps are described in detail in the following subtopics.

Step 1: Plan how the new subdomains representing each
subplex will fit into your DNS hierarchy

Decide whether the new subdomain names should exist at the same level as the
existing subdomain representing the sysplex that is being divided into subplexes,
whether the new subdomains should become child domains of the existing sysplex
domain, or whether there will be a mixture of the two.

For example, if the existing subdomain for the sysplex is mvsplex.mycorp.com, the
new subdomains that represent the subplexes can be at the same level in the DNS
hierarchy, such as mvsplex1.mycorp.com and mvsplex2.mycorp.com. Alternatively,
you can create the new subdomains as child domains of the existing sysplex
domain, such as subplex1.mvsplex.mycorp.com and subplex2.mvsplex.mycorp.com.

For the following examples, assume that the sysplex and ADNR are configured as
shown in Table 62.

Table 62. Base sysplex and ADNR configuration

Sysplex A
Domain=mvsplex.mycorp.com

Host1 Host2

Chapter 24. Automated domain name registration 1301

Table 62. Base sysplex and ADNR configuration (continued)

z/OS Load Balancing Agent z/OS Load Balancing Agent

z/OS Load Balancing Advisor for sysplex A

ADNR for sysplex A updating zone
mvsplex.mycorp.com

To convert this sysplex to a subplexing environment, one of the subplexes can use
the existing domain name as the existing sysplex, and the other subplexes become
subdomains of that domain, as shown in Table 63.

Table 63. ADNR application in a sysplex subplexing environment; Example 1

Sysplex A
(No DNS domain)

Host1
Member of subplex EZBT0211
Domain=mvsplex.mycorp.com

Host2
Member of subplex EZBT0212

Domain=subplex0212.mvsplex.mycorp.com

z/OS Load Balancing Agent for subplex
EZBT0211

z/OS Load Balancing Agent for subplex
EZBT0212

z/OS Load Balancing Advisor for subplex
EZBT0211

z/OS Load Balancing Advisor for subplex
EZBT0212

ADNR for subplex EZBT0211 updating zone
mvsplex.mycorp.com

ADNR for subplex EZBT0212 updating zone
subplex0212.mvsplex.mycorp.com

Another possibility is to assign each subplex as a child domain of the original
sysplex domain, as shown in Table 64. In this case, the existing sysplex domain no
longer contains any resource records that represent hosts or server applications, but
instead is merely the parent of the new subplex subdomains.

Table 64. ADNR application in a sysplex subplexing environment; Example 2

Sysplex A
Domain=mvsplex.mycorp.com

(Only delegates the child domains. Contains no sysplex resources.)

Host1
Member of subplex EZBT0211

Domain=subplex0211.mvsplex.mycorp.com

Host2
Member of subplex EZBT0212

Domain=subplex0212.mvsplex.mycorp.com

z/OS Load Balancing Agent for subplex
EZBT0211

z/OS Load Balancing Agent for subplex
EZBT0212

z/OS Load Balancing Advisor for subplex
EZBT0211

z/OS Load Balancing Advisor for subplex
EZBT0212

ADNR for subplex EZBT0211 updating zone
subplex0211.mvsplex.mycorp.com

ADNR for subplex EZBT0212 updating zone
subplex0212.mvsplex.mycorp.com

Another alternative is to create new domain names for each of the subplexes at the
same level of the DNS hierarchy as the existing sysplex domain, and retire the
existing sysplex domain name, as shown in Table 65.

Table 65. ADNR application in a sysplex subplexing environment; Example 3

Sysplex A
(No DNS domain)

1302 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Table 65. ADNR application in a sysplex subplexing environment; Example 3 (continued)

Host1
Member of subplex EZBT0211

Domain=mvsplex0211.mycorp.com

Host2
Member of subplex EZBT0212

Domain=mvsplex0212.mycorp.com

z/OS Load Balancing Agent for subplex
EZBT0211

z/OS Load Balancing Agent for subplex
EZBT0212

z/OS Load Balancing Advisor for subplex
EZBT0211

z/OS Load Balancing Advisor for subplex
EZBT0212

ADNR for subplex EZBT0211 updating zone
mvsplex0211.mycorp.com

ADNR for subplex EZBT0212 updating zone
mvsplex0212.mycorp.com

Step 2: Configure the name servers that will be updated for
the new subplex domains

Configure the name server or name servers with the new zones to represent the
new subdomain names created for the new subplexes.

You can use the same name server that was used for the sysplex zones, or another
name server or name servers. These name servers must meet the existing
requirements for ADNR, as specified in “Step 3: Decide which name server or
name servers are to be managed by ADNR” on page 1280. Configure any security
requirements in the name server for the new zones, such as access control lists or
shared keys. Delegate the new zones as child zones from their parent name
servers.

If you are not planning to use the existing sysplex domain name, remove that zone
from the name server configuration file on the primary and secondary name
servers. Update the parent zone so that it no longer delegates to the zone that you
are removing.

Step 3: Define and configure one Advisor per subplex
To configure one Advisor instance per subplex, see “Steps for configuring
automated domain name registration” on page 1278.

Configuration includes creating the start procedure JCL, performing the required
security product commands (for example, RACF), performing the actions to make
the Advisor highly available in case of application or system failure, customizing
the TCP/IP profiles, customizing the WLM policies for the Advisor, and so on.

Step 4: Update the Agent configuration files to communicate
with the Advisor running in its subplex

Update the security mechanisms that allow the Agent to communicate with its
Advisor.

You might need to update the Agent's host_connection statement to point to the
Advisor running in its subplex, and the Advisor's agent_id_list statement to allow
a connection from this Agent.

If you are using AT-TLS for security, see “Enabling TLS/SSL for ADNR” on page
1278 and “Enabling TLS/SSL for z/OS Load Balancing Advisor (optional)” on page
1236.

Chapter 24. Automated domain name registration 1303

Step 5: Define one ADNR application per subplex
If resources in a subplex were previously managed by ADNR, to define one ADNR
application per subplex, see the following steps (in “Steps for configuring
automated domain name registration” on page 1278):
v “Step 7: Define security server profiles for ADNR” on page 1282
v “Step 8: Configure ADNR to automatically restart in case of application or

system failure (optional)” on page 1283
v “Step 9: Configure and start syslogd (optional, but required to have ADNR write

log messages and trace data to syslogd)” on page 1284
v “Step 10: Configure one ADNR application per sysplex” on page 1285
v “Step 11: Customize the TCP/IP profiles of the TCP/IP stacks on which ADNR

and the LBA applications are to run (optional)” on page 1289

Also, for special considerations when migrating ADNR to a subplexing
environment, see the following:
v “Step 6: Assign the host_group and server_group statements from the sysplex

ADNR configuration to their correct subplex domains”
v “Step 7: Configure the new ADNR instances to update the name server and zone

for its subplex” on page 1305
v “Step 8: Configure the new ADNR instances to communicate with the subplex

Advisor” on page 1305

Guideline: In a Common INET (CINET) environment, use stack affinity to ensure
that each subplex ADNR instance is using a TCP/IP stack that is in the subplex.
For an example of the JCL to use to establish affinity, see adnrproc.sample.

Step 6: Assign the host_group and server_group statements
from the sysplex ADNR configuration to their correct subplex
domains

For each host_group statement in the original ADNR configuration, identify the
subplexes that contain the hosts that are in the group. Create a host_group
statement in each new ADNR configuration file of the subplex that contains such a
host. Configure the zone_label of each host_group statement to point to a zone
statement that represents the zone that will represent the subplex. Configure the
dns_label of the host_group statement to point to a dns statement that represents
the name server that owns the specified zone. Create ipaddrlist statements that the
host_group statements can reference, such that the IP addresses in them belong to
the subplex.

For each server_group statement in the original ADNR configuration, identify the
subplexes that contain the server instances that are in the group. Create a
server_group statement in each new ADNR configuration file of the subplex that
contains such a server instance. Configure the zone_label of each server_group
statement to point to a zone statement that represents the zone that will represent
the subplex. Configure the dns_label of the host_group statement to point to a dns
statement that represents the name server that owns the specified zone. Create
ipaddrlist statements that the server_group statements can reference, such that the
IP addresses in them belong to the subplex.

1304 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Step 7: Configure the new ADNR instances to update the
name server and zone for its subplex

To configure the dns statements of each subplex ADNR instance so that the correct
name server and zone are updated for each subplex, see “Identifying the name
servers to update and the zones to be updated in those name servers” on page
1285.

You specified the name server or name servers to be updated in “Step 2: Configure
the name servers that will be updated for the new subplex domains” on page 1303.
The zones that will be updated for each subplex ADNR were determined in “Step
1: Plan how the new subdomains representing each subplex will fit into your DNS
hierarchy” on page 1301.

Step 8: Configure the new ADNR instances to communicate
with the subplex Advisor

Configure the gwm statement of each new ADNR instance to communicate with
the Advisor that represents that subplex.

Each subplex should have an Advisor that communicates with an ADNR instance,
unless there are no resources in that subplex that are to be managed by ADNR.
Each new ADNR instance should have a UUID on the uuid statement that is
universally unique.

Step 9: Update resolver configuration files (optional)
Users who were using DNS names to connect to resources in the sysplex will be
affected by converting to a sysplex subplexing environment. Some DNS names that
existed before the migration will no longer exist, and users will need to use new
DNS names to connect to the subplex resources.

For example, users that used the name ftp.mvsplex.mycorp.com might now need
to use the domain name of the subplex that they are now required to use, such as
ftp.mvsplex0212.mycorp.com. You can make some of this transition more
transparent to the users by adding the new domain names to the resolver
configuration files that are in use throughout your network. Consider adding the
new domain names to the resolver configuration SEARCH directive.

Step 10: Start the TCP/IP stacks, Advisor, Agent, ADNR, and
target applications that are to be managed by ADNR

See the following steps (in “Steps for configuring automated domain name
registration” on page 1278):
v “Step 12: Start the TCP/IP stacks on which ADNR and the LBA applications are

to run” on page 1290
v “Step 13: Start the z/OS Load Balancing Advisor and Agent” on page 1290
v “Step 14: Start the target applications that are to be managed by ADNR” on

page 1290
v “Step 15: Start the ADNR application” on page 1290

Step 11: Verify that each subplex ADNR is functioning
correctly

To verify that each subplex ADNR is functioning as expected, see “Step 16: Verify
that the ADNR system is functioning correctly (optional)” on page 1290.

Chapter 24. Automated domain name registration 1305

Operating ADNR
When ADNR is operational, you can do the following:
v Change the logging level of ADNR to suit your needs (optional)
v Change the ADNR configuration dynamically
v Interpret ADNR display information

Changing the logging level of ADNR
Optionally, you can change the logging level of ADNR to suit your needs. The
amount of information that is logged by ADNR can be modified dynamically using
the following command:
MODIFY procname,DEBUG,LEVEL=debug_level

However, modifying the logging level should be carefully considered. The IBM
default value of 7 should not be changed unless instructed to do so by an IBM
Service representative. For things to consider before modifying this value, see
“Customizing optional statements” on page 1289.

Changing the ADNR configuration dynamically
You can change the ADNR configuration dynamically using the ADNR MODIFY
procname,REFRESH command. For more information, see “Changing the ADNR
configuration file” on page 1299.

Interpreting ADNR display information
For information about the MODIFY command for ADNR, including sample ADNR
display information and descriptions of the output, see z/OS Communications Server:
IP System Administrator's Commands.

Diagnosing problems
ADNR must communicate with a GWM and at least one name server. Problems
with this communication are obvious because there is an eventual action message
on the console. Problems communicating with a name server are manifested as an
eventual action message concerning the name server and separate messages for
each zone under the name server, indicating that the zone is unresponsive.
Configuration problems with one zone (for example, TSIG key mismatches) are
manifested by an eventual action message regarding the name server and a
message indicating that the particular zone is unresponsive. In all cases, successful
resolution of the underlying problem results in the removal of the eventual action
message. For problems communicating with the GWM and for problems
communicating with a name server, see z/OS Communications Server: IP Diagnosis
Guide.

Regardless of the problem communicating with a name server, ADNR sends health
probes in 60-second intervals to test the reachability of the name server and
determine whether ADNR and the name server have been compatibly configured.
If the problem is transient (for example, a network glitch, or the name server was
stopped and quickly restarted), ADNR detects when the name server is again
reachable and recovers. If the problem is not transient, it is possible that the ADNR
configuration, name server configuration, or both need to be changed. If only the
name server configuration needs to be changed, the health probes detect when
ADNR and the name server have been compatibly configured and ADNR recovers.

1306 z/OS V1R12.0 Comm Svr: IP Configuration Guide

After starting ADNR, after restarting ADNR's GWM, or after issuing a MODIFY
REFRESH command, ADNR might be delayed for a period of time before its name
servers are updated with the latest sysplex availability information. In all of these
cases, after ADNR connects to a GWM, ADNR waits twice the GWM's polling
interval before attempting to update its managed name servers. This period of time
is called the convergence period. For the definition of convergence period, see
“Step 8: Configure ADNR to automatically restart in case of application or system
failure (optional)” on page 1283. The purpose of the convergence period is to avoid
making premature decisions about which sysplex resources are available or
unavailable until all Agents in the sysplex have had sufficient time to receive the
data registered by ADNR and report back to the Advisor, and in turn ADNR, on
the availability status of those resources. Once the convergence period has expired,
ADNR updates its managed name servers with the latest sysplex availability
information. Henceforth, ADNR updates its managed name servers immediately
upon receiving updated status information from the GWM.

Upon starting ADNR or issuing a MODIFY REFRESH command, ADNR
resynchronizes itself with its managed name servers. This process consists of
performing an asynchronous zone transfer from the name servers of each zone
managed by ADNR, and then updating the name servers using this data and the
latest ADNR configuration and sysplex resource availability information.
Depending on the number of sysplex resources configured to ADNR and the
update_interval value configured on the Advisor, the resynchronization and
reconciliation process can take longer than the convergence period when the
convergence period is short and the zones are large. When the zone status reaches
SYNCHRONIZED, this process has completed and the zone should reflect the
latest status information from the sysplex.

ADNR configuration example
This topic includes a specific configuration example of ADNR. This example
assumes that the z/OS Load Balancing Advisor solution is installed.

In Figure 127, two systems, SYSA and SYSB, are in a sysplex. The z/OS Load
Balancing Advisor solution is configured and deployed in the sysplex, with the

Name
Server

SYSA SYSB

10.1.10.55..53

10.1.10.22 10.1.10.1

Agent
TN3270 FTPD TN3270 FTPD

Agent Advisor ADNR

TCP/IP S1
VIPAs

10.1.1.22

TCP/IP S2
VIPAs

10.1.1.1, 10.1.5.1, 10.1.10.11

Figure 127. ADNR configuration example

Chapter 24. Automated domain name registration 1307

Advisor and ADNR running on SYSB and an Agent running on both SYSA and
SYSB. The TN3270E Telnet server and FTPD are active on both systems. ADNR
manages a name server in the network.

Following is an example of an ADNR configuration file. The numbers in the left
margin were added for annotation purposes and are used in the description that
follows the example. This example configuration does not use subplexing or
AT-TLS.
001 debug_level 7 # Error, Warning, Event
002
003 uuid mycorp_sysplex_adnr
004
005 dns network_name_server # Label used by other stmts
006 # and commands
007 {
008 dns_id 10.1.10.55 # Network name server
009
010 zone mvsplex.mycorp.com_zone
011 # Label used by other stmts
012 # and commands
013 {
014 domain_suffix mvsplex.mycorp.com
015 # Zone name in name server
016 } # end of zone
017
018 } # end of dns
019
020 gwm z/os_lba_advisor
021 {
022 gwm_id 10.1.5.1..3860 # LBA lb_connection_v4 address
023 host_connection_addr 10.1.10.11 # Local address
024 } # end of gwm
025
026 host_group production_sysplex
027 # Addrs available to intranet
028 {
029 host_group_name prodplex # Prepended to domain suffix
030 dns network_name_server # Name server to update
031 zone mvsplex.mycorp.com_zone
032 # Determines zone suffix for
033 # this group
034 # (mvsplex.mycorp.com)
035
036 member # sysa.mvsplex.mycorp.com,
037 # and
038 # prodplex.mvsplex.mycorp.com
039 {
040 host_name sysa # Prepended to domain suffix
041 ipaddrlist sysa_vipa_addrs
042 ipaddrlist sysa_non_vipa_addrs
043 }
044
045 member # sysb.mvsplex.mycorp.com,
046 # and
047 # prodplex.mvsplex.mycorp.com
048 {
049 host_name sysb # Prepended to domain suffix
050 ipaddrlist sysb_vipa_addrs
051 ipaddrlist sysb_non_vipa_addrs
052 }
053
054 } # end of host_group
055
056 ipaddrlist sysa_vipa_addrs
057 {

1308 z/OS V1R12.0 Comm Svr: IP Configuration Guide

058 ipaddr 10.1.1.22
059 } # end of ipaddrlist
060
061 ipaddrlist sysa_non_vipa_addrs
062 {
063 ipaddr 10.1.10.22 # OSA on sysa
064 } # end of ipaddrlist
065
066 ipaddrlist sysb_vipa_addrs
067 {
068 ipaddr 10.1.1.1
069 } # end of ipaddrlist
070
071 ipaddrlist sysb_non_vipa_addrs
072 {
073 ipaddr 10.1.10.1 # OSA on sysb
074 } # end of ipaddrlist
075
076 server_group tn3270_group # TN3270E Telnet servers
077 {
078
079 port 23 # TN3270E Telnet server port
080 protocol TCP # Protocol for this port
081 server_group_name ztelnet # Prepended to domain suffix
082 dns network_name_server # Name server to update
083 zone mvsplex.mycorp.com_zone
084 # Determines zone suffix for
085 # this group
086 # (mvsplex.mycorp.com)
087 member # telnetprimary.ztelnet.mvsplex.mycorp.com
088 # and,
089 # ztelnet.mvsplex.mycorp.com
090 {
091 server_name telnetprimary # Prepended to
092 # server_group_name.domain
093 # suffix
094 ipaddrlist sysa_vipa_addrs
095 }
096
097 member # telnetsecondary.ztelnet.mvsplex.mycorp.com
098 # and,
099 # ztelnet.mvsplex.mycorp.com
100 {
101 server_name telnetsecondary # Prepended to
102 # server_group_name.domain
103 # suffix
104 ipaddrlist sysb_vipa_addrs
105 }
106 } # end of server_group
107
108 server_group ftp_group # FTP daemons
109 {
110
111 port 21 # FTP port
112 protocol TCP # Protocol for this port
113 server_group_name zftp # Prepended to domain suffix
114 dns network_name_server
115 # Name server to update
116 zone mvsplex.mycorp.com_zone
117 # Determines zone suffix for
118 # this group
119 # (mvsplex.mycorp.com)
120 member # zftp.mvsplex.mycorp.com
121 {

Chapter 24. Automated domain name registration 1309

122 ipaddrlist sysa_vipa_addrs
123 ipaddrlist sysb_vipa_addrs
124 }
125 } # end of server_group

v Line 1:
In this example ADNR configuration file, the debug level is set to 7 in the
optional debug_level statement on line 1. The value of 7 is the default value, so
this statement is redundant but is shown for completeness. At the default level
of 7, messages are written to the log if they are at error, warning, or event level.
Messages at other debug levels, such as info or debug, are not written to the log
file.

v Line 3:
The uuid statement on line 3 uniquely identifies this ADNR from all other
ADNR instances and external load balancers. In this example, it is simply a
character string giving some useful information about the location of the ADNR
application.

v Line 5:
There is one name server that ADNR will manage in this example, which is
represented by the dns statement on line 5. The statement is given a label of
network_name_server that is used for references from other statements, like
host_group and server_group, and might be used in display commands. This
dns statement is referenced on lines 30, 82, and 114.

v Line 8:
The dns_id keyword within the dns statement on line 8 tells ADNR how to
reach the name server. The name server configured is at address 10.1.10.55,
listening on port 53. The port is not explicitly specified because the default port
is being used.

v Line 10:
The zone keyword within the dns statement on line 10 indicates which zones
ADNR manages at the name server indicated on the dns_id keyword. There can
be multiple zone keywords in this statement. However, in this example, only
one zone is managed by ADNR in this name server. The zone keyword has the
label mvsplex.mycorp.com_zone, which is used for references from other
statements like host_group and server_group. In this example, the zone is
referenced on lines 31, 83, and 116.

v Line 14:
The domain_suffix keyword within the zone keyword on line 14 assigns the
domain suffix to be used for all updates to the zone. In this example, the
domain suffix of mvsplex.mycorp.com is appended to the host names that
ADNR creates when it adds resource records to the name server. In this
example, one of the resource records added to the name server is
ztelnet.mvsplex.mycorp.com. Because the zone keyword containing this domain
suffix is under the dns statement representing the name server at 10.1.10.55, this
implies that the name server at 10.1.10.55 is configured as the primary master
name server for the mvsplex.mycorp.com domain.

v Line 20:
The gwm statement on line 20 describes how ADNR communicates with the
GWM. The gwm statement has a label of z/os_lba_advisor.

v Line 22:
The gwm_id keyword on line 22 identifies the IP address and port on which the
GWM is listening for connections from load balancers. In this example, the
GWM is located at 10.1.5.1 and is listening on port 3860 for load balancer
connections. The port of 3860 on the gwm_id keyword does not need to be

1310 z/OS V1R12.0 Comm Svr: IP Configuration Guide

specified because that is the default port for this keyword. However, it is
explicitly coded in this example for clarity. ADNR establishes a long-lived TCP
connection to the GWM.

v Line 23:
The host_connection_addr keyword of the gwm statement on line 23 identifies
the source IP address that ADNR uses when connecting to the GWM. The
host_connection_addr keyword is optional if you are using AT-TLS. In this
example, 10.1.10.11 is used. The GWM might require configuration to enable a
load balancer to connect from this address. Because the Advisor is acting as the
GWM, it requires either that the source IP address of all load balancers that
connect to it appear in an access control list or that AT-TLS is used. This list is
defined by the lb_id_list statement in the Advisor. Therefore, in this example,
10.1.10.11 must appear in the Advisor's lb_id_list statement to enable ADNR to
connect to it.

v Line 26:
The host_group statement defines a set of IP addresses to potentially add to the
ADNR-managed name server, which simply represents the hosts in the sysplex.
They are used to map names for the hosts to IP addresses in the name server.
This is one of the traditional uses of resource records in a name server. In this
example, production_sysplex is the label for this host_group on line 26. This
label can be used in display commands. There can be multiple host_group
statements in an ADNR configuration file, although only one is shown in this
example.

v Lines 29 and 31:
The host_group_name keyword identifies the DNS host name that is associated
with all IP addresses identified in this host_group statement. The value of the
host_group_name keyword, prodplex on line 29 in this example, is prepended to
the domain suffix identified by the zone keyword of this host_group statement
on line 31. In this example, all IP addresses identified by the ipaddrlist
statements in this host_group statement have the potential to be added to the
name server with the name prodplex.mvsplex.mycorp.com. The IP addresses
that are actually added to the name server with this name are the intersection of
all of the IP addresses identified in all ipaddrlist keywords in this host_group
statement, with the addresses that exist in the union of all home lists in the
sysplex. This assumes that an Agent is running on all systems in the sysplex. If
an address is removed from the home list of a system in the sysplex (for
example, using VARY TCPIP,,OBEYFILE), all resource records associated with
that IP address are update-deleted from the ADNR-managed name server.
Similarly, if an IP address is added to the home list of a system in the sysplex
and that address is already represented in this host_group statement, one or
more resource records with that IP address are update-added to the
ADNR-managed name server. The number of resource records added depends
upon ADNR configuration. Assuming that all IP addresses configured to this
host group actually exist in the sysplex, the following resource records are added
to the ADNR-managed name server (TTLs are omitted):
prodplex.mvsplex.mycorp.com IN A 10.1.1.22
prodplex.mvsplex.mycorp.com IN A 10.1.10.22
prodplex.mvsplex.mycorp.com IN A 10.1.1.1
prodplex.mvsplex.mycorp.com IN A 10.1.10.1

Thus, the DNS name prodplex.mvsplex.mycorp.com can be used by a client to
reach any system in the sysplex. Because there is no guarantee that a server is
listening on each of these addresses, this DNS name should not be used by
clients to connect to servers in the sysplex. This DNS name is probably most
useful for utilities like ping and traceroute.

Chapter 24. Automated domain name registration 1311

v Line 30:
The dns keyword in the host_group statement on line 30 identifies the name
server that is to be updated for this host group. The dns keyword identifies this
name server by the label network_name_server, which is a label on a dns
statement (line 5 in this example). Thus, in this example, the names for this
host_group statement are added to the name server located at 10.1.10.55.

v Line 31:
The zone keyword of the host_group statement on line 31 identifies the zone to
which the names for this host group are to be added. In this example, the label
mvsplex.mycorp.com_zone matches a zone keyword label in the dns statement
on line 10. Because multiple zone keywords are possible in a dns statement, the
zone within the dns statement must be identified from all host_group and
server_group statements. The zone keyword in the host_group statement is how
the domain suffix is determined for this host_group statement.

v Lines 36 and 45:
This host_group statement contains two member definitions on lines 36 and 45.
Both of these member definitions are named members because they contain a
host_name keyword. An unnamed member has no host_name keyword. You can
code one unnamed member per host_group. However, if one is not coded, a
virtual unnamed member is created for you. A virtual unnamed member
contains the union of all IP addresses coded in named members within that host
group. An explicitly coded unnamed member also contains the union of all IP
addresses coded in the named members that belong to that host group, in
addition to any IP addresses coded in the unnamed member itself. An explicitly
coded unnamed member might be useful for configuring movable dynamic
VIPAs that do not always belong to a specific host.

v Line 40:
The first member definition in this host_group statement contains the host_name
keyword with a value of sysa. All IP addresses that are coded in this member
belong to the sysa system. The value sysa of the host_name keyword on line 40
is prepended to the domain suffix for this host group to create the name
sysa.mvsplex.mycorp.com. Assuming that all IP addresses configured to this
member actually exist on sysa, the following resource records are added to the
ADNR-managed name server (TTLs are omitted):
sysa.mvsplex.mycorp.com IN A 10.1.1.22
sysa.mvsplex.mycorp.com IN A 10.1.10.22

Thus, the DNS name sysa.mvsplex.mycorp.com can be used to specifically
connect to the sysa system. This name might be useful for ping or traceroute.

v Line 45:
The second member definition in the host_group statement on line 45 represents
IP addresses that are to be associated with the sysb system, like the first member
definition associated IP addresses with the sysa system. Assuming that all IP
addresses configured to this member actually exist on sysb, the following
resource records are added to the ADNR-managed name server (TTLs are
omitted):
sysb.mvsplex.mycorp.com IN A 10.1.1.1
sysb.mvsplex.mycorp.com IN A 10.1.10.1

Similar to the first member definition, the sysb.mvsplex.mycorp.com DNS name
can be used to specifically connect to the sysb system.

v Lines 41, 42, 50, and 51:
The two ipaddrlist keywords in each of the two members of the host_group
statement (lines 41, 42, 50, and 51) specify the IP addresses that belong to this
host group. As this example shows, multiple ipaddrlist keywords are allowed

1312 z/OS V1R12.0 Comm Svr: IP Configuration Guide

and the group represents the union of all ipaddrlist statements in the host_group
statement. Each ipaddrlist statement can contain multiple IP addresses, although
this example has only one IP address per ipaddrlist statement. In this
host_group statement, the two ipaddrlist keywords in the first member (lines 41
and 42) reference ipaddrlist statements with the labels sysa_vipa_addrs and
sysa_non_vipa_addrs at lines 56 and 61, and the two ipaddrlist keywords in the
second member (lines 50 and 51) reference the ipaddrlist statements with the
labels sysb_vipa_addrs and sysb_non_vipa_addrs at lines 66 and 71. Thus, the IP
addresses 10.1.1.22 and 10.1.10.22 are associated with this host group, as are the
IP addresses 10.1.1.1 and 10.1.10.1, as reflected in the IP addresses associated
with the name prodplex.mvsplex.mycorp.com as previously shown.
Furthermore, the IP addresses of the first member, 10.1.1.22 and 10.1.10.22, are
associated with system sysa, as reflected in the IP addresses associated with the
name sysa.mvsplex.mycorp.com, and the IP addresses in the second member,
10.1.1.1 and 10.1.10.1, are associated with system sysb, as reflected in the IP
addresses associated with the name sysb.mvsplex.mycorp.com.

v Lines 56, 61, 66, and 71:
This example shows four ipaddrlist statements, each with one IP address, at
lines 56, 61, 66, and 71. There can be multiple ipaddrlist statements and each can
have multiple IP addresses. Each ipaddrlist statement has a label that is
referenced from host_group and server_group statements. The labels in this
example are sysa_vipa_addrs, sysa_non_vipa_addrs, sysb_vipa_addrs, and
sysb_non_vipa_addrs. This example shows only IPv4 addresses, but IPv6
addresses can also be coded in ipaddrlist statements. The sample ADNR
configuration file shows examples of IPv6 addresses coded in ipaddrlist
statements. The sample ADNR configuration file can be found in the
EZBADNRC member of SEZAINST.

v Lines 58, 63, 68, and 73:
The ipaddr keyword on lines 58, 63, 68, and 73 identifies a single IP address to
register. This example shows only IPv4 addresses, but IPv6 addresses can also be
coded in ipaddrlist statements. The sample ADNR configuration file shows
examples of IPv6 addresses coded in ipaddrlist statements. The sample ADNR
configuration file can be found in the EZBADNRC member of SEZAINST.

v Lines 76 and 108:
This example shows two server_group statements; one at line 76 to represent the
TN3270E Telnet servers in the sysplex, and the other at line 108 to represent the
FTP daemons in the sysplex. The server_group statements are used to create
DNS names in the name server that map to IP addresses, which can actually be
used to reach an active instance of the server.

v Line 76:
The first server_group statement on line 76 is given the label tn3270_group. This
label can be used in display commands. This group represents TN3270E Telnet
servers in the sysplex.

v Line 79:
The port keyword on line 79 in the first server_group statement indicates the
port that the TN3270E Telnet servers listen on, which is 23 in this example.

v Line 80:
The protocol keyword on line 80 in the first server_group statement indicates the
protocol of the listening application (TCP or UDP). Because the TN3270E Telnet
server is a TCP application, the value for this keyword is TCP.

v Line 81:

Chapter 24. Automated domain name registration 1313

The server_group_name keyword on line 81 identifies the DNS host name that is
associated with all IP addresses identified in this server_group statement. The
value of the server_group_name keyword, ztelnet in this example, is prepended
to the domain suffix identified by the zone keyword of this server_group
statement. In this example, all IP addresses identified by the ipaddrlist
statements in this server_group statement have the potential to be added to the
name server with the name ztelnet.mvsplex.mycorp.com. The IP addresses that
are actually added to the name server with this name are the intersection of all
of the IP addresses identified in all ipaddrlist keywords in this server_group
statement, with the addresses on which the server instances in the sysplex are
available. In the case of TCP applications, this is the set of IP addresses that the
servers are listening on, and for UDP applications, this is the set of IP addresses
to which the servers are bound. This assumes that an Agent is running on all
systems in the sysplex. The TN3270E Telnet server listens on INADDR_ANY, so
in effect, it listens on all IP addresses available. If a server instance is stopped (or
abnormally terminates), all resource records associated with that server instance
are update-deleted from the ADNR-managed name server. Similarly, if a new
server instance in that group is started and an IP address on which that server
instance is available is already coded in the server_group statement, one or more
resource records with that IP address are update-added to the ADNR-managed
name server. The number of resource records added depends upon ADNR
configuration. Assuming the TN3270E Telnet servers are running on sysa and
sysb, the following resource records are added to the ADNR-managed name
server (TTLs are omitted):
ztelnet.mvsplex.mycorp.com IN A 10.1.1.22
ztelnet.mvsplex.mycorp.com IN A 10.1.1.1

Thus, the DNS name ztelnet.mvsplex.mycorp.com can be used to reach any
available TN3270E Telnet server in the sysplex.

v Lines 82 and 83:
On lines 82 and 83, the dns and zone keywords of the server_group statement
serve the same purpose as those keywords on the host_group statement.

v Lines 87 and 97:
There are two named members defined in the server_group statement on lines
87 and 97. Named members contain a server_name keyword, but unnamed
members do not. As in host_group statements, you can code one unnamed
member per server group. However, if one is not coded, a virtual unnamed
member is created for you. A virtual unnamed member contains the union of all
IP addresses coded in named members within that server group. An explicitly
coded unnamed member also contains the union of all IP addresses coded in the
named members that belong to that server group, in addition to any IP
addresses coded in the unnamed member itself. The IP addresses in the
unnamed member, whether explicitly coded or not, are associated with the
group name. In this example, the IP addresses of the unnamed member for this
server_group statement are associated with the name
ztelnet.mvsplex.mycorp.com. Coding an explicit unnamed member without any
named members might suffice for servers where affinity to a particular instance
is not needed. Also, if an application instance is freely movable from one system
to another, or from one TCP/IP stack to another, coding an unnamed member
without any named members might be acceptable. In this case, code the DVIPAs
on which the application could be reached in the unnamed member. If, however,
it is important for clients to be able to connect to specific instances of a server,
you must code separate named members for each instance.

v Line 91:

1314 z/OS V1R12.0 Comm Svr: IP Configuration Guide

The first member definition in this server_group statement contains the
server_name keyword with a value of telnetprimary at line 91. All IP addresses
that are coded in this member are IP addresses that one instance of the TN3270E
Telnet server could potentially be listening on. The value telnetprimary of the
server_name keyword is prepended to the DNS name created for the server
group to create the name telnetprimary.ztelnet.mvsplex.mycorp.com. Assuming
that the IP address configured to this member actually exists on sysa, and that
the TN3270E Telnet server is active on this system, the following resource record
is added to the ADNR-managed name server (TTLs are omitted):
telnetprimary.ztelnet.mvsplex.mycorp.com IN A 10.1.1.22

Thus, the DNS name telnetprimary.ztelnet.mvsplex.mycorp.com can be used to
specifically connect to the TN3270E Telnet server instance on sysa.

v Line 97:
The second member definition in this server group on line 97 is similar to the
first, with the exception that this member identifies an application instance on
system sysb instead of the one on system sysa. Assuming that the IP address
configured to this member actually exists on sysb, and that the TN3270E Telnet
server is active on this system, the following resource record is added to the
ADNR-managed name server (TTLs are omitted):
telnetsecondary.ztelnet.mvsplex.mycorp.com IN A 10.1.1.1

Thus, the DNS name telnetsecondary.ztelnet.mvsplex.mycorp.com can be used to
specifically connect to the TN3270E Telnet server instance on sysb.

v Line 108:
The second server_group statement on line 108 is similar to the server_group
statement for the TN3270E Telnet servers, except that it represents FTP daemons
in the sysplex. Thus, the value of the port keyword specifies the port number on
which the FTP daemon listens. The server_group_name value specifies a name
that is appropriate to a group of equivalent FTP daemons. This server group has
one unnamed member and no named members. Thus, the resource records that
can potentially be added to the name server are as follows:
zftp.mvsplex.mycorp.com IN A 10.1.1.22
zftp.mvsplex.mycorp.com IN A 10.1.1.1

ADNR display examples
The displays in this topic use the example configuration described in “ADNR
configuration example” on page 1307. The numbers in the left margin were added
for annotation purposes and are used in the descriptions of the displays. Only a
subset of the possible types of displays are shown in this example. For more
examples of the MODIFY command for ADNR, see z/OS Communications Server: IP
System Administrator's Commands.

The following display shows information about the gwm:
01 F ADNR,DISP,GWM,DETAIL
02 EZD1254I GWM DETAIL
03 GWM LABEL : Z/OS_LBA_ADVISOR
04 GWM STATUS : CONVERGENCE_PENDING
05 GWM TIMESTAMP : 10/19/05 18:32:52
06 GWM IPADDR..PORT: 10.1.5.1..3860
07 LOCAL IPADDR : 10.1.10.11
08 UUID : MYCORP_SYSPLEX_ADNR
09 UPDATE INTERVAL : 60
10 LAST UPDATE : N/A
11 1 OF 1 RECORDS DISPLAYED

The following comments refer to the previous display:

Chapter 24. Automated domain name registration 1315

v Line 3:
The GWM LABEL field on line 3 is taken from the gwm statement label on line
20 of the example ADNR configuration file. All labels and names in ADNR
displays are displayed in uppercase regardless of how they appear in the ADNR
configuration file.

v Line 4:
The GWM STATUS on line 4 is CONVERGENCE_PENDING, which is a
transient state meaning that the ADNR host_group and server_group
information has successfully been registered with the GWM, and ADNR is
waiting for a timer to expire before updating the name servers with information
from this GWM.

v Line 5:
The GWM TIMESTAMP field on line 5 shows the date and time when the most
recent update of the GWM STATUS field occurred.

v Line 6:
The GWM IPADDR..PORT field shows the IP address and port of the GWM.
These values are taken from the gwm_id keyword of the gwm statement on line
22 of the example configuration file.

v Line 7:
The LOCAL IPADDR field is the source IP address that ADNR uses when
communicating with the GWM. The value of 10.1.10.11 was taken from the
host_connection_addr keyword on line 23 of the example configuration file.

v Line 8:
The UUID field value on line 8 is taken from the uuid statement on line 3 of the
example configuration file.

v Line 9:
The update interval of 60 seconds is determined by GWM configuration. For the
z/OS Load Balancing Advisor, this value is determined by the Advisor's
update_interval statement.

v Line 10:
The LAST UPDATE field on line 10 shows the most recent date and time that
status information was received from the GWM on any of the sysplex resources
that ADNR registered with the GWM. The value N/A indicates that no status
updates have been received yet.

v Line 11:
The number of records displayed on line 11 indicates the number of GWMs
actually displayed. Currently, this value is always 1, because only one GWM is
supported.

The following display was created after the convergence timer expired. The GWM's
status changes to GWM_ACTIVE on line 4. Any status updates from the GWM
will now be reflected in the name servers, provided that the name servers are
reachable and configured correctly.
01 F ADNR,DISP,GWM,DETAIL
02 EZD1254I GWM DETAIL
03 GWM LABEL : Z/OS_LBA_ADVISOR
04 GWM STATUS : GWM_ACTIVE
05 GWM TIMESTAMP : 10/19/05 18:34:55
06 GWM IPADDR..PORT: 10.1.5.1..3860
07 LOCAL IPADDR : 10.1.10.11

1316 z/OS V1R12.0 Comm Svr: IP Configuration Guide

08 UUID : MYCORP_SYSPLEX_ADNR
09 UPDATE INTERVAL : 60
10 LAST UPDATE : 10/19/05 18:35:29
11 1 OF 1 RECORDS DISPLAYED

The following display summary shows the host groups and server groups that
were defined:
01 F ADNR,DISP,GWM,GROUPS
02 EZD1254I GWM GROUP SUMMARY
03 GWM LABEL : Z/OS_LBA_ADVISOR
04 GWM STATUS : GWM_ACTIVE
05 GROUP LABEL : PRODUCTION_SYSPLEX
06 GROUP NAME : PRODPLEX
07 GROUP LABEL : TN3270_GROUP
08 GROUP NAME : ZTELNET
09 GROUP LABEL : FTP_GROUP
10 GROUP NAME : ZFTP
11 3 OF 3 RECORDS DISPLAYED

The following comments refer to the previous display:
v Lines 3 and 4:

Lines 3 and 4 show the same information as the DETAIL display.
v Lines 5, 7, and 9:

The GROUP LABEL fields on lines 5, 7, and 9 show the labels of the groups that
were defined to ADNR on lines 26, 76, and 108, respectively, in the example
ADNR configuration file.

v Lines 6, 8, and 10:
The GROUP NAME fields on lines 6, 8, and 10 show the names from the
host_group_name or server_group_name keywords on lines 29, 81, and 113,
respectively, of the example ADNR configuration file.

v Line 11:
The number of records displayed on line 11 indicates the number of groups
actually displayed. When the number of groups defined exceeds the MAX
parameter value (or the default of 100) of the MODIFY ADNR,DISPLAY
command, the difference between the numbers on this line indicates the number
of groups that were omitted from the display as a result of the MAX parameter
value.

The following display shows the details of one group, and demonstrates how a
label can be used in a display command:
01 F ADNR,DISP,GWM,GROUPS,GROUPID=PRODUCTION_SYSPLEX,DETAIL
02 EZD1254I GWM GROUP DETAIL
03 GWM LABEL : Z/OS_LBA_ADVISOR
04 GWM STATUS : GWM_ACTIVE
05 GWM TIMESTAMP : 10/20/05 13:15:19
06 GWM IPADDR..PORT: 10.1.5.1..3860
07 LOCAL IPADDR : 10.1.10.11
08 UUID : MYCORP_SYSPLEX_ADNR
09 UPDATE INTERVAL : 60
10 LAST UPDATE : 10/20/2005 13:17:21
11 GROUP LABEL : PRODUCTION_SYSPLEX
12 GROUP NAME : PRODPLEX
13 GROUP TYPE : HOST
14 DNS LABEL : NETWORK_NAME_SERVER
15 ZONE LABEL : MVSPLEX.MYCORP.COM_ZONE
16 MEMBER HOSTNAME:
17 IPADDR : 10.1.1.22
18 AVAIL : YES
19 FLAGS :

Chapter 24. Automated domain name registration 1317

20 UPDATE COUNT : 1
21 IPADDR : 10.1.10.22
22 AVAIL : YES
23 FLAGS :
24 UPDATE COUNT : 1
25 IPADDR : 10.1.1.1
26 AVAIL : YES
27 FLAGS :
28 UPDATE COUNT : 1
29 IPADDR : 10.1.10.1
30 AVAIL : YES
31 FLAGS :
32 UPDATE COUNT : 1
33 MEMBER HOSTNAME: SYSA
34 IPADDR : 10.1.1.22
35 AVAIL : YES
36 FLAGS :
37 UPDATE COUNT : 1
38 IPADDR : 10.1.10.22
39 AVAIL : YES
40 FLAGS :
41 UPDATE COUNT : 1
42 MEMBER HOSTNAME: SYSB
43 IPADDR : 10.1.1.1
44 AVAIL : YES
45 FLAGS :
46 UPDATE COUNT : 1
47 IPADDR : 10.1.10.1
48 AVAIL : YES
49 FLAGS :
50 UPDATE COUNT : 1
51 1 OF 1 RECORDS DISPLAYED

The following comments refer to the previous display:
v Lines 3–10:

Lines 3 through 10 show information described in previous display examples.
v Line 11:

The GROUP LABEL field on line 11 matches the value on the GROUPID
keyword on the MODIFY DISPLAY command.

v Line 13:
The GROUP TYPE field on line 13 indicates that this group was defined as a
host_group versus a server_group.

v Line 14:
The DNS LABEL field on line 14 is the label referenced by the dns keyword on
line 30 of the example ADNR configuration file, which indicates which name
server is to be updated with the information from this group.

v Line 15:
The ZONE LABEL field on line 15 is the label referenced by the zone keyword
on line 31 of the example ADNR configuration file, which indicates which zone
in the name server is to be updated with the information from this group.

v Line 16:
The MEMBER HOSTNAME field on line 16 is blank, indicating that this is the
unnamed member for this group. Because an unnamed member was not
explicitly configured for this group, this member represents the virtual unnamed
member that is created for you.

v Lines 17, 21, 25, and 29:

1318 z/OS V1R12.0 Comm Svr: IP Configuration Guide

The IPADDR values on lines 17, 21, 25, and 29 represent the IP addresses that
are automatically added to the unnamed member. These four addresses
represent the union of all IP addresses coded in all members of this group.

v Lines 18, 22, 26, and 30:
The AVAIL flags on lines 18, 22, 26, and 30 all indicate that the GWM has
reported these resources as available. For IPADDRs in a host group such as this,
this means the Agent owning these IP addresses is active and these addresses
exist in a home list in the sysplex.

v Lines 19, 23, 27, and 31:
The FLAGS field for each of the IP addresses on lines 19, 23, 27, and 31 is empty.
If the AVAIL flags were NO for any of these IP addresses, the FLAGS field
would give an indication as to why. For a list of the possible flags that can
appear for the MODIFY command for ADNR, and their explanations, see z/OS
Communications Server: IP System Administrator's Commands.

v Lines 20, 24, 28, and 32:
The UPDATE COUNT fields on lines 20, 24, 28, and 32 indicate the number of
times that the availability status, as sent from the GWM, has changed for these
IP addresses.

v Lines 33 and 42:
The MEMBER HOSTNAME fields on lines 33 and 42 represent the named
members that were configured in the group at lines 36 and 45 of the example
ADNR configuration file. Only the IP addresses explicitly coded to these
members appear in the display of these members, in contrast to the unnamed
member. The remainder of the fields in these named members are equivalent to
the information displayed in the unnamed member.

The following display shows information about the name server that ADNR is
updating:
01 F ADNR,DISP,DNS,DETAIL
02 EZD1254I DNS DETAIL
03 DNS LABEL : NETWORK_NAME_SERVER
04 DNS STATUS : ACTIVE
05 DNS IPADDR..PORT: 10.1.10.55..53
06 ZONES DEFINED : 1
07 ZONES ACTIVE : 0
08 1 OF 1 RECORDS DISPLAYED

The following comments refer to the previous display:
v Line 3:

The DNS LABEL field value NETWORK_NAME_SERVER is taken from the dns
statement on line 5 of the example configuration file. For an explanation of all of
the DNS states displayed on the MODIFY command for ADNR, see z/OS
Communications Server: IP System Administrator's Commands.

v Line 5:
The DNS IPADDR..PORT field value of 10.1.10.55..53 indicates that ADNR
communicates with a name server at address 10.1.10.55 on port 53. This IP
address and port are taken from the dns_id keyword on line 8 of the example
configuration file.

v Line 6:
The ZONES DEFINED field on line 6 indicates that there is one zone configured
under this dns statement in the ADNR configuration file.

v Line 7:

Chapter 24. Automated domain name registration 1319

The ZONES ACTIVE field on line 7 indicates that the zone defined under this
dns statement cannot yet be updated by ADNR. In a steady state environment,
the number of active zones should match the number of defined zones. If the
numbers do not match, this could be an indication of a configuration problem, a
network problem, or the zone could be in the middle of the resynchronization
process. For more information on the resynchronization process, see “Operating
ADNR” on page 1306.

v Line 8:
The number of records displayed on line 8 indicates the number of DNSs
actually displayed. When the number of DNSs defined exceeds the MAX
parameter value (or the default of 100) of the MODIFY ADNR,DISPLAY
command, the difference between the numbers on this line indicates the number
of DNSs that were omitted from the display as a result of the MAX parameter
value.

The following display shows summary information about the zones that ADNR is
updating:
01 F ADNR,DISP,DNS,ZONES,SUMMARY
02 EZD1254I DNS ZONE SUMMARY
03 DNS LABEL : NETWORK_NAME_SERVER
04 DNS STATUS : ACTIVE
05 ZONE LABEL : MVSPLEX.MYCORP.COM_ZONE
06 ZONE STATUS : SYNCHRONIZED
07 1 OF 1 RECORDS DISPLAYED

The following comments refer to the previous display:
v Line 3:

The DNS LABEL field on line 3 indicates that information for a specific name
server and its zones immediately follows. The field value is taken from the label
on the dns statement on line 5 of the example configuration file. For an
explanation of all of the DNS states displayed on the MODIFY command for
ADNR, see z/OS Communications Server: IP System Administrator's Commands.

v Line 5:
The ZONE LABEL field on line 5 indicates that information for the indicated
zone follows. The value for this field is taken from the label on the zone
keyword (line 10 of the example configuration file) of the dns statement.

v Line 6:
The ZONE STATUS field on line 6 shows the state of the zone. The value of
SYNCHRONIZED is the expected, steady-state value for a zone. For an
explanation of all of the zone states displayed on the MODIFY command for
ADNR, see z/OS Communications Server: IP System Administrator's Commands.

v Line 7:
The number of records displayed on line 7 indicates the number of zones
actually displayed. When the number of zones defined exceeds the MAX
parameter value (or the default of 100) of the MODIFY ADNR,DISPLAY
command, the difference between the numbers on this line indicates the number
of zones that were omitted from the display as a result of the MAX parameter
value.

The following display shows the status of the resource records that ADNR
manages in the name server:
001 F ADNR,DISP,DNS,ZONES,DETAIL
002 EZD1254I DNS ZONE DETAIL
003 DNS LABEL : NETWORK_NAME_SERVER
004 DNS STATUS : ACTIVE

1320 z/OS V1R12.0 Comm Svr: IP Configuration Guide

005 DNS IPADDR..PORT: 10.1.10.55..53
006 ZONES DEFINED : 1
007 ZONES ACTIVE : 1
008 ZONE LABEL : MVSPLEX.MYCORP.COM_ZONE
009 ZONE STATUS : SYNCHRONIZED
010 DOMAIN SUFFIX : MVSPLEX.MYCORP.COM.
011 ZONE TIMESTAMP : 10/20/05 14:42:05
012 TSIG FLAGS :
013 DNS RR LABEL : PRODPLEX
014 DNS RR STATUS : PRESENT
015 TTL : 60
016 CLASS : IN
017 TYPE : A
018 RDATA : 10.1.1.22
019 GWM LABEL : Z/OS_LBA_ADVISOR
020 GROUP LABEL : PRODUCTION_SYSPLEX
021 LAST UPDATE : 10/20/05 14:42:02
022 DNS RR LABEL : PRODPLEX
023 DNS RR STATUS : PRESENT
024 TTL : 60
025 CLASS : IN
026 TYPE : A
027 RDATA : 10.1.1.1
028 GWM LABEL : Z/OS_LBA_ADVISOR
029 GROUP LABEL : PRODUCTION_SYSPLEX
030 LAST UPDATE : 10/20/05 14:42:02
031 DNS RR LABEL : PRODPLEX
032 DNS RR STATUS : PRESENT
033 TTL : 60
034 CLASS : IN
035 TYPE : A
036 RDATA : 10.1.10.1
037 GWM LABEL : Z/OS_LBA_ADVISOR
038 GROUP LABEL : PRODUCTION_SYSPLEX
039 LAST UPDATE : 10/20/05 14:42:02
040 DNS RR LABEL : PRODPLEX
041 DNS RR STATUS : PRESENT
042 TTL : 60
043 CLASS : IN
044 TYPE : A
045 RDATA : 10.1.10.22
046 GWM LABEL : Z/OS_LBA_ADVISOR
047 GROUP LABEL : PRODUCTION_SYSPLEX
048 LAST UPDATE : 10/20/05 14:42:02
049 DNS RR LABEL : SYSA
050 DNS RR STATUS : PRESENT
051 TTL : 60
052 CLASS : IN
053 TYPE : A
054 RDATA : 10.1.1.22
055 GWM LABEL : Z/OS_LBA_ADVISOR
056 GROUP LABEL : PRODUCTION_SYSPLEX
057 LAST UPDATE : 10/20/05 14:42:02
058 DNS RR LABEL : SYSA
059 DNS RR STATUS : PRESENT
060 TTL : 60
061 CLASS : IN
062 TYPE : A
063 RDATA : 10.1.10.22
064 GWM LABEL : Z/OS_LBA_ADVISOR
065 GROUP LABEL : PRODUCTION_SYSPLEX
066 LAST UPDATE : 10/20/05 14:42:02
067 DNS RR LABEL : SYSB
068 DNS RR STATUS : PRESENT
069 TTL : 60
070 CLASS : IN
071 TYPE : A

Chapter 24. Automated domain name registration 1321

072 RDATA : 10.1.1.1
073 GWM LABEL : Z/OS_LBA_ADVISOR
074 GROUP LABEL : PRODUCTION_SYSPLEX
075 LAST UPDATE : 10/20/05 14:42:02
076 DNS RR LABEL : SYSB
077 DNS RR STATUS : PRESENT
078 TTL : 60
079 CLASS : IN
080 TYPE : A
081 RDATA : 10.1.10.1
082 GWM LABEL : Z/OS_LBA_ADVISOR
083 GROUP LABEL : PRODUCTION_SYSPLEX
084 LAST UPDATE : 10/20/05 14:42:02
085 DNS RR LABEL : ZFTP
086 DNS RR STATUS : PRESENT
087 TTL : 60
088 CLASS : IN
089 TYPE : A
090 RDATA : 10.1.1.22
091 GWM LABEL : Z/OS_LBA_ADVISOR
092 GROUP LABEL : FTP_GROUP
093 LAST UPDATE : 10/20/05 14:42:02
094 DNS RR LABEL : ZFTP
095 DNS RR STATUS : PRESENT
096 TTL : 60
097 CLASS : IN
098 TYPE : A
099 RDATA : 10.1.1.1
100 GWM LABEL : Z/OS_LBA_ADVISOR
101 GROUP LABEL : FTP_GROUP
102 LAST UPDATE : 10/20/05 14:42:02
103 DNS RR LABEL : ZTELNET
104 DNS RR STATUS : PRESENT
105 TTL : 60
106 CLASS : IN
107 TYPE : A
108 RDATA : 10.1.1.22
109 GWM LABEL : Z/OS_LBA_ADVISOR
110 GROUP LABEL : TN3270_GROUP
111 LAST UPDATE : 10/20/05 14:42:02
112 DNS RR LABEL : ZTELNET
113 DNS RR STATUS : PRESENT
114 TTL : 60
115 CLASS : IN
116 TYPE : A
117 RDATA : 10.1.1.1
118 GWM LABEL : Z/OS_LBA_ADVISOR
119 GROUP LABEL : TN3270_GROUP
120 LAST UPDATE : 10/20/05 14:42:02
121 DNS RR LABEL : TELNETPRIMARY.ZTELNET
122 DNS RR STATUS : PRESENT
123 TTL : 60
124 CLASS : IN
125 TYPE : A
126 RDATA : 10.1.1.22
127 GWM LABEL : Z/OS_LBA_ADVISOR
128 GROUP LABEL : TN3270_GROUP
129 LAST UPDATE : 10/20/05 14:42:02
130 DNS RR LABEL : TELNETSECONDARY.ZTELNET
131 DNS RR STATUS : PRESENT
132 TTL : 60
133 CLASS : IN
134 TYPE : A
135 RDATA : 10.1.1.1

1322 z/OS V1R12.0 Comm Svr: IP Configuration Guide

136 GWM LABEL : Z/OS_LBA_ADVISOR
137 GROUP LABEL : TN3270_GROUP
138 LAST UPDATE : 10/20/05 14:42:02
139 1 OF 1 RECORDS DISPLAYED

The following comments refer to the previous display:
v Line 12:

The TSIG FLAGS field on line 12 indicates which type of TSIG keys are being
used, if any. In this example, the update_key and transfer_key keywords were
not specified for the zone under this DNS. If they had been specified, an
indicator or indicators would be displayed on this line showing which types of
TSIG keys are being used.

v Lines 13, 49, 67, 85, 103, 121, and 130:
The DNS RR LABEL fields indicate the portion of the DNS name of the resource
record before the domain suffix is appended. Some unique examples are on lines
13, 49, 67, 85, 103, 121, and 130. Some of these labels can be compound, like
TELNETPRIMARY.ZTELNET and TELNETSECONDARY.ZTELNET on lines 121
and 130. Compound labels are created for named members of server groups. The
two named members were configured in a server_group statement on lines 87
and 97 of the example ADNR configuration file. The label PRODPLEX on line 13
represents the resource records for the virtual unnamed member of the
host_group statement on line 26 of the example ADNR configuration file. The
labels SYSA on line 49 and SYSB on line 67 represent the named members of the
host group on line 36 and 45 of the example ADNR configuration file. The label
ZFTP on line 85 represents the unnamed member of the server group on line 120
of the example ADNR configuration file. The label ZTELNET on line 103
represents the virtual unnamed member of the server group on line 108 of the
example ADNR configuration file. The label TELNETPRIMARY.ZTELNET on
line 121 represents the named member on line 87 of the example ADNR
configuration file, and the label TELNETSECONDARY.ZTELNET on line 130
represents the named member on line 97 of the example ADNR configuration
file.

v Line 14:
The fields labeled DNS RR STATUS (for example, line 14) indicate whether or
not the resource record is present in the name server. Resource records
representing available resources in the sysplex have a value of PRESENT, while
resource records representing unavailable resources in the sysplex have a value
of NOT_PRESENT.

v Line 15:
The fields labeled TTL (for example, line 15) indicate the time to live value
associated with the resource record. For more information, see “Near real-time
availability information of sysplex resources” on page 1292.

v Line 16:
The fields labeled CLASS (for example, line 16) indicate the resource record
class. All ADNR-managed resource records have a class value of IN.

v Line 17:
The fields labeled TYPE (for example, line 17) indicate the resource record type.
ADNR-managed resource records are either A for IPv4 addresses or AAAA for
IPv6 addresses.

v Line 18:
The fields labeled RDATA (for example, line 18) contain the IPv4 or IPv6 address
that is in the resource record.

v Line 19:

Chapter 24. Automated domain name registration 1323

The fields labeled GWM LABEL (for example, line 19) match the label of the
gwm statement on line 20 of the example ADNR configuration file.

v Line 20:
The fields labeled GROUP LABEL (for example, line 20) indicate the group
definition that is responsible for the creation of the resource record. This makes
it possible to correlate this resource record with the MODIFY
ADNR,DISPLAY,GWM,GROUPS,GROUPID=PRODUCTION_SYSPLEX output to
see the GWM data that is related to this resource record.

v Line 21:
The fields labeled LAST UPDATE (for example, line 21) indicate the most recent
time that the status of the resource record has changed from PRESENT to
NOT_PRESENT, or from NOT_PRESENT to PRESENT.

v Line 139:
The number of records displayed on line 139 indicates the number of zones
actually displayed. When the number of zones defined exceeds the MAX
parameter value (or the default of 100) of the MODIFY ADNR,DISPLAY
command, the difference between the numbers on this line indicates the number
of zones that were omitted from the display as a result of the MAX parameter
value.

1324 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Chapter 25. Simple Network Management Protocol

This topic describes how to configure:
v Simple Network Management Protocol (SNMP) agent (osnmpd)
v z/OS UNIX snmp or osnmp command
v NetView SNMP command
v SNMP subagents
v Open Systems Adapter (OSA) support
v Trap forwarder daemon

Before you configure, read “Understanding search orders of configuration
information” on page 19. It covers important information about data set naming
and search sequences.

SNMP overview
SNMP is a set of protocols that describes management data and the protocols for
exchanging that data between heterogeneous systems. The protocols include both
the description of the management data, defined in the Management Information
Base (MIB), and the operations for exchanging or changing that information. By
implementing common protocols, management data can be exchanged between
different platforms with relative ease.

SNMP defines an architecture that consists of:
v Network management applications
v Network management agents and subagents
v Network elements, such as hosts and gateways

The SNMP network management application can ask agents for specific
information about network elements. Conversely, agents can tell the network
management application when something happens to one or more network
elements. The protocol used between the network management application and
agents is SNMP. The transport protocol for SNMP requests is the User Datagram
Protocol (UDP).

SNMP defines both the network management data and the ways in which the data
is retrieved or changed by the network management application. Examples of
network management data include device definitions, counts of packets received at
the IP layer, TCP connection data, and so forth. The information about the network
elements is stored in the Management Information Base (MIB), which is supported
by the SNMP agent and its subagents. A MIB variable (or MIB object) is a specific
instance of data in a collection of objects related to a common management area.
The collection is called a MIB module. Each MIB object is identified by an object
identifier (OID), which is a dotted-decimal value, and by a textual name. For
example, the sysUpTime MIB object, which indicates how long ago the SNMP
agent initialized, is defined as follows:
Textual name Object identifier (OID)

sysUpTime 1.3.6.1.2.1.1.3

The z/OS Communications Server Network Management agent and subagents,
also called SNMP agent and SNMP subagents, support many standard (RFC-based)

© Copyright IBM Corp. 2000, 2011 1325

MIB modules. The SNMP TCP/IP subagent also supports enterprise-specific MIB
modules. For information on MIB modules supported by the z/OS
Communications Server SNMP agent and subagents, see the SNMP agent
capabilities statement, shipped as file /usr/lpp/tcpip/samples/mvstcpip.caps.
Additionally, enterprise-specific MIBs are documented in the /usr/lpp/tcpip/
samples directory. See “TCP/IP subagent” on page 1328 for more information on
enterprise-specific MIB modules supported by the TCP/IP subagent. For a
complete list of MIB objects supported by the SNMP agent and subagents shipped
with z/OS Communications Server, see z/OS Communications Server: IP System
Administrator's Commands.

Network management application
The stations that monitor network elements run network management applications.
In z/OS Communications Server, the z/OS UNIX snmp (or osnmp) command
provides SNMP network management from the z/OS UNIX shell. The NetView
SNMP command provides network management from the NetView command line.
The z/OS UNIX snmp and osnmp commands perform exactly the same function.
Both commands can be used to retrieve or change data from SNMP and monitor
for asynchronous events known as notifications. An unconfirmed notification is
called a trap. A confirmed notification is called an inform.

For information about the syntax and use of the snmp and NetView SNMP
commands, see z/OS Communications Server: IP System Administrator's Commands.

SNMP protocols
This topic provides an overview of the different SNMP protocols and their
capabilities. For more detailed information on the security models for each of these
SNMP protocols, see “Overview of SNMP security models” on page 1327.

SNMPv1
SNMPv1, standardized in 1988, is the first and most commonly used version. It
became very popular and is probably the most widely deployed of the SNMP
generations today. The SNMPv1 standards define support for SNMP GET,
GETNEXT, and SET operations, and for asynchronous event notifications called
TRAPs. However, SNMPv1 does not support some later MIB object types, such as
64-bit counters. SNMPv1 also uses community-based security, which is not very
secure.

SNMPv2
The SNMPv2 protocol standards made several attempts to address the security
issues associated with the SNMPv1 protocol, with the party-based security model
SNMPv2p, the user-based security model SNMPv2u, and the community-based
security model SNMPv2c.

Although these attempts were not successful in addressing the major security
issues, SNMPv2 did provide several improvements over SNMPv1, especially in the
area of data retrieval with the support of SNMP GETBULK operations, and
SNMPv2 continued providing community-based security with SNMPv2c.

SNMPv3
SNMPv3 was architected in the late 1990s, and in December of 2002 become a
standard. It is currently defined in RFCs 3410 through 3415 [see Appendix G,
“Related protocol specifications,” on page 1555]. SNMPv3 uses the basic SNMP
management system and operations of SNMPv1 and SNMPv2, but adds an entirely
new security architecture. The SNMPv3 architecture is modularized so that

1326 z/OS V1R12.0 Comm Svr: IP Configuration Guide

portions of it can be enhanced over time without requiring that the entire
architecture to be replaced. SNMPv3 defines a framework that, among other
things, includes the following:
v Message processing model (SNMPv3)
v User-based security model
v View-based access control model

The framework is structured so that multiple models can be supported
concurrently and replaced over time. For example, although there is a new
message format for SNMPv3, messages created with the SNMPv1 and SNMPv2c
formats are still supported. Similarly, the user-based security model can be
supported concurrently with previously used community-based security models. In
addition, SNMPv3 added other key updates to the protocol, such as the following:
v Improved notification support

A new notification type, INFORM, is like a TRAP that requires an
acknowledgement. If the acknowledgment is not received, the INFORM is
resent.

v Trap filtering
With SNMPv3, a TRAP can also be filtered at the sender.

v Dynamic configuration
The SNMP agent can be dynamically configured using MIB modules defined in
RFC 3584 and RFCs 3411 through 3415.

SNMP agent
In z/OS Communications Server, the SNMP agent is a z/OS UNIX application. It
supports a maximum SNMP response packet size of 65535 bytes, and supports the
following SNMP protocols:
v SNMPv1
v SNMPv2c
v SNMPv3

SNMPv2c offers protocol enhancements such as the GETBULK operation. SNMPv3
provides a network management framework that allows the use of user-based
security in addition to, or instead of, the community-based security supported in
SNMPv1 and SNMPv2c. The view-based access control model supported in
SNMPv3 allows granular access control for MIB objects with either the user-based
or community-based security models. SNMPv3 also enables dynamic changes to
the SNMP agent configuration.

Overview of SNMP security models
SNMP security has evolved from community-based security to a modularized
architecture that provides message security and access control.

SNMPv1 and SNMPv2c: The security model used by SNMPv1 and SNMPv2c is
the community-based security model. In this model, an SNMP community is made
up of an SNMP agent along with SNMP manager entities. Managers typically
request management data from the agents. Each SNMP community is represented
using an octet string called the community name. When the manager
communicates with the agents, it uses the community name as a password to get
access to the management resources. Because the community name is sent in every
packet in clear view, these communications are not secure.

Chapter 25. Simple Network Management Protocol 1327

The access control mechanism provided by SNMPv1 is very simple. A community
is allowed access to read or write objects in a management information base (MIB)
tree. In most implementations, a community has access to all of the objects in the
MIB, and you cannot restrict the access to a particular part of the MIB tree.

SNMPv3: SNMPv3 addresses the basic lack of security inherent in the previous
SNMP versions by providing message security and access control. For message
security, it introduces the User-Based Security Model (USM), which provides for
authentication and privacy. Additionally, access control is provided with
View-Based Access Control Model (VACM). Both USM and VACM provide for
secure communications when you use SNMPv3.

User-Based Security Model (USM)

This model was designed to provide message security. USM supports both
authentication (data integrity, data authentication) and privacy (protection
against disclosure of message payload). For authentication, the protocols
supported are HMAC-MD5 and HMAC-SHA. For privacy, CBC-DES (56-bit) is
the supported symmetric encryption protocol.
View-Based Access Control Model (VACM)

VACM is used to provide access control. With VACM, users are defined to
groups that are allowed to access different views or parts of the management
data (MIB objects), depending on defined data access privileges.

SNMP subagents
A subagent extends the set of MIB variables supported by an SNMP agent. z/OS
Communications Server supports the following subagents:
v TCP/IP subagent
v OMPROUTE subagent
v TN3270E Telnet subagent
v Network SLAPM2 subagent

For a complete list of MIB objects, see z/OS Communications Server: IP System
Administrator's Commands.

The OSA-Express Direct subagent is also shipped with the z/OS Communications
Server product, but is supported by the zSeries OSA Support Group.

TCP/IP subagent
The TCP/IP subagent in z/OS Communications Server is a z/OS UNIX application
that runs in its own task in the TCP/IP address space. This subagent supports
many standard (RFC-based) MIB objects. In addition, it supports MIB objects in the
following enterprise-specific MIB modules:
v The IBM 3172 enterprise-specific MIB.
v The IBM MVS TCP/IP enterprise-specific MIB. This MIB defines objects to

extend standard MIB tables, supports retrieval and change of TCP/IP address
space configuration parameters, and provides management support for the
environments where Asynchronous Transfer Mode (ATM) is used.

For a more detailed list of all the data supported by the TCP/IP subagent, see z/OS
Communications Server: IP System Administrator's Commands.

Both the TCP/IP subagent and the OSA-Express Direct subagent support
management data for OSA-Express features. You should use the OSA-Express
Direct subagent to obtain this management data, for the following reasons:

1328 z/OS V1R12.0 Comm Svr: IP Configuration Guide

v Because the OSA-Express Direct subagent communicates directly with the
OSA-Express features, it does not require the OSA/SF and IOASNMP
applications.

v The OSA-Express Direct subagent provides more OSA management data than
the TCP/IP subagent.

v Because of the support provided by the OSA-Express Direct subagent, there will
be no new enhancements to the OSA management data provided by the TCP/IP
subagent, and support for this data will eventually be removed in a future
release.

If you are using the TCP/IP subagent's OSA management data support, and decide
to switch to using the OSA-Express Direct subagent instead, you no longer need to
start the OSA/SF address space and the OSA IOASNMP application. For more
information about this subagent, see “OSA-Express Direct subagent” on page 1330.
For information on the TCP/IP subagent's dependency on OSA/SF and IOASNMP,
see “Step 4: Configure the Open Systems Adapter support” on page 1353.

The TCP/IP subagent support evolves with each release. New MIB objects might
be supported, and, occasionally, old ones might be removed for functions that are
no longer relevant. This is particularly true for the MIB objects in the IBM MVS
TCP/IP enterprise-specific MIB. This MIB's definition is shipped as file
/usr/lpp/tcpip/samples/mvstcpip.mi2. For details of the changes for each release,
see the REVISION sections of this MIB module file.

The TCP/IP subagent in z/OS Communications Server provides SET support,
enabling remote configuration of some TCP/IP address space parameters. The
TCP/IP subagent is configured and controlled by the SACONFIG statement in the
PROFILE.TCPIP data set. Systems where SNMP support is not required can disable
the subagent and save system resources.

OMPROUTE subagent
The OMPROUTE subagent implements the Open Shortest Path First (OSPF) MIB
variable containing OSPF protocol and state information.

The OMPROUTE subagent supports selected MIB objects defined in RFC 1850.

For a detailed description of the OMPROUTE subagent, see z/OS Communications
Server: IP Configuration Reference.

TN3270E Telnet subagent
The SNMP TN3270E Telnet subagent provides Telnet transaction data for
monitored Telnet connections using the SNMP protocol. For more information
about configuring the TN3270E Telnet subagent, see the TNSACONFIG statement
in z/OS Communications Server: IP Configuration Reference.

Network SLAPM2 subagent
The z/OS Communications Server Network SLAPM2 subagent (nslapm2) enables
network administrators to retrieve data to determine whether the current set of
Network SLAPM2 policy definitions are performing as needed or whether
adjustments need to be made. The Network SLAPM2 subagent supports the
Network Service Level Agreement Performance Monitor (NETWORK-SLAPM2)
MIB. For more information about the Network SLAPM2 MIB, see
usr/lpp/tcpip/samples/slapm2.mi2.

Chapter 25. Simple Network Management Protocol 1329

For a detailed description of the nslapm2 subagent, see the information on Policy
Agent and policy applications in z/OS Communications Server: IP Configuration
Reference.

OSA-Express Direct subagent
The OSA-Express Direct subagent supports management data for OSA-Express
features. The OSA-Express Direct subagent is shipped with the z/OS
Communications Server product, but is supported by the zSeries OSA Support
Group. The MVS started procedure name of this subagent is IOBSNMP.

The TCP/IP subagent also supports management data for OSA-Express features,
but you should use the OSA-Express Direct subagent to obtain this management
data for the following reasons:
v Because the OSA-Express Direct subagent communicates directly with the

OSA-Express features, it does not require the OSA/SF and IOASNMP
applications.

v The OSA-Express Direct subagent provides more OSA management data than
the TCP/IP subagent.

v Because of the support provided by the OSA-Express Direct subagent, there will
be no new enhancements to the OSA management data provided by the TCP/IP
subagent, and support for this data will eventually be removed in a future
release.

If you are using the TCP/IP subagent's OSA management data support, and decide
to switch to using the OSA-Express Direct subagent instead, you no longer need to
start the OSA/SF address space and the OSA IOASNMP application. For
information on the TCP/IP subagent's dependency on OSA/SF and IOASNMP, see
“Step 4: Configure the Open Systems Adapter support” on page 1353. For a
complete understanding of the management data provided by the OSA-Express
Direct subagent, see zEnterprise 196, System z10, System z9 and eServer zSeries
OSA-Express Customer's Guide and Reference.

Key generation commands
The pwtokey and pwchange commands are provided to enable generation and
change of keys used for authentication and encryption with SNMPv3.

For more information about pwtokey, see z/OS Communications Server: IP
Configuration Reference. For information about pwchange, see z/OS Communications
Server: IP System Administrator's Commands.

Distributed Protocol Interface
The DPI is an application interface used by the SNMP agent to communicate with
subagents. With DPI, you can dynamically add, delete or replace management
variables supported by the SNMP agent and its subagents. z/OS Communications
Server provides DPI V2.0 for z/OS UNIX C socket users and DPI V1.1 for
traditional C socket users. DPI V2.0 provides additional function, making it easier
to write subagents and simplifying the task of developing and administering your
application.

For more information about the DPI, see z/OS Communications Server: IP
Programmer's Guide and Reference.

1330 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Trap forwarder daemon
The trap forwarder daemon enables multiple SNMP managers to receive SNMP
traps from the same TCP/IP stack. The trap forwarder daemon listens for traps on
a port, usually the well-known port 162, and forwards the traps to all configured
managers.

For more information about the trap forwarder daemon, see z/OS Communications
Server: IP Configuration Reference.

Processing an SNMP request
Figure 128 illustrates the flow of processing an SNMP request when the request is
for data supported by the TCP/IP subagent.

This list illustrates the sequence of events from the time you issue an SNMP
command until you receive the response:
1. The user issues a NetView SNMP or z/OS UNIX snmp command.
2. The command processor validates and encodes the request in a Protocol Data

Unit (PDU), and sends it to the SNMP agent.
3. The SNMP agent validates the request and, if necessary, sends it to an SNMP

subagent. Requests for agent-oriented objects are handled by the agent and all
others are handled by a subagent. To determine which objects are handled by
the agent and which by a subagent, see the Management Information Base
Appendix in z/OS Communications Server: IP System Administrator's Commands.

4. The agent sends the response to the originator of the request. The command
processor displays the response.

Note: Although not shown in Figure 128, other subagents, such as the
OMPROUTE subagent, the Network SLAPM2 subagent, and the TN3270E
Telnet subagent shipped as part of z/OS Communications Server, also
communicate with the SNMP agent using AF_UNIX socket calls or TCP
socket calls from their own address spaces.

The SNMP agent and the SNMP subagents record trace information via the z/OS
UNIX syslog daemon using the daemon facility. For detailed information regarding

Figure 128. Overview of SNMP support

Chapter 25. Simple Network Management Protocol 1331

|
|
|
|

syslogd and specifying the daemon facility in the /etc/syslog.conf configuration
file, see “Logging of system messages” on page 34.

Deciding on SNMP security needs
The SNMP agent supports SNMPv1, SNMPv2c, and SNMPv3 security.

Community-based security
SNMPv1 and SNMPv2c are community-based security, where a community name
(or password) is passed with a request. If the community name is recognized as
one that can be used by the IP address from which the request originates, the
SNMP agent processes the request.

User-based security
SNMPv3 provides a more powerful and flexible framework for message security
and access control. Message security involves providing:
v Data integrity checking, to ensure that the data was not altered in transit
v Data origin verification, to ensure that the request or response originates from

the source from which it claims to have come
v Message timeliness checking and, optionally, data confidentiality, to protect

against eavesdropping

Access control is the ability to control exactly what data an individual user can
read or write.

The SNMPv3 architecture introduces the User-Based Security Model (USM) for
message security and the View-Based Access Control Model (VACM) for access
control. The architecture supports the concurrent use of different security, access
control, and message processing models. For example, community-based security
can be used concurrently with USM.

USM uses the concept of a user for which security parameters (levels of security,
authentication and privacy protocols, and keys) are configured at both the agent
and the manager. Messages sent using USM are better protected than messages
sent with community-based security, where passwords are sent in the clear and
displayed in traces. With USM, messages exchanged between the manager and the
agent have data integrity checking and data origin authentication. Message delays
and message replays (beyond what happens normally due to a connectionless
transport protocol) are protected against with the use of time indicators and
request IDs. Data confidentiality, or encryption, is also available.

The use of VACM involves defining collections of data (called views), groups of
users of the data, and access statements that define which views a particular group
of users can use for reading, writing, or receipt in a notification.

The SNMP agent can be configured to use USM and VACM by specifying
SNMPD.CONF information. SNMPv3 also introduces the ability to dynamically
configure the SNMP agent using SNMP SET commands against the MIB objects
that represent the agent's configuration. These MIB objects are defined in RFC 3584
and RFC 3411 through 3415. This dynamic configuration support enables addition,
deletion, and modification of configuration entries either locally or remotely.
Remote modification of user keys can be especially useful.

Decide on your security needs—community-based or user-based.

1332 z/OS V1R12.0 Comm Svr: IP Configuration Guide

If you are satisfied with the security of your existing configuration, you can
continue to use community-based security with no migration. If you would like to
take advantage of USM or VACM, or if you have some SNMP managers that use
SNMPv3, you will need to migrate your configuration. Note that USM can be used
only when both the SNMP agent and the manager requesting the data support
USM, as the z/OS Communications Server SNMP agent and the snmp command
do. VACM can be used even for community-based requests, but doing so requires
migration of existing community name and trap destination definitions in PW.SRC
and SNMPTRAP.DEST to SNMPD.CONF.

Even if your managers continue to be community-based, there are important
advantages to migrating your PW.SRC information to SNMPD.CONF format:
v Enables users to make use of the access control mechanism provided with

SNMPv3 with community-based security.
v Provides the ability to dynamically configure the z/OS SNMP agent using MIBs.
v Provides a way of easing into SNMPv3 user-based security.
v Does not require any changes to the manager configuration.

Following is a list of the advantages and disadvantages of using each type of
security.

Table 66. Security advantages and disadvantages

SNMPv1/SNMPv2c advantages SNMPv3 disadvantages

Widely implemented on many platforms. Not yet implemented on many platforms.

Easy to configure. More robust configuration options.

SNMPv1/SNMPv2c disadvantages SNMPv3 advantages

Legacy standards-based administrative
model.

New standards-based administrative model.

SNMPv1 and SNMPv2c allow particular IP
addresses to access all data or no data.

SNMPv3 allows a particular user to access
particular data.

Not very robust (password sent in PDU). Robust (data integrity and data origin
authentication).

Any user that can read data can also change
the data (for objects defined as read-write).

The ability to change data can be limited to
specific users.

No data confidentiality. Encryption available.

Configuration changes require restarting of
SNMP agent.

Configuration changes for USM and VACM
can be made dynamically, either locally or
remotely.

For more information about security, see “Creating user keys” on page 1340.

Chapter 25. Simple Network Management Protocol 1333

Step 1: Configure the SNMP agent

Configure the SNMP agent (OSNMPD) based upon your security need. The SNMP
agent accepts both SNMPv1 and SNMPv2c requests for community-based security.
The SNMP agent can be configured to also use the User-based Security Model and
the View-based Access Control Model. You should assign the SNMP agent and all
the SNMP subagents to the same WLM service class so that they all have the same
dispatching priority. Timeouts can occur if the SNMP subagents are set to a lower
dispatching priority than the SNMP agent.

To configure the SNMP agent, perform the following tasks:
v “Provide TCP/IP profile statements”
v Depending upon whether you want to use USM and VACM, do one of the

following:
– If you are using community-based security and do not need USM or VACM,

see “Provide community-based security and notification destination
information” on page 1336.

– If you want the flexibility of using USM or VACM or community-based
security, see “Provide community-based and user-based security and
notification destination information” on page 1338.

v “Provide MIB object configuration information” on page 1343
v See z/OS Communications Server: IP Configuration Reference for more information

about OSNMPD parameters.

Provide TCP/IP profile statements
Update the following configuration statements in hlq.PROFILE.TCPIP:

AUTOLOG
PORT

SNMP agent
(OSNMPD)

PW.SRC

OSNMPD.DATA

SNMPTRAP.DEST

SNMPD.CONF SNMPD.BOOTS

OR

and

and

For community based security
(SNMPV1 and SNMPV2C)

For community-based and/or
user-based security

(SNMPV1, SNMPV2C)and/or SNMPV3

Figure 129. Configuration files for SNMP agent

1334 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|

There are two primary TCP/IP ports used by the SNMP agent, one for receiving
incoming requests and one for sending traps to managers.

The default port used by the SNMP agent to receive incoming requests is 161. If
you want the agent to use port 161 for this purpose and want to insure that no
other application uses this port, you must specify the following PORT statement in
your profile data set:
PORT

161 UDP OSNMPD ; SNMP Agent port for SNMP requests

If the agent will be started from the z/OS shell, reserve the port instead for z/OS
UNIX by typing OMVS instead of OSNMPD.

If you want to define a port other than 161 for SNMP requests, you must do the
following:
1. Start the agent with the -p parameter.
2. Configure management applications to use the new port:

v For the snmp command, make an entry in the OSNMP.CONF file with the
correct port number. For details on creating this entry, see the description for
targetAgent in the OSNMP.CONF statement in the z/OS Communications
Server: IP Configuration Reference.

v Where supported, configure other management applications to use the new
port.

3. Configure subagents to use the new port:
a. Specify the port number to use on the SACONFIG profile statement for the

TCP/IP subagent.
b. Specify the port number to use on the ROUTESA_CONFIG profile

statement for the OMPROUTE subagent.
c. Specify the port number to use on the -p parameter when starting the

Network SLAPM2 subagent.
d. Specify the port number to use on the TNSACONFIG profile statement for

the TN3270E Telnet subagent.
e. If you are using DPI subagents other than those supplied with z/OS

Communications Server, set the SNMP_PORT environment variable to
enable user-written subagents to connect to the agent.

The SNMP agent uses port 162, by default, for sending traps to the managers
specified in SNMPTRAP.DEST or SNMPD.CONF file. Port 162 should be reserved
for the management application primarily responsible for trap processing. If your
environment requires multiple management applications at the same IP address to
receive traps, consider using the Trap Forwarder Daemon. See “Step 5: Configure
the trap forwarder daemon” on page 1357 for more details. If the SNMP query
engine is typically used for processing traps and other applications, such as snmp,
that are only occasionally used, the following port reservations are recommended.
PORT

162 UDP SNMPQE ; SNMPQuery Engine

You must also reserve additional ports for use by the snmp command by
specifying
nnnnn UDP OMVS

where nnnnn is a number in the range 0–65535 and nnnnn is used as the -p
parameter value on the snmp trap command.

Chapter 25. Simple Network Management Protocol 1335

If you want the SNMPQE and OSNMPD address spaces to be started automatically
when the TCPIP address space is started, then include SNMPQE and OSNMPD in
the AUTOLOG statement:
AUTOLOG

SNMPQE ; SNMP Query Engine
OSNMPD ; SNMP Agent

ENDAUTOLOG

Provide community-based security and notification
destination information

If you are using only community-based security without the view-based access
control model, see the following subtopics to configure the security and trap
destinations.

Provide community name information
SNMP agents are accessed by remote network management stations and by SNMP
subagents. To allow network management stations to send inquiries to the SNMP
agent, and SNMP subagents to connect to the SNMP agent, you can provide
PW.SRC information that defines a list of community names and IP addresses that
can use these community names. The community name operates as a password
when accessing objects on, or connecting to, a destination SNMP agent. The
subagents pass the community name to the agent on the connect request.

All of the z/OS Communications Server SNMP subagents connect to the agent
using the IPv4 primary interface IP address of the stack with which the subagent is
associated, and a community name. As long as SOURCEVIPA is not in effect on
the IPCONFIG profile statement, this IP address is the source IP address that the
agent uses, along with the community name, to verify the subagent's authority to
connect to the SNMP agent. The IPv4 primary interface IP address is either the first
IP address in the HOME list or the IP address specified on a
PRIMARYINTERFACE TCP/IP profile statement. If SOURCEVIPA is in effect, the
IP address used by the agent to verify the subagent's authority is the virtual IP
address associated with the IPv4 primary interface IP address. For information on
determining which virtual IPv4 address is associated with a physical IPv4 address,
see the HOME statement in z/OS Communications Server: IP Configuration Reference.
Check the Netstat HOME/-h output to verify the IPv4 primary interface address of
the stack.

The PW.SRC information is optional. If no PW.SRC information is found and no
community name is specified for the -c parameter at agent invocation, then the
SNMP agent will accept requests with a community name of 'public' from any IP
address. If a PW.SRC file exists, but is empty, and if no community name is
specified on the -c parameter at the agent invocation, then no requests will be
accepted by the agent.

Note: Verify that there is no SNMPD.CONF file because this file can only be used
with SNMPv3. If an SNMPD.CONF file is found, the PW.SRC file will not be
used.

If creating a data set, you can specify a sequential data set with the following
attributes: RECFM=FB, LRECL=80, and BLKSZ=3120. Other data set attributes
might also work, depending on your installation parameters.

PW.SRC example: The PW.SRC statements could be specified as follows:

1336 z/OS V1R12.0 Comm Svr: IP Configuration Guide

passwd1 9.0.0.0 255.0.0.0
passwd2 129.34.81.22 255.255.255.255
IPv6passwd3 12ab::0 16
IPv6passwd4 39B3::F430:03EE 128

The PW.SRC statements specify community names and hosts that can use each
community name. The format of a statement is:

community_name desired_network snmp_mask

See z/OS Communications Server: IP Configuration Reference for more information
about syntax.

The community name of an incoming SNMP request is compared to the known
community names. If a match is found, then the IP address of the incoming
request is logically ANDed with the snmp_mask of the PW.SRC statement. The
result of the logical ANDing process is compared with the desired_network. If they
match, the request is accepted.

In the case of a password definition to be used by an IPv6 address or range of
IPv6 addresses, the snmp_mask can be specified as a prefix value. The prefix
specifies the number of bits to be used to construct an IPv6 address mask.

In the preceding example, if a request for community_name passwd1 is received from
the IP address 9.34.22.122, IP address 9.34.22.122 is ANDed with 255.0.0.0. The
result is 9.0.0.0, which equals the specified desired_network for passwd1, so this
request is accepted. In passwd2, if the community_names match, only requests from
host 129.34.81.22 are accepted. The password IPv6passwd3 can be used by any IPv6
address that starts with 12ab.

If the community_name values do not match, or the IP address ANDed with the
snmp_mask does not match, an AUTHENTICATION_FAILURE trap is sent if both of the
following are true:
v A destination entry exists in SNMPTRAP.DEST.
v Authentication failure traps have been enabled. These traps are enabled by

either setting MIB object snmpEnableAuthenTraps.0 to 1, or specifying the
following statement in the OSNMPD.DATA configuration information:
snmpEnableAuthenTraps 1

A desired_network and snmp_mask of all zeros allows anyone with the correct
community_name to make requests. However, the passwords for IPv4 addresses and
the passwords for IPv6 addresses are stored and handled separately. Defining a
password for use by both IPv4 and IPv6 addresses requires two entries in PW.SRC.
Likewise, defining a password to be used by all addresses (both IPv4 and IPv6)
requires two entries as follows:
passwd5 0.0.0.0 0.0.0.0
passwd5 0::0 0

Note: By default, the SNMP agent and the snmp command send packets such that
a VIPA address will be used as the originating address in the packet, if
SOURCEVIPA is configured. This is a change introduced in V2R10;
previously, the SNMP agent and the snmp command set a socket option to
cause the physical interface addresses to be used as the originating
addresses on packets they sent. That meant the PW.SRC file had to contain
all of the possible physical interface addresses that might be used, rather
than a smaller number of VIPA addresses. A customer can override this

Chapter 25. Simple Network Management Protocol 1337

change in behavior, if desired. This can be done for the SNMP agent by
invoking it with the -a option. Similarly, you can do the same for the UNIX
snmp command by either invoking it from the command line with the -a
option, or by coding NOSVIPA in the command's OSNMP.CONF
configuration file.

Provide trap destination information
Traps are unsolicited messages that are sent by an SNMP agent to an SNMP
network management station. An SNMP trap contains information about a
significant network event. The management application running at the
management station interprets the trap information sent by the SNMP agent.

Note: When the SNMP agent starts, it retrieves an IP address for itself. If it
retrieves an IPv6 colon-hexadecimal address, when it sends traps the source
IP address in each trap will be 0.0.0.0.

For a detailed description of the SNMP trap types provided by z/OS CS, see z/OS
Communications Server: IP System Administrator's Commands.

The SNMP agent Distributed Protocol Interface allows subagents other than those
shipped with z/OS Communications Server (which might be running on another
host) to generate SNMP traps. This can allow for support of other types of traps.
For more information about SNMP DPI, see the z/OS Communications Server: IP
Programmer's Guide and Reference.

To use traps, you must provide SNMPTRAP.DEST information defining a list of
managers to which traps are sent. The SNMPTRAP.DEST information is optional. If
no trap destination file is found, then the SNMP agent sends traps to the IP
address of the SNMP agent and issues a warning message indicating that defaults
are in effect. If a trap destination file exists, but is empty, no traps are sent.

Note: Verify that there is no SNMPD.CONF file. If an SNMPD.CONF file is found,
the SNMPTRAP.DEST file will not be used.

If creating a data set, you can specify a sequential data set with the following
attributes: RECFM=FB, LRECL=80, and BLKSZ=3120. Other data set attributes
might also work, depending on your installation parameters.

SNMPTRAP.DEST example: The SNMPTRAP.DEST statements could be specified
as follows:
SNMP Trap Destination information
124.34.216.1 UDP
39B3::F430:03EE UDP
MVSSYS2 UDP

See z/OS Communications Server: IP Configuration Reference for more information
about syntax.

Provide community-based and user-based security and
notification destination information

If you want to use user-based security, either concurrently with or instead of
community-based security, you must configure security definitions and notification
destinations. To allow SNMP subagents to connect to the SNMP agent using
user-based security, you must configure community-based security definitions. The

1338 z/OS V1R12.0 Comm Svr: IP Configuration Guide

SNMP subagents pass the community name to the agent on the connect request.
The community name operates as a password when the SNMP subagents connect
to the SNMP agent.

All of the z/OS Communications Server SNMP subagents connect to the agent
using the IPv4 primary interface IP address of the stack with which the subagent is
associated, and a community name. As long as SOURCEVIPA is not in effect on
the IPCONFIG profile statement, this IP address is the source IP address that the
agent uses, along with the community name, to verify the subagent's authority to
connect to the SNMP agent. The IPv4 primary interface IP address is either the first
IP address in the HOME list or the IP address specified on a
PRIMARYINTERFACE TCP/IP profile statement. If SOURCEVIPA is in effect, the
IP address used by the agent to verify the subagent's authority is the virtual IP
address associated with the IPv4 primary interface IP address. For information on
determining which virtual IPv4 address is associated with a physical IPv4 address,
see the HOME statement in z/OS Communications Server: IP Configuration Reference.
Check the Netstat HOME/-h output to verify the IPv4 primary interface address of
the stack.

SNMPv3 provides the ability to configure the agent dynamically, from either a
local or remote host, and to make changes in the configuration while the SNMP
agent is running. Doing SNMP agent configuration dynamically requires a good
understanding of how the SNMP SET commands can be issued to create new rows
or to change or delete existing rows, as well as familiarity with the SNMP engine
configuration tables defined in RFCs 3584 and 3411 through 3415. For information
about accessing RFCs, see Appendix G, “Related protocol specifications,” on page
1555.

As an alternative to dynamically configuring the SNMP agent, z/OS
Communications Server supports a configuration file to be read at agent
initialization called the SNMPD.CONF file. Dynamic configuration changes made
with SNMP SET commands to the SNMP agent configuration entries will be
written out to the SNMPD.CONF file, so they will continue to be in effect even
after the SNMP agent is restarted.

SNMPD.CONF file
The SNMPD.CONF file defines the SNMP agent security and notification
destinations. If the SNMPD.CONF file exists, the agent can support SNMPv1,
SNMPv2c, and SNMPv3 requests. If no SNMPD.CONF file exists, the agent will
support only SNMPv1 and SNMPv2c requests.

Note: If the SNMPD.CONF file is found, the PW.SRC file and the
SNMPTRAP.DEST files are not used.

SNMPD.CONF dynamic configuration: If the SNMPD.CONF information is
located in an MVS data set rather than a z/OS UNIX file, special considerations
must be made to support dynamic configuration changes to the SNMP agent's
configuration. If dynamic configuration changes are made, the file is rewritten to
reflect the changes. Therefore, consider the following when allocating the
SNMPD.CONF file to an MVS data set:
v The record length (LRECL) should be 512 bytes to accommodate the longest

possible entry.
v The use of a member of a partitioned data set is tolerated but not recommended.

Because the file might be rewritten often, frequent compression of the
partitioned data set may become necessary. In addition, locking on the file is
done at the data set level, not at the member level, so other members of the

Chapter 25. Simple Network Management Protocol 1339

partitioned data set would not be usable while the SNMP agent was running
(once a dynamic configuration change had been made).

SNMPD.CONF example: A sample SNMPD.CONF file is shipped as
/usr/lpp/tcpip/samples/snmpd.conf.

See z/OS Communications Server: IP Configuration Reference for more information
about syntax.

The sample OSNMP.CONF file used by the snmp command contains entries that
match the sample SNMPD.CONF data set. See “Configure the z/OS UNIX snmp
command” on page 1346 for additional information on configuring the snmp
command.

Note: By default, the SNMP agent and the snmp command send packets such that
a VIPA address will be used as the originating address in the packet, if
SOURCEVIPA is configured. This is a change introduced in V2R10;
previously, the SNMP agent and the snmp command set a socket option to
cause the physical interface addresses to be used as the originating
addresses on packets they sent. That meant the SNMPD.CONF file had to
contain all of the possible physical interface addresses that might be used,
rather than a smaller number of VIPA addresses. A customer can override
this change in behavior, if desired, by invoking the SNMP agent with the -a
option or by using either the -a option or the NOSVIPA option in the snmp
command's OSNMP.CONF configuration file.

SNMPD.BOOTS
The SNMP agent uses the SNMPD.BOOTS configuration file to support SNMPv3
security. This file contains agent information used to authenticate the SNMPv3
requests. The SNMPD.BOOTS keeps the agent identifier and the number of times
the agent reboots. If no SNMPD.BOOTS file exists when the agent is started, the
agent creates one. You may want to add comments to the beginning of this file. If a
file does exist, the agent uses the values specified in the file for setting its engineID
and engineBoots values. If the file exists but contains incorrect values for engineID
or engineBoots, the agent issues a message and terminates.

Notes:

1. The recommended approach is to allow the SNMP agent to create the file.
2. If the SNMPD.BOOTS file is not provided, the SNMP agent creates the file. If

multiple SNMPv3 agents are running on the same MVS image, use the
environment variable to specify different SNMPD.BOOTS files for the different
agents. For security reasons, ensure unique engineIDs are used for different
SNMP agents.

Creating user keys
Authentication

Authentication is generally required for SNMPv3 requests to be processed (unless
the security level requested is 'noAuth'). When authenticating a request, the SNMP
agent verifies that the authentication key sent in an SNMPv3 request can be used
to create a message digest that matches the message digest created from the
authentication key defined for the user.

1340 z/OS V1R12.0 Comm Svr: IP Configuration Guide

The snmp command uses the authentication key found on an entry in the
OSNMP.CONF configuration file. It needs to correlate with the authentication key
specified on a USM_USER entry for that user in the agent's SNMPD.CONF
configuration file.

As an alternative to storing authentication keys in the client configuration file, the
snmp command allows user passwords to be stored. If the snmp command is
configured with a password, the code generates an authentication key (and privacy
key if requested) for the user. These keys must, of course, produce the same
authentication values as the keys configured for the USM_USER in the agent's
SNMPD.CONF file or configured dynamically with SNMP SET commands.
However, the use of passwords in the client configuration file is considered less
secure than the use of keys in the configuration file.

The authentication key is generated from two pieces of information:
v The specified password.
v The identification of the SNMP agent at which the key will be used. If the agent

is an IBM agent and its engineID was generated using the vendor-specific
engineID formula, the agent may be identified by IP address or host name.
Otherwise, the engineID must be provided as the agent identification.

A key that incorporates the identification of the agent at which it will be used is
called a localized key. It can be used only at that agent. A key that does not
incorporate the engineID of the agent at which it will be used is called
nonlocalized.

Keys stored in the snmp command's configuration file, OSNMP.CONF, are
expected to be nonlocalized keys. Keys stored in the SNMP agent's configuration
file, SNMPD.CONF, can be either localized or nonlocalized, though the use of
localized keys is considered more secure.

Encryption

Keys used for encryption are generated using the same algorithms as those used
for authentication. However, key lengths might differ. For example, an
HMAC-SHA authentication key is 20 bytes long, but a localized encryption key
used with HMAC-SHA is only 16 bytes long. The SNMP agent, z/OS UNIX snmp
command, and the SNMP manager API use the first 16 bytes of the HMAC-SHA
authentication key as the localized encryption key (also called the privacy key).

z/OS Communications Server provides a facility called pwtokey that enables
conversion of passwords into localized and nonlocalized authentication and
privacy keys. The pwtokey procedure takes as input a password and an identifier
of the agent and generates authentication and privacy keys. Since the procedure
used by the pwtokey facility is the same algorithm used by the snmp command,
the person configuring the SNMP agent can generate appropriate authentication
and privacy keys to put in the SNMPD.CONF file for a user, given a particular
password and the IP address at which the agent will run.

Use the pwtokey command to convert passwords into authentication and privacy
keys. See z/OS Communications Server: IP System Administrator's Commands.

Chapter 25. Simple Network Management Protocol 1341

|

|
|
|

Migrating community-based configuration to SNMPD.CONF
format

If you want to continue to use community-based security but take advantage of
some of the new SNMPv3 functions, or if you want to use the new SNMPv3
user-based security along with community-based security, you need to migrate
your current configuration, defined in PW.SRC and SNMPTRAP.DEST, to
SNMPD.CONF format. For information about the necessary steps for migrating
PW.SRC and SNMPTRAP.DEST to SNMPD.CONF, see z/OS Communications Server:
IP Configuration Reference.

Provide secure access to agent from subagents
An SNMP subagent can connect to the z/OS Communications Server SNMP agent
by using the DPI API (the DPI API is documented in z/OS Communications Server:
IP Programmer's Guide and Reference) and specifying either a z/OS UNIX or a TCP
connection. You can control access to the agent from subagents for both types of
connections.

Connecting to the agent through z/OS UNIX
For subagents that specify a z/OS UNIX connection to the agent, a z/OS UNIX
path name is used for the connection. You can configure this path name by either
specifying it on the -s agent initialization parameter or specifying it as the value of
the dpiPathNameForUnixStream MIB object in OSNMPD.DATA. The default path
name is /var/dpi_socket.

The SNMP agent creates this path name every time it initializes. For subagents to
successfully connect to the agent using this path name, either the subagents must
be defined with superuser authority or the read and write file access permission
bits for the path name must be set as follows:
v If the user ID of a subagent is associated with the same security product group

as the agent, read and write access must be set in the Group section of the file
access permission bits.

v If the user ID of a subagent is not associated with the same security product
group as the agent, read and write access must be set in the Other section of the
file access permission bits.

You can configure the read and write access by specifying the -C agent
initialization parameter.

For more detailed information about file access permission bits and handling
security for your files, see z/OS UNIX System Services User's Guide. If you need to
change the file access permission bits for the path name after the agent has
initialized, you can use the z/OS UNIX chmod command. For more information
about the chmod command, see z/OS UNIX System Services Command Reference.

Connecting to the agent through TCP
For subagents specifying a TCP connection, you can use the installation's
SAF-compliant security product [such as the z/OS Security Server (RACF)] to
control which of the SNMP subagents are permitted to connect to the SNMP agent.
One security product resource name can be created per TCP/IP stack per MVS
image. The security product resource name is specified in the following format:
EZB.SNMPAGENT.sysname.tcpprocname

where sysname is the name of the MVS system image and tcpprocname is the
TCP/IP started procedure name.

1342 z/OS V1R12.0 Comm Svr: IP Configuration Guide

The profile must be created under the SERVAUTH class. After creating the profiles,
use the security product to define the user IDs of those subagents which should be
permitted to connect via TCP to the SNMP Agent. Authorization failures are
documented by security product failure messages and SNMP agent traces.

Note: If you use this authorization function, only SNMP subagents which are
associated with the same TCP/IP stack as the SNMP agent will be permitted
to connect to the agent. Local SNMP subagents associated with other
TCP/IP stacks, or remote SNMP subagents, will not be permitted to connect.
Also, any subagents which connected to the SNMP agent before the agent
security product resource name was created will not have been authorized
via the security product.

You can use the control statements in the sample JCL job provided in
SEZAINST(EZARACF) to define this authorization. For example, if you wanted to
permit any SNMP subagents associated with a user ID of USER2 to connect to the
SNMP agent you could use the following definitions:
RDEFINE SERVAUTH EZB.SNMPAGENT.MVSA.TCP1 UACC(NONE)
PERMIT EZB.SNMPAGENT.MVSA.TCP1 ACCESS(READ) CLASS(SERVAUTH) ID(USER2)

Allowing subagents with duplicate identifiers to connect
When an SNMP subagent connects to the SNMP agent, an SNMP object identifier
(OID) value is used as the subagent identifier. For subagents connecting using the
DPI V2.0 API, the subagent supplies its OID during the connection process. All the
Communications Server subagents use the DPI V2.0 API when connecting to the
agent.

For subagents connecting using the DPI V1.1 API, the agent assigns a constant OID
value to the subagent. Therefore, if more than one DPI V1.1 subagent connects to
the agent, all the DPI V1.1 subagents are identified with the same OID value.

The SUBAGENT-MIB, supported by the SNMP agent, defines the MIB object,
saAllowDuplicateIDs, that can be used to configure whether the agent should
allow subagents with duplicate OID values to connect. By default, the SNMP agent
sets the value of this object to 1, which allows subagents with duplicate OID
values to connect. You can configure the value of this MIB object using the
OSNMPD.DATA configuration file. For more information about this file, see
“Provide MIB object configuration information.” If you do not want the agent to
allow subagents with duplicate OID values to connect, set the value of this MIB
object to 2.

Provide MIB object configuration information
An installation can set values for selected MIB objects by providing
OSNMPD.DATA information. A sample of OSNMP.DATA is installed as file
/usr/lpp/tcpip/samples/osnmpd.data. See z/OS Communications Server: IP
Configuration Reference for syntax information. If no OSNMPD.DATA file is found,
the defaults for these MIB objects are as follows:

Object Default

dpiPathNameForUnixStream The default is /var/dpi_socket. This is the z/OS
UNIX path name that is used in accepting requests
from subagents that communicate with the agent
over z/OS UNIX connections.

Chapter 25. Simple Network Management Protocol 1343

The SNMP agent creates this path name every time
it initializes. For subagents to successfully connect
to the agent using this path name, either the
subagents must be defined with superuser
authority or the read and write file access
permission bits for the path name must be set as
follows:
v If the user ID of a subagent is associated with

the same security product group as the agent,
read and write access must be set in the Group
section of the file access permission bits.

v If the user ID of a subagent is not associated
with the same security product group as the
agent, read and write access must be set in the
Other section of the file access permission bits.

You can configure the read and write access by
specifying the -C agent initialization parameter.

For more detailed information about file access
permission bits and handling security for your
files, see z/OS UNIX System Services User's Guide. If
you need to change the file access permission bits
for this path name after the agent has initialized,
you can use the z/OS UNIX chmod command. For
more information about the chmod command, see
z/OS UNIX System Services Command Reference.

sysDescr If the environment variable HOSTNAME exists, its
value is used. Otherwise, the default value
identifies the z/OS system under which the agent
is running. The maximum length of this object is
255 octets.

sysContact "SNMPBASE-Unspecified". The maximum length of
this object is 255 octets.

sysLocation "SNMPBASE-Unspecified". The maximum length of
this object is 255 octets.

sysName "SNMPBASE-Unspecified". The maximum length of
this object is 255 octets.

sysObjectId 1.3.6.1.4.1.2.3.13

Note: sysObjectID is defined as the vendor's
authoritative identification of the network
management subsystem contained in the
entity. That is, it is intended to uniquely
identify the SNMP agent. Changing this
value is not recommended and will be
disabled in a subsequent release.

sysServices A single octet with a default of 0. See the RFC 1907
description for this object.

snmpEnableAuthenTraps Default value is 2, which means traps are disabled.

saDefaultTimeout 5 seconds.

saMaxTimeOut 600 seconds.

1344 z/OS V1R12.0 Comm Svr: IP Configuration Guide

saAllowDuplicateIDs Default is 1, which means multiple instances of a
subagent (that is, where the subagent identifier for
all the subagents is the same) are allowed to
connect to the SNMP agent. To prevent multiple
instances of a subagent from connecting to the
SNMP agent, set the value to 2.

Note: Because a subagent identifier cannot be
specified for subagents connecting using the
DPI V1.1 API, the SNMP agent assigns the
same constant identifier for all DPI V1.1
subagents. Therefore, this object must be set
to 1 to allow multiple DPI V1.1 subagents to
run concurrently. For more information
about subagent identifiers, see “Allowing
subagents with duplicate identifiers to
connect” on page 1343.

For information about where these MIB objects are defined, see z/OS
Communications Server: IP User's Guide and Commands.

If creating a data set, you can specify a sequential data set with the following
attributes: RECFM=FB, LRECL=80, and BLKSZ=3120. Other data set attributes
might also work, depending on your installation parameters.

Start the SNMP agent
The SNMP agent (OSNMPD) runs in a separate address space that executes load
module EZASNMPD. OSNMPD can be started with or without parameters. When
starting OSNMPD from MVS, add the parameters to the PARMS= keyword on the
EXEC statement of the OSNMPD cataloged procedure. When starting OSNMPD
from z/OS UNIX, specify the desired parameters on the osnmpd command. See
z/OS Communications Server: IP Configuration Reference for the command syntax.

If the SNMP agent encounters any errors processing its configuration files, error
messages are written to the syslog daemon, not to the console.

Sample JCL procedure for starting OSNMPD from MVS
Update cataloged procedure OSNMPD by copying the sample in
SEZAINST(OSNMPDPR) to your system or recognized PROCLIB. Change the data
set names as required to suit your local configuration. The OSNMPD address space
requires access to the z/OS XL C/C++ run-time library data sets during execution.

You can pass parameters to the agent on the PARMS= keyword on the EXEC
statement of the OSNMPD cataloged procedure. See z/OS Communications Server: IP
Configuration Reference for the command syntax and parameter information. You
can specify any agent parameters that you want, as shown in the following
example:
//OSNMPD EXEC PGM=EZASNMPD,REGION=4096K,TIME=NOLIMIT,
// PARM=’-c abc -d 255 -p 761’

In this example, the agent will use port 761 to accept requests, community name
abc will be added to the list of community names supported by the agent, and all
agent traces will be activated. For more information on tracing, see the z/OS
Communications Server: IP Diagnosis Guide.

Chapter 25. Simple Network Management Protocol 1345

|

|
|
|

|

|

Starting OSNMPD from z/OS UNIX
To run the SNMP agent in background, you must add an ampersand (&) to the
command and the issuer of the command must be in z/OS UNIX superuser mode.
For a detailed explanation of the osnmpd parameters, see z/OS Communications
Server: IP Configuration Reference.

Any agent parameters you wish to specify may be added as shown in the
following example:
osnmpd -c abc -d 255 -p 761

In this example, the agent will use port 761 to accept requests, community name
'abc' will be added to the list of community names supported by the agent, and all
agent traces will be activated. For more information on tracing, see z/OS
Communications Server: IP Diagnosis Guide.

Step 2: Configure the SNMP commands
The two SNMP client applications provided with z/OS Communications Server
are:
v snmp command in the z/OS shell
v SNMP command from the NetView environment

The SNMP command in the NetView environment requires the use of the NetView
product. It supports SNMP version 1. The snmp command in the z/OS shell
supports SNMP versions 1, 2, and 3. Depending on your requirements, you might
decide to configure either or both of these clients, or to use an SNMP client on
another platform.

Configure the z/OS UNIX snmp command

The z/OS UNIX snmp command is used to send SNMP requests to SNMP agents
on local or remote hosts, or to receive SNMP traps or notifications. You can also
use the synonym, osnmp, as the name of this command. The requests can be
SNMPv1, SNMPv2c, or SNMPv3. For SNMPv2c and SNMPv3 requests, the
OSNMP.CONF configuration file is required. The winSNMPname specified on an
OSNMP.CONF statement can be used as the value of the -h parameter on the

osnmp

OSNMP.CONF

MIBS.DATA

Figure 130. Configuration files for snmp

1346 z/OS V1R12.0 Comm Svr: IP Configuration Guide

snmp command. For a detailed explanation of the parameters you can specify on
the snmp command, see z/OS Communications Server: IP System Administrator's
Commands.

To configure the snmp command, perform the following tasks:
v The snmp command needs to be able to resolve the name of the host, on which

the command is executing, to the host's IP address. You can provide this
information either by configuring a domain name server or by configuring local
host files. For information about the search order used to locate local host files,
see the local host tables entry in Table 37 on page 760. As part of its support for
the SNMPv3 protocol, the command also uses this IP address when creating its
SNMPv3 engineID value.

v Provide snmp configuration information
v Provide user MIB object information

Provide snmp configuration information
The OSNMP.CONF file is used to define target agents and, for SNMPv3, the
security parameters to be used in sending requests to them.

The contents of the file, regardless of location, are the same. Only the first file
found is used. A sample of this file is installed as file /usr/lpp/tcpip/samples/
snmpv2.conf. This sample should be copied and modified for your installation. See
z/OS Communications Server: IP Configuration Reference for more information.

Examples:

v Example 1:
The following entry defines an SNMPv2c node for snmp:
mvs1 9.67.113.79 snmpv2c

where mvs1 is the name used with the -h parameter on the snmp command and
9.67.113.79 is the IP address of the SNMPv2c agent.

v Example 2:
The following entry defines an SNMPv3 node:
v3mak 127.0.0.1 snmpv3 u1 - - AuthNoPriv HMAC-MD5 7a3e34265e0e029f27d8b4235ecfa987 - -

where v3mak is the name used on the -h parameter of the snmp command. An
SNMP request sent using this entry uses USM user name u1 using HMAC-MD5
authentication but no encryption.

v Example 3:
The following entry defines an SNMPv3 node. The needed authentication and
privacy keys will be generated from the password u6password.
v3sap 127.0.0.1 snmpv3 u6 u6password - AuthNoPriv HMAC-SHA - - -

The USM user is u6. The authentication protocol is HMAC-SHA, and no
encryption is used.

v Example 4:
The following entry defines an SNMPv3 node:
v3mpk_ipv6 ::1 snmpv3 u1 - - AuthPriv HMAC-MD5 7a3e34265e0e029f27d8b4235ecfa987 DES eac02a0d9fe90eca7911fdcaba20deae

where v3mpk_ipv6 is the name used on the -h parameter of the snmp command.
An SNMP request sent using this entry uses USM user name u1 using
HMAC-MD5 authentication and CBC 56-bit DES encryption.

Chapter 25. Simple Network Management Protocol 1347

Provide MIB object information in MIBS.DATA
Like other SNMP managers, when you enter the z/OS UNIX snmp command you
can specify the object identifier (OID) of the MIB object whose value you want to
retrieve. If the MIB object is supported by one of Communication Server's SNMP
functions, you can also use the MIB object textual name on the z/OS UNIX snmp
command, instead of the object identifier. All the MIB objects supported by
Communications Server functions are listed in the MIB objects appendix in z/OS
Communications Server: IP System Administrator's Commands.

For example, to retrieve the SNMP agent sysUpTime MIB object, you can enter
either of the following commands:
v snmp -v get sysUpTime.0

sysUpTime.0 = 289700
v snmp -v get 1.3.6.1.2.1.1.3.0

sysUpTime.0 = 292700

The 1.3.6.1.2.1.1.3 value is the OID for the sysUpTime MIB object.

If you have user-defined MIB objects or MIB objects from other products, and you
want to use the textual names for these MIB objects on the z/OS UNIX snmp
command, you can define these objects to the snmp command using the
MIBS.DATA file. A sample of the MIBS.DATA file is installed as file
/usr/lpp/tcpip/samples/mibs.data. Copy this sample and modify it for your
installation. For the search order used to locate the MIBS.DATA file, see
“Understanding search orders of configuration information” on page 19.

If other products provide files using MIBS.DATA syntax, append the statements
from their files to your MIBS.DATA file so that these statements are accessible to
the snmp command. For example, the IBM OSA-Express Direct subagent provides
a file in MIBS.DATA syntax so that the textual names of its OSA-Express
management data can be used with the z/OS UNIX snmp command. For
information about how to obtain this file, see zEnterprise 196, System z10, System z9
and eServer zSeries OSA-Express Customer's Guide and Reference.

MIBS.DATA statement syntax
The format of a statement in the MIBS.DATA file is:
character_object_name object_identifier object_type

See z/OS Communications Server: IP Configuration Reference for more information
about syntax.

1348 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Configure the NetView SNMP command

The SNMP command in the NetView environment can be used to send SNMP
version 1 requests to SNMP agents on either local or remote hosts. The SNMP
command requires the command processor itself, the SNMPIUCV task for
inter-address space communication, and the SNMP query engine, which creates the
packets sent to the SNMP agent. The NetView SNMP command and the SNMP
query engine support only community-based security.

Configure the SNMP query engine
Update the SNMPQE cataloged procedure by copying the sample in
SEZAINST(SNMPPROC) to your system or recognized PROCLIB. Specify SNMP
parameters and change the data set names as required to suit your local
configuration. The SNMPQE address space requires access to the z/OS XL C/C++
run-time library data sets during execution.

The SNMP query engine (SQESERV) needs access to the hlq.MIBDESC.DATA data
set for the MIB variable descriptions. You can find a sample of this data set in
SEZAINST(MIBDESC).

MIBDESC.DATA data set: The MIBDESC.DATA data set defines the short names
for MIB variables. Short names are the character representation for the ASN.1
variable names. For example, sysUpTime is the short name for 1.3.6.1.2.1.1.3.0 (the
MIB variable that stores the time since the SNMP agent was last restarted). Short
names are generally shown as a combination of upper and lowercase characters,
though SNMP on z/OS Communications Server ignores these case distinctions.
Variable names must always be in ASN.1 language when they are sent to an SNMP
agent. You can always use ASN.1 language to specify the variable names in an
enterprise-specific tree (assuming that the agent supports them). You can use these
short names to specify the MIB variables.

When you issue an SNMP GET, GETNEXT, or SET command, and specify the
variable name in ASN.1 notation, the SNMP Query Engine uses that name and
sends it in the SNMP packet to the agent. When you issue an SNMP GET,
GETNEXT, or SET command, and specify the short name for the variable (for

NetView SNMP
command

SNMPIUCV
task

SNMP Query
Engine

SNMPARMS

MIBDESC.DATA

Figure 131. Configuration files for NetView SNMP

Chapter 25. Simple Network Management Protocol 1349

example, sysDescr), the SNMP Query Engine looks for that name in the
MIBDESC.DATA data set and uses the ASN.1 name specified in the data set when
it sends the SNMP packet to the agent.

The SNMPQE address space must be able to access the MIBDESC.DATA data set.

You can change the short names in the MIBDESC.DATA data set to the equivalent
in your national language. You can also leave the current names and add the
equivalent names in your national language. However, the SNMP MIBVNAME
function returns only the first entry found in the data set that satisfies the search.
In addition, all enterprise-specific variables used by hosts in your network should
be added to this data set.

Entries in the data set do not need to be in a specific sequence. Each name starts
on a new line. The following shows the line format.
short_name asn.1_name type time_to_live

Each variable on the line is separated by either one or more spaces or tabs. An
asterisk (*) in column 1 indicates that the line is a comment line.

Following is a sample MIBDESC.DATA line with a sysDescr variable translated in
Dutch and a few enterprise variables added (in this example, company ABC
received 1.3.6.1.4.1.42 as the ASN.1 number for their enterprise):

* MIB Variable name | ASN.1 notation | Type | TTL *

* Following is Dutch name for sysDescr
systeemBeschrijving 1.3.6.1.2.1.1.1. display 900
sysDescr 1.3.6.1.2.1.1.1. display 900

...
other entries
...

* Following are Enterprise-Specific variables for company ABC
ABCInfoPhone 1.3.6.1.4.1.42.1.1 display 900
ABCInfoAddress 1.3.6.1.4.1.42.1.2 display 900

The TTL field contains the number of seconds that a variable lives in the Query
Engine’s internal cache. If there are multiple requests for the same variable within
the TTL period, the variable value is obtained from the cache, and unnecessary
network traffic is avoided.

You can define multiple short names or text names for the same variable, as shown
with the Dutch translation of the sysDescr variable. In this case, the SNMP Query
Engine returns the first value in the table on an SNMP MIBVNAME request. In the
previous example, the SNMP Query Engine would return systeemBeschrijving
and not sysDescr. The name returned is in mixed case.

When the SNMP Query Engine receives a short name or text name in a GET,
GETNEXT, or SET request, it compares the name against the entries in the
MIBDESC.DATA data set. This comparison is not case-sensitive. For example, a
request for SYSDESCR, SysDescr, or sysDescr matches the sysDescr entry with an
ASN.1 notation of 1.3.6.1.2.1.1.1..

When the SNMP Query Engine receives an SNMP response, it looks up the
variable in the MIBDESC.DATA table Type field for information about translating
the value into displayable characters. The information contained in the Type field
is case-sensitive and must be specified in lowercase.

1350 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Note: If you are using SNMP to receive response or trap PDUs which contain
enterprise-specific variables, the variables must be added to the
MIBDESC.DATA data set.

Specifying the SNMPQE parameters: The SQESERV module can be configured to
start without parameters or you can add any of the following parameters to
PARMS=’ in the PROC statement of the SNMPQE cataloged procedure. For example,
//SNMPQE PROC MODULE=SNMPQE,PARMS=’-h MVSA’

See z/OS Communications Server: IP Configuration Reference for the command syntax.

See z/OS Communications Server: IP Diagnosis Guide for more information on tracing.

Setting up authorization for SNMPQE: To create RAW sockets necessary for
SNMP PING requests, the user ID associated with the SNMPQE started task must
have superuser authority (z/OS UNIX UID of 0), or must be permitted to become
a superuser by having READ access to the BPX.SUPERUSER resource in the
FACILITY class.

Configure NetView as an SNMP monitor
To configure the NetView interface as an SNMP monitor, perform each of the
following tasks:
v Configure for SNMPIUCV
v Configure for the SNMP command processor
v Configure for the SNMP messages
v Update the SNMP initialization parameters

Configure for SNMPIUCV: SNMPIUCV is the NetView optional task that
handles IUCV communication between the NetView program and the SNMP query
engine. SNMPIUCV resides in the SEZADSIL data set.

Add the following TASK statement for SNMPIUCV to the DSIDMN member of the
data set specified by the DSIPARM DD statement in the NetView start procedure.
TASK MOD=SNMPIUCV,TSKID=SNMPIUCV,PRI=5,INIT=Y

This statement causes SNMPIUCV to start automatically when the NetView
program is started.

If you specify INIT=N instead of INIT=Y in the TASK statement for SNMPIUCV, a
NetView operator can start the SNMPIUCV task by entering the following:
START TASK=SNMPIUCV

The SNMPIUCV task tries to connect through IUCV to the SNMP query engine. If
this fails, it retries the connect as specified by the SNMPQERT keyword in the
SNMPARMS member of the SEZADSIP data set. The default is every 60 seconds.

Configure for the SNMP command processor: SNMP is the command processor
that allows NetView operators and CLISTs to issue SNMP commands. SNMP
resides in the SEZADSIL data set. This data set should be concatenated to the
STEPLIB DD statement in the NetView start procedure.

Add the following statement to the DSICMD member of the data set specified by
the DSIPARM DD statement in the NetView start procedure.
SNMP CMDMDL MOD=SNMP,ECHO=Y,TYPE=R,RES=Y

Chapter 25. Simple Network Management Protocol 1351

After the SNMPIUCV task is started, you can issue the SNMP command. The
SNMP command passes a request to the SNMPIUCV task to forward to SNMPQE.
The return code represents a request number that is associated with the request.
The responses are returned asynchronously and contain this request number. The
operator or CLIST must use the request number to correlate the response to the
request.

Configure for the SNMP messages: The NetView SNMP messages reside in the
SEZADSIM data set as DSISNMnn, where nn is the number of the member. The
valid message members are DSISNM00 through DSISNM05, DSISNM10,
DSISNM12, and DSISNM99. The data set containing these members should be
added to the DSIMSG DD statement in the NetView start procedure.

Update the SNMP initialization parameters: SNMPIUCV reads the SNMPARMS
member in the SEZADSIP data set at startup. This data set contains the
initialization parameters for SNMP. The data set containing SNMPARMS should be
added to the DSIPARM DD statement in the NetView startup procedure. See z/OS
Communications Server: IP Configuration Reference for detailed information for the
SNMP parameter data set (SNMPARMS).

Step 3: Configure the SNMP subagents
There are several SNMP subagents shipped with z/OS Communications Server:
v The TCP/IP subagent reports information about the TCP/IP stack. For details on

configuring this subagent, see “TCP/IP subagent configuration” on page 1353.
v The OMPROUTE subagent reports information specific to OSPF. The

ROUTESA_CONFIG statement is used in the OMPROUTE configuration file to
configure the OMPROUTE subagent. For details on ROUTESA_CONFIG, see
z/OS Communications Server: IP Configuration Reference.

v The Network SLAPM2 subagent reports information about defined policies and
performance statistics related to traffic using those policies. For configuration
information about the Network SLAPM2 subagent, see Chapter 17, “Quality of
service,” on page 873.

v The TN3270E Telnet subagent reports information about TN3270E Telnet server
connections and monitoring values. For information on the TNSACONFIG
statement and the parameters needed to start the TN3270E Telnet subagent, see
z/OS Communications Server: IP Configuration Reference.

v The OSA-Express Direct SNMP subagent is also shipped with z/OS CS but is
supported by the zSeries OSA Support Group. The OSA-Express Direct SNMP
subagent and the OSA MIB provided by the zSeries OSA Support Group can be
used with Communications Server SNMP support to provide SNMP
management data for some OSA adapters. For details regarding the
OSA-Express Direct SNMP subagent and OSA MIB, see zEnterprise 196, System
z10, System z9 and eServer zSeries OSA-Express Customer's Guide and Reference.

These subagents use the stack's IPv4 primary interface IP address when connecting
to the SNMP agent. The IPv4 primary interface IP address is either the first IPv4 IP
address specified in the HOME profile statement, or the IP address of the IPv4
interface specified on a PRIMARYINTERFACE profile statement. If the subagents
cannot obtain the IPv4 primary interface IP address, they will use the IPv4
loopback IP address, 127.0.0.1, to connect to the agent. For information on using
the IPv4 primary interface IP address and a community name to permit the
subagents to connect to the SNMP agent, see “Provide community name
information” on page 1336 or “Provide community-based and user-based security
and notification destination information” on page 1338.

1352 z/OS V1R12.0 Comm Svr: IP Configuration Guide

TCP/IP subagent configuration
There are two statements in the profile data set used to configure the TCP/IP
subagent, the SACONFIG and ITRACE statements.
v SACONFIG

Use the SACONFIG statement to configure the subagent. The SACONFIG
parameters determine whether or not the subagent is automatically started at
TCP/IP initialization, what port number to use to contact the agent, and other
configuration values. For a detailed explanation of this statement, see z/OS
Communications Server: IP Configuration Reference.

v ITRACE
Use the ITRACE statement to determine what trace information, if any, should
be recorded by the subagent. For a detailed explanation of this statement, see
z/OS Communications Server: IP Configuration Reference.

Step 4: Configure the Open Systems Adapter support
The TCP/IP subagent can retrieve SNMP management data from the Open
Systems Adapter Support Facility (OSA/SF) for several OSA adapters.

The OSA product also provides an SNMP subagent, the OSA-Express Direct
subagent, that supports management data for OSA-Express adapters. The
OSA-Express Direct subagent can be used with Communications Server SNMP
support to retrieve the management data. You should use the OSA-Express Direct
subagent for OSA management data, rather than the TCP/IP subagent, because the
OSA-Express Direct subagent communicates directly with the OSA-Express
adapters and does not require the OSA/SF and IOASNMP applications. For more
information about the management data provided by the OSA-Express Direct
subagent, see zEnterprise 196, System z10, System z9 and eServer zSeries OSA-Express
Customer's Guide and Reference.

The TCP/IP subagent supports management data for the following OSA adapters:
v ATM management data is supported for any OSA-2 ATM or OSA-Express

ATM155 adapters.
v Ethernet management data is supported for any OSA-Express Gigabit Ethernet

or OSA-Express QDIO Fast Ethernet adapters.
v Tables of OSA-Express management data are supported for any OSA-Express

Gigabit Ethernet, Fast Ethernet, or ATM155 adapters.

The TCP/IP subagent retrieves the data using the OSA/SF components IOAOSASF
(OSA/SF application) and IOASNMP (OSA/SF socket application). For more
information on these components, see “OSA/SF prerequisites” on page 1355.
Specifying the SACONFIG profile statement, with the OSAENABLED and OSASF
parameters, in the TCP/IP profile data set causes the TCP/IP subagent to try to
connect to the OSA/SF socket application, IOASNMP, using the TCP protocol and
the port number specified on the OSASF parameter. If the subagent connects
successfully, the following message is issued:
EZZ3218I SNMP SUBAGENT: CONNECTED TO OSA/SF

Because of timing considerations, the TCP/IP subagent might not be able to
connect to IOASNMP at initalization. If this occurs, the subagent will attempt to
connect when the first request for OSA MIB data is received. Therefore, the
EZZ3218I message might not always be issued during subagent initialization.

Chapter 25. Simple Network Management Protocol 1353

When retrieving management data from the OSA adapters, the TCP/IP subagent
sends a request to IOASNMP for the data, passing the adapter's portname as an
identifier. The portname is obtained from the DEVICE and LINK profile statements
used to define the adapter to the TCP/IP stack. The IOASNMP socket application
uses APPC to pass the request to the OSA/SF application. The OSA/SF application
then retrieves the data from the adapter and returns it to IOASNMP. IOASNMP
uses its TCP connection to the TCP/IP subagent to return the data to the subagent.
If this configuration is active and either the IOASNMP application or the TCP/IP
subagent terminates, the subagent will issue the following message:
EZZ3219I SNMP SUBAGENT: DISCONNECTED FROM OSA/SF

To obtain the management data, the adapters must be defined to the TCP/IP stack
where the subagent is active, through DEVICE and LINK statements in the TCP/IP
profile.
v To retrieve ATM management data, the ATM adapter must be defined as an

ATM device/link, even if it is configured for ATM LAN emulation mode and is
therefore also defined to some TCP/IP instance as an LCS or MPCIPA device.
For OSA-Express ATM155 adapters configured for QDIO LAN Emulation mode,
you can use one of the adapter's logical port names on the PORTNAME
parameter of the ATM DEVICE statement.

v To retrieve Ethernet management data, the OSA-Express adapter must be
defined as an MPCIPA Ethernet link.

v To retrieve OSA-Express management data, the adapters must be defined as the
following TCP/IP device/link types:
– MPCIPA link for Gigabit Ethernet
– MPCIPA or LCS Ethernet link for Fast Ethernet
– ATM device/link for ATM155

If the port name is manually configured at the adapter, then management data can
be retrieved from the adapter even if it is not active and not in use by any TCP/IP
stack or by VTAM. If the port name is dynamically configured (e.g. MPCIPA links),
then the adapter has to be active to some TCP/IP stack to retrieve the management
data.

Current support consists of:
v Interface table from RFC2233 for ATM, LAN emulation links, AAL5 and ATM

layer interfaces.
v ATM Channel table from the IBM MVS Enterprise-Specific MIB for OSA-2 ATM

adapters.
v ATM Port and PVC tables from the IBM MVS Enterprise-Specific MIB for OSA-2

ATM and OSA-Express ATM155 adapters.
v ATM LAN Emulation tables from the IBM MVS Enterprise-Specific MIB for

OSA-2 ATM and OSA-Express ATM155 adapters.
v atmInterfaceConfTable from RFC1695 for OSA-2 ATM and OSA-Express ATM155

adapters.
v IP over ATM tables from RFC2320 for OSA-2 ATM and OSA-Express ATM155

adapters.
v OSA-Express Channel and Performance tables from the IBM MVS

Enterprise-Specific MIB for OSA-Express Gigabit Ethernet, Fast Ethernet, and
ATM155 adapters. The performance MIB object values in the
ibmMvsOsaExpChannelTable, and all of the MIB object values in the
ibmMvsOsaExpPerfTable, are only available starting with zSeries processors
where the adapters are, at least, at microcode level 1.31.

1354 z/OS V1R12.0 Comm Svr: IP Configuration Guide

v OSA-Express Ethernet Port table from the IBM MVS Enterprise-Specific MIB for
OSA-Express Gigabit Ethernet and Fast Ethernet adapters.

v OSA-Express Ethernet SNA table from the IBM MVS Enterprise-Specific MIB for
OSA-Express Fast Ethernet adapters.

v dot3StatsTable from EtherLike-MIB in RFC2665 for OSA-Express Gigabit
Ethernet and QDIO Fast Ethernet adapters.

v Asynchronous SNMP Trap generation for operational management:
– ATM Permanent Virtual Circuit (PVC) creation -

ibmMvsAtmOsasfAtmPvcCreate Trap (ATM OSA-2 adapter only).
– ATM Permanent Virtual Circuit (PVC) deletion -

ibmMvsAtmOsasfAtmPvcDelete Trap (ATM OSA-2 adapter only).
v Provide method for assigning an IP Address to the ATM Port.

Use the osnmp set command against the ibmMvsAtmOsasfPortIpAddress MIB
object to assign the IP Address.

OSA/SF prerequisites
The TCP/IP subagent provided by z/OS Communications Server will connect to
OSA/SF to obtain management data. For a subagent to establish a connection to
OSA/SF, two OSA/SF components must be started:
v IOAOSASF

IOAOSASF is a sample JCL procedure that can be used to start the main
OSA/SF address space. The sample has a job name of OSASF1.

v IOASNMP
IOASNMP is a sample JCL procedure that starts the OSA/SF-provided z/OS
UNIX socket application that interconnects the TCP/IP subagent with OSASF1.

These sample procedures and all entities that they call are provided with OSA/SF.
For a detailed explanation of how to set up OSA/SF on your MVS system, see
zEnterprise 196, System z10, System z9 and eServer zSeries OSA-Express Customer's
Guide and Reference. The primary purpose of OSA/SF is to manage OSA Adapters.
It has been extended to support OSA management via SNMP. An instance of
IOAOSASF, IOASNMP, the TCP/IP stack, the TCP/IP subagent, and the SNMP
agent must be started on every MVS image where OSA management support is
needed.

The recommended startup order is:
1. Start IOAOSASF and wait until it completely initializes. IOAOSASF must be

started before IOASNMP.
2. Include OSNMPD (the CS SNMP agent) and IOASNMP on the AUTOLOG

profile statement for your TCP/IP stack. This ensures that they will be started
by autolog processing when TCP/IP is started. For additional profile statement
requirements, see “Required TCP/IP profile statements” on page 1356. Start the
TCP/IP stack.

On an MVS image only a single instance of either IOAOSASF or IOASNMP can (or
should) be started. An attempt to start multiple copies of IOAOSASF will be
rejected. Starting multiple copies of IOASNMP will yield unpredictable results.

Ensure that OSA/SF is at Version 2 Release 1 level or higher with the OSA/SF
APAR OW45237 applied.

Chapter 25. Simple Network Management Protocol 1355

Required TCP/IP profile statements
For a detailed description of the statements mentioned here, see z/OS
Communications Server: IP Configuration Reference. The following TCP/IP profile
statements must be updated for OSA management support:
v SACONFIG

On the SACONFIG statement, OSA Management support must be enabled by
specifying OSAENABLED. Omission of OSAENABLED when TCP/IP is started
will result in no OSA management support. The SACONFIG statement controls
the operation of the subagent that runs in a TCP/IP address space as a separate
task.
The OSASF parameter specifies which port IOASNMP should use to Listen for
connections from subagents to OSA/SF. For an explanation of the usage of this
parameter when starting multiple TCP/IP instances, see “Subagent connection to
OSA/SF when there are multiple TCP/IP instances.” It is recommended that the
OSASF port be reserved by also specifying it on a PORT statement.
For example:
SACONFIG OSAENABLED OSASF 721

v PORT
Prereserve the port to be used in communication with OSA/SF.
For example:
PORT

721 TCP IOASNMP ; OSA/SF TCP/IP Communications

In the above example since IOASNMP runs as a z/OS UNIX application the port
could have been reserved for z/OS UNIX. Review the /etc/services file to
insure that there are no port conflicts.

v DEVICE and LINK
Provide ATM DEVICE and LINK statements for any OSA ATM adapter for
which you want SNMP ATM management data. For example:
DEVICE osaName ATM PORTNAME portname
LINK linkName ATM osaName

Provide DEVICE and LINK statements for any OSA-Express Ethernet adapter
for which you want SNMP Ethernet management data. For example:
DEVICE portname MPCIPA NONROUTER
LINK linkName IPAQENET portname

Subagent connection to OSA/SF when there are multiple
TCP/IP instances

When multiple z/OS Communications Server instances are active in the same MVS
image, only one of the TCP/IP instances is connected to IOASNMP. For a TCP/IP
instance to connect to IOASNMP, the OSASF parameter must be specified on the
SACONFIG profile statement.

IOASNMP connects to a TCP/IP instance and acts as a server, receiving
connections from those TCP/IP subagents where OSAENABLED was specified on
the SACONFIG Profile statement. The result is that all these subagents connect
through the same TCP/IP to IOASNMP in order to retrieve OSA information from
OSA/SF. For a depiction of this process, see Figure 132 on page 1357.

1356 z/OS V1R12.0 Comm Svr: IP Configuration Guide

If IOASNMP loses its connection to TCP/IP it terminates and needs to be restarted.

If the currently connected TCP/IP terminates, IOASNMP will attempt to connect to
another TCP/IP instance for which the OSASF parameter was specified on the
SACONFIG Profile statement, using the port number specified for the OSASF
parameter. The subagents will also attempt to reconnect to OSA/SF via IOASNMP
using this same OSASF port number. For this reason it is recommended that the
same OSASF port number be used on the SACONFIG statement of every TCP/IP
instance where the OSASF parameter is specified.

Whenever a socket error occurs on the OSA/SF socket, the connected subagents
will issue the following message:
EZZ3219I SNMP SUBAGENT: DISCONNECTED FROM OSA/SF

When the subagent connection is reestablished, the following message is issued:
EZZ3218I SNMP SUBAGENT: CONNECTED TO OSA/SF

Step 5: Configure the trap forwarder daemon
Most SNMPv1 agents forward traps to port 162. If a manager needs to listen for
these traps, it has to bind to port 162 and listen for it. When a manager has already
issued a bind it is impossible for another manager to listen for the same traps. The
Trap Forwarder daemon eliminates this problem by listening for traps on port 162
and forwarding them to all the configured managers.

You can configure the Trap Forwarder daemon to receive a trap on a specified port
and forward it to multiple other ports on the same host and on different hosts.
This will allow multiple SNMP managers on z/OS to be able to receive all the
traps sent to one port.

To configure the Trap Forwarder daemon, perform the following tasks:
1. Provide PROFILE.TCPIP statements.
2. Provide Trap Forwarder configuration.
3. Start the Trap Forwarder daemon (TRAPFWD).

Figure 132. Subagent connection to OSA/SF

Chapter 25. Simple Network Management Protocol 1357

Provide PROFILE.TCPIP statements
Add or update the following PORT configuration statements in
hlq.PROFILE.TCPIP.

The default port used by the trap forwarder daemon to receive trap datagrams is
UDP port 162. If you want to ensure that no other application uses this port, you
must specify the following PORT statement:
PORT

162 UDP TRAPFWD ; Trap Forwarder daemon

If the daemon will be started from the z/OS shell, reserve the port for z/OS UNIX
by changing OMVS instead of TRAPFWD. Note that by doing so, the snmp
command could make use of the port if it is started (with the trap option) before
TRAPFWD is started.

Provide trap forwarder configuration information
The TRAPFWD.CONF file defines the configuration parameters for trapfwd
daemon.

A sample of the TRAPFWD.CONF is shown below:
#
A sample configuration file for trapfwd
#
Syntax : ip_address/host_name port_number option
#
#
9.67.113.79 1064 ADD_RECVFROM_INFO
myHost 1066
myHost 1067 ADD_RECVFROM_INFO
myHost 1099
9.67.35.37 1064 ADD_RECVFROM_INFO
- 1065
- 1068 ADD_RECVFROM_INFO
12ab::2 1069

For more information about the statement syntax, see z/OS Communications Server:
IP Configuration Reference.

Starting and stopping the trap forwarder daemon
The Trap Forwarder daemon can be started from the z/OS UNIX shell or from the
MVS console.

Starting the trap forwarder daemon from z/OS UNIX
This example starts the Trap Forwarder daemon on the standard port (port 162).
trapfwd

This example starts the Trap Forwarder daemon on a particular port (port 5062).
trapfwd -p 5062

Starting the trap forwarder daemon from an MVS console: Update cataloged
procedure TRAPFWD by copying the sample in SEZAINST(EZASNTRA) to your
system. See z/OS Communications Server: IP Configuration Reference the for more
information about this cataloged procedure.

Stopping the trap forwarder daemon:

1358 z/OS V1R12.0 Comm Svr: IP Configuration Guide

From MVS:
P TRAPFWD

If TRAPFWD was started from a cataloged procedure, procname is the member
name of that procedure. If TRAPFWD was started from the z/OS shell, procname
is useridX, where X is the sequence number set by the system. To determine the
sequence number issue d omvs u=userid from the console. This will show the
programs running under the user ID.

From UNIX:
kill < pid >

Issue the kill command to the process ID (PID) associated with TRAPFWD. To find
the PID issue the ps -ef command from the z/OS shell.

Tracing: The MODIFY command can be used to display the existing tracing level
and also to change the tracing level.

The following example sets the trace level of the Trap Forwarder Daemon to 1.
MODIFY TRAPFWD,TRACE,LEVEL=1

The following example displays the level of tracing set for the Trap Forwarder
Daemon.
MODIFY TRAPFWD,TRACE,QUERY

See z/OS Communications Server: IP Configuration Reference for more information
about syntax.

Dynamically refreshing configuration: The MODIFY command can be used to
dynamically refresh the configuration information. When this is done, the old
configuration information is discarded completely. The configuration file is read
again and the daemon is initialized.

The following example refreshes the configuration by reading the configuration
file.
MODIFY TRAPFWD,REFRESH

See z/OS Communications Server: IP Configuration Reference for more information
about syntax.

Chapter 25. Simple Network Management Protocol 1359

1360 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Chapter 26. Remote print server

Read “Understanding search orders of configuration information” on page 19. It
covers important information about data set naming and search sequences.

The remote print server supports the line print daemon (LPD) and allows you to
print on JES controlled printers from any host in your TCP/IP network that
implements the line print client functions. These client functions are invoked with
the LPR command. LPR is available as a TSO command, and the LPD server is
implemented as a started z/OS task.

See z/OS Communications Server: IP System Administrator's Commands for
information on starting and stopping the TCP/IP print server (LPD). When LPD is
stopped by the MVS operator with the P procname command, LPD will terminate
any TCP/IP connections currently transferring data. Before ending, LPD will finish
spooling to JES any print jobs that it has received and is currently spooling. JES
will handle these jobs after LPD ends.

This topic describes how to configure the LPD server. To operate the LPD server
after it is running, see z/OS Communications Server: IP Configuration Reference.

The LPD server uses the Pascal socket API, so VMCF must be started for the
server to successfully initialize. If VMCF is not started, message EZY1980E will be
issued and the server will terminate.

Configuring the Remote Print Server
Steps to configure the Remote Print Server:

1. Specify AUTOLOG and PORT statements in PROFILE.TCPIP.
2. Update the LPD server cataloged procedure.
3. Update the LPD server configuration data set.
4. Create a banner page (optional).

For information about operating and controlling the LPD server, see z/OS
Communications Server: IP Configuration Reference.

Step 1: Configuring PROFILE.TCPIP for LPD
If you want the LPD server started automatically when the TCPIP address space is
started, include the name of the member containing the LPD server cataloged
procedure in the AUTOLOG list in hlq.PROFILE.TCPIP. For example:
AUTOLOG

LPSERVE
ENDAUTOLOG

To ensure that port TCP 515 is reserved for the LPD server, also add the name of
the member containing the LPD cataloged procedure to the PORT statement in
hlq.PROFILE.TCPIP. For example:
PORT

515 TCP LPSERVE

© Copyright IBM Corp. 2000, 2011 1361

See the z/OS Communications Server: IP Configuration Reference for more information
about the AUTOLOG and PORT statements.

Step 2: Updating the LPD server cataloged procedure
Update the LPD server cataloged procedure to suit your local configuration by
copying the sample to your system or recognized PROCLIB from
SEZAINST(LPSPROC) and modifying the sample. Specify LPD parameters, and
change the data set names as required. See “Specifying LPD server parameters” for
more information on the LPD server parameters.

Specifying LPD server parameters
The system parameters required by the LPD server are passed by the PARM option
on the EXEC statement of the LPD cataloged procedure. Update the following
parameters as required.

LPDDATA=‘data_set_name’
Specifies the fully qualified name of the data set containing the LPD
configuration statements. This data set can be sequential or a member of a
PDS.

LPDPRFX=‘PREFIX your_prefix’
Specifies the high-level qualifier to be used for temporary data sets created by
the LPD server. Include both the PREFIX keyword and your qualifier in the
quoted string. The qualifier may be up to 26 characters. If it is blank, the
default is the procedure name. The LPD task requires the authority to create
and modify data sets with this prefix.

DIAG=‘options’
Specifies any of the following diagnostic options in a quoted string of
keywords separated by blanks. For example, DIAG=’VERSION TRACE’

VERSION
Displays the version number.

TYPE Activates high-level trace facility in the LPD server. Significant events,
such as the receipt of a job for printing, are recorded in the //SYSOUT
DD data set specified in your LPD server cataloged procedure.

TRACE
Causes a detailed trace of activities within the LPD server to record in
the //SYSOUT DD data set specified in your LPD server cataloged
procedure. The detailed tracing can also be activated with the DEBUG
statement in the LPD server configuration data set and with the
TRACE command of the SMSG interface.

Note: The JCL PARM= statement has a limit of 100 characters.

Configuring LPDDATA
Use a DD card that requires the LPD configuration file to be in a data set.

//SYSLPDD DD DISP=SHR,DSN=TCPIP.SEZAINST(LPDDATA)

Using this example, the DD card must be specified as SYSLPDD, but the data set
name can be any valid data set name with a member specified up to 44 characters.

To use the DD card method, you must comment out or remove the LPDDATA=
parameter from the PROC statement and remove the "&LPDDATA'' PARM from
the LPD EXEC statement.

1362 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Note: The search order for the configuration file is:
1. LPDDATA= on the PARM= statement
2. //SYSLPDD DD statement
3. hlq.LPD.CONFIG

If both the LPDDATA= statement on the PARM= statement and the
//SYSLPDD DD statement are specified, the data set name specified on
LPDDATA= is used.

The LPD server does not limit the number of print jobs it handles per connection.
This can cause a memory abend to occur if too many print jobs are sent in one
connection. Certain LPR clients, such as SUN UNIX, are set up to send multiple
jobs in one connection. It is recommended that the LPD start procedure be started
with a region size of 6M and the LPR client send no more than 50 print jobs in one
connection.

Step 3: Updating the LPD server configuration data set
The LPD configuration data set defines the local, NJE, and remote services
(printers and punches) used by the LPD server. To update the LPD server
configuration data set, copy the sample provided in SEZAINST(LPDDATA) and
modify it to suit your installation. See z/OS Communications Server: IP Configuration
Reference for more details.
v To define a printer or punch:

– Include a SERVICE statement with the appropriate parameters for each
printer or punch your are defining.

– Specify the type of service with the LOCAL, NJE, or REMOTE parameter in
the SERVICE statement.

– For local or NJE services, include any of the optional parameters to further
define the service: EXIT, FAILEDJOB, FILTERS, LINESIZE, PAGESIZE, RACF,
and SMTP.

– For remote services, specify the destination printer and host. Any additional
specifications are defined on the remote system and are not necessary in the
SERVICE statement.

v To turn on LPD server tracing, include the optional DEBUG statement.
v To authorize users for the SMSG interface, include the optional OBEY statement.
v Printer names cannot contain an at sign (@).

Step 4: Creating a banner page (optional)
LPBANNER is the name of the default program that is provided in executable
form in the SEZATCP data set. This program is specified on the EXIT parameter in
the SERVICE statement. LPBANNER prints a separator page that contains, in large
letters, a banner stating “LPD BANNER”, the user ID, the job name, and the job
class. Field headings of HOST, USER, JOB, and CLASS appear in smaller letters.

The sample exit LPBANNER uses machine carriage control and is designed to be
used with the SERVICE PRINTER LOCAL or SERVICE PRINTER NJE statements.
To use this sample exit, both SERVICE statements require a printed LINESIZE of
78 or greater. Banner pages are usually not used with the SERVICE PUNCH or
SERVICE RECFMU statements; however, if you want to have banner pages
(headers) for the SERVICE PUNCH or SERVICE RECFMU devices, a user created
banner exit is required.

Chapter 26. Remote print server 1363

You can either use the executable form or copy and modify the sample source
provided in SEZAINST(EZAAE04S) and SEZAINST(EZAAE04T) to create a banner.
If you are changing the source to create your own banner, assemble and link-edit
these data sets as reentrant. You can modify and use the following JCL to do this.
Changing the ENTRY and NAME to something other than LPBANNER will avoid
possible maintenance problems in the future.
//ASMLNK JOB MSGLEVEL=(1,1),MSGCLASS=A,CLASS=A,REGION=1024K
//ASM1 EXEC PGM=ASMA90,PARM=’OBJECT,XREF(FULL)’
//STEPLIB DD DISP=SHR,DSN=HLA.OSV1R4.SASMMOD1
//* ASSEMBLER H
//SYSLIB DD DSN=tcpip_hlq.SEZACMAC,DISP=SHR
// DD DSN=SYS1.MACLIB,DISP=SHR
// DD DSN=SYS1.MODGEN,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(5,5)),DSN=&&SYSUT1
//SYSPUNCH DD DUMMY,DCB=BLKSIZE=80
//SYSPRINT DD SYSOUT=A
//SYSLIN DD DSN=&&OBJECT(EZAAE04S),DISP=(,PASS),UNIT=SYSDA,
// SPACE=(CYL,(5,5,1)),DCB=BLKSIZE=400
//SYSIN DD DSN=tcpip_hlq.SEZAINST(EZAAE04S),DISP=SHR
/*
//ASM2 EXEC PGM=ASMA90,PARM=’OBJECT,NODECK,XREF’
//STEPLIB DD DISP=SHR,DSN=HLA.OSV1R4.SASMMOD1
//* ASSEMBLER H
//SYSLIB DD DSN=tcpip_hlq.SEZACMAC,DISP=SHR
// DD DSN=SYS1.MACLIB,DISP=SHR
// DD DSN=SYS1.MODGEN,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(5,5)),DSN=&&SYSUT1
//SYSPUNCH DD DUMMY,DCB=BLKSIZE=80
//SYSPRINT DD SYSOUT=A
//SYSLIN DD DSN=&&OBJECT(EZAAE04T),DISP=(OLD,PASS)
//SYSIN DD DSN=tcpip_hlq.SEZAINST(EZAAE04T),DISP=SHR
/*
//LNK EXEC PGM=IEWL,PARM=’LIST,NCAL,RENT,LET’
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSLMOD DD DSN=tcpip_hlq.SEZATCP,DISP=SHR
//AEZAMODS DD DSN=tcpip_hlq.AEZAMODS,DISP=SHR
//OBJECT DD DSN=&&OBJECT,DISP=(OLD,DELETE)
//SYSLIN DD *

ORDER EZBOECPR
INCLUDE AEZAMODS(EZBOECPR)
INCLUDE OBJECT(EZAAE04S)
INCLUDE OBJECT(EZAAE04T)
MODE AMODE(24),RMODE(24)
ENTRY LPBANNER
NAME LPBANNER(R)

/*

1364 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Chapter 27. Remote procedure calls

This topic contains information to help you configure the following:
v PORTMAP
v UNIX PORTMAP
v rpcbind
v NCS

Restriction: PORTMAP, UNIX PORTMAP, and rpcbind cannot be run concurrently,
because all three applications listen on the well known /etc/services sunrpc port
of 111. You must determine which server will service your RPC applications.

For information about rpcbind configuration and setup in a multilevel secure
environment, see “z/OS UNIX rpcbind server” on page 170.

Read “Understanding search orders of configuration information” on page 19. It
covers important information about data set naming and search sequences.

Steps for configuring the PORTMAP address space
This topic describes how to configure the PORTMAP address space, which runs
the Portmapper function.

Portmapper is the software that supplies client programs with the port numbers of
server programs. Clients contact server programs by sending messages to port
numbers where receiving processes receive the message. Because you make
requests to the port number of a server rather than directly to a server program,
client programs need a way to find the port number of the server programs they
wish to call. Portmapper standardizes the way clients locate the port number of the
server programs supported on a network.

Perform the following steps to configure PORTMAP:

1. Specify AUTOLOG and PORT statements in hlq.PROFILE.TCPIP.

2. Update the PORTMAP cataloged procedure.

3. Define the data set for well-known procedure names.

Step 1: Configuring PROFILE.TCPIP for PORTMAP
If you want the PORTMAP server to start automatically when the TCPIP address
space is started, you should include PORTMAP in the AUTOLOG statement in the
hlq.PROFILE.TCPIP data set.
AUTOLOG

PORTMAP
ENDAUTOLOG

Note: If your system is using the Network File System (NFS) server, you must
start the PORTMAP address space. See z/OS Network File System Guide and
Reference for more information.

© Copyright IBM Corp. 2000, 2011 1365

To ensure that port UDP 111 and TCP 111 are reserved for the PORTMAP server,
also add the name of the member containing the PORTMAP cataloged procedure
to the PORT statement in hlq.PROFILE.TCPIP:
PORT

111 UDP PORTMAP
111 TCP PORTMAP

See the z/OS Communications Server: IP Configuration Reference for more information
about the AUTOLOG and PORT statements.

Step 2: Updating the PORTMAP cataloged procedure
Update the PORTMAP cataloged procedure to suit your local conditions by
copying the sample provided in SEZAINST(PORTPROC) to your system or
recognized PROCLIB and modifying it to suit your local conditions. Change the
data set names as required. See z/OS Communications Server: IP Configuration
Reference for more details.

Step 3: Defining the data set for well-known procedure names
z/OS Communications Server includes a data set that contains a list of commonly
used procedure names. This data set is used by the RPCINFO command to resolve
remote program numbers into their equivalent program names.

To create the data set, copy SEZAINST(ETCRPC) to the default data set called
hlq.ETC.RPC. If a user has a user_id.ETC.RPC data set defined, it takes precedence
over the preceding data set.

Normally, you would not change this data set except to add a new application to
the list. To add a new application, add a line that contains the following items:
v The program_name of the new application or procedure
v The program_number of the new application or procedure
v Any comments regarding the description of the program

The items are variable in format, each separated by a blank.

The SEZAINST(ETCRPC) data set contains the well-known procedure names.
Following is the ETCRPC sample.
z/OS Communications Server
SMP/E distribution path: /usr/lpp/tcpip/samples/IBM/EZAOERPC
SMP/E distribution path: SEZAINST(EZAEB01X)
#
COPYRIGHT = NONE.
#
Status = CSV1R11
#
Change Activity:
#
Flag Reason Release Date Origin Description
---- -------- -------- ------ -------- -----------------------
$Y1= D139012 R9BASEN 061011 staff : NFS information added
$F1= RBAPPREM CSV1R11 080728 staff : Remove NDB

Name ProgNumber Alias names, if any
#
portmapper 100000 portmap sunrpc
rstatd 100001 rstat rup perfmeter
rusersd 100002 rusers
nfsd 100003 nfs nfsprog # Network File System daemon

1366 z/OS V1R12.0 Comm Svr: IP Configuration Guide

ypserv 100004 ypprog
mountd 100005 mount showmount # Mount daemon
ypbind 100007
walld 100008 rwall shutdown
yppasswdd 100009 yppasswd
etherstatd 100010 etherstat
rquotad 100011 rquotaprog quota rquota
sprayd 100012 spray
3270_mapper 100013
rje_mapper 100014
selection_svc 100015 selnsvc
database_svc 100016
rexd 100017 rex
alis 100018
sched 100019
llockmgr 100020
nlockmgr 100021 nlm nfs_lockd # Network Lock Manager
x25.inr 100022
statmon 100023
status 100024 nsm nfs_statd # Network Status Monitor
mvsmount 100044 nfs_mvsmnt # MVSmount daemon
showattr 100059 nfs_showattr # showattr daemon
pcnfsd 150001 nfs_pcnfs # pcnfs daemon

Starting the PORTMAP address space
If you did not include PORTMAP in the AUTOLOG statement, you can start
PORTMAP with the START command. For example:

START PORTMAP

Steps for configuring the z/OS UNIX PORTMAP address space
This topic describes how to configure the z/OS UNIX PORTMAP address space,
which runs the Portmapper function.

Perform the following steps to configure z/OS UNIX PORTMAP:

1. Specify PORT statements in hlq.PROFILE.TCPIP.

2. Update the PORTMAP cataloged procedure.

Step 1: Configuring PROFILE.TCPIP for UNIX PORTMAP
If you want the PORTMAP server to start automatically when the TCPIP address
space is started, you should include PORTMAP in the AUTOLOG statement in the
hlq.PROFILE.TCPIP data set.
AUTOLOG

PORTMAP JOBNAME PORTMAP1
ENDAUTOLOG

To ensure that port UDP 111 and TCP 111 are reserved for the z/OS UNIX
PORTMAP server, add the z/OS UNIX PORTMAP server jobname to the PORT
statement in hlq.PROFILE.TCPIP. If you use the sample cataloged procedure,
PORTMAP, to start the z/OS UNIX PORTMAP server, the jobname is PORTMAP1:
PORT

111 UDP PORTMAP1 ; Portmapper Server
111 TCP PORTMAP1 ; Portmapper Server

Chapter 27. Remote procedure calls 1367

See the z/OS Communications Server: IP Configuration Reference for more information
about the PORT statement.

Step 2: Updating the PORTMAP cataloged procedure
Update the PORTMAP cataloged procedure to suit your local conditions by
copying the sample provided in SEZAINST(OPORTPRC) to your system or
recognized PROCLIB and modifying it to suit your local conditions. Change the
data set names as required. See z/OS Communications Server: IP Configuration
Reference for more details.

Starting the PORTMAP address space
There are two ways to start the portmapper as a z/OS UNIX socket application:
v From the z/OS shell
v As a started task

To start the portmapper from the z/OS shell, the user ID must be an authorized
superuser. The authorized superuser ID can issue oportmap & to start the
portmapper. For the authorization procedure, see z/OS UNIX System Services
Planning.

You can also start PORTMAP as a started task with the START command as
follows:

START PORTMAP

Note: If your system is using the Network File System (NFS) server, see z/OS
Network File System Guide and Reference for more information.

Steps for configuring the rpcbind address space
The rpcbind software supplies client programs with the universal addresses of RPC
server programs. RPC server applications do not have well known port numbers.
Instead, they obtain an ephemeral port number, create a universal address, and
register that address with rpcbind. Clients contact server programs by obtaining
the server's universal address from rpcbind and sending messages to the server's
universal address.

The z/OS rpcbind server supports the portmapper binding protocol (RPC Binding
Protocol Version 2) as well as other RPC binding protocols. This means you can
run rpcbind instead of portmapper. Portmapper and rpcbind cannot be run at the
same time, because they both listen on /etc/services sunrpc port 111.

Perform the following steps to configure the rpcbind address space.

1. Configure the PROFILE.TCPIP data set for rpcbind.

2. Configure security server (or RACF equivalent) items.

3. Update the RPCBIND cataloged procedure.

4. Update the /etc/services file.

5. Configure SYS1.PARMLIB for rpcbind.

1368 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Step 1: Configuring the PROFILE.TCPIP data set for rpcbind
If you want the rpcbind server to start automatically when the TCPIP address
space is started, include rpcbind in the AUTOLOG statement in the
PROFILE.TCPIP data set.
AUTOLOG

RPCBIND JOBNAME RPCBIND1
ENDAUTOLOG

To ensure that port UDP 111 and TCP 111 is reserved for the rpcbind server, add
the rpcbind server job name to the PORT statement in the PROFILE.TCPIP data
set. If you use the sample cataloged procedure, RPCBIND, to start the rpcbind
server, the job name is RPCBIND1.
PORT

111 UDP RPCBIND1 ; rpcbind server
111 TCP RPCBIND1 ; rpcbind server

If you start the rpcbind server from the z/OS UNIX shell, the job name is OMVS.
PORT

111 UDP OMVS ; rpcbind server OMVS
111 TCP OMVS ; rpcbind server OMVS

For more information about the PORT statement, see z/OS Communications Server:
IP Configuration Reference.

Step 2: Configuring security server (or RACF equivalent)
items

The RPCBIND cataloged procedure assumes that the procedure has the authority
to run as a started task. To ensure that the RPCBIND procedure has the proper
security server access, enter the following commands as shown in
SEZAINST(EZARACF):
ADDUSER RPCBIND DFLTGRP(OMVSGRP) NOPASSWORD OMVS(UID(0) HOME(’/’))
RDEFINE STARTED RPCBIND.* STDATA(USER(RPCBIND))
SETROPTS RACLIST(STARTED) REFRESH
SETROPTS GENERIC(STARTED) REFRESH

You can define the SAF resource profile
EZB.RPCBIND.sysname.rpcbindname.REGISTRY in the SERVAUTH class to control
which users can register or deregister applications with rpcbind. You can use
wildcards. For example, if you use wildcard values for sysname and rpcbindname,
the profile name is as follows:
EZB.RPCBIND.*.*.REGISTRY

In this example, suppose the MVS system name is MVS000 and the RPCBIND
catalogued procedure is used to start the rpcbind server. This procedure uses the
job name RPCBIND. RPCBIND is fewer than 8 characters, so the rpcbindname is
RPCBIND1, and the profile name is as follows:
EZB.RPCBIND.MVS000.RPCBIND1.REGISTRY

The profile EZB.RPCBIND.sysname.rpcbindname.REGISTRY is optional. If it is not
defined, all users can register and deregister applications with rpcbind. If the
profile is defined, only users granted at least READ access to this resource profile
can register or deregister applications with rpcbind.

In this example, if your SAF security product is RACF and you want only the RPC
server TRUESERV running under user ID TRUESERV to be able to register and

Chapter 27. Remote procedure calls 1369

deregister applications with rpcbind, you can use the following commands to
define the profile EZB.RPCBIND.*.*.REGISTRY in the SERVAUTH class and grant
TRUESERV read access to the profile:
RDEFINE SERVAUTH EZB.RPCBIND.*.*.REGISTRY UACC(NONE)
PERMIT EZB.RPCBIND.*.*.REGISTRY ID(TRUESERV) ACCESS(READ) CLASS(SERVAUTH)

Requirements for a multilevel secure environment:

v The profile EZB.RPCBIND.sysname.rpcbindname.REGISTRY is mandatory, and you
must grant user IDs associated with trusted RPC servers at least READ access to
this profile. For more information about running rpcbind in a multilevel secure
environment, see “z/OS UNIX rpcbind server” on page 170.

v If the SAF FACILITY class resource profile BPX.POE is defined, and your
installation directs target assistance calls to rpcbind, you must grant the user ID
assigned to rpcbind at least READ access to this profile. For more information
on target assistance, see z/OS Communications Server: IP Programmer's Guide and
Reference.

Tips:

v The target assistance RPCs PMAPPROC_CALLIT, RPCBPROC_CALLIT,
RPCBPROC_BCAST, and RPCBPROC_INDIRECT are defined in RFC 1833
(Binding Protocols for ONC RPC Version 2).

v The RPC library routines clnt_broadcast and pmap_rmtcall() issue a target
assistance request on behalf of the caller.

v The rpcinfo utility issues a target assistance call when it is invoked with the -b
option.

Guideline: If RPCBIND is the user ID assigned to the rpcbind server, you can use
the following command to grant the user ID READ access to the profile:
PERMIT BPX.POE CLASS(FACILITY) ID(RPCBIND) ACCESS(READ)

Step 3: Updating the RPCBIND cataloged procedure
Update the RPCBIND cataloged procedure to suit your local conditions by copying
the sample provided in SEZAINST(RPCBIND) to your system or recognized
PROCLIB, and modifying it as necessary. Change the data set names as required.
For further information, see “Starting the rpcbind address space” on page 1371. A
copy of RPCBIND is also available in z/OS Communications Server: IP Configuration
Reference.

Step 4: Updating the /etc/services file
Update /etc/services to ensure that the sunrpc service is reserved for TCP and
UDP port 111:
sunrpc 111/tcp
sunrpc 111/udp

Restriction: If you change the sunrpc port, rpcinfo on that host will not be able to
contact the rpcbind server.

Step 5: Configure SYS1.PARMLIB for rpcbind
The rpcbind server uses semaphore sets and shared memory segments. Inspect
your BPXPRMxx member in SYS1.PARMLIB and verify that the following
statements are configured such that rpcbind will be able to obtain three shared
memory segments of one page each, and three semaphore sets:

1370 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|

IPCSHMMPAGES
IPCSHMNSEGS
IPCSEMNIDS
IPCSEMNSEMS

For more information about these SYS1.PARMLIB statements, see z/OS MVS
Initialization and Tuning Reference.

Tip: You can issue the operator command d omvs,o to display these values.

Starting the rpcbind address space
There are two ways to start rpcbind as a z/OS UNIX socket application:
v From the z/OS shell
v As a started task

It cannot be started from TSO.

To start rpcbind from the z/OS shell, the user ID must be an authorized superuser.
The authorized superuser ID can issue rpcbind to start rpcbind. For information
about assigning superuser attributes, see z/OS UNIX System Services Planning.

You can also start rpcbind as a started task from the MVS console with the START
command, as follows:
START RPCBIND

You can specify the following options when starting rpcbind:
v Specify -d to have rpcbind send trace information to the daemon facility of

syslogd.
– -df sends flow information.
– -dl sends log information of all RPC procedures called.
– -dx sends XDR information.

v The -i option enables you to specify the z/OS UNIX file system directory to
which the pid file is written. The pid file name is always rpcbind.pid. If -i is not
specified, the rpcbind's process ID is written to /etc/rpcbind.pid.
Restriction: The directory path name must be an absolute path name. That is, it
must begin with the forward slash (/) character, as shown in the following
example:
rpcbind -i /tmp

v The -n option enables you to direct rpcbind to run in a non-swappable
environment. A process might need to run as non-swappable to ensure that it is
available during periods of high CPU usage. However, a non-swappable process
might convert real storage in the system to preferred storage. Because preferred
storage cannot be configured offline, allowing rpcbind to run in a
non-swappable state can reduce your installation's future ability to reconfigure
storage.
If you do specify the -n option, ensure that the user ID associated with rpcbind
has at least READ access to the resource profile BPX.STOR.SWAP in the
FACILITY class. The default is to start rpcbind as swappable.

v The -s option specifies the number of statistics entries per binding protocol that
rpcbind will maintain. Valid values are in the range 113 – 500. Statistics
maintained by the rpcbind server are used to reply to the RPCBPROC_GETSTAT
request. For more information on statistics maintained by the rpcbind server, see
RFC 1833.

Chapter 27. Remote procedure calls 1371

Result: Rpcbind calculates the number of pages needed to store statistics for the
value specified, and obtains that number of pages of shared memory for
statistics. Rpcbind rounds up the number of statistics entries it tracks to fully use
the shared memory.
Tip: Rpcbind does not start unless it can obtain sufficient shared memory to
maintain statistics for the number of entries you specify. You configure the
number of pages of shared memory available to z/OS with the
IPCSSHMMPAGES parameter in the BPXPRMxx member of SYS1.PARMLIB.

v To display help information, specify the -? option.

Tip: If your system is using the Network File System (NFS) server, see z/OS
Network File System Guide and Reference for more information about initialization
attributes for the z/OS client and Network File System operation.

Restriction: Portmapper and rpcbind cannot be run at the same time, as they both
listen on /etc/services sunrpc port 111.

Steps for configuring the NCS interface
This topic describes how to configure the Network Computing System (NCS).

NCS is the Remote Procedure Call (RPC) implementation of Apollo's Network
Computing Architecture (NCA**).

NCS includes:
1. RPC run-time library
2. Location broker
3. Network Interface Definition Language (NIDL) compiler

The RPC run-time library and the location broker provide runtime support.
Together these two elements make up the Network Computing Kernel (NCK)
which includes all the software necessary to run a distributed application. The
NIDL compiler is a tool for developing NCS-based applications.

In order to execute NCS applications in an MVS environment, you must start a
local location broker (LLBD). One of the hosts in your TCP/IP network must also
start the global location broker (GLBD). Both the LLBD and the NRGLBD maintain
information about active NCS server applications.

Understanding the LLBD server
The LLBD manages the LLB database which stores information for the NCS-based
servers running on this host.

Your host must run LLBD if you want to support the location broker forwarding
function or allow remote access to the LLB database. The LLBD function must be
started on the host before any other NCS-based servers are started and before the
NRGLBD is started.

The LLB database is stored in the data set ADM@SRV.LLB@LL.DATABASE, which
is not created until an entry is registered with the LLBD. This data set can be
administered using the lb@admin tool.

Understanding the NRGLBD server
The NRGLBD manages the NCS global location broker (GLB) database. The GLB
helps clients locate servers on a network or internet.

1372 z/OS V1R12.0 Comm Svr: IP Configuration Guide

There are two versions of the GLB daemon: replicated GLBD and NRGLBD. The
replicated GLBD is only available on Apollo, SunOS, and Ultrix systems. For other
systems, such as IBM, only the NRGLBD is available. The advantage of replicated
GLBD over NRGLBD is that the GLBD can be run at the same time on several
network hosts, providing greater availability in the event that one of the hosts
running GLBD fails or if there is a partial network failure.

You cannot use the NRGLBD on your system if:
v The replicated version of GLBD can run on some other host in your network
v Another host in your network is already running NRGLBD

The GLB database is stored in a data set ADM@SRV.LLB@LG.DATABASE. This
data set is not created until an entry is registered with the NRGLBD.

The record structure for the LLBD and the NRGLBD databases is identical.

Perform the following steps to configure NCS:

1. Specify AUTOLOG and PORT statements in hlq.PROFILE.TCPIP.

2. Update the NRGLBD cataloged procedure in SEZAINST(NRGLBD).

3. Update the LLBD cataloged procedure in SEZAINST(LLBD).

For more information about NCS, see Network Computing System Reference Manual.

Step 1: Configuring PROFILE.TCPIP for NCS
If you want LLBD and NRGLBD to start automatically when the TCPIP address
space is started, then you should include the names of the members containing the
LLBD and NRGLBD cataloged procedures in the AUTOLOG statement in the
hlq.PROFILE.TCPIP data set.

The LLBD must be running before you start NRGLBD. Therefore, you must put
LLBD before NRGLBD in the AUTOLOG statement.
AUTOLOG

LLBD
NRGLBD

ENDAUTOLOG

To ensure that port UDP 135 is reserved for the LLBD server, add the name of the
member containing the LLBD cataloged procedure to the PORT statement in the
hlq.PROFILE.TCPIP data set.
PORT

135 UDP LLBD

Note: z/OS UNIX DCE also uses port 135 and therefore cannot be used
concurrently with NCS.

See the z/OS Communications Server: IP Configuration Reference for more information
about the AUTOLOG and PORT statements.

Step 2: Updating the NRGLBD cataloged procedure
Update the NRGLBD cataloged procedure by copying the sample provided in
SEZAINST(NRGLBD) to your system or recognized PROCLIB and modifying it to
suit your local conditions. See the NCS topic in z/OS Communications Server: IP
Configuration Reference for more details.

Chapter 27. Remote procedure calls 1373

Step 3: Updating the LLBD cataloged procedure
Update the LLBD cataloged procedure by copying the sample provided in
SEZAINST(LLBD) to your system or recognized PROCLIB and modifying it to suit
your local conditions. See the NCS topic in z/OS Communications Server: IP
Configuration Reference for more information.

1374 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Chapter 28. Mail on z/OS

This topic describes how to configure the Simple Mail Transfer Protocol (SMTP)
server, the Communications Server SMTP (CSSMTP) application, z/OS UNIX
sendmail, and popper. To determine the appropriate server or application that you
should use, consider the following:
v Use CSSMTP if you want to forward mail from your NJE network or from local

applications that write mail to a JES spool file, using the existing SMTP batch
interface to forward the mail to other gateway servers.
CSSMTP provides the easiest and simplest solution for this purpose, and if you
currently use the SMTP server (SMTPD) for this purpose only, you should
consider replacing SMTPD with CSSMTP.
For more information about CSSMTP, see “Configuring the CSSMTP
application.”

v Consider using both SMTPD and CSSMTP if you need to receive mail from the
SMTP network into your NJE network or for local TSO users that use the TSO
RECEIVE command interface to access their mail.
You must continue to use SMTPD for receiving mail from the SMTP network. If
you also need to send mail from those same users, you can use CSSMTP to send
that mail from JES. CSSMTP can run concurrently with SMTPD.
For more information about SMTPD, see “Configuring the SMTP server
(SMTPD)” on page 1392.

v Use z/OS UNIX sendmail if you need to receive or send mail from local z/OS
UNIX shell users, or from remote POP/SMTP clients that use your z/OS system
as a mail server.
Sendmail can run concurrently with CSSMTP, SMTPD, or both.
For more information about sendmail, see “Configuring z/OS UNIX sendmail
and popper” on page 1413.

Configuring the CSSMTP application
Communications Server Simple Mail Transfer Protocol (CSSMTP) is a
mail-forwarding SMTP client application. CSSMTP processes data sets containing
mail messages on the spool file and forwards them to a target message transfer
agent (MTA) without resolving each recipient. If you currently use MVS batch jobs
to have the SMTP server (SMTPD) send bulk mail that does not typically require a
reply to the originator, you can use CSSMTP to process this mail. CSSMTP can
improve the performance, scalability, and availability of the client function of
SMTPD, but it does not act as a listening MTA server like SMTPD. CSSMTP can
coexist with SMTPD, and multiple instances of CSSMTP can run on a single host.
Figure 133 on page 1376 shows how CSSMTP fits into a network.

© Copyright IBM Corp. 2000, 2011 1375

CSSMTP implements RFC 2821 and RFC 2822 for interacting with server MTAs,
and supports additional RFCs for message size (RFC 1870) and security (RFC
3207). CSSMTP is not a fully capable MTA and functions as an outbound
forwarder, sending mail messages from the JES spool data set to the Internet. As
the mail messages are read from the spool file, CSSMTP functions like a TCP/IP
SMTP client and interacts with one or more configured target servers. When
processing mail messages from the spool file, CSSMTP does not resolve mail
message recipients, but simply transfers mail messages to one or more configured,
next-hop servers (fully capable MTAs) that might or might not be the final
destination.

CSSMTP provides the following:
v Checkpoint capabilities. If CSSMTP must be restarted, it does not have to

reprocess the entire spool file, which reduces duplicate mail that is received by
message recipients.

v A retry capability for up to 2 hours. This capability is intended to compensate
for short-term relay server outages

v Multiple security capabilities. For details, see “Security for CSSMTP” on page
1384.

v SMF recording of CSSMTP events, see “Steps for configuring SMF records for
CSSMTP (optional)” on page 1388.

As stated in RFC 2821, SMTP clients that transfer all traffic, regardless of the target
domain names associated with the individual mail messages, or that do not
maintain queues for retrying mail message transmissions that initially cannot be
completed, might otherwise conform to this specification but are not considered
fully capable. CSSMTP does not implement all aspects of RFC 2821.

If you are moving from SMTPD to CSSMTP, see “Differences between CSSMTP
and SMTPD” on page 1389.

Terms and concepts
The following terms and concepts are used in this information:

Backpressure
CSSMTP stops processing the JES spool file when mail cannot be sent to

Figure 133. CSSMTP forwards mail messages from spool to the network

1376 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|

the target because the connection to a target server is down or
unresponsive. CSSMTP resumes processing the JES spool file when a target
server connection becomes active.

Bad spool file
A bad spool file is a JES spool file that cannot be processed as the result of
security, configuration, syntax, readability, or delivery issues. The action
taken by CSSMTP is subject to the setting of the BadSpoolDisp statement.
For more information about the BadSpoolDisp statement, see z/OS
Communications Server: IP Configuration Reference.

Checkpointing
If checkpointing is enabled using the CHKPOINT DD statement in the
CSSMTP started procedure and there are partially processed spool files on
the spool when restarting, CSSMTP attempts to send only the mail from
these spool files that was not previously sent, which reduces the duplicate
mail that is received by recipients. If CSSMTP is started cold using the -f
option, any existing checkpoint records are flushed before CSSMTP is
restarted. For information about using the CHKPOINT DD statement in
the CSSMTP started procedure and starting CSSMTP with the -f start
option, see z/OS Communications Server: IP Configuration Reference.

Dead letter
A dead letter is created and stored for the following reasons:
v An undeliverable mail notification cannot be returned to the originator
v The original mail message was undeliverable, but did not specify an

originator
v An error report cannot be delivered to the mail administrators

To ensure that dead letters are stored, configure Store on the
DeadLetterAction parameter of the Undeliverable statement. For
information about the Undeliverable statement, see z/OS Communications
Server: IP Configuration Reference.

For examples of customizing the configuration to handle undeliverable
mail, see “Customizing the CSSMTP configuration file to handle
undeliverable mail” on page 1382.

ESMTP
Extended Simple Mail Transfer Protocol

Long retry
A state for mail that was unable to be sent to all recipients because one or
more target servers replied with a retry reply code. The mail might be able
to be sent and is retried again after a delay. If all retries are exhausted, the
mail is marked as undeliverable. For information about using the
RetryLimit statement to configure the retry limits, see z/OS Communications
Server: IP Configuration Reference.

Tip: Because CSSMTP is a mail forwarder, the likelihood of receiving
delivery errors from an MTA is very low. These errors are most likely to be
received when the MTA is also the home mail server for the mail
recipients, and the MTA reports errors that are related to the mailboxes of
the recipients on the MTA, such as mailbox full, recipient not known, and
so on.

Mail administrator
The mail administrator is a special user ID for mailing systems, to which
CSSMTP delivers error reports for problems detected while processing a
spool file from the JES spool data set. For information about using the

Chapter 28. Mail on z/OS 1377

MailAdministrator statement to configure up to four mail administrator
addresses, see z/OS Communications Server: IP Configuration Reference.

Message content
The headers and the structured body of a mail message. A separate
Multipurpose Internet Mail Extensions (MIME) specification provides the
definitions for structured bodies.

MTA Message transfer agent

SMTP Simple Mail Transfer Protocol

SMTP command
A command sent from the client to the SMTP server that lets the server
know what information is being sent. For example, MAIL FROM: is a
command.

SMTP reply
The acknowledgement, positive or negative, sent from an SMTP server.
Replies are in US ASCII (ISO8859-1).

SMTP server
A network application implementing the SMTP protocol that accepts mail
messages from SMTP clients.

Target server
A target server is the resolved or configured IP address from a
TargetServer statement. The first four target servers are used by CSSMTP.
For information about using the TargetServer statement to configure a
target server, see z/OS Communications Server: IP Configuration Reference.

Undeliverable mail
Mail messages that cannot be delivered. CSSMTP processes and tries to
send all mail messages in the spool file. Sometimes, one or more of these
mail messages might be undeliverable. Examples of what causes
undeliverable mail include the following:
v A problem with the mail message itself, such as the message size
v A problem with the recipient record (RCPT TO:), such as an unknown

mailbox
v A mail message requires a secure connection and none of the target

servers support the STARTTLS SMTP command
v Security problems
v A networking problem, such as being unable to reach a target host that

has the capabilities that are needed for the mail message

For examples of customizing the configuration to handle undeliverable
mail, see “Customizing the CSSMTP configuration file to handle
undeliverable mail” on page 1382.

Undeliverable mail notification
CSSMTP creates an undeliverable mail notification when the
ReturntoMailFrom parameter is set to YES on the Undeliverable statement
and the mail message cannot be delivered. This notification contains the
reply from the target server, describing the reason that the mail message
was undeliverable and the text of the original mail message. If the
undeliverable mail notification cannot be sent immediately, it is not retried
and is subject to the setting of the DeadLetterAction parameter of the
Undeliverable statement.

1378 z/OS V1R12.0 Comm Svr: IP Configuration Guide

For examples of customizing the configuration to handle undeliverable
mail, see “Customizing the CSSMTP configuration file to handle
undeliverable mail” on page 1382.

Setting up CSSMTP
To set up CSSMTP to process and forward your mail, you must do the following:
v Configure and start CSSMTP.

See “Steps for configuring and starting CSSMTP.”
v Create mail on the JES spool data set for CSSMTP.

See “Steps for creating mail on the JES spool data set for CSSMTP” on page
1380.

Steps for configuring and starting CSSMTP
This topic provides the minimum information that you need to configure and start
CSSMTP.

Perform the following steps to configure and start CSSMTP:

1. Create a new data set member in your procedure library for the CSSMTP JCL.

A sample job is in SEZAINST(CSSMTP).

2. Define explicit authority for all user IDs that you want to be able to start
CSSMTP.
See “Steps for granting authority to start CSSMTP” on page 1383.

3. Customize the CSSMTP configuration file and set up at least one valid target
server IP address using the TargetServer statement.
A sample CSSMTP configuration file is included in member CSSMTPCF in
SEZAINST. A target server is defined as the IP address that is resolved from or
configured on the TargetServer statement. For information about using the
TargetServer statement to configure a target server, see z/OS Communications
Server: IP Configuration Reference. For details about other configuration
statements used by CSSMTP, see z/OS Communications Server: IP Configuration
Reference. For information about handling undeliverable mail, see
“Customizing the CSSMTP configuration file to handle undeliverable mail” on
page 1382.
CSSMTP configuration statements are processed during the initialization of
CSSMTP or when you issue the MODIFY procname,REFRESH command.

4. Set up the resolver search order.

Use the default search order unless there are special circumstances that require
you to use unique parameters. For example, if the resolver has parameters that
are used only when the resolver is called by CSSMTP, you need to define those
unique parameters. Define the unique parameters in a data set that is specified
on the SYSTCPD DD statement in the CSSMTP procedure JCL. For more
information about resolvers and resolver configuration files, see Chapter 14,
“The resolver,” on page 731.

5. Optionally, set up additional security for CSSMTP.

See “Security for CSSMTP” on page 1384.

6. Optionally, allocate and define a Virtual Storage Access Method (VSAM) linear
data set for the checkpoint function.
A sample job is in SEZAINST(CSSMTPVL).

7. Set up the timezone using the TZ environment variable.

Chapter 28. Mail on z/OS 1379

If you do not set up the timezone, the timezone is not shown in the Received
header line, which is used to indicate that CSSMTP has picked up a mail
message. The default time value is used if the DATE header is not specified in
the mail message.

8. Start CSSMTP by issuing the following command, where csproc is the CSSMTP
procedure member name:
START csproc

You know you are done when: Initialization is complete and you have
successfully connected to the specified target server for processing mail, as
indicated by the following messages:
EZD1802I csproc INITIALIZATION COMPLETE FOR extWrtName
EZD1821I csproc ABLE TO USE TARGET SERVER ipAddress

Steps for creating mail on the JES spool data set for CSSMTP
This topic provides the minimum information that you need to create mail that can
be processed and forwarded by CSSMTP. For details about creating mail using
CSSMTP commands, see z/OS Communications Server: IP User's Guide and
Commands.

Before you begin: You need to know the external writer name of the CSSMTP
application that you want to process your mail data set. If the external writer name
is not configured for CSSMTP using the ExtWrtName statement, then the default is
the job name. For information about configuring the external writer name using
the ExtWrtName statement, see z/OS Communications Server: IP Configuration
Reference.

Perform the following steps to create mail on the JES spool data set for CSSMTP:

1. Set up JES so that CSSMTP can create, read, write, and purge data from the
JES spool data set.
See “Steps for initial setup for CSSMTP” on page 1381.

2. Set up the mail to conform to the standardized syntax for text messages that
are sent across networks.
The standard syntax for SMTP commands supported by CSSMTP is described
in RFC 821 and RFC 2821. The standard syntax for mail message content
supported by CSSMTP is described in RFC 822 and RFC 2822. Mail messages
have an envelope and contents. Envelopes contain all necessary information to
accomplish transmission and delivery of the mail message content. The fields
in the envelope are in a standard format.

3. Configure the code page.

The spool file must be in a supported EBCDIC code page. Mail is written in an
EBCDIC code page recognized and translated by iconv to US ASCII
(ISO8859-1) before sending to the target server. The default code page is IBM
1047. For information about configuring the code page using the Translate
statement, see z/OS Communications Server: IP Configuration Reference.

4. Set up the mail in one of the following formats:

v A flat file generated using the IEBGENER utility or batch jobs that write to
the SYSOUT data set
For information about using the IEBGENER utility to copy a mail file to a
JES SYSOUT data set, see z/OS Communications Server: IP User's Guide and
Commands.

1380 z/OS V1R12.0 Comm Svr: IP Configuration Guide

v Netdata generated from SMTPNOTE or from TSO xmit
For information about using the SMTPNOTE command to compose a single
mail message to one or more recipients and about using the TSO
TRANSMIT (XMIT) command to send a mail file, see z/OS Communications
Server: IP User's Guide and Commands.

You must copy and customize the SMTPNOTE CLIST on every system where
users can send mail with the SMTPNOTE command. For more information,
see “Steps for customizing the SMTPNOTE CLIST (optional).”

You know you are done when: Mail is on the JES spool data set ready to be
processed by CSSMTP.

Steps for initial setup for CSSMTP:

Before you begin:

Perform the following steps to set up JES:

1. Set up JES2 or JES3 initialization parameters so that CSSMTP can interface
with JES utilities to create, read, write, and purge data from the JES spool data
set.
For information about JES2 initialization, see z/OS JES2 Initialization and Tuning
Guide. For information about JES3 initialization, see z/OS JES3 Initialization and
Tuning Guide. For information about JES RACF authorization, see z/OS Security
Server RACF Security Administrator's Guide.

2. Verify that JES exit programs do not interfere with the function of CSSMTP.

For JES2 exit and exit routine association, see z/OS JES2 Initialization and Tuning
Reference. For JES3, if you are using the IATUX18 exit, see z/OS JES3
Customization.

3. Set up security authorization for the CSSMTP started task name in your
definitions of authorized users. If you are using RACF for security, see z/OS
Security Server RACF Security Administrator's Guide for information about RACF
controls for the spool file.

4. Set up CSSMTP for warm starts by configuring the CHKPOINT DD statement.

Checkpointing enables CSSMTP to recognize partially processed spool files, so
that CSSMTP does not reprocess the entire spool file when restarting. This
reduces the duplicate mail messages that are received by mail message
recipients. Warm starts work only when restarting CSSMTP with the same job
name and external writer name. If CSSMTP is started cold using the -f option,
any existing checkpoint records are flushed before CSSMTP is restarted. For
information about using the CHKPOINT DD statement in the CSSMTP started
procedure and starting CSSMTP, see z/OS Communications Server: IP
Configuration Reference.

Steps for customizing the SMTPNOTE CLIST (optional): Perform these steps for
every system from which mail can be sent using the SMTPNOTE command.

Before you begin: If the ExtWrtName statement is specified in the CSSMTP
configuration file, you should change the configured SMTPJOB value in the
SMTPNOTE CLIST to match the ExtWrtName name of CSSMTP. If the
ExtWrtName statement is not specified, you should customize the SMTPJOB name
to match the CSSMTP job name. The SMTPJOB name must not be defined as a
node name to JES and cannot begin with the characters R, RM, or RMT, because
SMTPNOTE uses TSO XMIT to transmit the mail to CSSMTP.

Chapter 28. Mail on z/OS 1381

Perform the following steps to customize the SMTPNOTE CLIST:

1. Copy SEZAINST(SMTPNOTE) into the system CLIST data set.

2. Customize the variables in the SMTPNOTE CLIST, including the SMTPJOB
variable so that it uses the CSSMTP job name. DOMAIN should also be set
when using CSSMTP. For more information, see “Step 3: Customize the
SMTPNOTE CLIST and modify parmlib data sets” on page 1394.

Customizing the CSSMTP configuration file to handle
undeliverable mail

CSSMTP provides configuration options to indicate how it handles undeliverable
mail messages. You can configure CSSMTP to send individual undeliverable mail
notifications or not to send them. You can also configure CSSMTP to create a
report describing errors that were found while processing mail messages; this
report can be created on the spool or sent to the configured mail administrators.

The following examples describe the configuration options for handling
undeliverable mail. For more information about the BadSpoolDisp statement, the
Undeliverable statement, the MailAdministrator statement, and the Report
statement, see z/OS Communications Server: IP Configuration Reference.
v Example 1 — Configuring CSSMTP to not return an undeliverable mail

notification to the originator and to hold the original spool file on the JES spool
data set:
BadSpoolDisp Hold
Report Admin
MailAdministrator myuserId@ibm.us.com
Undeliverable
{

ReturnToMailFrom No
}

To configure the application to not send an undeliverable mail notification to the
originator, you need to set the ReturnToMailFrom value to No. This example
might be useful if the mail messages do not specify an originator, or if the spool
file is for sending bulk mail that does not typically require a reply to the
originator. This example has optionally configured that a report be sent to the
specified mail administrator.
Tips:

– The mail administrator can use the received report to determine which mail
messages were undeliverable in the original spool file.

– When the examination of this JES spool file is complete, the mail
administrator should delete the JES spool file, which is now in a hold state.

Results:

– CSSMTP tries to send all mail messages, and if any of the mail is
undeliverable, CSSMTP does not create and send an undeliverable mail
notification.

– Because the BadSpoolDisp statement is set to Hold, CSSMTP does not delete
the JES spool file.

v Example 2 — Configure CSSMTP to send an undeliverable mail notification to
the originator, and to hold the original spool file on the JES spool data set if
necessary:
BadSpoolDisp Hold
Report None
Undeliverable
{

1382 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|

ReturnToMailFrom Yes
DeadLetterAction Store
DeadLetterDirectory /var/cssmtp/myDir/

}

This example is useful if the originator of the mail messages needs to be
informed that the messages cannot be delivered. If you determine that it is not
necessary to inform the originator of failed deliveries, set the ReturnToMailFrom
value to No. No report is created in this example.
Tip: When spool files contain many mail messages, this configuration should be
used with caution because a failure can cause many individual undeliverable
mail notifications to be maintained in storage while trying to return them to the
originator.
Results:

– CSSMTP builds an undeliverable mail notification and attempts to notify the
originator of the mail message failure.

– Because the ReturnToMailFrom value is Yes, if the original spool file contains
no errors other than undeliverable mail errors, CSSMTP always deletes the
spool file even when the BadSpoolDisp value is set to Hold.

– If the original spool file contains both undeliverable mail errors and syntax
errors, CSSMTP holds the spool file because the BadSpoolDisp value is set to
Hold.

– If the undeliverable mail notification cannot be returned to the originator of
the mail message, then this undeliverable mail notification becomes a dead
letter. The action taken by CSSMTP is based on the value configured on the
DeadLetterAction parameter. In this example, because the DeadLetterAction
value is set to Store, CSSMTP stores the dead letters in the
/var/cssmtp/myDir directory:
/var/cssmtp/myDir/TESTMAIL.SYS00006.Sep302008.160454.541437.1U
/var/cssmtp/myDir/TESTMAIL.SYS00006.Sep302008.160454.541999.1U

– Because None is specified on the Report statement, the log must be inspected
for messages about any problems found in the JES spool file.

Steps for granting authority to start CSSMTP
Perform the following steps to grant authority to a user ID to start CSSMTP:

1. Ensure that the OPERCMDS class is active and RACLISTed, and that RACLIST
processing is enabled.

2. Define the OPERCMDS class profile using a security product like RACF.

3. Grant CSSMTP access to the OPERCMDS class and then refresh the
OPERCMDS class.

Depending on how you start CSSMTP, some RACF profiles that restrict who can
issue the START, CANCEL, MODIFY, or STOP operator commands are as follows:
MVS.START.STC.CSSMTP.*
MVS.START.STC.CSSMTP

MVS.CANCEL.STC.CSSMTP.*
MVS.CANCEL.STC.CSSMTP

MVS.MODIFY.STC.CSSMTP.*
MVS.MODIFY.STC.CSSMTP

MVS.STOP.STC.CSSMTP.*
MVS.STOP.STC.CSSMTP

Chapter 28. Mail on z/OS 1383

For more information about protecting operator commands, see z/OS MVS
Planning: Operations.

Security for CSSMTP
Consider the following additional security measures for CSSMTP:
v For spool files from NJE nodes, the user ID associated with the spool file must

be defined by SAF. For more information about the protection of SYSOUT data
sets, see the following topics:
– Protecting Data Sets on Spools in z/OS Security Server RACF Security

Administrator's Guide

– Authorizing SYSOUT in z/OS Security Server RACF Security Administrator's
Guide

– Authorizing Network Jobs and SYSOUT (NJE) in z/OS Security Server RACF
Security Administrator's Guide

– Authorizing SYSOUT in z/OS JES2 Initialization and Tuning Guide

– Understanding default userids in z/OS JES2 Initialization and Tuning Guide

– Using RACF to Provide Security in z/OS JES3 Initialization and Tuning Guide

– Understanding Default User IDs in z/OS JES3 Initialization and Tuning Guide

v If your installation protects access to the JESSPOOL class of resources, provide
ALTER access to the CSSMTP user ID so that it can read and delete spool files.
An example JESSPOOL definition follows:
//CSSMTP EXEC PGM=IKJEFT01
//SYSTSPRT DD SYSOUT=*
//* The PERMIT for CLASS(JESSPOOL) is needed only if it has already
//* been activated.
//SYSTSIN DD *

SETROPTS CLASSACT(STARTED)
SETROPTS RACLIST(STARTED)
SETROPTS GENERIC(STARTED)
ADDUSER CSSMTP DFLTGRP(OMVSGRP) OMVS(UID(nn) HOME(’/’)) -

NOPASSWORD
RDEFINE STARTED CSSMTP.* STDATA(USER(CSSMTP))
RDEFINE JESSPOOL localnodeid.** UACC(READ)
PERMIT localnodeid.** -

CLASS(JESSPOOL) ID(CSSMTP) ACCESS(ALTER)
SETROPTS GENERIC(JESSPOOL) REFRESH
SETROPTS RACLIST(STARTED) REFRESH
SETROPTS GENERIC(STARTED) REFRESH

v When CSSMTP is defined with a nonzero UID value, Delete Operator Message
(DOM) messages are prefixed with message BPXM023I. To remove the prefix,
you must authorize the CSSMTP procedure user ID to use the UNIX System
Services console service. You can authorize CSSMTP to use the console service
by entering the following commands:
RDEFINE FACILITY BPX.CONSOLE UACC(NONE)
PERMIT BPX.CONSOLE -
CLASS(FACILITY) ID(CSSMTP) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

v You can control whether CSSMTP reads and processes the spool files created by
specific users by creating one or more resource profiles in the SERVAUTH class.
The format of the SERVAUTH profile name is
EZB.CSSMTP.sysname.writername.originJESnode, where sysname is the system name
defined in the sysplex, writername is the CSSMTP configured external writer
name, and originJESnode is the JES node that originated the spool file. If this
profile is created with UACC(NONE), then only user IDs permitted to the
resource are able to have spool files processed by CSSMTP.

1384 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|
|
|

|
|

|
|

|
|

|

|

|

|

|

|
|
|
|
|

|
|
|
|

For examples of the resource profile definitions, see the EZARACF sample in
data set SEZAINST. For information about configuring the external writer name
using the ExtWrtName statement, see z/OS Communications Server: IP
Configuration Reference.
Tips:

– You can specify a wildcard on segments of the profile name, as shown in the
following example:
RDEFINE SERVAUTH EZB.CSSMTP.sysname.writername.originJESnode -

UACC(NONE)
PERMIT EZB.CSSMTP.sysname.writername.originJESnode -

CLASS(SERVAUTH) ID(userid) ACCESS(READ)

PERMIT EZB.CSSMTP.sysname.writername.* -
CLASS(SERVAUTH) ID(userid) ACCESS(READ)

SETROPTS GENERIC(SERVAUTH) REFRESH
SETROPTS RACLIST(SERVAUTH) REFRESH

– You can define multiple profiles. For example, if this CSSMTP instance
processes spool files from local jobs and from remote systems, you can define
a profile for the local system and for each JES node that originates spool files.
The spool file is matched to the most specific RACF profile, and then the user
ID associated with the spool file is validated against that profile.

Result: If the profile is active with UACC(NONE), then when the spool file is
received on the JES spool data set, CSSMTP checks to determine whether a
profile is defined for the originating node or for any originating node (*), and
then checks whether the user ID associated with the job that created the spool
file is permitted to the profile:
– If the user ID is permitted, the spool file is processed by CSSMTP.
– If the user ID is not permitted, the spool file is considered to be a bad spool

file and is subject to the action specified by the BadSpoolDisp statement. For
more information about the BadSpoolDisp statement, see z/OS Communications
Server: IP Configuration Reference.

If the profile is not defined, then the spool file is processed as if the user ID is
permitted.

v You can write a CSSMTP user exit or use the existing SMTPD user exit to
inspect mail before it is sent to a target server.
For example, you can create an exit to check the MAIL FROM: string on
outbound mail. The mail originator, recipients, and other information can be
inspected by the exit, and the entire JES job or a single mail message can be
discarded.
You can control the user exit that is used with the UserExit statement:
– If you want to use a user exit that you have written for CSSMTP, then specify

Version3 on the UserExit statement. You need to use this version if you want
to use both RFC 821 and RFC 2821 commands to read and process from the
JES spool data set. For more information about the CSSMTP exit, see z/OS
Communications Server: IP Configuration Reference.

– If you want to continue using your SMTPD user exit and use only RFC821
commands, then specify Version2 on the UserExit statement. For more
information about using the SMTP server exits, see z/OS Communications
Server: IP Configuration Reference.

For more information about the UserExit statement, see z/OS Communications
Server: IP Configuration Reference.

v You can enable the SMTP server and client to use Transport Layer Security (TLS)
to provide private, authenticated communication over the Internet using RFC

Chapter 28. Mail on z/OS 1385

3207, SMTP Service Extension for Secure SMTP over Transport Layer Security. For
more information, see “Steps for using Transport Layer Security for CSSMTP.”

Steps for using Transport Layer Security for CSSMTP
Perform the following steps to use Transport Layer Security (TLS) for CSSMTP:

1. Set up secure mail using the YES option on the Secure parameter of the
TargetServer statement, the STARTTLS command in the JES batch job, or both.
Table 67 shows whether TLS is required between CSSMTP and a target server
based on various JES batch job and CSSMTP configuration combinations.

Table 67. JES batch job and CSSMTP configuration combinations for secure mail

STARTTLS command? Secure parameter value TLS required?

Yes YES Yes

No YES Yes

Yes NO Yes

No NO No

If secure communication is required according to Table 67 and no available
target servers support TLS (as indicated by server capabilities in response to
the EHLO command), the mail message fails and is not delivered.
For information about the TargetServer statement, see z/OS Communications
Server: IP Configuration Reference. For information about the STARTTLS
command, see z/OS Communications Server: IP User's Guide and Commands.

2. See the following simple example to get started with TLS. For more
information about TLS, see Chapter 22, “Application Transparent Transport
Layer Security data protection,” on page 1193.
In this example, assume the following characteristics:
v The mail contains sensitive data, and you want CSSMTP to communicate

with only TLS protocols.
v CSSMTP is using port 25 to communicate with a target server on another

platform.
v There is only one TCP/IP stack over which mail is delivered, referred to as

the client stack.
To set up TLS for this sample environment, do the following:
a. Create the key ring.

The client key ring needs the root certification used to sign the server
certificates. For a TLS/SSL primer and some step-by-step examples, see
Appendix B, “TLS/SSL security,” on page 1461. For more information
about managing key rings and certificates with RACF and the RACDCERT
command, see z/OS Security Server RACF Security Administrator's Guide. For
more information about managing key rings and certificates with
gskkyman, see z/OS Cryptographic Services System SSL Programming.

b. Configure CSSMTP to require secure communication. Configure the
TargetServer statement with the Secure parameter set to YES, which
specifies that TLS protocols are always required. For information about the
TargetServer statement, see z/OS Communications Server: IP Configuration
Reference.

c. Configure the client system to use TLS with AT-TLS policies as follows:

1386 z/OS V1R12.0 Comm Svr: IP Configuration Guide

1) Specify TTLS on the TCPCONFIG statement in the TCP/IP profile for
the client stack. For information about the TCPCONFIG statement, see
z/OS Communications Server: IP Configuration Reference.

2) Block the ability of applications to open a socket before AT-TLS policy
is loaded into the TCP/IP stack by setting up
EZB.INITSTACK.sysname.tcpname for the client stack.

3) Create a main Policy Agent configuration file containing a TcpImage
statement for the client stack, and create a TcpImage policy file for the
client stack. For more information about AT-TLS policy statements, see
z/OS Communications Server: IP Configuration Reference.

4) Add a TTLSConfig statement to each TcpImage policy file to identify
the TTLSConfig policy file location:
TTLSConfig clientPath

5) Add the AT-TLS policy statements to the clientPath file:
TTLSRule CSSMTPRule
{

RemotePortRange 25
Direction Outbound
TTLSGroupActionRef CSSMTPGroup
TTLSEnvironmentActionRef CSSMTPEnvironment

}
TTLSGroupAction CSSMTPGroup
{

TTLSEnabled On
}
TTLSEnvironmentAction CSSMTPEnvironment
{

HandshakeRole Client
TTLSKeyRingParms
{

Keyring client_key_ring
}
TTLSEnvironmentAdvancedParms
{

ApplicationControlled On
}

}

Tip: You can use the IBM Configuration Assistant for z/OS
Communications Server to generate the AT-TLS Policy Agent files. For
information about the configuration assistant, see “Option 1: Use the IBM
Configuration Assistant for z/OS Communications Server” on page 1195.

You know you are done when: CSSMTP can successfully deliver mail to a target
server using secure connections. If SECURE YES is configured and CSSMTP is able
to successfully negotiate and establish a TLS session, the following message is
displayed:
EZD1821I csproc ABLE TO USE TARGET SERVER ipAddress

Restriction: To use the STARTTLS command with a target server, the target server
must have a certificate that can be validated by the AT-TLS component of z/OS
Communications Server as configured by Policy Agent. This certificate can be a
self-signed certificate or a certificate that can be validated by a known certificate
authority. If the certificate of the server cannot be validated, secure communication
with the server fails and mail that requires security cannot be delivered to that
server.

Chapter 28. Mail on z/OS 1387

Steps for configuring SMF records for CSSMTP (optional)
CSSMTP can write System Management Facilities (SMF) records for the following:
v When the configuration has been initialized or modified by a MODIFY

REFRESH command, a MODIFY LOG,LEVEL command, or a MODIFY
USEREXIT command. A CSSMTP application configuration record (CONFIG
subtype 48) is written.

v At the end of a connection with a target server, a CSSMTP application
connection record (CONNECT subtype 49) is written.

v At the end of the processing for each mail message, a CSSMTP application mail
message record (MAIL subtype 50) is written.

v At the end of the processing of a spool file when all the mail messages have
been completed, a CSSMTP application spool file record (SPOOL subtype 51) is
written.

v When statistical information about the CSSMTP processing at the SMF intervals
is required, a CSSMTP application statistical record (STATS subtype 52) is
written.

Perform the following steps to write SMF records to both the MVS SMF data sets
and the real-time SMF NMI. Writing SMF records to the MVS SMF data sets and
writing SMF records to the real-time SMF NMI are two independent functions and
are controlled by different configuration parameters.

1. Add a SMF119 statement to the CSSMTP configuration file. This configuration
parameter controls which SMF record types are written to the MVS SMF data
sets. For example:
SMF119
{
CONFIG YES
SPOOL YES
MAIL NO
CONNECT YES
STATS YES
}

In this example, the CONFIG, SPOOL, CONNECT and STATS records will be
written to MVS SMF data sets and not the MAIL record.

2. Restart the CSSMTP task or issue a MODIFY REFRESH command to
dynamically update CSSMTP with the new SMF119 statement values.

3. Update the TCPIP profile NETMONITOR statement to forward all of the
CSSMTP SMF records associated with the CONFIG, SPOOL, CONNECT and
STATS types to an application using the real-time SMF NMI, SYSTCPSM. Note
that these record types are both connection oriented and non-oriented (see 5
on page 1389). See z/OS Communications Server: IP Programmer's Guide and
Reference for more information about SYSTCPSM.
NETMONITOR SMFSERVICE CSSMTP

For the descriptions of the SMF records see z/OS Communications Server: IP
Programmer's Guide and Reference.

4. Update the TCPIP profile NETMONITOR statement to forward all the
CSSMTP SMF records associated with the MAIL type to an application using
the real-time SMF NMI, SYSTCPSM. See z/OS Communications Server: IP
Programmer's Guide and Reference for more information about SYSTCPSM.
NETMONITOR SMFSERVICE CSMail

1388 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|

|
|
|
|

|
|

|
|

|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|

|
|

|
|
|
|
|
|

|

|
|

|
|
|
|

|

5. Special considerations for CSSMTP application and NETMONITOR in a
CINET environment:
v The CSSMTP application can be started with the -p parameter to set stack

affinity. This enables that all of the SMF records will be written to the
real-time SMF NMI associated with the stack whose name was specified on
the -p parameter. This forces connection oriented SMF records (CONNECT)
and non-connection oriented SMF records (CONFIG, SPOOL, MAIL and
STATS) to go to the same stack. The CSSMTP and CSMAIL NETMONITOR
parameters should be specified in the profile data sets of the stack name to
match the name specified on the -p parameter.

v If the CSSMTP application is started without the -p parameter and multiple
stacks are active, then a network management application can not determine
the stack that records will be written to. The CSSMTP and CSMAIL
NETMONITOR parameters should be specified in the profile data sets of all
stacks, so that network management applications can obtain all the records.
The network management application will not get redundant records. In this
case CSSMTP writes the records to the first stack with an active SMFService
application and with the appropriate SMFSERVICE CSMAIL or CSSMTP
parameter set.

Monitoring CSSMTP
You can use the following MODIFY commands to monitor CSSMTP:
v MODIFY DISPLAY,CONFig

Displays the current configuration values.
v MODIFY DISPLAY,IPList

Displays the current set of target servers to which mail can be sent that are
configured or resolved from the TargetServer statement.

v MODIFY DISPLAY,SPoolstatus
Helps you determine how mail is being processed off the JES spool file.

v MODIFY DISPLAY,TARgets
Helps you monitor the mail being sent to target servers to determine whether
mail is being delivered, is being placed in undeliverable states, or is being
retried through long retry queues. This command also helps you determine the
list of target servers, their attributes, and the number of mail messages that a
target server is accepting.

For information about the MODIFY command for CSSMTP, see z/OS
Communications Server: IP System Administrator's Commands.

Differences between CSSMTP and SMTPD
If you are currently using Communications Server SMTPD on z/OS, you should
consider using CSSMTP. CSSMTP has been designed to support z/OS users of
SMTPD that create mail on the JES spool data set using batch jobs or that use
SMTPNOTE for delivery to the Internet. The mail messages you send today using
SMTPD can probably be sent with CSSMTP. However, as shown in Table 68 on
page 1390, CSSMTP does have differences from SMTPD, and might not be able to
accommodate everyone. Some of the primary differences that require migration
consideration are as follows:
v CSSMTP does not provide SMTP listener support; it cannot be used to receive

mail to z/OS for delivery to TSO users. You must continue to use SMTPD for
this kind of support or consider using sendmail for delivering mail to mailboxes
defined in the z/OS UNIX file system.

Chapter 28. Mail on z/OS 1389

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|

v CSSMTP delivers mail only to systems that have TCP/IP host names. If you are
using a local TSO user ID on the POSTMASTER statement for your SMTPD
server, then the local TSO user ID must be changed to an email address with the
format userid@host.domain on the MailAdministrator statement for CSSMTP. For
information about the MailAdministrator statement, see z/OS Communications
Server: IP Configuration Reference.

v CSSMTP does not perform DNS lookups to determine a target server for each
recipient. CSSMTP requires a connection to an SMTP or ESMTP server that
receives the mail and handles next-hop delivery. Typically, the target server is
located at a remote destination, but could also be a local instance of sendmail.

v If mail that CSSMTP sends to the target server becomes undeliverable, CSSMTP
is not able to receive the undeliverable mail notification because CSSMTP is not
a server. The originator (that is, MAIL FROM) of mail messages should be
reachable from the target server.

v CSSMTP does not store mail to DASD. CSSMTP processes mail directly from the
JES spool data set and sends the mail to the target server. If mail cannot be
delivered immediately, it is held for only a short period of time, defined by the
RetryLimit statement. If the mail cannot be delivered by the end of any
configured retry limit, then the mail becomes undeliverable.

v CSSMTP does not support source routing, such as the
<@host1,@host2:userid@host3> or <NJEuserid%NJEhost> formats. For example,
in the address string @host1,@host2,...,@hostn:user_id@host_name, the
@host1,@host2,...,@hostn portion of the address is ignored and
user_id@host_name is used as the recipient value. If you are using source
routing, you might want to change it to be an email address with the format
userid@domain (mailbox). Otherwise, the mail might not be delivered.

Table 68. Differences between CSSMTP and SMTPD

Function CSSMTP SMTPD

Managing the JES spool file Uses bad spool file or error report.
For information about the
BadSpoolDisp, Undeliverable, and
Report statements, see z/OS
Communications Server: IP
Configuration Reference.

Uses DASD to store mail

Code page translation Yes; uses iconv support for the
EBCDIC code page for the JES spool
file. For information about using the
Translate statement, see z/OS
Communications Server: IP
Configuration Reference.

Yes; user-defined translate tables are
configured in SMTPD

Modify RFC 822 headers or the body
of the mail

No, except for code pages for
converting from EBCDIC to ASCII,
and for appending a RECEIVED line
header to the beginning of the RFC
822 headers to indicate that CSSMTP
has picked up the mail message.

Yes

Supports SMTP server function (for
example, receive mail)

No, CSSMTP is a mail-forwarding
SMTP client application and is not a
fully capable MTA.

Yes

Deliver to local TSO user No; if this function is required, use
SMTPD to provide access to a local
TSO mailbox.

Yes

1390 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Table 68. Differences between CSSMTP and SMTPD (continued)

Function CSSMTP SMTPD

Undeliverable mail The undeliverable mail notification
can either be sent back to the
originator or deleted. An error report
for undeliverable mail can be
generated for SYSOUT or sent to the
mail administrator. For information
about the Undeliverable and Report
statements, see z/OS Communications
Server: IP Configuration Reference.

Send back to originator

Dead letter mail The dead letter mail can either be
deleted or written to a z/OS UNIX
file system directory. For information
about the DeadLetterAction
parameter on the Undeliverable
statement, see z/OS Communications
Server: IP Configuration Reference.

No configuration parameters to
support deadletter processing

Monitoring mail processing MODIFY commands SMSG

Requires VMCF and TNF subsystems No Yes; SMTPD is a Pascal application

Security Uses security product authorization
profile to provide security. See
“Security for CSSMTP” on page 1384

Uses the RESTRICT and SECURE
statements

Rewrite the path name in command No; The batch job needs to use a
correct mail address format, such as
userid@host.domain.

Yes

Addition of a message-id field when
none appears

Yes No

Source routing support, such as the
@host1,@host2:userid@host3 or
NJEuserid%NJEhost formats

No; CSSMTP removes source routes
from the path. CSSMTP does not
support source routing and does not
generate these addressing formats.

Yes

Send mail to local mail administrator No; CSSMTP internally generates a
report that can be delivered to a mail
administrator, but the mail
administrator address must be in the
form (userid@host.domain).

Yes; supports the local TSO or remote
(NJE) user IDs as a mail
administrator

Supports the SMTP commands
EXPN, QUEU, HELP, NOOP, TICK,
VERB, and VRFY

No; for commands supported, see
z/OS Communications Server: IP User's
Guide and Commands.

Yes

Resolver z/OS UNIX search order for resolver
configuration files. Uses system
resolver.

Native MVS search order for resolver
configuration files. Does not use
system resolver.

Checkpoint Yes; for information about using the
CHKPOINT DD statement in the
CSSMTP started procedure and
starting CSSMTP, see z/OS
Communications Server: IP
Configuration Reference.

No

IPv6 support Yes No

SMF support Yes No

Chapter 28. Mail on z/OS 1391

|||

Configuring the SMTP server (SMTPD)
Before you configure...

Read “Understanding search orders of configuration information” on page 19. It
covers important information about data set naming and search sequences.

Note: Before configuring the SMTP server, it is assumed that the necessary
SYS1.PARMLIB changes have been made. Consult the Program Directory for
current information about the storage estimates for this version. The
Program Directory also contains information about customization of certain
SYS1.PARMLIB members, which must be completed before the initial
program load (IPL) for the MVS image.

The SMTP server uses the Pascal socket API, so VMCF must be started for the
server to successfully initialize. If VMCF is not started, message EZY1980E will be
issued and the server will terminate.

If you have specified PROFILE NOINTERCOM in your TSO user ID's profile, then
there are some SMTP server messages that you will not receive.

Checklist for working within the SMTP environment
1. SMTP needs to interface with JES utilities to create, read, write and purge data

from the JES spool. JES exit programs might interfere with SMTP functioning
properly.

2. JES initialization parameters must be set up correctly so mail can be sent to
SMTP and so that local mail can be placed on the JES spool for local users.

3. Because SMTP needs authority to create, read, write, and purge data on the JES
spool, any security programs that protect JES spool access must have the user
ID or group ID that is associated with the SMTP started task name in their
definitions of authorized users. If your security product is RACF, you can
control the association of a user ID or group ID to a started task name by the
STARTED class. For more information about RACF controls for the JES spool,
see z/OS Security Server RACF Security Administrator's Guide.

4. DASD management is important to have SMTP run properly, it is
recommended that SMTP have its own dedicated volumes. The
MAILFILEVOLUME statement may be used to specify a particular volume
where newly allocated SMTP data sets reside. See z/OS Communications Server:
IP Configuration Reference for more information on this parameter.

5. SMTP is a heavy user of data set I/O functions. It creates data sets for every
piece of mail it processes. There are two data sets associated with each piece of
mail:
a. SMTPhlq.*.ADDRBLOK (control file)
b. SMTPhlq.*.NOTE (message content)

The SMTP high level qualifier (SMTPhlq) is configured in the SMTP
configuration data set using the MAILFILEDSPREFIX statement. When SMTP is
executing, SMTP must have exclusive access to the data sets it has created to
work properly.
To avoid contention, applications that manage DASD should only be run when
SMTP is not active, or exclude the SMTP data sets or the volumes on which
they reside from their processing. If contention occurs, EZA5335E will be
displayed before the SMTP server terminates. Also, the SMTP high level
qualifier can be used to exclude the SMTP data sets if necessary.

1392 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|
|
|
|
|
|
|

6. SMTP requires that the ASCII LineFeed character (x'0A') be translated to an
EBCDIC LineFeed (x'25'). The translation table used by SMTP must have this
translation. For information regarding customizing translation tables and for
the search order used by SMTP to locate the translation table, see z/OS
Communications Server: IP Configuration Reference.

Configuration process
Steps to configure SMTP:

1. Verify TCP/IP profile statements in the TCP/IP profile data set.
2. Update the SMTP cataloged procedure SEZAINST(SMTPPROC).
3. Customize the SMTPNOTE CLIST and modify parmlib members.
4. Customize the SMTP mail headers (optional).
5. Set up a TCP-to-NJE mail gateway (optional).
6. Specify configuration statements in the SMTP configuration data set.
7. Create an SMTP security table (optional).
8. Enable SMTP domain name resolution.
9. Enable sending messages to SMTP users and users on an IP Network.

10. Optionally, design SMTP exit to inspect and filter unwanted mail (spam).
11. Set up automation to monitor how much mail is queued.

Step 1: Verify TCP/IP profile statements in the TCP/IP profile data
set
Consider specifying the following TCP/IP profile statements.

AUTOLOG: If you want the SMTP server to start automatically when the TCPIP
address space is started, include the name of the member that contains the SMTP
cataloged procedure in the AUTOLOG statement of the hlq.PROFILE.TCPIP data
set.
AUTOLOG

SMTP
ENDAUTOLOG

PORT: To ensure that port TCP 25 is reserved for SMTP, verify that the name of
the member that contains the SMTP cataloged procedure has been added to the
PORT statement in hlq.PROFILE.TCPIP.
PORT

25 TCP SMTP

Other TCP/IP profile considerations: The SMTP server uses the Pascal API
MonQuery function to obtain the IPv4 IP addresses defined for the TCP/IP stack.
The total number of IPv4 IP addresses that can be defined for the TCP/IP stack is
limited to 255 IP addresses. This limit of 255 IP addresses applies to all IPv4 IP
addresses, including loopback and dynamic VIPA.

For more information about TCP/IP profile statements, see z/OS Communications
Server: IP Configuration Reference.

Step 2: Update the SMTP cataloged procedure
Update the SMTP cataloged procedure by copying the sample in
SEZAINST(SMTPPROC) to your system or recognized PROCLIB. Specify SMTP
parameters, and change the data set as required to suit your local configuration.
See z/OS Communications Server: IP Configuration Reference for more detailed
information about the procedure.

Chapter 28. Mail on z/OS 1393

|

|
|
|

|
|

|
|

|
|
|
|
|

|
|

Note: SMTP does not support z/OS UNIX files.

Step 3: Customize the SMTPNOTE CLIST and modify parmlib
data sets
You must copy and customize the SMTPNOTE CLIST on every system where users
will be able to send mail with the SMTPNOTE command. This includes TCP/IP
nodes and each NJE node that sends mail through SMTP on a remote gateway
node. SMTPNOTE uses the TSO transmit (XMIT) command to interface with
SMTP.

Copy SEZAINST(SMTPNOTE) into the system CLIST data set. Since the
SEZAINST data set is in a fixed format, the SMTPNOTE member may be truncated
if your system CLIST library is not in a fixed format.

You should customize the following variables in the SMTPNOTE CLIST:

DDNAME
The DDNAME that SMTPNOTE will use to allocate the input data set. The
allocation is done to allow shared access to the data set. The default value
is set to EZBSMTPN and should only be changed if this value will cause a
conflict on your system.

HOSTNAME
The name of the system on which this CLIST is installed. Typically, the
name is the NJE node name of this system. The NJE node name of the
system is the value of the NAME parameter on the NODE(nn) statement in
the JES2PARM member of parmlib.

SMTPNODE
The NJE node on which the SMTP server runs. Typically, HOSTNAME and
SMTPNODE have the same value. When SMTPNODE is used on an NJE
network in conjunction with a TCP-to-NJE gateway, the value of this
parameter is the NJE node name of that gateway.

SMTPJOB
The name of the address space in which SMTP runs at SMTPNODE.
Usually this is SMTP. The SMTPJOB name must not be defined as a node
name to JES and cannot begin with the characters R, RM, or RMT, since
SMTPNOTE uses TSO XMIT to transmit the note to the SMTP address
space.

TEMPDSN
The name of the temporary data set used to store the contents of the note
being created. This can be any arbitrary data set name that ends with the
low-level qualifier, TEXT. Do not use a fully qualified name. If you do not
fully qualify the name (no quotes), the data set name will be prefixed by
the userid. If you enclose the name in single quotes, several users can use
this temporary data set.

TIMEZONE
The time zone for your system. This will appear in the "Date:" stamp of the
RFC 822 header generated by SMTPNOTE. See RFC 822 for valid time
zone formats. SMTPNOTE does not check the validity of the character
string configured. If SYSTZ is configured, SMTPNOTE gets the TIMEZONE
value from the MVS system using the local TIME/DATE offset in the
communication vector table (CVT) associated with SMTPNOTE. This value
is then converted to a string format of a plus sign (+) or a minus sign (-)
followed by 4 digits (for example, -HHMM). The local TIME/DATE offset
is controlled by the system administrator that sets the MVS system

1394 z/OS V1R12.0 Comm Svr: IP Configuration Guide

time/date and timezone parameters. For more information about the
CLOCKxx parmlib member, see z/OS MVS Initialization and Tuning
Reference. For more information about the MVS SET CLOCK=hh.mm.ss or
SET TIMEZONE={W|E}.hh.mm commands, see z/OS MVS System
Commands. For information about accessing RFCs, see Appendix G,
“Related protocol specifications,” on page 1555.

Note: SMTPNOTE does not alter any existing date/time and timezone
headers in the mail.

ATSIGN
Some foreign languages need to use a different character to represent the @
symbol. This input symbol is a single-byte representation of the @ symbol
in their national language code page.

DOMAIN
Some SMTP message transfer agents (MTAs) need a fully qualified name
as an email address for the originator of the mail. If DOMAIN is set, then
this string is appended to the HOSTNAME variable string provided in this
CLIST, and the resulting fully qualified name string is hostname.domain. The
resulting string is later used by the CLIST to create the SMTP MAIL
FROM: command and the RFC 822 From: header in the mail message. The
CLIST does not check validity of the content of the string. This variable
should be set when sending mail to CSSMTP.

You should also modify the following parmlib members:

IEFSSNxx
When the SMTP server is running in the same host (or system) as the
SMTPNOTE CLIST, the IEFSSNxx member can be modified in one of the
following two ways:
v The following lines may be included:

TNF,MVPTSSI
VMCF,MVPXSSI, nodename

where nodename is the NJE node name. The NJE node name, nodename,
must be the same as the hostname and the smtpnode that are defined in
the SMTPNOTE CLIST.

v If you are using restartable VMCF, you must make changes to IEFSSxx
members in the SYS1.PARMLIB data set.
For introductory information on restartable VMCF, see “Step 3:
Configure VMCF and TNF” on page 103. For the MVS system changes
required for restartable VMCF, see the TCP/IP for MVS Program
Directory. For information on VMCF commands, see z/OS
Communications Server: IP Diagnosis Guide.

Note: You should define the SystemName in the IEFSSNxx parmlib
member to be the same as your JES2 or JES3 (NJE) nodename.
This is required for correct delivery of SMTP mail. For example, if
the following line is coded in your SMTPNOTE CLIST:
SMTPNODE P390

you need to code NAME=P390 in your IEFSSNxx parmlib
member. As an alternative, instead of using the IEFSSNxx parmlib
member to specify the JES node, you can use the keyword
NJENODENAME within your SMTP configuration to a valid NJE
node. For more information, see NJENODENAME.

Chapter 28. Mail on z/OS 1395

IKJTSOxx
The TRANSREC statement must contain the correct nodename, or the
NODESMF parameter can be coded as NODESMF((*,*)). For more
information on the TRANSREC statement, see z/OS MVS Initialization and
Tuning Reference.

Step 4: Customize the SMTP mail headers (Optional)
Electronic mail has a standardized syntax for text messages that are sent across
networks. The standard syntax is described in RFC 822. Messages have an
envelope and contents. Envelopes contain all necessary information to accomplish
transmission and delivery of the message content. The fields within the envelope
are in a standard format.

In most cases, the IBM-supplied mail header defaults are adequate. To understand
the IBM-supplied mail header defaults, see “Default SMTP rules” on page 1402. If
it is necessary for you to change them, you can use the REWRITE822HEADER
statement in the SMTP configuration data set to control the way SMTP performs a
rewrite of the RFC 822 mail headers. Mail headers are passed from the local
system, or NJE network, to the TCP network. Mail headers passing from the TCP
network to the local system or NJE network are not affected. Only the addresses
under certain RFC 822 header fields can be subject to the header rewriting rules.

The header fields affected by the REWRITE822HEADER statement are:

Field Description

From The identity of the person sending the message.

Resent-From
Indicates the person that forwarded the message.

Reply-To
Provides a mechanism for indicating any mailboxes to which responses are
to be sent.

Resent-Reply-To
Indicates the person to whom you should forward the reply.

Return-Path
This field is added by the mail transport service at the time of final
delivery. It contains definitive information about the address and route
back to the originator of the message.

Sender
The authenticated identity of the agent that sent the message. An agent can
be a person, system, or process.

Resent-Sender
The authenticated identity of the agent that has resent the message.

To Contains the identity of the primary recipient of the message.

Cc Contains the identity of the secondary (informational) recipients of the
message.

Bcc Contains the identity of additional recipients of the message. The contents
of this field are not included in copies sent to the primary and secondary
recipients of the message but are included in the author’s copy.

1396 z/OS V1R12.0 Comm Svr: IP Configuration Guide

The SMTP rules data set: You can override the default rules for header addresses
by creating an SMTP rules data set. This allows you to customize the address
transformations to the needs of a particular site. If you are customizing SMTP mail
headers, this task is required.

The SMTP rules data set is pointed to by the //SMTPRULE DD statement in the
SMTP cataloged procedure. The SMTP rules data set consists of:

Field definition
Contains the names of all header fields whose addresses are to be
rewritten.

Rules definition
Contains the rewrite rules for the header fields.

Statement syntax: In creating the SMTP rules data set you must use the following
syntax conventions:
v The data set statements are free-format. Tokens can be separated by an arbitrary

number of spaces, and statements can span an arbitrary number of lines.
However, you must end every statement with a semicolon (;).

v A character string appearing within single quotation marks ('...') is not
case-sensitive. For example, 'abc' represents 'abc', 'Abc', 'ABC', and so forth.

v A character string appearing within double quotation marks ("...") is
case-sensitive. For example, "abc" only represents "abc". It does not represent
"Abc", "ABC", and so forth.
Special characters, such as @ and % are treated the same whether enclosed by
single quotation marks or double quotation marks.

v Double-hyphens ("--") are used to begin a comment. The comment extends to the
end of the line.

The components of the SMTP rules data set are described in “Format of the field
definition section” and “Format of the rule definition section” on page 1399.

Format of the field definition section: The field definition section is the first section in
any SMTP rules data set. It defines any applicable alias fields, and it is introduced
by the following heading:
Field Definition Section

This section allows similar fields to be grouped under an alias or common name.
This name, or alias, is used to represent the field list. You can define an arbitrary
number of aliases representing a set of field lists.

An alias name can be any alphanumeric sequence of characters that is not a
predefined keyword within the SMTP rules (see the following). However, the alias
name DefaultFields is treated specially by the SMTP configuration interpreter. If
DefaultFields is defined, and if a rule is written that does not specify an
associated field alias, the rules interpreter assumes that DefaultFields is the
associated field alias.

The alias definition within this section is of the following form:
alias_name = alias_definition; optional comment

where alias_name is the name of the alias and alias_definition is an expression
describing which fields are to be grouped under this alias. This expression can be
as simple as a single field name. For example:

Chapter 28. Mail on z/OS 1397

MyAlias = ’To’;

The aliases can be a list or set of field names. The field names To, From, Cc, and
Bcc, in the following example are part of a set of field names referenced by the
alias MyAlias.
MyAlias = ’To’ ’From’ ’Cc’ ’Bcc’ ; -- first list of fields

You can combine field names and previously defined aliases to create a new alias.
In the following example, the set of field names defined as MyAlias and the field
names in the new alias YourAlias are combined to form a third set. The new alias
TheirAlias is the union of both aliases and contains the fields of MyAlias and
YourAlias.
MyAlias = ’To’ ’From’ ’Cc’ ’Bcc’;
YourAlias = ’Errors-To’ ’Warnings-To’;
TheirAlias = MyAlias YourAlias;

In the previous example, TheirAlias is an alias that represents the following fields:
TheirAlias: ’To’ ’From’ ’Cc’ ’Bcc’ ’Errors-To’ ’Warnings-To’

You can perform the following operations on set members of the alias to create a
subset of the initial alias:
v Union operations
v Difference operations
v Intersection operations

Union and difference operations: Certain field names can be added to or omitted
from a new alias of field names by using a minus sign to omit set members and an
optional plus sign to include another field name. In the mathematics of sets, when
you add together 2 or more sets, they form a union. When set members are
omitted, the remaining set is created by the difference operation. In the following
example HerAlias and HisAlias are defined. The alias HisAlias is created from the
union of TheirAlias, HerAlias, and the omission of Warning-To and Bcc from the
sets:
HerAlias = ’Reply-To’ ’Sender’;
HisAlias = TheirAlias - ’Warnings-To’ - ’Bcc’ + HerAlias;

In the previous example, HisAlias is an alias that represents the following fields:
HisAlias: ’To’ ’From’ ’Cc’ ’Errors-To’ ’Reply-To’ ’Sender’

Intersection operations: A field definition can include an intersection operation.
When the intersection operation is applied to two field expressions, the resulting
set contains the fields common to both. In the following example, MyAlias and
YourAlias are defined. The alias OurAlias is created from the intersection of
MyAlias and YourAlias. The asterisk (*) is the intersection operator.
MyAlias = ’Bcc’ ’Cc’ ’From’ ’Reply-To’;
YourAlias = ’Resent-From’ ’Cc’ ’Sender’ ’To’ ’Bcc’;
OurAlias = MyAlias * YourAlias; -- the intersection

In the previous example, OurAlias represents the following fields:
OurAlias: ’Bcc’ ’Cc’

In the following complex example TheirAlias is created from the intersection of
YourAlias with the sum of MyAlias plus Resent-From:
TheirAlias = (MyAlias + ’Resent-From’) * YourAlias;

In the previous example, TheirAlias represents the following fields:

1398 z/OS V1R12.0 Comm Svr: IP Configuration Guide

TheirAlias: ’Bcc’ ’Cc’ ’Resent-From’

The parentheses within the definition of TheirAlias perform the same functions as
in algebra. Field expressions are evaluated from left to right, but the intersection
operation has greater priority than union and difference operations. If parentheses
were not used in the definition of TheirAlias, the result would be:
TheirAlias: ’Bcc’ ’Cc’ ’From’ ’Reply-To’ ’Resent-From’

Format of the rule definition section: The rule definition section is the next section in
any SMTP RULES data set. It contains the header rewriting rules that define the
intended address transformations, and it is introduced by the following heading:
Rule Definition Section

The basic form of a rewrite rule is:
alias :before-address-pattern => after-address-pattern;

where the alias name alias is an optional name representing the fields for which the
rule is applicable. If the alias name alias : is omitted from this part of the rules,
then DefaultFields is assumed.

The sequence of tokens that define how a particular type of address is to be
recognized is the before-address-pattern portion of the rules definition. The sequence
of tokens that define how the address is to appear after the address has been
rewritten is the after-address-pattern portion of the rules definition. The following
example is the rule for converting host names:
A ’@’ NJEHostName => A ’@’ TCPHostName; -- convert host names

In the previous example, A ’@’ NJEHostName is the before-address-pattern portion of
this rule, and A ’@’ TCPHostName is the after-address-pattern portion. This rule
specifies that the address to be rewritten has an arbitrary local name (A), an at sign
(@), and the NJE host name (NJEHostName) of the current site. The rule also
specifies that the rewritten address must contain the same arbitrary local name (A),
an at sign, and the current site’s TCP host name TCPHostName.

SMTP rules syntax conventions: Use the following syntax convention when writing
SMTP rules:
v Some keywords have special meaning to the rules interpreter. For example,

NJEHostName keyword means the NJE host name of the present system, and
TCPHostName keyword means the TCP host name of the present system. For more
information about valid keywords see “Predefined keywords within the SMTP
rules” on page 1401. Some keywords, such as TCPHostName, have single values.
Other keywords, such as AltTCPHostName and AnyDomainName, can have many
possible values. To avoid ambiguity, any keyword that can have multiple values,
and is used in the after-address-pattern of a given rule, must appear exactly once
within the before-address-pattern of that rule. The following rule example shows a
valid syntax:

A ’@’ AltTCPHostName ’.’ AltTCPHostName =>
A ’%’ TCPHostName ’@’ TCPHostName;

The following two rules have incorrect syntax because the first keyword
AltTCPHostName must be rewritten to a keyword with specific values. The
AltTCPHostName is attempting to be rewritten to the same AltTCPHostName but
with unknown values, which is not valid.

Chapter 28. Mail on z/OS 1399

A ’@’ AltTCPHostName ’.’ AltTCPHostName =>
A ’%’ AltTCPHostName ’@’ TCPHostName;

A ’@’ TCPHostName => A ’@’ AltTCPHostName;

Any rule whose before-address-pattern includes a keyword that has a null value is
ignored during the header rewriting. Thus, if there is no AltNJEDomain defined
in the system configuration data set, no rule that includes AltNJEDomain in the
before-address-pattern is considered during the header rewriting.

v Alphanumeric identifiers that are not within single or double quotation marks,
and that are not predefined keywords, are considered wildcards in the rule
statement. Wildcards represent an arbitrary (non-null) sequence of characters.
The identifier A, in the previous rule example, is a wildcard. Thus, if host were
the NJE host name for the current site, and if tcphost were the TCP host name
for the current site, the previous rule example recognizes abc@host and d@host as
candidates for address rewriting, and rewrites them as abc@tcphost and
d@tcphost respectively. To avoid ambiguity, within the before-address-pattern of a
given rule, no two wildcards are allowed in a row, and the same wildcard
cannot be used more than once. The following rules have valid syntax:

A ’@’ B TCPHostName => A ’%’ B ’@’ TCPHostName;
A ’%’ B ’@’ NJEHostName => A B ’@’ TCPHostName;

The following rules have incorrect syntax because the first rule has 2 wildcards
in a row A and B. The second rule has the same wildcard A repeated:

A B ’@’ TCPHostName => A A ’%’ B ’@’ TCPHostName;
A ’%’ A ’@’ NJEHostName => A ’@’ TCPHostName;

v A character string appearing within single or double quotation marks tells the
rules interpreter where a particular string is to appear within a header address.
In the previous rule example, the ’@’ string in the before-address-pattern tells the
rules interpreter that an at-sign (@) must appear between the arbitrary character
string and the NJE host name. The ’@’ string in the after-address-pattern tells the
rules interpreter that the address must be rewritten so an at-sign appears
between the arbitrary string and the TCP host name. As previously mentioned,
single quotation marks denote strings that are not case-sensitive, and double
quotation marks denote case-sensitive strings.

v The character sequence "=>", with no spaces between the characters, separates
the before-address-pattern from the after-address-pattern.

v The order in which the rules are specified is important; the first rule
encountered whose before-address-pattern matches the current address is the rule
to dictate the address transformation. Once a matching rule has been found for
an address, no other rule is considered.

In addition to the rules themselves, there is the capability for some simple logic to
decide at system configuration time which rules within the data set should become
active. These conditions are specified in the form of an IF-THEN-ELSE statement,
as shown in the following example:

IF cond THEN
statement list

ELSE
statement list

ENDIF

A statement list can consist of any number of rules or nested IF statements, or
both. Each IF statement, regardless of whether it is nested, must be ended by an
ENDIF keyword. As with IF statements in other programming languages, the ELSE
clause is optional.

1400 z/OS V1R12.0 Comm Svr: IP Configuration Guide

There are only two conditions recognized by an IF statement:
1. IF predefined keyword = 'character string' THEN ... ENDIF
2. IF predefined keyword CONTAINS 'character string' THEN ... ENDIF

The conditional operators = and CONTAINS can be prefixed by the word NOT to
invert the conditions.

The predefined keyword must be a keyword that resolves to a single value at system
configuration time. The character string in the first condition can be null. A
character string cannot span more than one line.

The following example shows the use of IF statements.
IF NJEDomain = ’’ THEN

A ’@’ AnyNJEHostName => A ’%’ AnyNJEHostName ’@’ TCPHostName;
ELSE

A ’@’ NJEHostName ’.’ NJEDomain => A ’@’ TCPHostName;
A ’@’ NJEHostName ’.’ AltNJEDomain => A ’@’ TCPHostName;
IF NJEDomain CONTAINS ’.’ THEN

A ’@’ AnyNJEHostName =>
A ’@’ AnyNJEHostName ’.’ NJEDomain;

A ’@’ AnyNJEHostName ’.’ NJEDomain =>
A ’@’ AnyNJEHostName ’.’ NJEDomain;

A ’@’ AnyNJEHostName ’.’ AltNJEDomain =>
A ’@’ AnyNJEHostName ’.’ NJEDomain;

ELSE
A ’@’ AnyNJEHostName =>

A ’%’ AnyNJEHostName ’.’ NJEDomain ’@’ TCPHostName;
A ’@’ AnyNJEHostName ’.’ NJEDomain =>

A ’%’ AnyNJEHostName ’.’ NJEDomain ’@’ TCPHostName;
A ’@’ AnyNJEHostName ’.’ AltNJEDomain =>

A ’%’ AnyNJEHostName ’.’ NJEDomain ’@’ TCPHostName;
ENDIF

ENDIF

Predefined keywords within the SMTP rules: The following predefined
keywords can be used to define the header rewriting rules:

AltNJEDomain
Matches the alternative domain name of the NJE network as defined by
the ALTNJEDOMAIN statement in the SMTP configuration data set.

AltTCPHostName
Matches any alternative TCP host name of the system, as defined by
ALTTCPHOSTNAME statements in the SMTP configuration data set.

AnyDomainName
Matches any fully qualified domain name. Any host name with a period (.)
is considered to be a fully qualified domain name.

AnyNJEHostName
Matches any (unqualified) NJE host name defined in the
SMTPNJE.HOSTINFO data set.

NJEDomain
Matches the domain name of the NJE network as defined by the
NJEDOMAIN statement in the SMTP configuration data set.

NJEHostName
Matches the NJE host name of the system.

Chapter 28. Mail on z/OS 1401

SecureNickAddr
Matches an address of the form NJE_user_id@NJE_node_id, where
NJE_user_id, and NJE_node_id are defined with a nickname in the SMTP
security data set.

Note: This only matches user and node IDs that are defined with
nicknames.

When SecureNickAddr is specified in the before-address-pattern of a rule,
SMTP automatically associates the keyword SecureNickName with the
corresponding nickname. This allows SecureNickName to be specified in
the after-address-pattern.

SecureNickName
Matches a nickname defined in the SMTP security data set. When
SecureNickName is specified in the before-address-pattern of a rule, SMTP
automatically associates the keyword SecureNickAddr with the
corresponding NJE_user_id@NJE_node_id. This allows SecureNickAddr to be
specified in the after-address-pattern.

ShortTCPHostName
Matches the first portion of the TCP host name of the system, as defined
by the HOSTNAME statement in the TCPIP.DATA data set. For example, if
the TCP host name was mvs1.acme.com, the value of ShortTCPHostName is
mvs1.

TCPHostName
Matches the TCP host name of the system as defined by the concatenation
of the HOSTNAME and DOMAINORIGIN statements in the TCPIP.DATA
data set.

TCPHostNameDomain
Matches the domain portion of the TCP host name of the system as
defined by the DOMAINORIGIN statement in the TCPIP.DATA data set.
For example, if the TCP host name was mvs1.acme.com, the value of
TCPHostNameDomain is acme.com.

The predefined keywords can consist of any combination of uppercase and
lowercase characters; the rules interpreter does not distinguish between them.

The secure keywords are only valid when SMTP is configured to be a secure
gateway.

Default SMTP rules: If the //SMTPRULE DD statement is not found, SMTP uses
a default set of rules. The default set used depends on whether SMTP is
configured as a secure gateway.

SMTP nonsecure gateway configuration defaults: If SMTP is not configured as a
secure gateway, SMTP uses the following defaults:
FIELD DEFINITION SECTION
DEFAULTFIELDS = ’BCC’ ’CC’ ’FROM’ ’REPLY-TO’ ’RESENT-FROM’

’RESENT-REPLY-TO’ ’RESENT-SENDER’ ’RETURN-PATH’
’SENDER’ ’TO’;

RULE DEFINITION SECTION

A ’@’ NJEHOSTNAME => A ’@’ TCPHOSTNAME;

IF NJEDOMAIN = ’’ THEN
A ’@’ ANYNJEHOSTNAME => A ’%’ ANYNJEHOSTNAME ’@’ TCPHOSTNAME;

1402 z/OS V1R12.0 Comm Svr: IP Configuration Guide

ELSE
A ’@’ NJEHOSTNAME ’.’ NJEDOMAIN => A ’@’ TCPHOSTNAME;
A ’@’ NJEHOSTNAME ’.’ ALTNJEDOMAIN => A ’@’ TCPHOSTNAME;
IF NJEDOMAIN CONTAINS ’.’ THEN

A ’@’ ANYNJEHOSTNAME =>
A ’@’ ANYNJEHOSTNAME ’.’ NJEDOMAIN;

A ’@’ ANYNJEHOSTNAME ’.’ NJEDOMAIN =>
A ’@’ ANYNJEHOSTNAME ’.’ NJEDOMAIN;

A ’@’ ANYNJEHOSTNAME ’.’ ALTNJEDOMAIN =>
A ’@’ ANYNJEHOSTNAME ’.’ NJEDOMAIN;

ELSE
A ’@’ ANYNJEHOSTNAME =>

A ’%’ ANYNJEHOSTNAME ’.’ NJEDOMAIN ’@’ TCPHOSTNAME;
A ’@’ ANYNJEHOSTNAME ’.’ NJEDOMAIN =>

A ’%’ ANYNJEHOSTNAME ’.’ NJEDOMAIN ’@’ TCPHOSTNAME;
A ’@’ ANYNJEHOSTNAME ’.’ ALTNJEDOMAIN =>

A ’%’ ANYNJEHOSTNAME ’.’ NJEDOMAIN ’@’ TCPHOSTNAME;
ENDIF

ENDIF

A ’@’ TCPHOSTNAME => A ’@’ TCPHOSTNAME;
A ’@’ SHORTTCPHOSTNAME => A ’@’ TCPHOSTNAME;
A ’@’ ALTTCPHOSTNAME => A ’@’ TCPHOSTNAME;
A ’@’ ANYDOMAINNAME => A ’@’ ANYDOMAINNAME;
A ’@’ B => A ’@’ B ’.’ TCPHOSTNAMEDOMAIN;

SMTP secure gateway configuration defaults: If SMTP is configured as a secure
gateway, SMTP uses the following defaults:
FIELD DEFINITION SECTION
DEFAULTFIELDS = ’BCC’ ’CC’ ’FROM’ ’REPLY-TO’ ’RESENT-FROM’

’RESENT-REPLY-TO’ ’RESENT-SENDER’ ’RETURN-PATH’
’SENDER’ ’TO’;

RULE DEFINITION SECTION

SECURENICKADDR => SECURENICKNAME ’@’ TCPHOSTNAME;
A ’@’ NJEHOSTNAME => A ’@’ TCPHOSTNAME;

IF NJEDOMAIN NOT = ’’ THEN
SECURENICKADDR ’.’ NJEDOMAIN => SECURENICKNAME ’@’ TCPHOSTNAME;
SECURENICKADDR ’.’ ALTNJEDOMAIN => SECURENICKNAME ’@’ TCPHOSTNAME;
A ’@’ NJEHOSTNAME ’.’ NJEDOMAIN => A ’@’ TCPHOSTNAME;
A ’@’ NJEHOSTNAME ’.’ ALTNJEDOMAIN => A ’@’ TCPHOSTNAME;
IF NJEDOMAIN CONTAINS ’.’ THEN

A ’@’ ANYNJEHOSTNAME =>
A ’@’ ANYNJEHOSTNAME ’.’ NJEDOMAIN;

A ’@’ ANYNJEHOSTNAME ’.’ NJEDOMAIN =>
A ’@’ ANYNJEHOSTNAME ’.’ NJEDOMAIN;

A ’@’ ANYNJEHOSTNAME ’.’ ALTNJEDOMAIN =>
A ’@’ ANYNJEHOSTNAME ’.’ NJEDOMAIN;

ELSE
A ’@’ ANYNJEHOSTNAME =>

A ’%’ ANYNJEHOSTNAME ’.’ NJEDOMAIN ’@’ TCPHOSTNAME;
A ’@’ ANYNJEHOSTNAME ’.’ NJEDOMAIN =>

A ’%’ ANYNJEHOSTNAME ’.’ NJEDOMAIN ’@’ TCPHOSTNAME;
A ’@’ ANYNJEHOSTNAME ’.’ ALTNJEDOMAIN =>

A ’%’ ANYNJEHOSTNAME ’.’ NJEDOMAIN ’@’ TCPHOSTNAME;
ENDIF

ENDIF
A ’@’ TCPHOSTNAME => A ’@’ TCPHOSTNAME;
A ’@’ SHORTTCPHOSTTNAME => A ’@’ TCPHOSTNAME;
A ’@’ ALTTCPHOSTNAME => A ’@’ TCPHOSTNAME;
A ’@’ ANYDOMAINNAME => A ’@’ ANYDOMAINNAME;
A ’@’ B => A ’@’ B ’.’ TCPHOSTNAMEDOMAIN;

Chapter 28. Mail on z/OS 1403

Examples of header rewrite rules: The following examples show how the header
rewriting rules affect an SMTP mail header. The example site is not a secure
gateway and is configured as follows:

TCPHostName = mvs1.acme.com
ShortTCPHostName = mvs1
AltTCPHostName = seeds.acme.com
NJEHostName = mvs1
NJEDomain = acmenet
AltNJEDomain = centralnet

Note that the above keywords are configured according to the definitions found in
“Predefined keywords within the SMTP rules” on page 1401 (for example, from
TCPIP.DATA). In addition, assume that the following are known to be other NJE
hosts:

bird
iron

Then the following header:
From: abc@mvs1 (Brendan Beeper)
To: Jenny Bird <def@bird>
Cc: ghi@iron.acmenet, j@mvs1,
k@seeds.acme.com,
Mailing List <owner@acmenet>,
lmno@iron.centralnet
Subject: New Ore

is rewritten by the default header rewriting rules as:
From: abc@mvs1.acme.com (Brendan Beeper)
To: Jenny Bird <def%bird.acmenet@mvs1.acme.com>
Cc: ghi%iron.acmenet@mvs1.acme.com, j@mvs1.acme.com,
k@mvs1.acme.com,
Mailing List <owner%acmenet@mvs.acme.com>,
lmno%iron.acmenet@mvs1.acme.com
Subject: New Ore

The next example deviates from the defaults listed in “Default SMTP rules” on
page 1402. On the configuration for nonsecure gateways, if you change the rule
before the 2 ENDIFs to:

A ’@’ AnyNJEHostName ’.’ AltNJEDomain =>
’<@’ TCPHostName ’:’ A ’@’ AnyNJEHostName ’.’ NJEDomain ’>’;

then the last address in the Cc: field within our header is rewritten as:
Cc: <@mvs1.acme.com:lmno@iron.acmenet>

Note: Do not make the change shown in the previous example; it is intended only
as a demonstration of the capabilities of the pattern-matching language.

Step 5: Set up a TCP-to-NJE mail gateway (Optional)
You can configure the SMTP server to run as a mail gateway between TCP
network users and users located on a NJE network attached to the local host. This
way NJE users can send mail or data sets to users on TCP hosts using
SMTPNOTE. See z/OS Communications Server: IP User's Guide and Commands for
more information about SMTPNOTE. For JES2, see z/OS JES2 Initialization and
Tuning Guide and z/OS JES2 Initialization and Tuning Reference. For JES3, see z/OS
JES3 Initialization and Tuning Guide and z/OS JES3 Initialization and Tuning Reference.

Follow these steps to set up your TCP-to-NJE mail gateway:

1404 z/OS V1R12.0 Comm Svr: IP Configuration Guide

1. Add the GATEWAY statement to the SMTP configuration data set. Add other
related statements, such as ALTDOMAIN, NJECLASS, NJEDOMAIN, and
NJEFORMAT, as required by your configuration.

2. Issue the SMTPNJE command.

�� SMTPNJE data_set_name(member)
JES2

(JES3

��

data_set_name(member)
The name of the input data set for SMTPNJE. It specifies the initialization
data set of the JES2 or JES3 subsystem that is scanned for NJE nodes by
SMTPNJE. The data set name is the same name as defined on ddname
HASPPARM in your JES2 procedure or in the JES3IN ddname in your JES3
procedure.

member is the JES2PARM member that contains the NODE and DESTID
entries for your installation.

(Required delimiter.

JES2 or JES3
Denotes whether the initialization data set being pointed to is for JES2 or
JES3. If omitted, the default is JES2. For JES2, the SMTPNJE program scans
for the keywords NODE and DESTID from which it extracts the
information. For JES3, the keyword scanned for is NJERMT.

The SMTPNJE program creates the NJE host table data set called
user_id.SMTPNJE.HOSTINFO. You can rename this data set and include the
name of the data set on the SMTPNJE DD statement in the SMTP cataloged
procedure. The //SMTPNJE DD statement is required.

3. Install the SMTP server (along with the TCPIP address space) on the gateway
node. Use the GATEWAY, NJEDOMAIN, and NJEFORMAT statements in the
configuration data set. Optionally, you can use either the RESTRICT or the
SECURE statements to limit which users can use the gateway.

Step 6: Specify configuration statements in SMTP configuration
data set
Copy the member SEZAINST(SMTPCONF) to your own SMTP configuration data
set and modify it for your site using the SMTP configuration statements.

Note: If the SMTP configuration data set is a sequential data set, you cannot edit
the data set while SMTP is running. If the data set is a PDS member, it can
be edited while SMTP is running.

Summary of SMTP configuration statements: The SMTP configuration
statements are summarized in Table 69.

Note: See z/OS Communications Server: IP Configuration Reference for more
information about these statements.

Table 69. Summary of SMTP configuration statements

Statement Description

ALTNJEDOMAIN Specifies an alternative domain name of the NJE network, if SMTP is
running as a mail gateway.

ALTTCPHOSTNAME Specifies an additional host name for the local host. Mail received for this
host name is accepted and delivered locally.

Chapter 28. Mail on z/OS 1405

Table 69. Summary of SMTP configuration statements (continued)

Statement Description

ATSIGN Enables SMTP to replace the @ symbol used in addressing strings.

BADSPOOLFILEID Specifies the user ID on the local system where SMTP transfers unreadable
spool files and looping mail.

CHECKSPOOLSIZE Enables SMTP to check the size of the JES spool file prior to writing the
data to the hlq.TEMP.NOTE file.

DBCS Specifies that DBCS code conversion be performed on the mail.

DEBUG Records all SMTP commands and replies.

DELETEBADSPOOLFILE Permits SMTP to delete the spool file from the JES spool that would cause
an ABENDS001 when accessed by SMTP.

DISALLOWCMD Enables the SMTP server to discontinue support for certain specified SMTP
commands.

EXITDIRECTION Enables SMTP to call the SMTP exit provided by the customer for data
coming from the JES spool.

FINISHOPEN Specifies the SMTP wait time for connection.

GATEWAY Specifies operation of SMTP as a gateway.

INACTIVE Specifies the SMTP wait time before closing an inactive connection.

INBOUNDOPENLIMIT Specifies a limit on the maximum number of simultaneous TCP connections
over which the SMTP server will receive mail.

IPMAILERADDRESS Specifies the IP address of an SMTP server that can resolve network
addresses of unknown hosts.

IPMAILERNAME Enables SMTP to forward non-local mail to the specified IP mailer name.

LISTENONADDRESS Allows you to restrict which IP address is used to receive and send mail on
a multihomed system.

LOCALCLASS Specifies the spool data set class for local mail delivery.

LOCALFORMAT Specifies the spool data set format for local host mail delivery.

LOG Directs SMTP to log all SMTP traffic.

MAILER Specifies the address of the batch SMTP server that receives mail.

MAILFILEDSPREFIX Specifies the prefix to add to mail data sets.

MAILFILESUNIT Specifies the unit where SMTP mail data sets reside.

MAILFILEVOLUME Specifies the volume where newly allocated SMTP data sets reside.

MAXMAILBYTES Specifies the maximum size of mail that is accepted over a TCP connection.

MAXMSGSENT Enables control of the SMTP client code by limiting the number of messages
sent on a single TCP/IP connection.

NJECLASS Specifies the spool data set class for mail delivered on an NJE network.

NJEDOMAIN Specifies the domain name of the NJE network if SMTP functions as a
gateway.

NJEFORMAT Specifies the spool data set format for mail delivered on the NJE network.

NJENODENAME Specifies the node name of the local JES2 or JES3 node for mail delivered on
the NJE network.

NOLOG Turns off the logging of mail transactions.

NOSOURCEROUTE Enables SMTP to not generate source routing addressing strings on certain
RFC 821 SMTP commands.

OUTBOUNDOPENLIMIT Specifies a limit on the maximum number of simultaneous TCP connections
over which SMTP actively delivers mail.

1406 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Table 69. Summary of SMTP configuration statements (continued)

Statement Description

PORT Specifies an alternative port number for the SMTP server during testing.

POSTMASTER Specifies the address (or addresses) for mail addressed to the postmaster at
the local host.

RCPTREPLY452 Enables SMTP to handle reply code 452 differently for the RCPT command.

RCPTRESPONSEDELAY Specifies how long the SMTP server delays responding to the RCPT
commands.

REMOTEPORT Specifies the remote port to which the SMTP client connects.

RESOLVERRETRYINT Specifies the number of minutes SMTP waits between attempts to resolve
domain names.

RESOLVERUSAGE Specifies whether SMTP will send queries to the domain name servers if
they are configured in the TCPIP.DATA file.

RESTRICT Specifies addresses of users who are not allowed to use SMTP mail services.

RETRYAGE Specifies the number of days after which mail is returned as undeliverable.

RETRYINT Specifies the number of minutes between attempts to send mail to an
inactive TCP host.

REWRITE822HEADER Prevents SMTP from rewriting RFC 822 headers with source routing.

SECURE Specifies that SMTP operates as a secure mail gateway between TCP
network sites and NJE network sites.

SMSGAUTHLIST Specifies the addresses of users authorized to issue privileged SMTP SMSG
commands.

SPOOLPOLLINTERVAL Specifies the interval for SMTP to check the spool for incoming batch data
sets.

STOPONRENF Enables control of the SMTP server such that if a RENAME failure occurs
on a data set associated with the batch connection (257), the SMTP server
terminates normally.

TEMPERRORRETRIES Specifies the number of times SMTP tries to redeliver mail to a host with a
temporary problem.

TIMEZONE Sets the printable name of the local time zone.

WARNINGAGE Specifies the number of days after which a copy of the mail is returned to
the sender, indicating that the mail has so far been undeliverable and that
SMTP will continue to retry delivery for RETRYAGE days.

Sample SMTP configuration data set (SMTPCONF): The sample SMTP
Configuration data set can be found in SEZAINST(SMTPCONF). See z/OS
Communications Server: IP Configuration Reference for more information on
configuration data set parameters.

Step 7: Create an SMTP security table (Optional)
If you want to set up a secure TCP-to-NJE gateway, you need to:
v Include the SECURE statement in the SMTP configuration data set.
v Create a security data set that contains a list of NJE users who are authorized to

use the gateway.
v Create a mailfiledsprefix.SECURITY.MEMO data set. The contents data set are

sent to unauthorized NJE users whose mail is rejected. See “Rejected mail
examples” on page 1409 for sample contents of this data set. This data set must
be defined as LRECL=255 and RECFM=VB. It will be dynamically allocated by
SMTP when needed.

Chapter 28. Mail on z/OS 1407

The SMTP security data set is pointed to by //SECTABLE DD statement. The
security table data set must be allocated with LRECL=255 and RECFM=VB.
Records whose first nonblank character is an asterisk (*) are treated as comments
and are ignored.

Use the following format when creating the list of NJE users:

�� NJE_userid NJE_nodeid
nickname primary_nick? primary_mbox?

��

NJE_userid
The NJE user ID of the authorized user.

NJE_nodeid
The NJE node ID of the authorized user.

nickname
The name by which this user is known on the TCP side of the gateway. This
name must not contain any special characters, such as < > () [] \ . , ; : @ and
".

primary_nick?
Either Y or N. If Y is specified, then mail addressed to nickname@smtp-gateway
is automatically forwarded to NJE_userid at NJE_nodeid. Each nickname can
have only one primary_nick? record set to Y.

primary_mbox?
Either Y or N. If Y is specified, then mail from NJE_userid at NJE_nodeid is
converted to nickname@smtp-gateway before it is sent to the TCP recipient. Each
NJE_userid, NJE_nodeid pair can only have one primary_mbox? record.

SMTP security data set examples: The following example shows an SMTP
security data set:
* Records for Jane Doe, within IBM
JDOE ALMADEN
JDOE AUSTIN
* Records for John Smith, within IBM
SMITH RALEIGH JOHNNY Y N
SMITH YORKTOWN JOHNNY N Y
SMITH DALLAS JOHNNY N N
SMITH RALEIGH JSMITH Y Y

For example, mail sent from the following NJE network addresses through the
SMTP gateway is rewritten to the following TCP network addresses. Assume the
host name of the gateway is SMTP-GATEWAY.IBM.COM.

NJE Address TCP Address

JDOE at ALMADEN JDOE%ALMADEN@SMTP-GATEWAY.IBM.COM
JDOE at AUSTIN JDOE%AUSTIN@SMTP-GATEWAY.IBM.COM
SMITH at RALEIGH JSMITH@SMTP-GATEWAY.IBM.COM
SMITH at YORKTOWN JOHNNY@SMTP-GATEWAY.IBM.COM
SMITH at DALLAS JOHNNY%DALLAS@SMTP-GATEWAY.IBM.COM

Mail sent from the TCP network to the following TCP network addresses is
forwarded to the following NJE network addresses. Assume the host name of the
gateway is SMTP-GATEWAY.IBM.COM.

TCP Address NJE Address

1408 z/OS V1R12.0 Comm Svr: IP Configuration Guide

JDOE%ALMADEN@SMTP-GATEWAY.IBM.COM JDOE at ALMADEN
JDOE%AUSTIN@SMTP-GATEWAY.IBM.COM JDOE at AUSTIN
JSMITH@SMTP-GATEWAY.IBM.COM SMITH at RALEIGH
JOHNNY@SMTP-GATEWAY.IBM.COM SMITH at RALEIGH
SMITH%DALLAS@SMTP-GATEWAY.IBM.COM SMITH at DALLAS

Rejected mail examples: SMTP rejects mail to or from an unauthorized NJE user.
If the mail is from the TCP network, SMTP rejects the RCPT TO command with the
error:
550 User is not a registered gateway user

If the mail is from the NJE network, SMTP rejects the MAIL FROM command with
the error:
550 User is not a registered gateway user

and includes the mailfiledsprefix.SECURITY.MEMO data set as an explanation.

The following example shows a sample mailfiledsprefix.SECURITY.MEMO data set:
The mail you sent to this SMTP gateway cannot be delivered because
you are not a registered user of this gateway. Contact your local
administrator for instructions on how to be authorized to use this
SMTP gateway.

The following is an example of rejected mail that was sent to an unregistered NJE
user:
Date: Fri, 5 Jul 91 10:55:59 EST
From: SMTP@MVS1.ACME.COM
To: DANIEL@MVS1
Subject: Undeliverable Mail

MVS1.ACME.COM unable to deliver following mail to recipient(s):
<MATT@SMTP-GATEWAY.IBM.COM>

MVS1.ACME.COM received negative reply from host:
SMTP-GATEWAY

550 User ’MATT@SMTP-GATEWAY’ is not a registered gateway user

** Text of Mail follows **
Date: Fri, 5 Jul 91 10:55:56 EDT
From: <DANIEL@MVS1.ACME.COM>
To: <MATT@SMTP-GATEWAY.IBM.COM>
Subject: Lunch
Matt,

Do you have time to meet for lunch next week? I want to discuss the
shipment of ACME iron birdseed.
Daniel

The following is an example of rejected mail that was sent from an unregistered
NJE user:
Date: Fri, 5 Jul 91 11:35:18 EST
From: <SMTP@SMTP-GATEWAY.IBM.COM>
To: <MATT@SMTP-GATEWAY.IBM.COM>
Subject: Undeliverable Mail
Unable to deliver mail to some/all recipients.
050 MAIL FROM:<MATT@SMTP-GATEWAY.IBM.COM>
550-User ’MATT@SMTP-GATEWAY’ is not a registered gateway user.
550-
550-The mail you sent to this SMTP gateway cannot be delivered because
550-you are not a registered user of this gateway. Contact your local
550-administrator for instructions on how to be authorized to use this
550 SMTP gateway.

Chapter 28. Mail on z/OS 1409

** Text of Mail follows **
HELO SMTP-GATEWAY.IBM.COM
MAIL FROM:<MATT@SMTP-GATEWAY.IBM.COM>
RCPT TO:<DANIEL@MVS1.ACME.COM>
DATA
Date: Fri, 5 Jul 91 11:34:17 EST
From: <MATT@SMTP-GATEWAY.IBM.COM>
To: <DANIEL@MVS1.ACME.COM>
Subject: Awaiting your message
Daniel,
When are you going to contact me about the iron birdseed and giant
electromagnet that I ordered? I would like to meet with you soon.
Matt

.
QUIT

Step 8: Enable SMTP domain name resolution
The SMTP server's RESOLVERUSAGE statement indicates if domain name
resolution is to be used or not. If name resolution is not desired,
RESOLVERUSAGE NO should be specified. See “Step 9: Enable sending of
non-local messages to other mail servers” on page 1411.

If the RESOLVERUSAGE statement is not specified or is specified as
RESOLVERUSAGE YES, the SMTP server will resolve domain names. Resolver
TCPIP.DATA statements must be configured before you can use domain name
resolution for SMTP. For a description of how TCPIP.DATA statements can be
specified, see Chapter 14, “The resolver,” on page 731.

For more information on the SMTP RESOLVERUSAGE statement and the
TCPIP.DATA resolver statements, see z/OS Communications Server: IP Configuration
Reference.

To use a domain name server, configure the TCPIP.DATA data set with the IP
address of one or more name servers. If the TCPIP.DATA data set does not point to
any name servers, the local site tables are used by SMTP. However, if the SMTP
server is configured to use name servers, SMTP does not use the site tables.

To determine which DSN the SMTP server is using, look for message number
EZA5231I in the output data set specified by the OUTPUT statement in
SEZAINST(SMTPPROC).

When SMTP uses a domain name server, it asks the domain name server for the
MX records for the host to which it is trying to connect. If SMTP does not find MX
records for a host, it delivers mail only to the primary host listed in the A records.
The MX and A records are coded in the domain name server database.

The basic idea behind MX records is to send the mail as close as possible to the
final destination. The destination host may currently be inactive, for example,
because it is in another time zone. SMTP needs a synchronous connection to
deliver the mail, but due to the different time zones, two systems might never be
active at the same time and would never be able to exchange mail.

Using MX records would allow the SMTP server to deliver the mail to an alternate
host if the first one is unavailable. SMTP tries to deliver mail to the host with the
lowest MX record count. If the host is not currently available, it tries the host with
the next lowest count.

1410 z/OS V1R12.0 Comm Svr: IP Configuration Guide

For example, if SMTP wants to send mail to USER@BASKET, it checks the name
server for MX records and finds the following:
MVS20 BASKET A

BASKET MX 0 MVS20
BASKET MX 5 MVS18
BASKET MX 10 VMQ

SMTP delivers the mail to the BASKET with the lowest count on its MX record. If
MVS20 is unable to receive the mail, SMTP then tries to deliver it to MVS18. If MVS18
cannot receive the mail, it tries VMQ. If none of the hosts can receive the mail, SMTP
stores the mail and queues it for later delivery, at which time the process repeats.

For more information about how to add MX records to your name server, consult
RFC 974, “Mail Routing and the Domain System.”

To receive a detailed trace on how SMTP is resolving a particular host name, you
can issue the SMSG SMTP TRACE command at the console or use a SYSTCPT DD
statement in the SMTP cataloged procedure. You can also add the TRACE
RESOLVER statement when configuring the TCPIP.DATA data set, but this will
also trace the name resolution for all the other applications using the name server.
To prevent the console log from becoming too large, only use the TRACE
RESOLVER statement for debugging.

If changes to the domain name server requires you to resolve already queued mail
again, use the SMSG SMTP EXPIRE command as described in the z/OS
Communications Server: IP User's Guide and Commands. You can also query operating
statistics, such as mail delivery queues of the SMTP server, by using the SMSG
SMTP command. This and other administrative tasks are discussed in more detail
in the z/OS Communications Server: IP User's Guide and Commands.

Step 9: Enable sending of non-local messages to other mail
servers
Non-local mail is mail that must go through a Mail Transfer Agent (MTA) to get to
another host. SMTP supports the following configuration statements to assist in
forwarding non-local mail:
v IPMAILERNAME, for non-local mail destined for SMTP servers in the IP

network using a hostname
v IPMAILERADDRESS, for non-local mail destined for SMTP servers in the IP

network using a static IP address
v MAILER, for non-local mail destined for SMTP servers in the NJE network using

the JES spool

Restriction: You cannot use the IPMAILERNAME statement, the
IPMAILERADDRESS statement, or the MAILER statement with the UNKNOWN
option simultaneously.

For more information regarding these configuration statements, see z/OS
Communications Server: IP Configuration Reference.

The SMTP server can be configured to send all your non-local TCP/IP SMTP mail
to a specified mail server, or mail relay. You might need to do this if you have
installed a firewall. One way to accomplish this is by using IPMAILERADDRESS,
making both of the following changes to your hlq.SMTP.CONFIG data set:
1. Inhibit SMTP from attempting to resolve non-local hostnames by specifying the

following statement in your SMTP.CONFIG data set:

Chapter 28. Mail on z/OS 1411

RESOLVERUSAGE NO

2. Update the SMTP.CONFIG file to redirect mail to a specific server using the
IPMAILERADDRESS statement:
IPMAILERADDRESS ip_address

where ip_address is address of the mail server that can perform the hostname
resolution.

Step 10: Design SMTP exit to inspect and filter unwanted mail
(optional)
The SMTP exit facility allows an installation to better control the volume of
unwanted mail (spam) that is entering the installation. SMTP makes use of the
Dynamic Exit Facility (CSVDYNEX macro) provided by MVS. See z/OS MVS
Programming: Authorized Assembler Services Guide for more information. The exit is
provided by the customer to implement policies that they deem workable. Based
on user-defined (and implemented) criteria, individual mail items may be rejected
before they consume other resources. SMTPEXIT is provided as a programming
guide to aid in the implementation of the local policies. It can be found in
SEZAINST. This exit must be REENTRANT and AMODE 31, in an authorized
library. In using the SMTP exit a name token (EZBTCPIPSMTPEXIT) needs to be
established in SYS1.PARMLIB(PROGxx).

If a user program is enabled, message EZA5549I is generated in the SMTP output
data set when the SMTPPROC program is started. This message indicates a user
exit is active.

This exit can be replaced dynamically without stopping the SMTPPROC program.
The procedure for doing this follows:
1. Issue a "SMSG smtpprocname STOPEXIT" TSO command. The TSO user ID must

be in the authorized list for SMTPPROC to issue this command. This will cause
SMTP to issue the termination call to the exit and then set a flag so that the exit
will not be called anymore. Processing of mail will continue as if there is no
exit.

2. Remove the exit via the SETPROG EXIT operator command or by updating
SYS1.PARMLIB(PROGxx) and issuing the refresh console command. Example of
updating SYS1.PARMLIB follows:
a. Include the following in SYS1.PARMLIB(PROGxx):

EXIT DELETE EXITNAME(EZBTCPIPSMTPEXIT) MODNAME(MYEXIT) FORCE(YES)

b. At the MVS console issue SET PROG=xx.
3. Replace with the desired new exit by adding the exit via the SETPROG EXIT

operator command or by updating SYS1.PARMLIB(PROGxx). Example of
updating SYS1.PARMLIB follows:
a. In SYS1.PARMLIB(PROGxx) have this line:

EXIT ADD EXITNAME(EZBTCPIPSMTPEXIT) MODNAME(NEWEXIT)

b. At the MVS console issue SET PROG=xx.
4. Issue a "SMSG smtpprocname STARTEXIT" TSO command. This will cause

SMTP to issue the initialization call to the exit. A flag is then set so the exit will
be called from then on for new mail connections. Processing of new mail will
continue with the exit being called. The first smtp command to be seen by a
reinstated exit will be HELO. The exit will not be called in the middle of a
currently processing exchange.

1412 z/OS V1R12.0 Comm Svr: IP Configuration Guide

In designing the SMTP exit some of the following design points need to be
considered. It should be noted that a remote SMTP application will be connected to
the local SMTP while this exit is running. If too much time is spent in the exit,
timeout situations may occur and the remote SMTP application may terminate the
connection and then go into retry logic. This will seriously affect the performance
of the mail system. The exit must be coded as efficiently as possible and all efforts
should be taken to avoid excessive processing or waiting, e.g. I/O operations and
DNS resolver calls, while within the exit. Efforts to reject mail may be more
efficient if extensive scanning of the data portion of the message can be avoided.
The exit may allow processing to continue or reject the entire message and does
not have the ability to reject individual segments of a message. The message
contents cannot be changed in any way by the exit. The exit may accept a message
at any point and disable further exit calls for that message. Only commands that
are currently implemented by the SMTP program will be passed to the exit
program. RFC 2505 and RFC 2635 should be read and understood before
undertaking such a coding effort. Multiple connections can occur simultaneously
and the exit must take precautions to keep any desired state information on a
connection basis. More information on SMTP commands and standards are
documented in RFCs 821 and 822.

The SMTP server can be allowed to call the SMTP exit program to interrogate data
coming from the JES spool as well as the inbound TCP/IP connections.

See z/OS Communications Server: IP Configuration Reference for more detailed
information.

Step 11: Set up automation to monitor how much mail is queued
You can use automation to monitor how much mail is queued in SMTP. To retrieve
the number of mail messages currently queued for SMTP, your automation tool can
issue the command MODIFY smtpprocname,SMSG,NUMQUEUE. You can set up
automation to generate an alert for SMTP if the number of mail messages queued
is larger than what you would expect for your system. You can also set up
automation to issue the command MODIFY smtpprocname,SMSG,QUEUE to display
a list of mail queued on the various SMTP mail processing queues. For more
information about the MODIFY SMSG command, see z/OS Communications Server:
IP System Administrator's Commands.

Configuring z/OS UNIX sendmail and popper
The following is intended to provide the administrator with specific information
on how to configure sendmail on the z/OS platform. Before using this information,
become familiar with the industry-accepted publication for sendmail, sendmail by
O'Reilly & Associates, Inc. (ISBN 1-56592-839-3). That publication is known
throughout the industry as simply the bat book, and this information consistently
refers to the bat book for further information.

The bat book supports sendmail version 8.12. For new features supported in
sendmail 8.12.1, this information refers to documents that come from sendmail
resources. The most noteworthy document is Sendmail Installation and Operation
Guide. You can find this document on the web, http://www.sendmail.org/~ca/
email/doc8.12/op.html, and it is also shipped in /usr/lpp/tcpip/samples/
sendmail/sendmail.ps.

Sendmail 8.12.1 has been developed with two main topics in mind, enhanced
security mail filters and IPv6 support. Associated topics like Transport Layer
Security (TLS), mail filters (Milter) and IPv6 are explained.

Chapter 28. Mail on z/OS 1413

If sendmail is to be used in a multilevel secure environment, for more details
concerning sendmail configuration and setup, see “z/OS UNIX sendmail” on page
173.

Additional information about sendmail can also be found in documents from the
sample directory that were received during the port of sendmail 8.12.1 from the
http://www.sendmail.org Web site. The Sendmail Installation and Operation Guide
document (/usr/lpp/tcpip/samples/sendmail/sendmail.ps), for instance, is the
generic guide from http://www.sendmail.org, which might be helpful as a more
thorough guide in a slightly different format. The README.m4 document gives
more details for building a configuration file using the m4 preprocessor.

Information is also provided on how to configure popper on the z/OS platform.
The popper function requires very little configuration. For more information on the
protocol used by this UNIX application, see RFC 1939.

Overview
The simple mail architecture in which sendmail and popper fit includes a mail user
agent (MUA), a mail transfer agent (MTA), and a mail delivery agent (MDA). An
MUA is client software that a user invokes directly to send and receive e-mail.
Examples of MUAs include Eudora, Netscape Navigator, pine and elm. An MTA is
software that actually routes messages from a sender's system to the receiver's
system. sendmail is an MTA. It is worth noting, however, that sendmail relies on
other programs to implement non-SMTP based transport (for example,
UUCP-based transport as well as local delivery to a user's mail spool file). An
MDA is server software that delivers received mail to a user's MUA. Popper is an
example of an MDA using the POP3 protocol.

At the sender's end of the mail delivery process, the sender's MUA transmits the
message to be delivered to sendmail, as shown in Figure 134.

This can occur in one of two ways. If the MUA is running on the local host, the
message can be transmitted by executing a copy of sendmail and transmitting the
message to the standard input of that process via a UNIX pipe.

Alternatively (and more commonly), a copy of sendmail will be running as a
daemon, and the MUA (running on either the local host, or on a remote host) will
open an SMTP connection to the sendmail daemon, transmitting the message to be
delivered via that SMTP connection. In this case, sendmail is acting as an SMTP
server, while the MUA is acting as an SMTP client.

In the next step, for each recipient address, sendmail transmits the message to
some other SMTP server, to route the message to its final destination at the
recipient's site. This is shown in Figure 135 on page 1415.

Figure 134. Sender MUA transmits the message to sendmail

1414 z/OS V1R12.0 Comm Svr: IP Configuration Guide

http://www.sendmail.org
http://www.sendmail.org

The receiving SMTP server, in this case, might be a local hub that handles all mail
at the sender's site, a remote hub handling all mail at the recipient's site, or an
SMTP server at the recipient's host system.

In the next step, sendmail acts as an SMTP client, initiating an SMTP connection
with some SMTP server, and then transmitting the message to be delivered to that
server, via the SMTP connection.

At the receiver's end of the mail delivery process, a sendmail daemon receives the
message from some SMTP client, as shown in Figure 136.

The sendmail daemon, acting as an SMTP server, accepts an incoming SMTP
connection, and receives a message to be delivered over that SMTP connection.
(This is identical to receipt of a message from an MUA, over an SMTP connection.)

Upon receiving the message, sendmail delivers it to the local recipient by
appending the message to the recipient's mail spool file. To do this, sendmail
requires a local mailer program, as depicted in Figure 137.

In this step, sendmail executes a specified local mailer program, such as
/usr/lib/tsmail, and transmits the message to be delivered to that mailer through
a UNIX pipe. The mailer program appends the message to the recipient's mail
spool file. With this sendmail's role in delivery of mail is completed.

For the recipient to now read the received message, an MUA must be used.
Depending upon the MUA, this may or may not require an additional MDA, such
as popper. If the receiver's MUA has direct access to the mail spool file, the MUA
may retrieve the mail directly from the spool file, as depicted in Figure 138.

Alternatively (and more commonly), the MUA will establish a POP3 connection
with a popper daemon, and retrieve the message over that connection. This is

Figure 135. sendmail transmits the message to an intermediate SMTP server

Figure 136. A sendmail daemon receives the message from an SMTP client

Figure 137. sendmail delivers the message to the local recipient

Figure 138. Receiver's MUA has direct access to the mail spool file

Chapter 28. Mail on z/OS 1415

shown in Figure 139.

The popper daemon will also allow the receiver's MUA to manage the mail spool
file, by allowing it to specify whether and which message should be deleted.

For security issues, sendmail has supported RFC 2487 (SMTP Service Extension for
Secure SMTP over TLS) to provide private, authenticated communication over the
Internet, as shown in Figure 140. z/OS UNIX sendmail uses System SSL instead of
Open SSL.

Also, when sendmail receives mail, a mail filter provides an interface for
third-party software to validate and modify messages as they pass through the
mail transport system. Filters can process messages' connection information,
envelope protocol elements, headers, and body contents, and modify a message's
recipients, headers, and body. The MTA configuration file specifies which filters are
to be applied, and in what order, allowing you to combine multiple
independently-developed filters. Mail filters are separate daemons that can be run
remotely or locally. How a mail filter works is shown in Figure 141.

Figure 139. Receiver's MUA retrieves the message over a POP3 connection with a popper
daemon

Sendmail (client)

When requested

Client Certificate

Server Certificate

Sendmail (server)

key ring /
key database

key ring /
key database

Figure 140. Using a certificate to establish a secure connection

messages

MTA receives messages

pass messages
to mail filter

response

MTA

Mail
Filter

processing

Figure 141. Mail filter processing

1416 z/OS V1R12.0 Comm Svr: IP Configuration Guide

The sendmail samples directory
Much of the sendmail samples directory is dedicated to the automated creation of
the configuration file. The /usr/lpp/tcpip/samples/sendmail/cf directory contains
a sample.mc file and the subsequent sample.cf configuration file that was created
by running the m4 macro preprocessor on the sample.mc file. If the
/usr/lpp/tcpip/samples/sendmail directory is examined, the following directory
structure can be found:
cd /usr/lpp/tcpip/samples/sendmail

README.m4 TRACEFLAGS feature mailer sh
README.milter TUNING hack milter siteconfig
RELEASE_NOTES cf inetd.conf.pop ostype
SECURITY domain m4 sendmail.ps

README.m4
Contains all the latest information regarding this latest version of sendmail
from the www.sendmail.org site.

README.milter
This README file describes the steps needed to compile and run a filter,
through reference to a sample filter that is attached at the end of this file.

RELEASE_NOTES
The sendmail release notes.

SECURITY
Gives some security-related hints on how to configure and run sendmail.

TRACEFLAGS
Describes the different trace flags used with the -d option.

TUNING
If the default configuration of sendmail does not achieve the required
performance, several configuration options can be changed to increase
performance. However, before those options are changed, it is necessary to
understand why performance is not as good as desired. This file describes
the performance implications of sendmail.

cf
Both site-dependent and site-independent descriptions of hosts. Files
ending in .mc (Master Configuration) are the input descriptions. The
output is in the corresponding .cf file. The general structure of these files is
described “Creating the configuration file” on page 1419.

domain
Site-dependent subdomain descriptions. These are tied to the way your
organization wants to do addressing. These descriptions are referenced
using the DOMAIN m4 macro in the .mc file.

feature
Definitions of specific features that some particular host in your site might
want. These are referenced using the FEATURE m4 macro. An example
feature is use_cw_file, which tells z/OS UNIX sendmail to read an
/etc/mail/local-host-names file on startup to find the set of local names.

hack
Local hacks, referenced using the HACK m4 macro. This code should be
used only during the transition from Berkeley.EDU names to
.CS.Berkeley.EDU names.

inetd.conf.pop
The inetd changes needed to run popper.

Chapter 28. Mail on z/OS 1417

m4
Site-independent m4(1) include files that have information common to all
configuration files. Think of this as a "#include directory.

mailer
Definitions of mailers, referenced using the MAILER m4 macro. The mailer
types that are known in this distribution are fax, local, smtp, uucp, and
usenet. For example, to include support for the UUCP-based mailers, use
MAILER(uucp).

milter A directory containing a sample mail filter.

ostype Definitions describing various operating system environments (such as the
location of support files). These are referenced using the OSTYPE m4
macro.

sendmail.ps
This is a postscript file of the Sendmail Installation and Operation Guide
provided by www.sendmail.org in this version of sendmail.

sh
Shell files used by the m4 build process.

siteconfig
Local UUCP connectivity information. These normally contain lists of site
information, for example:
v SITE(contessa)
v SITE(hoptoad)
v SITE(nkainc)
v SITE(well)

These are referenced using the SITECONFIG macro:
SITECONFIG(site.config.file, name_of_site,X)

where X is the macro or class name to use. It can be U (indicating locally
connected hosts) or one of W, X, or Y for up to three remote UUCP hubs.
This directory has been supplanted by the mailer table feature. Any new
configurations should use that feature to do UUCP (and other) routing.

Steps for configuring z/OS UNIX sendmail
Before you begin: You need to know how to configure standard UNIX sendmail
items, such as mailing lists and ~/.forward files. Only z/OS UNIX specific items
are covered in this information. The bat book contains information on all the
configurable options that can be included in the master configuration (.mc) file.

Perform the following steps to configure sendmail for z/OS UNIX:

1. Creating the configuration file

2. Creating the z/OS-specific file

3. Using sendmail databases

4. Configuring an IPv6 daemon and relay client (optional)

1418 z/OS V1R12.0 Comm Svr: IP Configuration Guide

5. Configuring TLS support (optional)

6. Configuring Security Server (RACF or equivalent) items

7. Setting up a Milter (optional)

8. Creating the Message Submission Program (MSP) file submit.cf

9. Running sendmail as a daemon

You know you are done when you can send and, optionally receive mail. The
easiest way to send mail is using the following UNIX command:
date | sendmail -v <user@host>

The -v option displays verbose error messages if any errors occur. After sending
mail from another host, use the mailx UNIX command to receive mail.

Creating the configuration file
To make it easier to test sendmail, you can simply copy the /usr/lpp/tcpip/
samples/sendmail/cf/sample.cf file as /etc/mail/sendmail.cf and use the copy.
Later, when you are more familiar with creating your own configuration file,
creating your own sendmail.cf file is recommended. However, this sample will
suffice for a simple client configuration.

The basic steps to create the configuration file are:
1. Retrieving the m4 preprocessor.
2. Creating the .mc file.
3. Building the configuration file.

Retrieving the m4 preprocessor: Retrieve the m4 macro preprocessor from the
z/OS Toys and Tools Web page at http://www.ibm.com/servers/eserver/zseries/
zos/unix/tools/.

The m4 macro preprocessor can be given input that will generate a z/OS UNIX
sendmail configuration file. It takes as input a user-defined master configuration
source file (.mc file) that can define mail delivery mechanisms using files provided
in the sample directory. For more information on the .mc file, see “Creating the .mc
file.”

The m4 preprocessor is downloaded as m4.bin.pax.Z. To unpax the file, issue the
following command:
pax -rzf m4.bin.pax.Z

The m4 preprocessor is created in ./bin/m4.

Creating the .mc file: The process of building a z/OS UNIX sendmail
configuration file begins by creating a file of m4 statements. The suffix for this file
is .mc.

Chapter 28. Mail on z/OS 1419

http://www.ibm.com/servers/eserver/zseries/zos/unix/tools
http://www.ibm.com/servers/eserver/zseries/zos/unix/tools

The minimal mc file: Every .mc file must contain minimal information. This file
defines the mail delivery mechanisms understood at this site, how to access them,
how to forward e-mail to remote mail systems, and a number of tuning
parameters. The following table shows which items are required and also which
items are recommended. It is recommended that the starting point for these items
be as shown in the sample.mc file, and an investigation of all the m4 techniques
that are available to customize the .mc file for your mail server is encouraged (see
the bat book).

Table 70. Required and recommended m4 items

Item Bat book reference Required or recommended Description

OSTYPE() 4.2.2.1 Required Support for your operating system

MAILER() 4.2.2.2 Required Necessary delivery agent

DOMAIN() 4.2.2.3 Recommended Common domain wide information

FEATURE() 4.2.2.4 Recommended Solutions to special needs

confBIND_OPTS N/A Recommended Add for IPv6 errors on name servers

Example files can be found in the /usr/lpp/tcpip/samples/sendmail directory. The
cf directory contains an example of an .mc file. Of special interest are the files that
begin with generic. These can serve as template statements in developing
customized .mc files. The following is an example of a simple .mc file.
divert (-1)
divert(0) dnl
VERSIONID(`z/OS sample configuration 2002/09/20’)
OSTYPE(zOS)dnl
DOMAIN(generic)dnl
MAILER(local)dnl
MAILER(smtp)dnl

Following is a description of these common m4 items. For more information on
these items, see the bat book.

divert

v (-1) Ignore the lines following.
v (0) Stop diverting and output immediately.

VERSIONID
Used to insert an identifier into each .mc and .m4 file that will become
your header.

OSTYPE()

v Support for operating system (the only ostype provided in the
/usr/lpp/tcpip/samples/sendmail/ostype directory is zOS.m4).

v Required.

MAILER()

v Necessary delivery agent.
v Required.
v Known values include:

– fax
– local
– smtp
– uucp

1420 z/OS V1R12.0 Comm Svr: IP Configuration Guide

– usenet

DOMAIN()
Common domain wide information.

FEATURE()
Solution to special needs.

RELAY_DOMAIN()
Defines hosts and domain names for which the sendmail server should
allow mail to be relayed. By default, the sendmail server does not allow
relayed mail. If the sendmail client uses the submit.cf file and uses
FEATURE(`msp'), the sendmail server should be configured to allow this
relayed mail.

Building the configuration file: To build the configuration file, go to the
directory containing m4/cf.m4 and issue the following command:
m4 ../m4/cf.m4 yourmcfile.mc > yourcffile.cf

where yourmcfile is the name of your .mc file and yourcffile is the name you want to
give your .cf file.

The ../m4/cf.m4 specifies the master prototype configuration file cf.m4 in the m4
directory of the samples/sendmail directory. This is the path to the
samples/sendmail directory structure from the location of your m4 executable file.
This can also be specified in your .mc file using include as follows:
include(`/usr/lpp/tcpip/samples/sendmail/m4/cf.m4’)

Assuming that the m4 preprocessor is downloaded to /tmp/bin/m4 and that the
master configuration (.mc) files are in /tmp/sendmail.mc and /tmp/submit.mc,
the following commands will produce the configuration files:
$ cd /usr/lpp/tcpip/samples/sendmail/cf
$ /tmp/bin/m4 ../m4/cf.m4 /tmp/sendmail.mc > /etc/mail/sendmail.cf
$ /tmp/bin/m4 ../m4/cf.m4 /tmp/submit.mc > /etc/mail/submit.cf

Creating the z/OS-specific file
The purpose of the z/OS-specific file is to specify z/OS unique options. A sample
file is in /usr/lpp/tcpip/samples/sendmail/cf/zOS.cf and can be copied to
/etc/mail/zOS.cf with the installation information. The actual location of the file
can be set by the confZOS_FILE m4 parameter. It is assumed that the administrator
received the following information from the security administrator.

KeyfilePath
Directory path for the key ring files and password stash files.

ServerKeyFile
Name of the key database file or RACF key ring, used when sendmail acts
as the server. If a key database is specified, it must be an existing z/OS
UNIX file. If a RACF key ring is specified, it must be an existing key ring
and the current user ID must have READ access to the
IRR.DIGTCERT.LISTRING and IRR.DIGTCERT.LIST resources in the
FACILITY class.

ClientKeyFile
Name of the key database file or RACF key ring, used when sendmail acts
as the client. If a key database is specified, it must be an existing z/OS
UNIX file. If a RACF key ring is specified, it must be an existing key ring

Chapter 28. Mail on z/OS 1421

and the current user ID must have READ access to the
IRR.DIGTCERT.LISTRING and IRR.DIGTCERT.LIST resources in the
FACILITY class.

ServerPWFile
Name of the file that contains the password for the key database file, used
when sendmail acts as the server. It must not be given a value when a
RACF key ring is specified in ServerKeyfile.

ClientPWFile
Name of the file that contains the password for the key database file, used
when sendmail acts as the client. It must not be given a value when a
RACF key ring is specified in ClientKeyfile.

CipherLevel
Specifies the list of SSLV3, TLSV1.0, or TLSV1.1 ciphers in the order of
usage preference. If it is not set, it takes on the default SSLV3 cipher specs.
The default cipher spec list when Security Level 3 FMID JCPT321 is
installed is “05040A0306090201”. If Security Level 3 FMID JCPT321 is not
installed, the default cipher spec list is “0306090201”.

GskTraceFile
Specifies the file to receive SSL Trace information, used to debug problems
using the sendmail TLS interface. The GSK_TRACE_FILE environmental
variable is set to the value specified. For a discussion of concerns when
obtaining a System SSL trace, see z/OS Cryptographic Services System SSL
Programming. Ensure that the file is writable by the UID that sendmail will
execute under. Be aware that sensitive information might be written to this
file, and use a percent sign (%) to substitute the PID into the file name and
avoid multiple tasks writing to (and over) the same file. To create a
readable copy of the trace information, use the System SSL gsktrace
command, which takes the trace file name as input and writes readable
trace output to standard output.

z/OS sendmail also supports querying for certificate revocation lists (CRLs) if an
LDAP server is specified.

LdapServer
Support LDAP for X.500 certificate verification.

LdapUser
LDAP user ID to support X.500 certificate verification.

LdapPw
LDAP password to support X.500 certificate verification.

LdapPort
Port number to be used to connect to the LDAP server.

Using sendmail databases
The aliases database is the only database included in every configuration. If you
want to use other databases, you need to add the database to sendmail
configuration. For more information on databases, see /usr/lpp/tcpip/samples/
sendmail/README.m4.

Configuration option: During the process of building the configuration file, the
following defines and features are used to configure support for the optional
databases, as well as some import files:

1422 z/OS V1R12.0 Comm Svr: IP Configuration Guide

RELAY_DOMAIN_FILE(`path')
This option specifies the file that contains the list of hosts, domains, and
addresses that mail can be relayed to.

FEATURE(`use_ct_file'[, `path'])
This feature adds trusted usernames from the files to the class variable t. If
the path is not provided, the default for sendmail 8.12 is
/etc/mail/trusted-users.

FEATURE(`use_cw_file'[, `path'])
This feature adds hostname aliases from the file to the class variable w. If
the path is not provided, sendmail 8.12 uses /etc/mail/local-host-names as
the default.

Three basic files: The following three databases are disk files used to load
sendmail.cf class variables:

trusted-users file
The default path of this file is /etc/mail/trusted-users. It adds usernames,
to the list of users that are trusted to send mail under another user's name,
to the class variable t in the configuration file. By default, the class variable
t contains the names daemon, root, and uucp.

relay-domains file
Sendmail copies data written in this file to the class variable R. This
enables relaying in the domains of the /etc/mail/relay-domains file.

local-host-names file
This file is used when systems use the sendmail server as a mailbox server
to hold their mail. By using class variable w in the configuration file, the
mail to the system listed in /etc/mail/local-host-names will be accepted as
a local delivery.

Aliases database: Aliasing is the process of converting one recipient name into
another; a generic name (such as root) into a real user name; or one name into a
list of names (that is, a mailing list). Define the location of your aliases file using
define(`ALIAS_FILE',`path') in your sendmail.mc file. For example:
define(`ALIAS_FILE',`/etc/mail/aliases')

For sendmail to work, aliases are required for MAILER-DAEMON and postmaster.
Every aliases file must include these required aliases.

The alias for postmaster must expand to the name of a real user, based on the
requirement that every site has to be able to accept mail addressed to a user
named postmaster. Unless a site has real user account named postmaster, an alias
is required in the aliases file. The postmaster receives mail about mail problems
sent by mail-related programs and by users that are having trouble sending mail.

When mail is bounced (returned because it could not be delivered), it is sent from
MAILER-DAEMON but it is shown as being the original sender who sent the mail.
This alias is defined because users often inadvertently reply to the bounced mail.

Following is an example of an aliases file. Lines that begin with # are comments.
Empty lines are ignored. For more information on the different forms of aliases, see
the bat book.
Alias for mailer daemon
MAILER-DAEMON:IBMUSER

Following alias is required by the new mail protocol, RFC 822

Chapter 28. Mail on z/OS 1423

postmaster:IBMUSER

Alias to handle mail to msgs and news
nobody: /dev/null

Note: After the aliases file is created and before the sendmail daemon is brought
up for the first time, the aliases file must be loaded by running sendmail
using the newaliases command or with the -bi command-line switch.

Restriction: The section “USING LDAP FOR ALIASES, MAPS, AND CLASSES”, as
documented in /usr/lpp/tcpip/samples/sendmail/README.m4, is not supported
on z/OS.

Configuring an IPv6 daemon and relay client (optional)
Depending on your system's environment, select one of the following sendmail
configuration statements.

To listen on IPv4 interfaces only, use the following:
DAEMON_OPTIONS(`Name=MTA-v4, Family=inet’)

To listen on both IPv4 and IPv6 interfaces, use the following:
DAEMON_OPTIONS(`Name=MTA-v6, Family=inet6’)

To set a restriction for outgoing connections on a particular family, use
ClientPortOptions in the configuration file. For example, the following indicates
that sendmail will be a relay client for the IPv6 family.
CLIENT_OPTIONS(Family=inet6);

Note: If the following message is shown in the log file when invoking the
sendmail daemon, check that your system supports IPv6. If your system has
no IPv6 capability, sendmail will fail to start the daemon.
opendaemonsocket: daemon MTA-v6: can’t create server SMTP socket"
opendaemonsocket: daemon MTA-v6: problem creating SMTP socket"

Configuring TLS support (optional)
See Sendmail Installation and Operation Guide (/usr/lpp/tcpip/samples/sendmail/
sendmail.ps). Note that z/OS sendmail does not use OpenSSL, but instead uses the
Security Server SSL interface. Therefore, a flag confZOS_FILE is defined to indicate
where this information is set. The default location is /etc/mail/zOS.cf. A sample
zOS.cf file is shipped in /usr/lpp/tcpip/samples/sendmail/cf/zOS.cf. For more
information on the SSL fields used in the zOS.cf file, see z/OS Cryptographic Services
System SSL Programming. For an explanation of the fields within the zOS.cf file, see
“Creating the z/OS-specific file” on page 1421.

Configuring Security Server (RACF or equivalent) items
Sendmail assumes user IDs are used when running, and these user IDs must be
defined to execute sendmail correctly. The commands to define the sendmail user
IDs are defined in SEZAINST(EZARACF). The commands are:
ADDGROUP SMMSPGRP OMVS(GID(25))
ADDGROUP SNDMGRP OMVS(GID(26))
ADDUSER MAILNULL DFLTGRP(SNDMGRP) NOPASSWORD OMVS(UID(26) HOME(’/’))
ADDUSER SENDMAIL DFLTGRP(SNDMGRP) NOPASSWORD OMVS(UID(0) HOME(’/’))
ADDUSER SMMSP DFLTGRP(SMMSPGRP) NOPASSWORD OMVS(UID(25) HOME(’/’))
RDEFINE STARTED SENDMAIL.* STDATA(USER(SENDMAIL))
SETROPTS RACLIST(STARTED) REFRESH

1424 z/OS V1R12.0 Comm Svr: IP Configuration Guide

The queue directories must have the proper read and write permission for UID 25
and 26 respectively.

In addition, there are security concerns for programs that change user ID without
prompting for a password. Program control is the Security Server facility used to
manage programs that change user IDs without prompting for a password. By
having an installation use program control, applications not permitted to the
facility are not allowed to change user IDs without prompting for a password. The
commands are:
PERMIT BPX.DAEMON CLASS(FACILITY) ID(SENDMAIL) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

For more information on Security Server commands used to allow sendmail access
to the program control facility, see SEZAINST(EZARACF). For complete
information on the program control facility, see z/OS Security Server RACF Security
Administrator's Guide.

When /usr/sbin/sendmail begins execution as a started task, or as a Mail
Transmission Agent (MTA) daemon from the UNIX shell, it starts with the UID
defined for the started task or the shell. It immediately does a setuid() to the
confRUN_AS_USER (sendmail uid 0) to listen on port 25 and do other setup tasks.
Then, when it begins processing mail, it does a setuid() to the confDEF_USER_ID
(mailnull uid 26).

In addition, when using /bin/sendmail to create mail as a Mail User Agent
(MUA), the Mail Submission Agent (MSA) configuration file /etc/mail/submit.cf is
used. This file must exist in a program control environment. If it does not exist,
EZZ9895I is issued when sendmail does a setuid() to the confRUN_AS_USER
(smmsp uid 25) to do all the mail processing. With program control, an installation
must have a /etc/mail/submit.cf, which can be a copy of /usr/lpp/tcpip/
samples/sendmail/cf/submit.cf. /bin/sendmail must be owned by the UID
confRUN_AS_USER (smmsp uid 25), and must have the Set UID and Set GID bits
set. Assuming that the default UID of 25 is used, the following commands can be
used to run /bin/sendmail in a program control environment:
chown 25:25 /bin/sendmail
chmod 6755 /bin/sendmail

Rule: The chown command must be issued before the chmod command, since
chown turns off the Set UID and Set GID bits. To verify this has been set, issue the
following command:
ls -l /usr/lpp/tcpip/bin/sendmail

The output will be as follows:
-rwsr-sr-x 1 SMMSP SMMSPGRP ... /usr/lpp/tcpip/bin/sendmail

It is important to have sendmail.cf and submit.cf files to isolate tasks done by the
sendmail daemon MTA and the sendmail user MUA. Also, the queue directories
must have the appropriate permission bits. The default directories used by the
MTA and the MSA are /var/spool/mqueue and /var/spool/clientmqueue. If these
directories are not correct for your system, use the QUEUE_DIR and
MSP_QUEUE_DIR flags. Ensure that the permissions for the queue directories are
set up for the user IDs defined.

Chapter 28. Mail on z/OS 1425

Setting up a Milter (optional)
To describe where filters are located, you need to add reference to the filters in the
sendmail configuration file (sendmail.cf). Filters declaration in the sendmail
configuration file are made in the following form:
X name field =value |*

Filters are specified with a key letter (X for external), and name is the name of the
filter (used internally only). The field=value pairs, or equates, define attributes of the
filter.

The fields and their values are:

Socket
The socket specification is in one of the following forms:
S = inet: port @ host | [IP address]
S = inet6: port @ host | [IP address]
S = local: path

The first two describe an IPv4 (inet) and IPv6 (inet6) socket listening on a
certain port at a given host or IP address. The final form describes a
named socket on the file system at the given path.

Flags Special flags for a filter are:
F=R Reject connection if filter unavailable
F=T Temporary fail connection if filter unavailable

Timeouts
To override the default timeouts used by sendmail when talking to the
filters, use T = timeout, where timeout includes four fields as follows:
C Timeout for connecting to a filter (if 0, use system timeout)
S Timeout for sending information from the MTA to a filter
R Timeout for reading reply from the filter
E Overall timeout between sending end-of-message to filter and

waiting for the final acknowledgment

The separator between each timeout field is a semicolon (;). The default
timeout values, if not set in the configuration file, are as follows, where s is
seconds and m is minutes:
T=C:5m;S:10s;R:10s;E:5m

A comma (,) separates equates. Following are some example filters:
Xfilter1, S=local:/var/run/f1.sock, F=R
Xfilter2, S=inet6:999@localhost, F=T, T=C:10m;S:1s;R:1s;E:5m
Xfilter3, S=inet:3333@localhost

Assuming the filters are stored in /var/spool/milter, the following commands
would start the above three mail filters. Note that S= is replaced by -p, and the
flags are dropped.
/var/spool/milter/filter1 -p local:/var/run/f1.sock &
/var/spool/milter/filter2 -p inet6:999@localhost &
/var/spool/milter/filter3 -p inet:3333@localhost &

Which filters are invoked, and their sequencing, is handled by the InputMailFilters
option as follows, where fnamex are the names of the filters:
O InputMailFilters=fname1, fname2, fname3

1426 z/OS V1R12.0 Comm Svr: IP Configuration Guide

If InputMailFilters is not defined, no filters are used. However, there is a special
case. Since sendmail can run multiple daemons, you can assign different filters to
different daemons. For example:
O DaemonPortOptions=Port=6666,Name=mmta,I=filter
.
.
.
Xfilter, S=inet:3333@localhost

DaemonPortOptions is used to define multiple clients and daemons, and the I field
is used to assign a specific filter to the daemon. If a daemon is assigned a specific
filter, it connects to that filter only. In the previous example, the daemon using port
6666 connects to the filter defined by [Xfilter, S=inet:3333@localhost]. If a daemon
is not assigned a specific filter, it connects to filters defined by [InputMailFilters].

There are two suboptions for Milter:

LogLevel
Log level for input mail filter actions, the default is LogLevel

Macros
Specifies list of macros to transmit to filters

The macros option has the following suboptions, which specify the list of macros
to transmit to milters after a certain event has occurred. By default, the lists of
macros are empty.

Option After this event

Connect
Session connection start

Helo HELO command

Envfrom
MAIL FROM command

Envrcpt
RCPT TO command

Following are some examples:
O Milter.LogLevel=12
O Milter.macros.connect=j, _, {daemon_name}

These filters can easily be configured in your mc file using the following
commands:
MAIL_FILTER(`name’, `equates’)
INPUT_MAIL_FILTER(`name’, `equates’)

The first command, MAIL_FILTER(), simply defines a filter with the given name
and equates. For example:
MAIL_FILTER(`archive’, `S=local:/var/run/archivesock, F=R’)

This creates the following equivalent sendmail.cf entry:
Xarchive, S=local:/var/run/archivesock, F=R

The INPUT_MAIL_FILTER() command performs the same actions as
MAIL_FILTER, but also populates the m4 variable `confINPUT_MAIL_FILTERS'
with the name of the filter such that the filter will actually be called by sendmail.
For example:

Chapter 28. Mail on z/OS 1427

INPUT_MAIL_FILTER(`archive’, `S=local:/var/run/archivesock, F=R’)
INPUT_MAIL_FILTER(`spamcheck’, `S=inet:2525@localhost, F=T’)

The two commands above are equivalent to the following three commands:
MAIL_FILTER(`archive’, `S=local:/var/run/archivesock, F=R’)
MAIL_FILTER(`spamcheck’, `S=inet:2525@localhost, F=T’)
define(`confINPUT_MAIL_FILTERS’, `archive, spamcheck’)

In general, INPUT_MAIL_FILTER() should be used, unless you need to define
more filters than you want to use for `confINPUT_MAIL_FILTERS'. Note that
setting `confINPUT_MAIL_FILTERS' after any INPUT_MAIL_FILTER() commands
clears the list created by the prior INPUT_MAIL_FILTER() commands.

The following table shows M4 variables:

Table 71. M4 variables

M4 variable Configuration variable Description

confINPUT_MAIL_FILTERS InputMailFilters A list of filters, separated
by commas, that determines
which filters are contacted
for incoming SMTP
messages, as well as the
invocation sequence. If
none are set, no filters are
contacted.

confMILTER_LOG_LEVEL Milter.LogLevel Log level for input mail
filter actions. The default is
LogLevel.

confMILTER_MACROS_CONNECT Milter.macros.connect Macros to transmit to
milters when a session
connection starts. The
default is [j, _,
{daemon_name}, {if_name},
{if_addr}].

confMILTER_MACROS_HELO Milter.macros.helo Macros to transmit to
milters after HELO
command. The default is
[{tls_version}, {cipher},
{cipher_bits}, {cert_subject},
{cert_issuer}].

confMILTER_MACROS_ENVFROM Milter.macros.envfrom Macros to transmit to
milters MAIL FROM
command. The default is [i,
{auth_type}, {auth_authen},
{auth_ssf}, {auth_author},
{mail_mailer}, {mail_host},
{mail_addr}].

confMILTER_MACROS_ENVRCPT Milter.macros.envrcpt Macros to transmit to
milters after RCPT TO
command. The default is
[{rcpt_mailer}, {rcpt_host},
{rcpt_addr}].

For instructions on how to compile and link a mail filter program, see z/OS
Communications Server: IP Programmer's Guide and Reference.

1428 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Creating the Message Submission Program file submit.cf
Sendmail needs to run as root for several reasons. The Message Submission
Program (MSP) configuration file submit.cf eliminates the need for sendmail to run
as root to write e-mail that is submitted from the command line to the queue
directory.

MSP requires a set-user-ID/set-group-ID program to avoid problems with a
world-writable directory. It is, however, sufficient to have a set-group-ID program
and a group-writable queue directory. This can be fulfilled by a sendmail daemon
that is started by root. This topic explains how to use two sendmail configurations
to accomplish the goal of having a sendmail binary that is not set-user-ID root, and
thus is less problematic in the presence of system configuration and OS problems.

The default configuration, starting with sendmail 8.12, uses one sendmail binary
that acts differently based on operation mode and supplied options. When running
in a program control environment, two binaries are used, /usr/sbin/sendmail and
/bin/sendmail. For information on program control, see “Configuring Security
Server (RACF or equivalent) items” on page 1424.

Sendmail must be a set-group-ID (default group: smmspgrp, recommended gid: 25)
program to allow for queueing mail in a group-writable directory. Two .cf files are
required, sendmail.cf for the daemon and submit.cf for the submission program.
For the permissions that should be used, see Table 72 on page 1432.

The SEZAINST(EZARACF) file shows sample commands to add the smmsp user
and group, as follows:
ADDGROUP SMMSPGRP OMVS(GID(25))
ADDUSER SENDMAIL DFLTGRP(SMMSPGRP) NOPASSWORD OMVS(UID(0) HOME(’/’))
ADDUSER SMMSP DFLTGRP(SMMSPGRP) NOPASSWORD OMVS(UID(8000) PROGRAM(’/bin/sh’)

That is, the owner of sendmail is root, the group is smmspgrp, and the binary is
set-group-ID. The client mail queue is owned by smmsp with group smmspgrp
and is group writable. The client mail queue directory must be writable by
smmspgrp, but it must not be accessible for others. That is, do not use world read
or execute permissions. In submit.cf, the option UseMSP must be set, and
QueueFileMode must be set to 0660. submit.cf is available in /usr/lpp/tcpip/
samples/sendmail/cf, which has been built from /usr/lpp/tcpip/samples/
sendmail/cf/submit.mc. The file can be used as is, or if you want to add more
options, use /usr/lpp/tcpip/samples/sendmail/cf/submit.mc as a starting point.

Recommendation: Do not add options to submit.mc unless you are absolutely sure
you need them. Options you might want to change include:
v confTIME_ZONE
v confDELIVERY_MODE is set to interactive in msp.m4 instead of the default

background mode

Some features are not intended to work with the MSP. These include features that
influence the delivery process (for example, mailertable, aliases), or those that are
only important for an SMTP server (for example, virtusertable,
DaemonPortOptions, multiple queues). Moreover, relaxing certain restrictions
(RestrictQueueRun, permissions on queue directory) or adding features (for
example, enabling prog/file mailer) can cause security problems.

Other things do not work well with the MSP and require tweaking or
workarounds. For example, to allow for client authentication, it is not sufficient to

Chapter 28. Mail on z/OS 1429

just provide a client certificate and the corresponding key, but it is also necessary
to make the key group (smmsp) readable and tell sendmail not to complain about
it as follows:
define(`confDONT_BLAME_SENDMAIL’, `GroupReadableKeyFile’)

When FEATURE(`msp') is coded, the sendmail client will send all mail to the local
mail server. If using the sendmail server as the local mail server, review the
RELAY_DOMAIN() for the sendmail server. If needed, the sendmail client can be
configured to send mail to a different server with this feature.

/usr/lpp/tcpip/samples/sendmail/feature/msp.m4 defines almost all settings for
the MSP. Most of these should not be changed at all. Some of the features and
options can be overridden if really necessary. It is a bit tricky to do this, because it
depends on the actual way the option is defined in feature/msp.m4. If it is directly
defined [that is, with define()], the modified value must be defined after the
following line:
FEATURE(`msp’)

If it is conditionally defined [that is, with ifdef()], the desired value must be
defined before the FEATURE line in the .mc file. To see how the options are
defined, read feature/msp.m4.

The .cf file (sendmail.cf or submit.cf) is chosen based on the operation mode. For
-bm (default), -bs, and -t, it is submit.cf, if it exists. For all others, it is sendmail.cf.
This selection can be changed by -Ac (to use submit.cf) or -Am (to use
sendmail.cf).

The daemon must be started by root as usual, for example:
/usr/sbin/sendmail -L sm-mta -bd -q1h

Note: If you run sendmail from inetd (which, in general, is not recommended),
you must specify -Am in addition to -bs.

Mail ends up in the client queue if the daemon does not accept connections or if
an address is temporarily not resolvable. The latter problem can be minimized by
using the following:
FEATURE(`nocanonify’, `canonify_hosts’)
define(`confDIRECT_SUBMISSION_MODIFIERS’, `C’)

However, the above might have undesired side effects, as discussed in
/usr/lpp/tcpip/samples/sendmail/README.m4. In general, it is necessary to
clean the queue either with a cronjob or by running a daemon as follows:
Cronjob: /usr/sbin/sendmail -L sm-msp-queue -Ac -q
Daemon: /usr/sbin/sendmail -L sm-msp-queue -Ac -q30m

Requirement: If z/OS Security Server program control is used, the cronjob
submission must be run from UID 0 and have READ access to the BPX.DAEMON
resource in the FACILITY class.

If the option UseMSP is not set, sendmail will complain during queue runs about
bogus file permission. If you want a queue runner for the client queue, you
probably have to change OS-specific scripts to accomplish this (check the man
pages of your OS for more information). You can start this program as root, and it
will change its user ID to RunAsUser (smmsp by default, recommended uid: 25).
This way, smmsp does not need a valid shell.

1430 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Following is a brief summary of how the two configuration files are used:

sendmail.cf
For the MTA (mail transmission agent). The MTA is started by root as
daemon as follows:
/usr/sbin/sendmail -L sm-mta -bd -q1h

SMTP connections are accepted, on ports 25 and 587 by default. It runs the
main queue, /usr/spool/mqueue by default if using /usr/lpp/tcpip/
samples/sendmail/cf/sample.cf.

submit.cf
For the MSP (mail submission program). The MSP is used to submit
e-mails. Thus, it is invoked by programs, and maybe users. It does not run
as SMTP. It uses /usr/spool/clientmqueue by default if using
/usr/lpp/tcpip/samples/sendmail/cf/sample.cf, and can be started to run
that queue periodically as follows:
/usr/sbin/sendmail -L sm-msp-queue -Ac -q30m

Running sendmail as a daemon
Just as sendmail can transport a mail message over a TCP/IP-based network, it can
also receive mail that is sent to it over the network. To do this, it must be run in
daemon mode. A daemon is a program that runs in the background independent
of terminal control.

As a daemon, sendmail is run once, usually when your machine is booted.
Whenever an e-mail message is sent to your machine, the sending machine talks to
the sendmail daemon that is listening on your machine.

The -bd command-line switch tells sendmail to run in daemon mode. The -q1h
command-line switch tells sendmail to wake up once per hour and process the
queue. Command-line switches are described in z/OS Communications Server: IP
User's Guide and Commands.

Configuration hints and tips
This topic contains other required or useful information for configuring sendmail.
For further information on these topics, see the bat book.

v SuperUser status is needed to start the sendmail daemon.
v The QueueDirectory option defined in the config file tells sendmail where to

queue messages that are temporarily undeliverable. This directory must exist
before sendmail is started.

v Sendmail is highly dependent on the Domain Name Server (DNS); it is
important that the resolver be set up correctly to avoid unnecessary searching
for a user. For more information on DNS, see Chapter 15, “Domain Name
System,” on page 775.

v A program controlled environment is necessary for sendmail to run in daemon
mode when BPX.DAEMON is enabled, since many functions of sendmail
(especially daemon functions) require it to change the user ID (UID) without
prompting for a password. For more information regarding security and
sendmail, see z/OS UNIX System Services Planning as well as the bat book.

v The daemon must be started by root, as usual. Table 72 on page 1432 shows the
recommended security file permissions of files that sendmail might use.

Chapter 28. Mail on z/OS 1431

Table 72. Sendmail permission table

Path Type Owner Mode Required or
configurable

/ Directory root 555 dr-xr-xr-x Required

/usr Directory root 555 dr-xr-xr-x Required

/usr/sbin Directory root 555 dr-xr-xr-x Required

/usr/sbin/sendmail File root 755 -rwsr-xr-x Required

/bin/sendmail File smmsp 755 -rwsr-sr-x Configurable1

/etc/mail Directory root 555 dr-xr-xr-x Configurable

/etc/mail/sendmail.cf File root 444 -r--r--r-- Configurable

/etc/mail/submit.cf File root 444 -r--r--r-- Configurable

/var/spool/mqueue Directory sendmail 700 drwx------ Configurable

/var/spool/clientmqueue Directory smmsp 770 drwxrwx--- Configurable

1. Used only with RACF program control systems.

Rule: When sendmail is attempting to canonify a host name, some broken name
servers will return SERVFAIL (a temporary failure) on T_AAAA (IPv6) lookups.
To allow sendmail to accept this behavior, ResolverOptions in the configuration
file is set to WorkAroundBrokenAAAA by default.
If a system has thousands of users defined in the Users list, the administrator
might consider enabling the UNIXMAP class. This increases the speed of the
security checks performed by sendmail. APAR OW30858 provides details about
what is needed to enable the UNIXMAP class. For additional information on
enabling the UNIXMAP class, see z/OS Security Server RACF Security
Administrator's Guide.

Environment variables
Table 73 provides a list of environment variables that can be explicitly set by
sendmail.

Table 73. Environment variables for sendmail

Environment variable Description

GSK_TRACE Specifies a bit mask enabling system SSL
trace options.

GSK_TRACE_FILE When set to the name of a file in a directory,
enables the system SSL trace.

HOME The system initializes this variable at login
time to a path name of the user's home
directory.

HOSTALIASES The host aliases data set or file.

Configuring popper
POP3 resides on port 110. You can define additional ports if there is a need for
additional command-line options for popper. For information on the options that
might be suitable for your site, see the z/OS Communications Server: IP User's Guide
and Commands.

1432 z/OS V1R12.0 Comm Svr: IP Configuration Guide

z/OS UNIX popper will most likely be used by those whose local mailer requires a
POP3 server. Typically their administrator will provide them with the address or
name of the z/OS running the POP3 server, with instructions on where this
information should be used.

The authentication method used in this implementation of popper is user ID and
password.

The popper implementation can be divided into four steps:
v Update the /etc/services file.
v Update the /etc/inetd.conf file.
v Create the directory for the temporary maildrop file.
v Start inetd.

Update the /etc/services file
You need a port for the POP3 server defined in /etc/services. Add the following
line to your /etc/services file. Note that the well-known port 110 is being used in
this example:
pop3 110/tcp popper

Update the /etc/inetd.conf file
Since popper is invoked by INETD, add the following information to your
/etc/inetd.conf file, where -d indicates to run popper in debugging mode:
pop3 stream tcp nowait bpxroot /usr/sbin/popper popper -d

The debugging option is used to confirm proper installation, as shown in “Correct
connection” on page 1434.

Create the directory for the temporary maildrop file
When popper is invoked through a Mail User Agent (MUA) client request, such as
GET NEW MESSAGES, popper starts to read the user's mail file system
(/usr/mail/username) where sendmail has stored the data, and puts this data (if
there are messages) in a temporary maildrop file /usr/mail/popper/
.username.pop. The contents of this file are transmitted to the remote client using
the existing POP3 TCP connection.

Since the directory does not exist, create it as follows:
/usr/mail/popper/
chmod 777 /usr/mail/popper

The popper uses this directory to create and fill the maildrop file. If this directory
is not specified or if permissions are incorrect, you will get an error message
similar to the following:
EZZ7605I:Unable to open temporary maildrop ’/usr/mail/popper/.username.pop’

Also, inside the POP3 session, you will get an error message similar to the
following:
-ERR System error, can’t open temporary file, do you own it?

Start inetd
After updating the inetd.conf file, start INETD. For more information on inetd, see
Appendix A, “Setting up the inetd configuration file,” on page 1459. Also see z/OS
Communications Server: IP Configuration Reference.

Chapter 28. Mail on z/OS 1433

Correct connection
Following is an example of a working connection to the popper server:
Debugging turned on
(v2.3)Servicing request from "hostname.domainname"at xxx.xxx.xxx.xxx
1
+OK QPOP (version 2.3)at hostname.domainname starting.
Sending line "+OK QPOP (version 2.3)at hostname.domainname starting."
Received:"USER username"
+OK Password required for username.
Sending line "+OK Password required for username."
Received:"pass xxxxxxxxx"
Creating temporary maildrop ’/usr/mail/popper/.username.pop’
uid =4029,gid =1
Checking for old .username.pop file
Old .username.pop file not found,errno (0)
Msg 1 being added to list
Msg 1 uidl c313e341d7a5167b833153eb4bbfea25 at offset 0 is 700 octets long and h
Msg 2 being added to list
Msg 2 uidl c50b65c95f934fb6c22dc23573be88a1 at offset 748 is 2072 octets long an
Msg 3 being added to list
Msg 3 uidl 91c0636d1513127489f49995e6d8f1e5 at offset 2842 is 3998 octets long a
Msg 4 uidl 61021c4ea6471f83f518d8c64d8c1740 at offset 6772 is 453814 octets long
Msg 5 being added to list
Msg 5 uidl da701c81e2b2df3a60121a5ca1cdd76b at offset 454502 is 928 octets long
Msg 6 being added to list
Msg 1 uidl c313e341d7a5167b833153eb4bbfea25 at offset 0 is 700 octets long and h
Msg 2 uidl c50b65c95f934fb6c22dc23573be88a1 at offset 748 is 2072 octets long an
Msg 3 uidl 91c0636d1513127489f49995e6d8f1e5 at offset 2842 is 3998 octets long a
Msg 4 uidl 61021c4ea6471f83f518d8c64d8c1740 at offset 6772 is 453814 octets long
Msg 5 uidl da701c81e2b2df3a60121a5ca1cdd76b at offset 454502 is 928 octets long
Msg 6 uidl 0a48082f727723c8f47b306e26b49652 at offset 455469 is 691 octets long
+OK username has 6 messages (462203 octets).
Sending line "+OK username has 6 messages (462203 octets)."
Received:"STAT"
6 message(s)(462203 octets).
+OK 6 462203
Sending line "+OK 6 462203"
Received:"LIST"
+OK 6 messages (462203 octets)
Received:"UIDL"
+OK uidl command accepted.
Sending line "+OK uidl command accepted."
Sending line "1 c313e341d7a5167b833153eb4bbfea25"
Sending line "2 c50b65c95f934fb6c22dc23573be88a1"
Sending line "3 91c0636d1513127489f49995e6d8f1e5"
Sending line "4 61021c4ea6471f83f518d8c64d8c1740"
Sending line "5 da701c81e2b2df3a60121a5ca1cdd76b"
Sending line "6 0a48082f727723c8f47b306e26b49652"
Received:"QUIT"
Performing maildrop update...
Checking to see if all messages were deleted
Opening mail drop "/usr/mail/username"
Creating new maildrop "/usr/mail/username"from "/usr/mail/popper/.username.pop"
Copying message 1.
Copying message 2.
Copying message 3.
Copying message 4.
Copying message 5.
Copying message 6.
+OK Pop server at hostname.domainname signing off.
Sending line "+OK Pop server at hostname.domainname signing off."
(v2.3)Ending request from "username"at (hostname.domainname)xxx.xxx.xxx.xxx

1434 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Popper command—administering received mail

If the receiver's MUA does not have direct access to the mail spool file, use Popper
to access the mail spool on the local host. z/OS Popper will be used when a POP3
server is needed.

Syntax:

�� popper - b <directory name>
- d
- n <message count>
- s
- t <file name>
- T <timeout>
- u

��

Parameters: The following command line options can be used when invoking
Popper.

-b <directory name>
Specifies the name of the directory in which bulletins are found. If not
specified, /usr/mail/bulletins is used as the default.

-d Requests additional debugging messages be turned on.

-n <message count>
Specifies the number of old bulletins to be delivered to new users. If not
specified, no bulletins are delivered.

-s Requests statistics logging be turned on.

-t <file name>
Specifies a trace file for all message logging. If not specified, messages are
logged via the syslog facility.

-T <timeout>
Specifies the time, in seconds, before an idle POP3 connection is terminated.
RFC 1939 specifies a minimum timeout of 600 seconds, but in practice such a
long timeout does not work well. (When a connection gets aborted, the user is
locked out of his mailbox for the timeout period.) If not specified, 120 seconds
is used as the default timeout period.

-u Requests the user's mailbox be updated on abort. RFC 1939 specifies that
mailboxes should not be updated (that is, no messages should be deleted) if a
connection is aborted abnormally. This option forces an update to occur despite
the aborted connection. If not specified, no update will occur on aborted
connections.

Chapter 28. Mail on z/OS 1435

1436 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Chapter 29. TIMED daemon

TIMED is a daemon that is used to provide the time in response to UDP requests.
TIMED gives the time in seconds since midnight January 1, 1900. You can start
TIMED from the z/OS shell or as a started procedure. TCP/IP must be started
prior to starting TIMED.

Note: TIMED is different from the TIME daemon available as an internal daemon
of INETD. INETD cannot be used to start and perform as a listener for
TIMED.

Starting TIMED from the z/OS shell
TIMED is installed in the /usr/lpp/tcpip/sbin/ directory.

To start the TIMED server from the command line, issue the timed command.

timed [-l] [-p port]

Following are the parameters used for the timed command:

-l Logs all the incoming requests and responses to the system log. Logged
information includes the IP address of the requester.

-p port
The TIMED server usually receives requests on well-known port 37.
TIMED uses UDP only. You can specify the port in which requests are to
be received.

Starting TIMED as a procedure
The following sample shows how to start TIMED as a procedure.
//TIMED PROC
//*
//* 5694-A01 (C) Copyright IBM Corp. 1997, 2002
//* Licensed Materials - Property of IBM
//* This product contains "Restricted Materials of IBM"
//* All rights reserved.
//* US Government Users Restricted Rights -
//* Use, duplication or disclosure restricted by
//* GSA ADP Schedule Contract with IBM Corp.
//* See IBM Copyright Instructions.
//*
//* Function: Time server start procedure
//* SMP/E distribution name: EZATTMDP
//*
//TIMED EXEC PGM=TIMED,REGION=0K,TIME=NOLIMIT,
// PARM=’POSIX(ON),ALL31(ON),TRAP(OFF)/’
//*STEPLIB DD DISP=SHR,DSN=TCP.SEZALOAD,
//* VOL=SER=,UNIT=
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=F,LRECL=132,BLKSIZE=132)
//SYSIN DD DUMMY
//SYSERR DD SYSOUT=*

© Copyright IBM Corp. 2000, 2011 1437

//SYSOUT DD SYSOUT=*,DCB=(RECFM=F,LRECL=132,BLKSIZE=132)
//CEEDUMP DD SYSOUT=*
//SYSABEND DD SYSOUT=*
// PEND

1438 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Chapter 30. SNTPD daemon

SNTPD is a TCP/IP daemon that is used to synchronize time between a client and
a server. Simple Network Time Protocol (SNTP) is a protocol for synchronizing
clocks across a WAN or LAN through a specific formatted message. An External
Time Reference (ETR), named stratum 0, is chosen as the highest timer reference
used for synchronization. A stratum 1 server is attached to and receives the time
from the stratum 0 timer. For example, the z/OS sysplex timer could be a stratum
0 timer, and z/OS Communications Server would be a stratum 1 server. A client
attached to the stratum 1 server can also be a stratum 2 server, receiving the time
from the stratum 1 server, and so on. SNTP uses UDP packets for data transfer
with the well-known port number 123. RFC 2030 (Mills 1996) describes SNTP. You
can start SNTPD from the z/OS shell or as a started procedure. TCP/IP must be
started prior to starting SNTPD.

Steps for starting SNTPD from the z/OS shell
Before you begin: Ensure the existence of the following files. The files used by
z/OS UNIX SNTPD and their locations in the z/OS UNIX file system are as
follows:

/etc/services
The ports for each application are defined here.

/etc/syslog.conf
The configuration parameters for usage of syslogd are defined in this file.

/usr/sbin/sntpd
This is a symbolic link to /usr/lpp/tcpip/sbin/sntpd, which is a sticky-bit
file. The SNTPD member of SEZALOAD contains the executable code for
the SNTP server.

/usr/lib/nls/msg/C/sntpdmsg.cat
The message catalog used by the z/OS UNIX SNTPD server.

When restricting low port usage, the port used by SNTPD (default value of 123)
should either:
v Be reserved for the name of the SNTPD start procedure
v Use the SAF parameter on the PORT statement to restrict access to the SNTPD

port

Note: There is no configuration file specifically for SNTPD.

Perform the following step to start SNTPD from the z/OS shell:
1. Type sntpd & on the command line. This will start SNTPD and send it to the

background.
Following are the optional parameters used for the sntpd command:

-d Enables debugging. Debug messages go to syslog daemon.

-df pathname
Enable debugging. Debug messages go to the specified file location.

-pf pathname
Path for pid file. For example:

© Copyright IBM Corp. 2000, 2011 1439

-pf /var

-m nnnnn
Acts in multicast mode. Sends multicast updates (TTL=1) on all
interfaces every nnnnn seconds. Listens to multicast requests and
responds with unicast replies. The valid range for -m is 1 to 16284.

-b nnnnn
Acts in broadcast mode. This parameter sends local broadcasts on all
interfaces every nnnnn seconds. It also specifies to listen to broadcast
requests and respond with unicast replies. The valid range for -b is 1 to
16284.

-s nn Use nn as the stratum level in all replies sent by the server. The valid
range for nn is 1 to 15. If -s is not specified or a value is specified that
is not valid, the default stratum level of 1 is used. The stratum level
indicates the relative accuracy of the local clock compared to the clocks
of other SNTP servers in the network. The value 1 is most accurate and
15 is least accurate.

-? Display the syntax of the command usage and options.

You know that SNTPD has started when the following message appears on the
MVS console:
EZZ9600I SNTP SERVER READY.

Steps for starting SNTPD as a procedure
Before you begin: Obtain a copy of this sample procedure from SEZAINST and
store it in one of your PROCLIB concatenation data sets.

Perform the following step to start SNTPD as a procedure:
1. Invoke the procedure using the system operator start command. The following

sample, SEZAINST(SNTPD), shows how to start SNTPD as a procedure:
//SNTPD PROC
//*
//* TCP/IP FOR MVS SIMPLE NETWORK TIME PROTOCOL
//* SMP/E DISTRIBUTION NAME: EZASNPRO
//*
//* 5694-A01 (C) COPYRIGHT IBM CORP. 2002.
//* LICENSED MATERIALS - PROPERTY OF IBM
//* THIS PRODUCT CONTAINS "RESTRICTED MATERIALS OF IBM"
//* ALL RIGHTS RESERVED.
//* US GOVERNMENT USERS RESTRICTED RIGHTS -
//* USE, DUPLICATION OR DISCLOSURE RESTRICTED BY
//* GSA ADP SCHEDULE CONTRACT WITH IBM CORP.
//* SEE IBM COPYRIGHT INSTRUCTIONS.
//*
//* FUNCTION: SNTP DAEMON START PROCEDURE
//*
//SNTPD EXEC PGM=SNTPD,REGION=4096K,TIME=NOLIMIT,
// PARM=’POSIX(ON),ALL31(ON),TRAP(OFF)/ -d’
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=F,LRECL=132,BLKSIZE=132)
//SYSIN DD DUMMY
//SYSERR DD SYSOUT=*

1440 z/OS V1R12.0 Comm Svr: IP Configuration Guide

//SYSOUT DD SYSOUT=*,DCB=(RECFM=F,LRECL=132,BLKSIZE=132)
//CEEDUMP DD SYSOUT=*
//SYSABEND DD SYSOUT=*
//*

You know that SNTPD has started when the following message appears on the
console:
EZZ9600I SNTP SERVER READY.

Stack affinity
If you are running in a multiple stack environment and want SNTPD to use only a
single stack, the environment variable _BPXK_SETIBMOPT_TRANSPORT can be
used.

Chapter 30. SNTPD daemon 1441

1442 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Chapter 31. Remote Execution

This topic describes how to configure and operate both the Remote Execution
server and the UNIX Remote Execution server. z/OS Communications Server
supports remote execution daemons in both the UNIX and TSO environments.

To execute commands under the UNIX shell, use the RSH command. To execute
commands under TSO, use the REXEC command. These requests are serviced by
the UNIX daemons, orshd and orexecd, and the TSO RXSERVE daemon.

The differences between the UNIX daemons and the TSO RXSERVE daemon are as
follows:
v The UNIX daemons are initiated through the INETD server and can be

configured to support a port other than their well-known port.
v The TSO daemon must be active and will only service REXEC and RSH requests

on their well-known ports.

Only the UNIX daemons or the TSO daemon can be active at any one time.

UNIX REXEC
The UNIX Remote Execution Protocol Daemon (REXECD) is the server for the
REXEC routine. REXECD allows execution of z/OS UNIX commands with
authentication based on user names and passwords.

The Remote Shell Server (RSHD) is the server for the remote shell (RSH) client.
The server provides remote execution facilities with authentication based on
privileged port numbers, user IDs, and passwords.

See “Configuring the z/OS UNIX Remote Execution servers” on page 1447 for
more information about configuring this server.

TSO REXEC
The TSO Remote Execution server allows execution of a TSO command that has
been received at a remote host. This server runs the Remote EXEcution Command
Daemon (REXECD) which supports both the Remote Execution (REXEC) and
Remote Shell (RSH) protocols.

The TSO Remote Execution server has affinity for a specific transport in a CINET
environment. Configure and execute a unique instance of the server for each
TCP/IP stack requiring TSO remote execution services.

This information describes how to configure and operate the Remote Execution
server.

Configuring the TSO Remote Execution server
Steps to configure the TSO Remote Execution server:

1. Update AUTOLOG and PORT statements in the PROFILE.TCPIP data set.
2. Determine whether the Remote Execution client will send a Remote Execution

(REXEC) command or Remote Shell (RSH) command.

© Copyright IBM Corp. 2000, 2011 1443

3. Permit remote users to access MVS resources. (Required only if the client is not
sending a password.)

4. Update the Remote Execution cataloged procedure.
5. Create a user exit routine (optional).
6. Permit access to JESSPOOL files.

Step 1: Configuring PROFILE.TCPIP for TSO Remote
Execution server

If you want the Remote Execution server to start automatically when the TCPIP
address space is started, include the name of the member containing the RXSERVE
cataloged procedure in the AUTOLOG statement in the hlq.PROFILE.TCPIP data
set.
AUTOLOG

RXSERVE
ENDAUTOLOG

To ensure that port 512 is reserved for the Remote Execution protocol and port 514
for the Remote Shell protocol, add the name of the member containing the Remote
Execution cataloged procedure to the PORT statement in hlq.PROFILE.TCPIP:
PORT

512 TCP RXSERVE
514 TCP RXSERVE

See z/OS Communications Server: IP Configuration Reference for more information
about the AUTOLOG and PORT statements.

Step 2: Determine whether Remote Execution client will send
REXEC or RSH commands

The Remote Execution client can send commands to the TSO Remote Execution
server by the following methods:
1. Sending the Remote Execution (REXEC) command
2. Sending the Remote Shell (RSH) command with a user ID and password

separated by a slash (/) character with the -l option on the RSH command
3. Sending the Remote Shell (RSH) command without a password

With methods 1 and 2, the TSO Remote Execution server executes the request and
passes the password to MVS for verification. (REXEC commands require a
password.) When these methods are used, skip Step 3.

With method 3, to enable an RSH client to send RSH commands to the TSO
Remote Execution server without specifying a password, Step 3 is required.

Step 3: Permit remote users to access MVS resources
(optional)

This step is necessary only if your installation allows users to issue remote
execution commands without the requirement of specifying a password on the
remote execution client.

Use the following steps to ensure that the server can correctly access necessary
MVS resources. You can use z/OS Security Server (RACF) or an equivalent security
program.

1444 z/OS V1R12.0 Comm Svr: IP Configuration Guide

1. Verify that your system has been configured for allowing surrogate job
submission as described in z/OS Security Server RACF Security Administrator's
Guide (SC28-1915) or by using an equivalent security program.

2. Authorize the TSO Remote Execution server to submit jobs for the MVS user
ID specified with the -l option of the RSH command. This can be done with the
RACF facility as described in z/OS Security Server RACF Security Administrator's
Guide (SC28-1915), or by using an equivalent security program.

3. Define an mvs_userid.RHOSTS.DATA data set and authorize the TSO Remote
Execution server userid permission to read this data set. This can be done with
the RACF facility as described in z/OS Security Server RACF Security
Administrator's Guide (SC28-1915), or by using an equivalent security program.

Note: This is the userid used to start the RXSERVE address space.
This data set identifies the Remote Execution clients that can execute MVS
commands remotely by sending an RSH command.
When a Remote Execution client sends an RSH request to the TSO Remote
Execution server, the request includes the local user ID of the client user
(local_userid) and, if the client user specified the -l option of the RSH command,
the request also contains the user ID to use on the remote host (mvs_userid). If
the client does not specify the -l option, the user ID to be used on the remote
host is assumed to be the same as the local_userid.
When the TSO Remote Execution server receives an RSH command without a
password, the server looks for a data set called mvs_userid.RHOSTS.DATA. The
mvs_userid.RHOST.DATA data set contains one or more entries. Each entry
consists of two parts, a fully qualified name of the client user's host and a
local_userid associated with that host. The local_userid is case sensitive. If the
data set exists, the server reads it and looks for an entry with a host name that
matches the client user's host. If the user ID specified on this entry in the
RHOSTS.DATA data set matches the local_userid passed on the RSH command,
the RSH command continues processing. If the entry does not exist, the server
responds to the client with message EZA4386E Permission denied.
Tip: If the client connected to this host through a link-local address, the client's
host name generated by the resolver can be in the format hostname%scope.
Adding %scope information to the appropriate RHOSTS.DATA client host
definitions results in a more efficient search for a matching client host name.
For details on the support for including scope information on configured host
names, see z/OS Communications Server: IPv6 Network and Application Design
Guide.
In the following example of an RHOSTS.DATA data set, the MVS client user
mvsuser is allowed to issue the RSH command without a password from host
rs60007 with a local AIX user ID of aixuser.
Example of mvsuser.RHOSTS.DATA data set:
rs60007.itso.ral.ibm.com aixuser

4. Users may be authenticated using Kerberos or GSS. If the username in the
Kerberos or GSS credentials matches the local user ID (local_userid) of the client
supplied by the RSH client, then no password is required.

Step 4: Update the TSO Remote Execution cataloged
procedure

Update the TSO Remote Execution cataloged procedure by copying the sample
provided in SEZAINST(RXPROC) to your system or recognized PROCLIB and
modifying it to suit your local conditions. Specify the TSO Remote Execution
server parameters and modify the JCL as required for your installation.

Chapter 31. Remote Execution 1445

Tip: You can update the TSO Remote Execution server operating parameters
during execution with the MODIFY command. All but MAXCONN, IPV6, and
SECLABEL can be changed.

Step 5: Create a user exit routine (optional)
Optionally, you can provide a user exit routine. This routine can be used to alter
the JOB and EXEC statement parameters to meet installation-specific requirements
such as which system should process the job and/or environment unique
accounting information prior to submission of the TSO batch job.

The user exit should have the AMODE(31) and RMODE(ANY) attributes to
provide addressability to the input parameters.

On entry to the user exit, register 1 points to the following parameter list:

Offset Description
0 A pointer to a mixed AF_INET or AF_INET6 address structure

Offset Description
0 2 bytes (AF_INET or AF_INET6)
2 2 bytes (server port)
4 4 or 16 bytes (client AF_INET or AF_INET6 address)

Rule: The address family must be examined to determine which type of
address structure is being used.

4 A pointer to JOB statement parameters
8 A pointer to EXEC statement parameters
12 A pointer to an optional JES control statement

If the server is IPv6 enabled and an IPv4 client connects, the IP address is the
4-byte IPv4 address and not the IPv4-mapped IPv6 address.

The JOB statement parameters can be up to 1024 characters in length and are
ended by X'00'. You can modify the parameters with the exit routine. Upon entry,
the parameters are set to:
v user_ID
v USER=user_id
v PASSWORD=password
v MSGCLASS=msgclass
v SECLABEL=seclabel

msgclass is as specified in the Remote Execution cataloged procedure. user_id and
password are as received from the requesting client. seclabel is the security label
used on the job submission.

For RSH commands without passwords, note that the PASSWORD= parameter is
not present. The userid in the first positional parameter can be processed by an
installation-written JES exit.

The EXEC statement parameters can be up to 256 bytes in length and are ended by
X'00'. These parameters can be modified by the exit routine. On entry, it contains
the EXEC statement for the procedure specified in the TSOPROC parameter of the
Remote Execution server or the default IKJACCNT procedure if TSOPROC is not
specified.

1446 z/OS V1R12.0 Comm Svr: IP Configuration Guide

The JES control statement parameter can be up to 256 bytes in length and is ended
by X'00'. Upon entry, the parameter field is set to X'00'. Any JES control statement
added by the user exit will be put between the JOB and the EXEC statement.

The modified JOB and EXEC statements are submitted as a TSO batch job.

The user exit is shipped as a sample in the RXUEXIT member of the SEZAINST
data set. See the REXEC topic in z/OS Communications Server: IP Configuration
Reference for more information about this sample.

Step 6: Permit access to JESSPOOL files
If the SAF resource class JESSPOOL is defined, ALTER access is required to access
output files. Alternatively, use a jobname of prefix*, where prefix is defined in
RXSERVE.

Configuring the z/OS UNIX Remote Execution servers
This topic describes the z/OS UNIX files used by z/OS UNIX REXECD and
RSHD.

Files for z/OS UNIX REXECD

Note: The userid associated with the daemon in /etc/inetd.conf requires superuser
authority. See z/OS UNIX System Services Planning for a description of the
kinds of authority defined for daemons.

The files used by z/OS UNIX REXECD and their locations in the z/OS UNIX file
system are as follows:

/etc/services
The ports for each application are defined here.

/etc/syslog.conf
The configuration parameters for usage of syslogd are defined in this file.

/etc/inetd.conf
The configuration parameters for all applications started by inetd are
defined in this file.

/usr/sbin/orexecd
The server.

If BPX.DAEMON is specified, then the sticky bit must be set on, and
/usr/sbin/orexecd, and orexecd can reside in an authorized MVS data set.

/usr/lib/nls/msg/C/rexdmsg.cat
The message catalog used by the z/OS UNIX REXECD server.

Note: This is not an actual member at this location, but it is a symbolic
link to the part in /usr/lpp/tcpip/nls/msg/C/*.

Where the server looks for the message catalog (rexdmsg.cat) depends on
the value of NLSPATH and LANG environment variables. If you want to
store the msg.cats elsewhere, you need to change the NLSPATH or the
LANG environment variables. If rexdmsg.cat does not exist, by default, the
software uses the messages hard-coded within the software. These
messages duplicate the English message catalog that is shipped with the
product.

Chapter 31. Remote Execution 1447

Files for z/OS UNIX RSHD
The files used by z/OS UNIX RSHD and their locations in the z/OS UNIX file
system are as follows:

/etc/services
The ports for each application are defined here.

/etc/syslog.conf
The configuration parameters for usage of syslogd are defined in this file.

/etc/inetd.conf
The configuration parameters for all applications started by inetd are
defined in this file.

/usr/sbin/orshd
The server.

If BPX.DAEMON is specified, the sticky bit must be set on, and
/usr/sbin/orshd, and orshd can reside in an authorized MVS data set.

/usr/sbin/ruserok
An optional user exit that will authenticate users logging into the z/OS
UNIX RSHD server with a null password. See “Setting up the z/OS UNIX
RSHD installation exit” for more information.

Note: This exit is required to allow support for null passwords with RSH.

/usr/lib/nls/msg/C/rshdmsg.cat
The message catalog associated with the z/OS UNIX RSHD client is stored
here. If this file does not exist, by default, the software uses the messages
hard-coded within the software. These messages duplicate the English
message catalog that is shipped with the product.

Note: The message catalog is not actually stored here. This is a symbolic
link, and the actual member is in /usr/lpp/tcpip/nls/msg/C/*.

Setting up the z/OS UNIX RSHD installation exit
When the -r option is enabled, if there is no password specified on the RSH
command from the client, z/OS UNIX RSHD will drive the installation exit. When
the installation exit is driven, RSHD looks for a program in /usr/sbin named
ruserok. This is the only name that it will look for. If /usr/sbin/ruserok is not
found, the request will fail.

When the z/OS UNIX RSHD server invokes /user/sbin/ruserok, it will pass
parameters in the following order:
1. Host name or the host IP address
2. Local user's UID
3. Remote userid
4. Local userid

If z/OS UNIX RSHD receives a return code of zero from the installation exit, z/OS
UNIX RSHD continues. Any nonzero return code from the installation exit will
cause RSHD to issue message EZYRS25E to the client and terminate all
connections. The following code fragment can be used as an example to begin
building a working ruserok installation exit:
int main(argc, argv)

int argc;
char *argv[];

1448 z/OS V1R12.0 Comm Svr: IP Configuration Guide

char *rhost1; /* "hostname" or "hostname.domain" of client
obtained by caller:
gethostbyaddr(getpeername()) or the host
ip address used by the gethostbyaddr if
it failed to return a "hostname" */

int locuid; /* uid of the user name on local system */
char *cliuname; /* user name on client’s system */
char *servuname; /* user name on this (server’s) system */
int rc = 4;

rhost1 = argv[1];
locuid = atoi(argv[2]);
cliuname = argv[3];
servuname = argv[4];
.
<authenticate user and set rc=0 if valid>
.
return(rc);

Configuring TSO and z/OS UNIX Remote Execution servers to use the
same port

Since the remote execution servers are generic servers, they attempt to bind to
INADDR_ANY when they are started. This allows them to listen on all defined IP
addresses. However, this prevents both the TSO and z/OS UNIX Remote
Execution servers from listening on the same port, and one of the servers would
have to use a nonstandard port. Using the BIND parameter on the PORT
reservation statement in the TCPIP profile data set allows both the TSO and z/OS
UNIX Remote Execution servers to bind to the same ports using different IP
addresses. The following steps illustrate how this can be done. For more
information on the PORT reservation statement, see z/OS Communications Server: IP
Configuration Reference.
1. Define a VIPA address to the TCPIP profile data set. This example shows a

static VIPA address, but either a static or dynamic VIPA can be used.
DEVICE VIPAD1 VIRTUAL 0
LINK VIPA1 VIRTUAL 0 VIPAD1

HOME
134.134.134.36 VIPA1

2. Add PORT statements to the TCP/IP profile for both the TSO and z/OS UNIX
Remote Execution servers. One of the servers will bind to the VIPA address.
The other can bind to INADDR_ANY by not specifying the BIND parameter. In
this example, the z/OS UNIX Remote Execution servers will bind to the VIPA
address. Also update the /etc/services file so that exec uses 512 and shell uses
514.
512 TCP OMVS BIND 134.134.134.36 ; z/OS Unix REXECD
514 TCP OMVS BIND 134.134.134.36 ; z/OS Unix RSHD
512 TCP RXSERVE ; TSO REXECD
514 TCP RXSERVE ; TSO RSHD

It is important that the server with the BIND parameter is listed before the one
without the BIND parameter. This setup directs all requests to ports 512 or 514
with a destination IP address of 134.134.134.36 to the z/OS UNIX Remote
Execution servers. Requests to ports 512 or 514 with a local destination IP
address that is not 134.134.134.36 are directed to the TSO Remote Execution
server.

To verify this setup:

Chapter 31. Remote Execution 1449

1. Start the stack with the TCP/IP profile changes described above and start
RXSERVE and INETD.

Note: INETD listens for the REXEC and RSH servers under z/OS UNIX.
2. Issue NETSTAT and it should show that both the REXEC servers are listening

on port 512 and both RSH servers are listening on port 514. INETD, which
listens for the z/OS UNIX Remote Execution servers, only listens on the VIPA
address.
MVS TCP/IP NETSTAT CS V1R2 TCPIP NAME: TCPCS 21:34:41
User Id Conn Local Socket Foreign Socket State
------- ---- ------------ -------------- -----
INETDCS1 0000000D 134.134.134.36..514 0.0.0.0..0 Listen
INETDCS1 0000000E 134.134.134.36..512 0.0.0.0..0 Listen
RXSERVE 00000019 0.0.0.0..514 0.0.0.0..0 Listen
RXSERVE 00000018 0.0.0.0..512 0.0.0.0..0 Listen

1450 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Chapter 32. Express logon services with the Digital Certificate
Access Server

The Digital Certificate Access Server (DCAS) is a z/OS TCP/IP server that you can
use for enhanced logon solutions for z/OS applications. DCAS is part of several
IBM express logon solutions, such as Express Logon Feature (ELF) and Web
Express Logon (WEL), that work with IBM's host emulation products. DCAS
provides a service for these solutions (with ELF, DCAS is needed only for the 3-tier
solution) by providing them with z/OS user IDs and PassTickets for logon to host
applications. A PassTicket is like a password. In addition, DCAS also provides an
open interface and can be used by third-party express logon solutions to obtain
user IDs and PassTickets for logon to z/OS applications.

Express Logon Feature
Express Logon Feature (ELF) is an enhanced logon solution that is provided by
IBM host access products Host on Demand (HoD) and Personal Communications.
ELF is also referred to as certificate-based logon. ELF enables you to log on to host
applications using an X.509 certificate for authentication. For more information, see
“What DCAS provides” and Appendix C, “Express Logon Feature,” on page 1489.

Web Express Logon
Web Express Logon (WEL) is a single-signon solution that is provided by IBM host
access products Host on Demand (HoD) and Host Access Transformation Services
(HATS). WEL enables end-users that have already been authenticated, by
Web-based logon for example, to log on to their host-based applications without
having to re-authenticate by entering a user ID and password. In this case, the host
access product communicates with the DCAS server to obtain a PassTicket. For
more information on HoD, see Web Express Logon Reference. For more information
on HATS, see Host Access Transformation Services User's and Administrator's Guide.

Using the DCAS server interface for your logon solutions
DCAS provides an open interface for clients to connect using TCP/IP to obtain
information that can be used in providing enhanced host logon solutions. For
details on interfacing with DCAS, see z/OS Communications Server: IP Programmer's
Guide and Reference.

What DCAS provides
In general, DCAS provides a service for returning a PassTicket. A PassTicket is like
a password and can be used to log on to z/OS applications. RACF provides
PassTicket support using the PTKTDATA class. To understand PassTickets and
using the secured signon function, see z/OS Security Server RACF Security
Administrator's Guide. The type of information DCAS returns depends upon the
type of information requested by the client. Also, DCAS configuration controls
what type of information is allowed to be provided.

DCAS provides two types of information:
v Certificate-based

© Copyright IBM Corp. 2000, 2011 1451

http://publib.boulder.ibm.com/infocenter/hodhelp/index.jsp
http://publib.boulder.ibm.com/infocenter/hatsv6/index.jsp?topic=/com.ibm.hats.doc/doc/ugsslsec.htm

Given an x.509 certificate and an application ID, DCAS returns the user ID that
has been mapped to the certificate in RACF and a PassTicket. This can be used
by logon services that want to provide certificate-based logons. In this case, the
certificate provided must be associated with a valid user ID in RACF. For
information on using RACDCERT to administer certificates, see z/OS Security
Server RACF Security Administrator's Guide. This support is used by IBM's
Express Logon Feature (ELF) for the 3-tier solution.

v User ID-based
Given a user ID and an application ID, DCAS returns a PassTicket. In this case,
the end-user should already have been authenticated using a method such as
Web-based sign on, and the logon solution provider must ensure this
authentication prior to requesting the PassTicket. This support is used by IBM's
Web Express Logon (WEL).

Requirements:

v You must configure the DCAS server. For details on configuring DCAS, see z/OS
Communications Server: IP Configuration Reference. The DCAS server must be
configured to support the IBM logon solution that you want, or when using it
for a general or third-party solution, must be configured to return the
information that the client requires. This requires that the system administrator
that is configuring DCAS and the logon service provider using DCAS work
together. The SERVERTYPE configuration statement in the DCAS server profile
determines the type of information that DCAS can provide to connecting clients
and services (certificate-based, user ID-based, or both).

v DCAS requires all clients to connect using SSL and the client must be
authenticated. DCAS uses IBM System SSL. Review the CLIENTAUTH
parameter in the DCAS configuration profile for determining the level of DCAS
client authentication. To understand how to configure SSL key rings and
certificates for DCAS, see Appendix B, “TLS/SSL security,” on page 1461.

v For all supported configurations, DCAS provides a PassTicket for z/OS
applications that are targets for express logon. For these applications, a
PassTicket data profile must be defined. RACF provides PassTicket support
using the PTKTDATA class. For more information, see “Define PassTicket
profiles to RACF” on page 1479.

1452 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Chapter 33. Miscellaneous server

The Miscellaneous (MISC) server is a server that can be used to test and debug
applications.

The MISC server supports the 3 protocols described in RFCs 862, 863, and 864:
v Discard
v Echo
v Character Generator

Discard protocol
The MISC server simply throws away any data it receives. A TCP-based server
listens for TCP connections on TCP port 9. If a connection is established, the data
is discarded and no response is sent. A UDP-based server listens for UDP
datagrams on UDP port 9. When a datagram is received, it is discarded and no
response is sent.

Echo protocol
The MISC server returns to the originating application any data that it receives. A
TCP-based server listens for TCP connections on TCP port 7. Once a connection is
established, any data that is received is sent back to the originating application. A
UDP-based server listens for UDP datagrams on UDP port 7. When a datagram is
received, the data it contained is sent back as an answering datagram.

Character generator protocol
The MISC server sends a repetitive stream of character data without regard to its
content. A TCP-based server listens for TCP connections on TCP port 19. When a
connection is established, a stream of data is sent to the connecting application.
Any data that is received is thrown away. A UDP-based server listens for UDP
datagrams on port 19. When a datagram is received, an answering datagram is
sent that contains a random number (between 0 and 512) of characters. The data in
the received datagram is ignored.

The data that is generated follows an ordered sequence. It repeats a pattern of 94
printable ASCII characters in a ring, so that character number 0 follows character
number 94.

Following is an example of the repeated pattern.

© Copyright IBM Corp. 2000, 2011 1453

Configuring the MISC server
1. Specify AUTOLOG and PORT statements in hlq.PROFILE.TCPIP.
2. Update the MISC server cataloged procedure (MISCSERV).

Step 1: Configuring PROFILE.TCPIP for the MISC server
To allow the MISC server to start automatically when TCPIP is initialized, include
the member name of the MISC server cataloged procedure in the AUTOLOG
statement in the hlq.PROFILE.TCPIP.

AUTOLOG
MISCSERV

ENDAUTOLOG

The AUTOLOG entry in hlq.PROFILE.TCPIP is optional. You can choose to start
the MISC server manually, when it is needed, using the START command:

START MISCSERV

The MISC server requires ports 7, 9, and 19 for both TCP and UDP. To ensure that
these ports are reserved for the MISC server, verify that they are assigned to the
member containing the MISC server cataloged procedure in the PORT statement in
PROFILE.TCPIP.
PORT

7 UDP MISCSERV
7 TCP MISCSERV
9 UDP MISCSERV
9 TCP MISCSERV
19 UDP MISCSERV
19 TCP MISCSERV

For more information on these statements, see the z/OS Communications Server: IP
Configuration Reference.

!"#$%&’()*└,-./0123456789:;�=�?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefgh
"#$%&’()*└,-./0123456789:;�=�?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefghi
#$%&’()*└,-./0123456789:;�=�?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefghij
$%&’()*└,-./0123456789:;�=�?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefghijk
%&’()*└,-./0123456789:;�=�?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefghijkl
&’()*└,-./0123456789:;�=�?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefghijklm
’()*└,-./0123456789:;�=�?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefghijklmn
()*└,-./0123456789:;�=�?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefghijklmno
)*└,-./0123456789:;�=�?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefghijklmnop
*└,-./0123456789:;�=�?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefghijklmnopq
└,-./0123456789:;�=�?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefghijklmnopqr
,-./0123456789:;�=�?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefghijklmnopqrs
-./0123456789:;�=�?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefghijklmnopqrst
./0123456789:;�=�?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefghijklmnopqrstu
/0123456789:;�=�?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefghijklmnopqrstuv
0123456789:;�=�?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefghijklmnopqrstuvw
123456789:;�=�?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefghijklmnopqrstuvwx
23456789:;�=�?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefghijklmnopqrstuvwxy
3456789:;�=�?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefghijklmnopqrstuvwxyz
456789:;�=�?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefghijklmnopqrstuvwxyz{
56789:;�=�?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefghijklmnopqrstuvwxyz{│
6789:;�=�?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefghijklmnopqrstuvwxyz{│}
789:;�=�?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefghijklmnopqrstuvwxyz{│}~
89:;�=�?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefghijklmnopqrstuvwxyz{│}~
9:;�=�?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefghijklmnopqrstuvwxyz{│}~ !
:;�=�?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]¬_`abcdefghijklmnopqrstuvwxyz{│}~ !"

1454 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Step 2: Updating the MISC server cataloged procedure
Update the MISC server cataloged procedure by copying the sample in
SEZAINST(MISCSERV) to your system or recognized PROCLIB and modifying the
parameters and data set names to suit your local conditions.

MISC server cataloged procedure (MISCSERV)

Specifying the MISC server parameters
The MISC server generates periodic messages whenever a client sends data to
ports 7, 9, or 19. If this server runs continually for a long period of time,
considerable amounts of spool space can be consumed. Therefore, the MISC server
has all tracing turned off by default.

You can enable the trace options for any of the three MISC server protocols using
the PARMS= parameter on the PROC statement of the cataloged procedure. These
options will be in effect when the server starts.

//MISCSERV PROC MODULE=MISCSRV,PARMS=’’
//*
//* TCP/IP for MVS
//* SMP/E Distribution Name: SEZAINST(MISCSERV)
//*
//* Licensed Materials - Program Property of IBM.
//* "Restricted Materials of IBM"
//* 5694-A01 (C) COPYRIGHT IBM CORP. 1994, 2003
//* Status = CSV1R5
//* Distribution library SEZAINST(MISCSERV)
//*
//MISCSERV EXEC PGM=&MODULE,
// REGION=4096K,TIME=1440,
// PARM=’&PARMS’
//*
//* The C runtime libraries should be in the system’s link list
//* or add them to the STEPLIB definition here. If you add
//* them to STEPLIB, they must be APF authorized. Change
//* the name as appropriate for your installation.
//*
//STEPLIB DD DISP=SHR,
// DSN=TCPIP.SEZATCP
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSMDUMP DD SYSOUT=*
//*
//* MSMISCSR identifies an optional data set for NLS support.
//* It specifies the MISC server message repository.
//*
//*MSMISCSR DD DISP=SHR,
//* DSN=TCPIP.SEZAINST(MSMISCSR)
//*
//* SYSTCPD explicitly identifies which data set is to be
//* used to obtain the parameters defined by TCPIP.DATA
//* when no GLOBALTCPIPDATA statement is configured.
//* See the IP Configuration Guide for information on
//* the TCPIP.DATA search order.
//* The data set can be any sequential data set or a member of
//* a partitioned data set (PDS).
//*
//SYSTCPD DD DISP=SHR,
// DSN=TCPIP.SEZAINST(TCPDATA)

Figure 142. MISC server cataloged procedure (MISCSERV)

Chapter 33. Miscellaneous server 1455

TRACE
Turns on tracing for any of the specified protocols and must be followed by
one or more of these three keywords:
ECho Specifies tracing for the echo protocol on port 7.
DIscard

Specifies tracing for the discard protocol on port 9.
CHargen

Specifies tracing for the character generator protocol on port 19.
DEbug

Specifies tracing for problem determination .

For example, the following statement turns tracing on for the echo and discard
protocols.
//MISCSERV PROC MODULE=MISCSRV,PARMS=’TRACE ECHO DISCARD’

1456 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Part 3. Appendixes

© Copyright IBM Corp. 2000, 2011 1457

1458 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Appendix A. Setting up the inetd configuration file

inetd is a generic listener program used by such servers as z/OS UNIX telnet
server and z/OS UNIX rexec server. Other servers such as z/OS UNIX ftp server
have their own listener program and do not use inetd.

inetd.conf is an example of the user's configuration file. It is stored in the /etc
directory. Ensure that the inetd services required on your system are enabled using
configuration statements like those in the following example:

If the rshd, rexecd, or otelnetd service is to support IPv6 clients, then tcp6 should
be specified instead of tcp. Kerberos is not supported for IPv6-enabled services,
such as z/OS UNIX Telnet, z/OS UNIX rsh, and z/OS UNIX rexec.

For IPv4 connection partners, the terminal ID passed from INETD to RACF (or an
equivalent security program) is an 8-byte hexadecimal character string containing
an IPv4 address. For example, the IP address 163.97.227.17 is translated to
X'A361E311'. RACF interprets this as a terminal logon address and rejects it if it is
not previously defined.

For IPv6 connection partners, only IPv4-mapped IPv6 addresses are handled in this
way. The IPv4 address portion of the IPv6 address is placed in the terminal ID for
RACF validation. No other IPv6 address format is supported through terminal ID
RACF validation.

To establish a relationship between the servers defined in the /etc/inetd.conf file
and specific port numbers in the z/OS UNIX environment, insure that statements
have been added to ETC.SERVICES for each of these servers. See the sample
ETC.SERVICES installed in the /usr/lpp/tcpip/samples/services directory for how
to specify ETC.SERVICES statements for these servers.

The traces for both the z/OS UNIX rexec and rsh servers are enabled through
options in the inetd configuration file (/etc/inetd.conf):

#==
service | socket | protocol | wait/ | user | server | server program
name | type | | nowait| | program | arguments
#==
#
shell stream tcp nowait OMVSKERN /usr/sbin/orshd orshd -l
exec stream tcp nowait OMVSKERN /usr/sbin/orexecd orexecd -lv
otelnet stream tcp nowait OMVSKERN /usr/sbin/otelnetd otelnetd
Add the following line to enable Kerberos for orshd
kshell stream tcp nowait OMVSKERN /usr/sbin/orshd orshd -l -k KRB5

Figure 143. Adding applications to /etc/inetd.conf

© Copyright IBM Corp. 2000, 2011 1459

The traces are turned on for both servers by passing a -d argument to the server
programs. �1� is the RSHD server and �2� is the REXECD server. All commands
executed after the debug flags have been turned on in the inetd configuration file
and the inetd server has reread the file will produce trace output.

The trace is written in formatted form to the syslogd facility name daemon with a
priority of debug. The trace data can be routed to a file in your Hierarchical File
System by specifying the following definition in your syslogd configuration file
(/etc/syslogd.conf):

#
All ftp, rexecd, rshd
debug messages (and above
priority messages) go

to server.debug.a
#
daemon.debug /tmp/syslogd/server.debug.a

In this example, the trace data is written to /tmp/syslogd/server.debug.a in your
Hierarchical File System. For more information on syslogd, see “Logging of system
messages” on page 34.

For more information about inetd, see z/OS UNIX System Services Planning or z/OS
UNIX System Services Command Reference.

#==
service | socket | protocol | wait/ | user | server | server program
name | type | | nowait| | program | arguments
#==
#
shell stream tcp nowait OMVSKERN /usr/sbin/orshd orshd -d �1�
exec stream tcp nowait OMVSKERN /usr/sbin/orexecd orexecd -d �2�

Figure 144. Setting traces in /etc/inetd.conf

1460 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Appendix B. TLS/SSL security

This appendix is a TLS/SSL reference for the z/OS TN3270E Telnet server (Telnet),
the FTP server, and the Digital Certificate Access Server (DCAS). The gskkyman
utility and RACF are used as examples for certificate and key ring creation and
management. References to RACF apply to any other SAF-compliant security
products which contain the required support. Host On Demand V4 running on NT
is used as a sample Telnet client.

An overview of Secure Socket Layer (SSL) is given first, followed by the detailed
steps needed to perform authentication and encryption at the following levels:
v Using gskkyman

– Server Authentication only
– Client Authentication Level 1

v Using RACF
– Server Authentication only
– Client Authentication Level 1
– Client Authentication Level 2
– Client Authentication Level 3

Additional information about the concepts of cryptography and SSL can be found
at the following Web sites:
v http://httpd.apache.org/docs/2.0/ssl/ssl_intro.html
v http://www.verisign.com/ssl/ssl-information-center/how-ssl-security-works/

index.html

Secure Socket Layer overview
SSL provides data privacy and integrity as well as server and client authentication
based upon a Public Key Infrastructure (PKI) method. PKI requires that the server
organization generate a public key/private key pair that can be used during
negotiations. PKI requires that data encrypted with the public key be decrypted by
only the private key and that data encrypted with the private key be decrypted by
only the public key. This is considered an asymmetric encryption method because
different keys are used at each end of the secure connection. The Server sends its
public key to the client when the client requests a connection.

The client and server encrypt SSL parameter negotiations using the PKI method of
encryption. One of the most important items negotiated is the encryption
algorithm to be used during data transmission. The algorithm chosen will be one
that uses the same key at each end of the secure connection. This is known as a
symmetric encryption method and is about 1000 times faster than the asymmetric
PKI method used during SSL parameter negotiation. The encryption key used by
the symmetric encryption method is created and exchanged during SSL negotiation
protected by the PKI encryption method.

Some client-server connections support negotiations to determine if the client
wants or supports SSL prior to beginning the SSL handshake. Most servers and
clients can be configured to immediately start the SSL handshake process or to
negotiate whether or not to perform the SSL handshake. See the security

© Copyright IBM Corp. 2000, 2011 1461

http://httpd.apache.org/docs/2.0/ssl/ssl_intro.html
http://www.verisign.com/ssl/ssl-information-center/how-ssl-security-works/index.html
http://www.verisign.com/ssl/ssl-information-center/how-ssl-security-works/index.html

information for the appropriate server or client for information on whether
negotiated TLS/SSL is supported and how it is implemented.

The SSL protocol begins with the handshake. During the handshake:
v Server authentication is done by the client.
v Optional client authentication is done by the server.
v An encryption algorithm and single encryption key are chosen to encrypt and

decrypt session data between the client and server.

Server authentication
When using SSL to secure communications, the SSL authentication mechanism
known as Server Authentication is used. This is the minimum amount of security
provided by SSL and allows the client to validate that the Server is what it says it
is.

To ensure that someone has not stolen the server's private and public keys and is
pretending to be the server, the server sends additional information with the public
key so the client can confirm the identity of the server. The complete package of
information sent to the client is called a digital certificate which conforms to the
X.509 standard.

This X.509 digital certificate includes, among other things, the Distinguished Name
(DN) of the Server organization, the public key created by the server organization,
the Distinguished Name of the organization issuing the certificate, and the issuer's
signature. The organization issuing the certificate may be a well-known Certificate
Authority (CA) or you may issue (create) your own certificate, called a self-signed
certificate.

To create a signature, the certificate issuer first generates a message digest from the
owner's DN, the owner's public key, and the issuer's DN. The message digest is the
result of hashing this information down to a small size (usually 128 or 160 bits).
The message digest result is unique for that information based on the hashing
algorithm used. The message digest is encrypted with the issuer's private key
creating the issuer's signature.

When the client receives the server certificate, the client must have the public key
of the certificate signer. The public key is used to decrypt the message digest. The
server certificate also contains the hashing algorithm used to create the message
digest. The client uses the same algorithm to create another message digest using
the Distinguished Names and public key information in the received server
certificate. If this new message digest exactly matches the decrypted message
digest (issuer's signature) created by the certificate issuer, the client can be assured
that the certificate has not been altered. This method of authentication is
dependent on the security of the private key that is used by the certificate issuer.

To conduct commercial business on the Internet, you should obtain a server
certificate signed by a well-known Certificate Authority. Server certificates issued
by a well-known CA gives the client high assurance that the server is authentic.
Most client key rings have been primed with several well-known CA's certificates.
That enables the client to authenticate a Server certificate signed by a well-known
CA without having to first obtain the issuer's certificate which includes the public
key. For relatively small, private networks within your own enterprise you can
create your own self-signed server certificate. The only difference between a CA
issued certificate and a self-signed certificate is the issuer's Distinguished Name
and who's private key was used to encrypt the message digest. The client needs to

1462 z/OS V1R12.0 Comm Svr: IP Configuration Guide

use the correct public key to decrypt the message digest. The CA certificate
containing the CA's public key is probably already in the client's key ring and it
can be used to decrypt the CA signature (message digest). The self-signed
certificate containing the organization's public key needs to be added to the client's
list of signer certificates so the client can decrypt the signature (message digest)
created when the self-signed certificate was created. Some client products allow the
client to add the server certificate to its list of signer certificates when the server
certificate is received during SSL negotiation. If the client is confident the certificate
really came from the correct server, this is an easy way to add the certificate rather
than getting a copy and adding it manually.

For server authentication to work, the server must have a private key and
associated server certificate in the server key database file. The gskkyman utility or
RACF Common Keyring support can be used to manage the keys and certificates
needed for SSL support. If the gskkyman utility was used to create the key ring, a
password stash file is also required.

SSL requires a server certificate as part of its server authentication process. The
server certificate and the Certificate Authority certificates are stored in a key ring
(also referred to as a key database). The server's key ring can be created using the
gskkyman utility provided by the System Secure Socket Layer (System SSL)
element of z/OS or by using RACF's certificate management support. The key ring
is associated with a server or client using server or client specific statements.

Note: Global step-up type certificates are not supported by Telnet profile defined
security if the client application sends the handshake complete message to
the server before completing the second handshake. AT-TLS enabled Telnet
does support global step-up type certificates.

Client authentication
Client authentication provides additional authentication and access control by
checking client certificates at the server. This support prevents a client from
obtaining a connection without an installation approved certificate.

The server authenticates the client by receiving the client's certificate during the
SSL handshake and verifying the certificate is valid. Validation is done by the
server the same way the client validates the server's certificate. The client sends a
signed certificate to the server. System SSL at the server decrypts the signature
(message digest) using the public key of the client certificate issuer found in the
server key database file. The server then creates a new message digest using the
certificate's Distinguished Names and public key and compares the new message
digest with the decrypted one. If they match, the server can be assured the client is
authentic. Depending on where the client certificate is stored, up to three different
levels of client authentication are available. See the security information for the
appropriate server or client for setup details.

Level 1 authentication is performed by system SSL. The client passes an X.509
certificate to the Server as part of the SSL Handshake. To pass authentication, the
Certificate Authority (CA) that signed the client certificate must be considered
trusted by the server. That is, the certificate for the CA must be in the key ring
used by the Server and designated as trusted. Note that the value of this option
alone is based on which CAs are considered trusted. If the CA is a public CA and
the certificate is in an easily obtained class, anyone can obtain such a certificate. In
this case passing level 1 SSL Client Authentication does not provide much
additional security unless coupled with the level 2 RACF support. If the CA is

Appendix B. TLS/SSL security 1463

controlled by the enterprise, some level of access control is provided because the
client that possesses such a certificate is at least known to the organization.

Level 2 authentication requires that the client certificate be registered with RACF
(or other SAF compliant security product) and mapped to a user ID. This is in
addition to the checking done with the first level of client authentication support.
The client certificate received during the SSL handshake is used to query the
security product to verify that the certificate maps to a user ID known to the
system prior to connection negotiation. This level of support provides additional
access control at the server and ensures that the end user is known to have a valid
user ID on the server host. Each server uses the returned user ID in a different
way. See the security information for the appropriate server or client to see how
the user ID is used for a particular server. Level 1 authentication is performed
prior to level 2 authentication.

Level 3 authentication provides, in addition to level 1 and level 2 support, the
capability to restrict access to the server based on the user ID returned from RACF.
In some cases a certificate may be valid and mapped to a user ID but should be
valid for only one of several servers. The third level of control uses the
SERVAUTH RACF class to restrict access to the server based on client user ID. If
the SERVAUTH class is not active or the SERVAUTH profile for the server is not
defined, it is assumed level 3 authentication is not requested. If the SERVAUTH
class is active and the server profile is defined, a connection is accepted only if the
requester's user ID associated with the client certificate is in the profile. Otherwise,
the connection is dropped. See “Add user IDs to the SERVAUTH profile access
list” on page 1478 for RACF setup details.

To enable Client Authentication for each server, use the following server-specific
statements:

SERVER TYPE FTP Telnet DCAS

STATEMENT SECURE_LOGIN CLIENTAUTH CLIENTAUTH

AUTH LEVEL 1 REQUIRED SSLCERT LOCAL 1

AUTH LEVEL 2 VERIFY_USER SAFCERT LOCAL 2

AUTH LEVEL 3 VERIFY_USER SAFCERT LOCAL 3

Level 1 client authentication is done by SSL using a gskkyman key ring or a RACF
key ring. If the client certificate was issued by a well-known Certificate Authority,
it is likely the CA certificate is already primed in the gskkyman key ring. The CA
certificate is probably also in RACF. However, all CA certificates in RACF initially
have a status of NOTRUST. The CA certificate must be set to TRUST and
connected to the appropriate RACF key ring. See “Update CA certificates to
TRUST status” on page 1475 for detailed information. If the certificate issuer (a CA
or self-signed) is not part of the list of well-known CAs, the key ring must be
primed with the signer certificate of the CA or the self-signed client certificate.

After Level 1 authentication is performed by SSL using either key ring, the
certificate is passed to the server which accesses the RACF database for Level 2
and Level 3 authentication.

Encryption algorithms
After authentication is performed, the client and server must agree on a symmetric
encryption method and generate a single encryption key to use for data

1464 z/OS V1R12.0 Comm Svr: IP Configuration Guide

encryption. The agreed-on key is exchanged using the PKI method of encryption.
Once the symmetric encryption algorithm (such as DES) and a single encryption
key are chosen, all data exchanges use this algorithm and key instead of the PKI
method of encryption.

In an SSL-encrypted session, all data is encrypted using the symmetric encryption
algorithm immediately before it is sent to the client. Data from the client is
decrypted immediately after it is received. The encryption algorithm that is used
for the connection depends on a combination of the encryption algorithm list the
SSL subsystem supports, the list the server wants to use, and the encryption
algorithms the client requests. During the SSL handshake the client sends a list of
encryption algorithms it is willing to use. The server submits its list and the SSL
subsystem picks an algorithm all parties support giving preference to the order
specified by the server. If the server does not support any of the encryption
algorithms requested by the client, the connection is closed. The Telnet, FTP and
DCAS servers and the FTP client use the SSL support provided by the System
Secure Sockets Layer (System SSL) element of z/OS. The encryption algorithms
supported by the servers and client are therefore dependent on the level of System
SSL installed. The following encryption algorithms are supported by the base level
of System SSL: NULL, RC2 export, RC4 export, DES. The System SSL Level 3
feature is required for Triple DES and RC4 non-export (128 bit) encryption
algorithms. The encryption algorithm list can be customized for the servers and
client to a subset of the System SSL list. See the security information for the
appropriate server or client for specific server and client statements used for
encryption list creation.

Encryption is provided either by BSafe software shipped with System SSL or by
hardware. There is no TCP profile definition that controls whether the
cryptographic hardware will be used for secure connections. When SSL
initialization has completed, System SSL checks if ICSF is installed and active and
if the hardware is enabled and loaded with the necessary Master Keys. If the
hardware is not available at that time, all subsequent encryption is performed
using software. If hardware is valid and ICSF is active at that time, the public key
functions required during the SSL handshake and requests for encryption using
DES and Triple-DES algorithms will be sent to the hardware. Otherwise, all
cryptographic functions will be performed by software. Encryption requests using
RC2 or RC4 algorithms are always performed by software. Also note that if ICSF
subsequently becomes unavailable, System SSL will assume the hardware
encryption is still wanted and encryption processing using DES or Triple-DES
algorithms will fail until access to the hardware is restored. If subsequent session
handshakes are attempted, they will also fail. Completion of SSL initialization is
different for each server and client. See the security information for the appropriate
server or client to understand when SSL initialization is complete and how to
refresh SSL.

If hardware encryption is to be used, be sure that the RACF user ID associated
with the server has read access to the RACF CSFSERV class resources. If ICSF is
available but the server has not been given access to these resources, the SSL
initialization may fail. The reason code is likely to be 4 (bad password) because
System SSL will attempt to use the hardware encryption during processing of the
key ring.

Appendix B. TLS/SSL security 1465

Enable CSFSERV resources
If hardware encryption and ICSF are installed, system SSL verifies that the user ID
associated with the server is permitted to use CSFSERV resources. The RACF
administrator should permit the RACF user ID to use the CSFSERV resources
described here.
PERMIT service-name CLASS(CSFSERV) ID(serverid) ACCESS(READ)

The following CSFSERV resources (service-names) are accessed by System SSL.
1. CSFCKI Clear Key Import
2. CSFCKM Clear Key Import Multiple
3. CSFDEC DES and TripleDES Decipher
4. CSFENC DES and TripleDES Encipher
5. CSFOWH MD5 and SHA1 Hashing
6. CSFRNG Random Number Generate
7. CSFPKB RSA Key Token Build
8. CSFPKX RSA Public Key Extrace
9. CSFPKE RSA Public Key Encipher

10. CSFPKD RSA Private Key Decipher
11. CSFPKI RSA Key Import
12. CSFDSG Digital Signature Generate
13. CSFDSV Digital Signature Verify

z/OS FTP users can either permit every FTP client user ID to these general
resource profiles, or they can mark these profiles as delegated and permit only the
FTP daemon user ID to the profiles.

In the following example, resource CSFENC in class CSFSERV is delegated, and
only the FTP daemon user ID (FTPD for this example) needs to be permitted.
Make these changes before starting FTPD.
Permit the FTP daemon to the resource:

PERMIT CSFENC CLASS(CSFSERV) ID(FTPD) ACCESS(READ)
Mark the resouce profile as delegated:

RALTER CSFSERV CSFENC APPLDATA(’RACF-DELEGATED’)
Refresh the CSFSERV class:

SETROPTS RACLIST(CSFSERV) REFRESH

For more examples, see the EZARACF sample in SEZAINST. For more information
on authorizing daemons to use delegated resources, see z/OS Security Server RACF
Security Administrator's Guide.

The MAXLEN installation option for hardware cryptography determines the
maximum length that can be used to encrypt and decrypt data using ICSF/MVS.
Set this option to 65527 or greater, because this is the maximum TCP/IP packet
size.

The System SSL GSKSRVR server provides the capability to determine whether
cryptographic hardware is being used through its DISPLAY CRYPTO operator
command (for example, f gsksrvr,d crypto). The System SSL GSKSRVR server is
not automatically started. For additional information on the SSL started task and
setting up and using the GSKSRVR server, see z/OS Cryptographic Services System
SSL Programming.

1466 z/OS V1R12.0 Comm Svr: IP Configuration Guide

For additional information on controlling who can use cryptographic keys and
services, see z/OS Cryptographic Services ICSF Administrator's Guide.

Creating and managing keys and certificates at the server
The gskkyman utility or RACF Common Keyring support can be used to manage
the keys and certificates needed for SSL support.

The following table describes the steps necessary to implement the different levels
of SSL security for each key ring management product.

Key ring management product

SSL function Steps gskkyman RACF

Server Auth 1. Create a key ring file

2. Create a server certificate

If server certificate is self-signed

3. Extract server certificate from
server key ring

4. Add server certificate to client key
ring

1. Page 1470

2. Page 1471

3. Page 1473

4. Page 1485

1. Page 1476

2. Page 1476

3. Page 1477

4. Page 1485

Client Auth
Level 1

1. Set up server authentication

If client certificate is self-signed

2. Extract client certificate from client
key ring

3. Add client certificate to server key
ring

1. See above

2. Page 1482

3. Page 1474

1. See above

2. Page 1482

3. Page 1474

Client Auth
Level 2

1. Set up server authentication

2. Set up level 1 authentication

3. Associate certificate to RACF User
ID1

1. See above

2. See above

3. Page 1478

1. See above

2. See above

3. Page 1478

Client Auth
Level 3

1. Set up server authentication

2. Set up Level 1 authentication

3. Set up Level 2 authentication

4. Add User IDs to the server's
SERVAUTH profile access list

1. See above

2. See above

3. See above

4. Page 1478

1. See above

2. See above

3. See above

4. Page 1478

Express Logon
Feature

1. Set up server authentication

2. Set up level 1 authentication
(optional for DCAS)

3. Set up Level 2 authentication
(optional for DCAS)

4. Define PassTicket profiles

1. See above

2. See above

3. See above

4. Page 1479

1. See above

2. See above

3. See above

4. Page 1479

1. The gskkyman utility cannot associate a user ID with a client. If gskkyman is used for
key ring and certificate management, a second security product is needed to associate
the certificate to a user ID. In this example, RACF is used for the association while
system SSL continues to use gskkyman.

Certificate file types
This information mentions several certificate formats. Below is a high level
summary of the differences.

Appendix B. TLS/SSL security 1467

v PKCS12 files are used to move the server certificate to another server key ring.
Because this format contains the private key, the file is usually password
protected. IBM recommends only using this format when required.
– Commonly used file extension is .p12
– Contains private key, public key and certificate
– Created by

- HOD export function
When the HOD client specifies a client certificate to send to the server
during SSL processing, it must be in this format. The private key portion is
not sent to the server.

- Netscape export function
- gskkyman "Export keys to a PKCS12 file" function

v Certificate files are normally needed when a self-signed certificate is used. In
this case, each self-signed certificate appears to be signed by a unique CA.
Therefore, the client's key ring (if this is a self-signed server certificate) or
server's key ring (if this is a self-signed client certificate) must be primed to
recognize the issuer of the self-signed certificate. This format can be used to
prime a key ring with the issuer's CA certificate. This format can also be used
when registering a client certificate with RACF.
– Commonly used file extensions are .crt and .der
– Contains public key and certificate
– Created by

- HOD extract function
- gskkyman's "Create a self-signed certificate" function

Common terminology
The following variable names are used throughout the appendix:

tnserverid
The user ID defined to RACF given superuser status that is associated with
the job started for Telnet. This is the job name of the stand-alone Telnet
application.

dcasserverid
The user ID defined to RACF given superuser status that represents the
Digital Certificate Access Server.

ftpserverid
The user ID defined to RACF given superuser status that represents the
FTP daemon and all spawned FTP Servers.

serverid
The user ID defined to RACF given superuser status that represents any of
the servers above.

userid The user ID that is associated with a client certificate in the RACF key ring
database. Or the TSO user ID that requires authority to issue certain RACF
commands.

Copying z/OS UNIX files to MVS data sets
Certificate and database files are often stored in z/OS UNIX file system formats
and sometimes need to be copied into MVS data set formats. MVS data sets can be
created from z/OS UNIX files by using the TSO OGET command with the
BINARY option and can be protected using RACF. For example:

1468 z/OS V1R12.0 Comm Svr: IP Configuration Guide

OGET ’/tmp/telnet/mvs180.kdb’ ’TCPCS6.MVS180.KDB’ BINARY
OGET ’/tmp/telnet/mvs180.sth’ ’TCPCS6.MVS180.STH’ BINARY

The MVS data set names should be the z/OS UNIX file names prefixed by one or
more high-level qualifiers. The same high-level qualifiers must be used for both the
key ring and the stash file. This ensures that the name relation used to generate the
stash file from the key ring file is unchanged. See z/OS UNIX System Services
Command Reference for more information on the use of the OGET command.

Using the gskkyman utility
This topic gives examples of how to use the gskkyman utility to:
v Create key rings
v Create a server self-signed certificate
v Extract a server certificate
v Add client certificates into a key ring

The gskkyman utility is a command-line utility. It prompts you for the information
you need to perform a task. If you make an error, it issues a message and prompts
you again for the information.

The gskkyman utility is documented in z/OS Cryptographic Services System SSL
Programming. You should read the gskkyman information there before starting to
use gskkyman.

Additional information and examples can also be found in the following IBM
Redbooks:
v SecureWay Communications Server for OS/390 V2R8 TCP/IP: Guide to Enhancements

v IBM SecureWay Host On-Demand 4.0: Enterprise Communications in the Era of
Network Computing

To run gskkyman, you must have access to the z/OS Cryptographic Services
message catalogs and DLLs. The C DLL Library (that is, SYS1.SCLBDLL) must be
available and APF authorized to avoid possible abends caused by trying to access
a nonexisting or non-APF authorized system. For example, if the z/OS
Cryptographic Service DLL library is not part of the linklist concatenation, an
"export STEPLIB=SYS1.SIEALNKE" command might be needed. For additional
information, see z/OS Cryptographic Services System SSL Programming.

The gskkyman utility is shipped with z/OS in System SSL as a part of the
Cryptographic Services Base element of z/OS. It supports the generation of key
sizes of 1024 or 2048 bits. Note that if you have existing keys with a size of 512,
these keys are still usable. The gskkyman utility runs under the z/OS shell and can
create several types of z/OS UNIX files. System SSL requires the following files:
v A key ring file (also known as a key database).
v A password file (also known as a stash file) which contains the password

associated with the key ring file.

The key ring file and the stash file are used by the server to obtain the server's
certificate and the public/private key pair used during SSL handshake processing.
The server uses the stash file as the mechanism to obtain the key ring password
rather than using a configuration parameter which might be accessible to a larger
number of people. The stash file is created by using gskkyman's 'Store encrypted
database password' function on the main menu.

Appendix B. TLS/SSL security 1469

Security of these files is an installation responsibility. It is recommended to restrict
the file access to users with superuser authority.

The server must have read and write access to the key database and read access to
the password file.

Note: The gskkyman utility accepts only the z/OS UNIX files.

The gskkyman utility allows you to enter the fully qualified path and file name
when it prompts you for a key ring, certificate request, or certificate file name.
However, you should change to the path where the file will be stored before you
start gskkyman.

Create a key ring file
Before starting gskkyman, we suggest that you start in the directory where the key
ring is to be created. Otherwise, be sure to include the full file name when
specifying the key ring name.
1. Start gskkyman. This will display the Database Menu. Select Create new database

(option 1).
2. Specify the key database name, password, and expiration information as

requested.
3. Create a password file (also known as a stash file) by selecting Store database

password (option 10) from the Key Management Menu.

Following is a sample of the gskkyman output for creating a key database. Sample
user replies are shown in bold characters.
1. The Database Menu that starts the process for creating a key database is shown

below. Select the Create new database option.

Database Menu

1 - Create new database
2 - Open database
3 - Change database password
4 - Change database record length
5 - Delete database

0 - Exit program

Enter option number: 1

2. Specify the key database name, password, and expiration information as
requested.

Enter key database name (press ENTER to return to menu): server.kdb
Enter database password (press ENTER to return to menu):
Re-enter database password:
Enter password expiration in days (press ENTER for no expiration): 365
Enter database record length (press ENTER to use 2500):

Key database /SYSTEM/usr/keyring/server.kdb created.

Press ENTER to continue.

3. Pressing enter brings up the Key Management Menu as follows. Create the
password file by selecting the Store database password option.

1470 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Key Management Menu

Database: /SYSTEM/usr/keyring/server.kdb

1 - Manage keys and certificates
2 - Manage certificates
3 - Manage certificate requests
4 - Create new certificate request
5 - Receive certificate issued for your request
6 - Create a self-signed certificate
7 - Import a certificate
8 - Import a certificate and a private key
9 - Show the default key
10 - Store database password
11 - Show database record length

0 - Exit program

Enter option number (press ENTER to return to previous menu): 10
Database password stored in /SYSTEM/usr/keyring/server.sth.

Press ENTER to continue.

Pressing enter returns you to the Key Management Menu. You can proceed to create
your server certificate or exit.

Create a server self-signed certificate
See the gskkyman documentation for the steps necessary to create a CA-signed
server certificate. With gskkyman, you can create your own self-signed certificate
for testing:
1. From the Database Menu, open your key ring file (Option 2–Open database).

From the Key Management Menu, select Create a self-signed certificate (option 6).
2. Specify the certificate type to be created from one of the end user certificate

options. The type of end user certificate created depends on the security
requirements of your installation.

3. Specify the label, subject name, and length of time the certificate is valid as
requested.

4. After the certificate is created, set the certificate as the default by selecting
Manage keys and certificates (option 1), selecting the certificate you created,
followed by selecting Set key as default (option 3).

The following is a sample of the gskkyman output for creating a self-signed
certificate. Sample user replies are shown in bold characters.
1. The Key Management Menu that starts the process for creating a self-signed

certificate is shown below. Select Create a self-signed certificate (option 6).

Appendix B. TLS/SSL security 1471

Key Management Menu

Database: /SYSTEM/usr/keyring/server.kdb

1 - Manage keys and certificates
2 - Manage certificates
3 - Manage certificate requests
4 - Create new certificate request
5 - Receive certificate issued for your request
6 - Create a self-signed certificate
7 - Import a certificate
8 - Import a certificate and a private key
9 - Show the default key
10 - Store database password
11 - Show database record length

0 - Exit program

Enter option number (press ENTER to return to previous menu): 6

2. The Certificate Type menu will be displayed. Select one of the server certificate
types. Make sure you pick a certificate type that your client applications
support.

Certificate Type

1 - CA certificate with 1024-bit RSA key
2 - CA certificate with 2048-bit RSA key
3 - CA certificate with 4096-bit RSA key
4 - CA certificate with 1024-bit DSA key
5 - User or server certificate with 1024-bit RSA key
6 - User or server certificate with 2048-bit RSA key
7 - User or server certificate with 4096-bit RSA key
8 - User or server certificate with 1024-bit DSA key

Select certificate type (press ENTER to return to menu): 5

3. You will then be asked for the certificate data and the certificate will be created.

Enter label (press ENTER to return to menu): selfsignedcert
Enter subject name for certificate
Common name (required): test server certificate
Organizational unit (optional): dev
Organization (required): dev
City/Locality (optional):
State/Province (optional):
Country/Region (2 characters - required): US

Enter number of days certificate will be valid (default 365): 5000

Please wait

Certificate created.

Press ENTER to continue.

4. Make the self-signed certificate the default server certificate. Pressing enter
returns you to the Key Management Menu shown in step 1 above. Select Manage
keys and certificates (option 1). This will bring up the Key and Certificate List
menu shown below. Select the number that corresponds to the self-signed
certificate just created.

1472 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Key and Certificate List

Database: /SYSTEM/usr/keyring/server.kdb

1 - selfsignedcert

0 - Return to selection menu

Enter label number (ENTER to return to selection menu, p for previous list): 1

This will bring up the Key and Certificate Menu. Select Set key as default (option
3).

Key and Certificate Menu

Label: selfsignedcert

1 - Show certificate information
2 - Show key information
3 - Set key as default
4 - Set certificate trust status
5 - Copy certificate and key to another database
6 - Export certificate to a file
7 - Export certificate and key to a file
8 - Delete certificate and key
9 - Change label

0 - Exit program

Enter option number (press ENTER to return to previous menu): 3

Default key set.

To use the new default server certificate, the server must reinitialize its SSL
environment. See the security information for the appropriate server or client for
SSL initialization details. The self-signed server certificate will need to be added to
the client's key database as a CA. For additional information, see “Extract the
server certificate from the key ring.”

Extract the server certificate from the key ring
If using a self-signed server certificate, the server certificate must be added to the
client's key database as a CA certificate. Some clients provide the capability to
extract the server's certificate when the client connects to the server. For some
clients, however, this process must be done manually by exporting the server's
certificate to a file, sending the server's certificate file to the client, and adding the
server's certificate to the client's key database.

The server certificate can be exported to a file from the Key and Certificate Menu. If
you have just opened your key ring file and are at the Key Management Menu,
select Manage keys and certificates (option 1) and select the certificate you want to
export from the list. You will then see the Key and Certificate Menu.
1. Select Export certificate to a file (option 6).
2. Specify the desired format and file name.

The following is a sample of the gskkyman output for exporting a certificate.
Sample user replies are shown in bold characters.

Appendix B. TLS/SSL security 1473

1. The Key and Certificate Menu that starts the export process follows. Select Export
certificate to a file (option 6).

Key and Certificate Menu

Label: selfsignedcert

1 - Show certificate information
2 - Show key information
3 - Set key as default
4 - Set certificate trust status
5 - Copy certificate and key to another database
6 - Export certificate to a file
7 - Export certificate and key to a file
8 - Delete certificate and key
9 - Change label

0 - Exit program

Enter option number (press ENTER to return to previous menu): 6

2. The Export File Format menu is displayed, and you will be asked to select the
export format and to enter a file name.

Export File Format

1 - Binary ASN.1 DER
2 - Base64 ASN.1 DER
3 - Binary PKCS #7
4 - Base64 PKCS #7

Select export format (press ENTER to return to menu): 1
Enter export file name (press ENTER to return to menu): binservercert.der

Certificate exported.

If using ftp to send the export file to the client, remember to send in binary
format if the file format chosen above was binary.

Add client certificates to the server key ring
If using a client self-signed certificate, the certificate must be added to the server
key ring as a CA certificate. Send the client certificate to the MVS host using FTP
(with the BINARY send option if the certificate was extracted in binary format).
The client may be the DCAS client (DCAR), FTP client, or Telnet client. Use
gskkyman's 'Import a certificate' option to obtain the client CA from the binary
DER file. If the client certificate was issued by a well-known CA, only the signer's
certificate needs to be in the key ring. The gskkyman utility primes its key rings
with several well-known CAs.

Using RACF's Common Keyring support
This topic gives examples of how to use RACF Common Keyring support to:
v Create key rings
v Create a server self-signed certificate
v Extract a server certificate
v Add client certificates into a key ring

RACF can be used to manage the keys and certificates normally stored in the key
database. All the functions that the gskkyman utility provides, are also available in

1474 z/OS V1R12.0 Comm Svr: IP Configuration Guide

the RACF support. However, because RACF can manage multiple key rings,
certificates and key rings are added independently. A certificate is then connected
to one or more key rings.

All the server key rings and certificates are stored in the RACF database. There are
no separate key database or stash files.

See z/OS Security Server RACF Security Administrator's Guide for information about
how to use RACF to manage your key database information.

For detailed information on the RACDCERT command and other commands that
might be useful in managing your RACF key ring data, see z/OS Security Server
RACF Command Language Reference for the full syntax and description of these
commands.

RACF key ring names, labels, and so on are case sensitive. When adding the key
ring name to the server profile, be sure that the correct case is used.

Before using RACF to store your key database information:
1. Ensure that RACDCERT is defined as an authorized TSO command in the

IKJTSOxx member.
2. The well-known CA certificates are initially marked as NOTRUST in the RACF

database and you will have to update the CA certificates that you plan to
support to TRUST status.

3. Refresh the applicable RACF class after making changes.
4. There are various ways to register the client certificate with RACF or set up a

RACF Certificate Name Filter. For a complete description of RACF management
of digital certificates and options available, see z/OS Security Server RACF
Security Administrator's Guide. If using RACF's Certificate Name Filtering with
MultiID filters, Telnet client authentication processing only matches filters that
specify generic (*) criteria.

5. Most tasks related to certificates are managed using the RACDCERT command.
The issuer of these commands must have appropriate RACF authority to the
IRR.DIGTCERT.function resource in the FACILITY class with UPDATE,
CONTROL, or READ ACCESS. See z/OS Security Server RACF Security
Administrator's Guide for more information on controlling the use of the
RACDCERT command and for a complete description of functions needed for
key ring and certificate use.

6. For best performance, consider RACLISTing the DIGTCERT and DIGTRING
classes.

RACF panels also support most of the certificate and key ring functions and can be
used to perform these actions.

Configuring RACF services for the servers
This topic describes some commands needed for configuring RACF for the servers.
These commands are in EZARACF in the SEZAINST data set.

Update CA certificates to TRUST status: Several well-known CA certificates are
primed in the RACF database but are initially marked NOTRUST. To use the
certificate, it must be changed to TRUST status. As an example, the commands
below show how to change the Verisign Class 3 CA to trusted status and then
connect it to a key ring.

Appendix B. TLS/SSL security 1475

RACDCERT CERTAUTH ALTER(LABEL(’Verisign Class 3 Primary CA’)) TRUST

RACDCERT ID(serverid) CONNECT (CERTAUTH RING(SERVERKeyring)
LABEL(’Verisign Class 3 Primary CA’) USAGE(CERTAUTH))

Activate the DIGTCERT, DIGTRING, and optional DIGTNMAP classes: The
DIGTCERT and DIGTRING classes must be active before defining certificates or
key rings to RACF by using the SETROPTS commands. For example:
SETROPTS CLASSACT(DIGTCERT)
SETROPTS CLASSACT(DIGTRING)

If using Certificate Name Filtering, ensure that the DIGTNMAP class is active. For
example:
SETROPTS CLASSACT(DIGTNMAP)

Also be sure to do a refresh after any changes. For example:
SETROPTS RACLIST(DIGTCERT) REFRESH
SETROPTS RACLIST(DIGTRING) REFRESH
SETROPTS RACLIST(DIGTNMAP) REFRESH

Allow SSL key ring confirmation: System SSL verifies that the server RACF user
ID does have access to the key ring. Therefore, if the server is started as an MVS
started procedure, you must permit the RACF user ID associated with the server to
have control access to the IRR.DIGTCERT.LISTRING. For example:
RDEFINE FACILITY (IRR.DIGTCERT.LISTRING) UACC(NONE)
PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(serverid) ACCESS(CONTROL)

To access a certificate authority (CA) or site certificate, the server must have
control access to the IRR.DIGTCERT.LIST resource in the FACILITY class. For
example:
RDEFINE FACILITY (IRR.DIGTCERT.LIST) UACC(NONE)
PERMIT IRR.DIGTCERT.LIST CLASS(FACILITY) ID(userid) ACCESS(CONTROL)

If the server certificate was added as a site certificate, the server must have control
access to the IRR.DIGTCERT.GENCERT resource in the FACILITY class. For
example:
RDEFINE FACILITY (IRR.DIGTCERT.GENCERT) UACC(NONE)
PERMIT IRR.DIGTCERT.GENCERT CLASS(FACILITY) ID(userid) ACCESS(CONTROL)

If the DCAS is started from a TSO user ID under the z/OS UNIX shell, you must
also permit that ID. For example:
RDEFINE FACILITY (IRR.DIGTCERT.LISTRING) UACC(NONE)
PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(userid) ACCESS(CONTROL)

Create a key ring file
Use the following RACF command to add (create) a server key ring and associate
it with the server RACF user ID:
RACDCERT ID(serverid) ADDRING(SERVERRING)

To delete or list a key ring:
racdcert ID(serverid) delring(SERVERRING)
racdcert ID(serverid) listring(SERVERRING)

Create a server self-signed certificate
See the RACF documentation for the steps necessary to create a CA-signed server
certificate. To create a self-signed server certificate called XXXDN, for user ID

1476 z/OS V1R12.0 Comm Svr: IP Configuration Guide

serverid, use the following command, where CN is the common name and OU is
the organization unit name. Additional options are available within SUBJECTSDN.
RACDCERT ID(serverid) GENCERT SUBJECTSDN(CN(’UNIT1’) OU(’TESTING’) C(’US’)) TRUST

WITHLABEL(’XXXDN’) SIZE(1024)

To connect the certificate to a key ring and make it the default certificate, use the
following command. This example assumes a key ring called serverRing has
already been created.
RACDCERT ID(serverid) CONNECT(ID(serverid) LABEL(’XXXDN’) RING(SERVERRING) DEFAULT)

Extract a server certificate from a server key ring
If using FTP to send the server self-signed certificate to the client, use RACDCERT
Export to export the server certificate to an MVS data set in DER format. The
server self-signed certificate must be added to the client key ring to prime it for
decrypting the server certificate. EXPORT generally implies exporting both a
certificate and private key. However, the CERTDER format instructs the command
to export only the certificate in DER format, which is generally considered an
EXTRACT. Use the following RACF command:
RACDCERT ID(serverid) EXPORT(LABEL(’XXXDN’)) DSN(’dataset name’) FORMAT(CERTDER)

Add client certificates to the server key ring
If using a client self-signed certificate, the certificate must be added to the server
key ring as a CA certificate. Send the client certificate to the MVS host using FTP
(with the BINARY send option). The client may be the DCAR, FTP client, or Telnet
client. If the client certificate is issued by a well-known CA, only the signer's
certificate needs to be in the key ring. The well-known CA certificates are initially
marked as NOTRUST and must be updated to TRUST status.

The client self-signed certificate must be registered into the RACF database before
the certificate can be associated with a key ring. Associate the certificate to a RACF
user ID to register the certificate into RACF. For example, the following command
uses the binary DER client certificate in an MVS data set named
SSCLNTCERT.USER2.DER, associates it with RACF user ID USER2, and gives it a
label of CLNTCERT_USER2:
RACDCERT ID(USER2) ADD(’SSCLNTCERT.USER2.DER’) WITHLABEL(’CLNTCERT_USER2’) TRUST

This command requires that the certificate be defined in an MVS data set. If the
certificate is defined in the z/OS UNIX file system, you can use the TSO OGET
command (with the BINARY send option) to move the certificate to an MVS data
set.

Use the RACDCERT CONNECT command to connect the client certificate to the
RACF key ring as a CA certificate. In this example, the RACF user ID associated
with the server is serverid and the key ring name used by the server is serverRing:
RACDCERT ID(serverid) CONNECT (ID(USER2) RING(serverRing)

LABEL(’CLNTCERT_USER2’) USAGE(CERTAUTH))

Be sure to refresh the DIGTCERT and DIGTRING class. For example:
SETROPTS RACLIST (DIGTRING) REFRESH
SETROPTS RACLIST (DIGTCERT) REFRESH

Reinitialize SSL: Reinitialize the server SSL to pick up the certificates that have
been added to the key database. See the security information for the appropriate
server or client to understand when SSL initialization is complete and how to
refresh SSL.

Appendix B. TLS/SSL security 1477

Add user IDs to the SERVAUTH profile access list
With level 3 authentication, you specify the user IDs that are allowed to connect
into a specific Telnet port, DCAS server, or FTP port by associating the user IDs to
each server's RACF SERVAUTH profile. See the security information for the
appropriate server or client for level 3 setup. The user ID associated with the client
certificate can then be checked against the SERVAUTH class profile entry. The use
of this RACF class is optional. If the SERVAUTH RACF class is active and a RACF
profile for the port is defined, this level of RACF authorization will be verified
prior to connection negotiation. If the SERVAUTH class is not active or there is no
RACF profile, this indicates that this level of check is not required and the client is
allowed to connect to the server as long as the client certificate was validated.

TN3270E Telnet server: The RACF profile name is:
EZB.TN3270.sysname.tcpname.PORTnnnnn

where nnnnn is the port number with leading zeros. The profile name can contain
wildcards to the extent that the security product allows. All security product rules
(for example wildcards, PROTECTALL, and so on) apply. For example, the profile
name for TCP stack TCPCS running on system MVSA for port 992 would be:
EZB.TN3270.MVSA.TCPCS.PORT00992

If all systems will use the same access list, and RACF generic profile checking is
active for the SERVAUTH class, the following profile name could be used:
EZB.TN3270.*.TCPCS.PORT00992

To protect all ports with a single profile, the following security product profile
name could be used:
EZB.TN3270.MVS.TCPCS.PORT*

To restrict access on a port basis, the following RACF setup is needed and must be
done by a user ID that has authority to issue the specified RACF commands:
v Activate the RACF SERVAUTH class, if not active:

SETROPTS CLASSACT(SERVAUTH)

v Define the profile for the Telnet port:
RDEFINE SERVAUTH EZB.TN3270.sysname.tcpname.PORTnnnnn UACC(NONE)

v Permit the user ID associated with TCP to the port profile:
PERMIT EZB.TN3270.sysname.tcpname.PORTnnnnn CL(SERVAUTH) ID(tcpuserid) ACCESS(READ)

v Ensure the SERVAUTH class is RACLISTed. If it is not, RACLIST it:
SETROPTS RACLIST(SERVAUTH)

v Refresh the SERVAUTH class before using:
SETROPTS RACLIST(SERVAUTH) REFRESH

DCAS: The RACF profile name is:
EZA.DCAS.cvtsysname

v Activate the RACF SERVAUTH class, if not active:
SETROPTS CLASSACT(SERVAUTH)

v Define the profile:
RDEFINE SERVAUTH EZA.DCAS.cvtsysname UACC(NONE)

v Permit the user ID associated with TCP to the port profile:
PERMIT EZA.DCAS.cvtsysname CLASS(SERVAUTH) ACCESS(CONTROL) ID(dcasid)

v Ensure the SERVAUTH class is RACLISTed. If it is not, RACLIST it:

1478 z/OS V1R12.0 Comm Svr: IP Configuration Guide

SETROPTS RACLIST(SERVAUTH)

v Refresh the SERVAUTH class before using:
SETROPTS RACLIST(SERVAUTH) REFRESH

Note: The RACF user ID associated with the certificate and the
EZA.DCAS.cvtsysname can be any valid user ID.

FTP server: The RACF profile name is:
EZB.FTP.sysname.ftpdaemonname.PORTnnnnn

where nnnnn is the port number. The profile name can contain wildcards to the
extent that the security product allows. All security product rules (for example
wildcards, PROTECTALL, and so on) apply. For example, the profile name for FTP
daemon FTPD running on system MVSA for port 992 would be:
EZB.FTP.MVSA.FTPD.PORT992

If all systems will use the same access list and RACF generic profile checking is
active for the SERVAUTH class, the following profile name could be used:
EZB.FTP.* .FTPD.PORT992

To protect all ports with a single profile, the following security product profile
name could be used:
EZB.FTP.MVS.FTPD.PORT*

To restrict access on a port basis, the following RACF setup is needed and must be
done by a user ID that has authority to issue the specified RACF commands:
v Activate the RACF SERVAUTH class, if not active:

SETROPTS CLASSACT(SERVAUTH)

v Define the profile for the FTP port:
RDEFINE SERVAUTH EZB.FTP.sysname.ftpdaemonname.PORTxxxxx UACC(NONE)

v Permit the user ID associated with the FTP daemon to the port profile:
PERMIT EZB.FTP.sysname.ftpdaemonname.PORTnnnnn CL(SERVAUTH) ID(tcpuserid) ACCESS(READ)

v Ensure the SERVAUTH class is RACLISTed. If it is not, RACLIST it:
SETROPTS RACLIST(SERVAUTH)

v Refresh the SERVAUTH class before using:
SETROPTS RACLIST(SERVAUTH) REFRESH

Define PassTicket profiles to RACF
The following recommendations apply when defining PassTicket profiles to RACF:
v Use the SETROPTS CLASSACT(PTKTDATA) command to activate the

PTKTDATA class.
v Use the SETROPTS RACLIST (PTKTDATA) command to RACLIST the

PTKTDATA class.
v For each application to which users want to gain access with a PassTicket, you

must define a PTKTDATA class profile. For example, to give users access to
TSO, define a profile for TSO using the following command:
RDEFINE PTKTDATA TSO3050

SSIGNON(KEYMASKED(key_value))
UACC(NONE)

The DIGTNMAP and DIGTCRIT classes support profiles. The application ID used
for DIGTCRIT profiles must be the same as that used on the HOD V5 Application
ID popup window.

Appendix B. TLS/SSL security 1479

Defining profiles for applications such as TSO can be tricky because RACF has
special methods for naming profiles. For more information, see z/OS Security Server
RACF Security Administrator's Guide.

Add the client certificate to the RACF server key ring and associate the client
certificate with a user ID.

Define a PassTicket profile for each application accessed by Express Logon. The
application ID portion of the profile must match that configured on the HOD V5
workstation Application ID popup window.
SETR CLASSACT(PTKTDATA) //* Activate the PassTicket data class
SETROPTS RACLIST(PTKTDATA) //* Raclist the class
SETR RACLIST(PTKTDATA) REFRESH
RDEFINE PTKTDATA TSO3390 SSIGNON(KEYMASKED(key_value)) UACC(NONE)

Migrating an existing gskkyman key database to RACF
To migrate from an existing key database (kdb) created by gskkyman, each
certificate that the customer has added must be individually exported and then
added to the RACF database. The RACF database is already primed with some
well-known Certificate Authorities (CA), so it is not necessary to migrate these CA
certificates to RACF. Note however, that the well-known CAs are initially marked
as NOTRUST in the RACF database and you will have to update the CA
certificates that you plan to support to TRUST status.

To migrate a server certificate from your kdb created by gskkyman to RACF:
1. Use gskkyman to export the certificate and key to a PKCS12 format file:

a. Open the key database file that you want to migrate.
b. Select List/Manage keys and certificates.
c. Select the certificate to be exported.
d. Select Export the certificate and key to a file, supply the name of the z/OS

UNIX file where the certificate and key will be stored (in PKCS12 format)
and enter the password to protect the file when prompted.

2. Use the OGET command described in “Copying z/OS UNIX files to MVS data
sets” on page 1468 to create an MVS data set.

3. Add the certificate and key to the RACF database and assign it to a user, if
applicable. If this is the server certificate, assign it to the user ID associated
with the server. For example:
RACDCERT ID(serverid) ADD(’Serverid.mycert.p12’) WITHLABEL(’ServerCert’)
PASSWORD(’mypw’) TRUST

You will also need to create a key ring for your server. For example:
RACDCERT ID(serverid) ADDRING(serverring)

Then connect the appropriate certificates to the key ring. For example, to connect
the default server certificate that was migrated above ('ServerCertificate') to the
'serverring' that we associated with serverid:
RACDCERT ID(serverid) CONNECT(ID(serverid) LABEL(’ServerCert’)
RING(ServerRing) DEFAULT)

1480 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Creating and managing keys and certificates at the client
Normally, a client certificate should be obtained from a well-known Certificate
Authority (CA). The Certificate Authority's root certificate needs to be included in
the server's key data base as a trusted authority in order for the client's certificate
to pass the SSL protocol's client authentication process. If the client certificate has
been issued by a well-known CA, the client certificate need not reside in the
server's key database. If an installation uses self-signed client certificates for testing
purposes, each certificate appears to be issued by a unique CA. Therefore, each
self-signed client certificate must be added to the server's key database as a CA.

If you also want verification that the client certificate is registered with your
security product, the client certificate must reside in the server's security product
database (using the RACDCERT command with the ADD option is one way to add
the client certificate to RACF). See “Using RACF's Common Keyring support” on
page 1474 for more information on using RACF to store certificates. If the
installation is using self-signed client certificates and requests verification that the
client certificate is registered with the security product, the client certificate must
reside in both the server's key database (as a CA certificate) and in RACF.

Steps to create a self-signed client certificate vary depending on the source of the
client certificate. See “Create a self-signed client certificate” for details on creating a
client certificate using HOD's Certificate Management utility.

After the client certificate has been created and extracted as a DER data file at the
client, FTP the binary DER data file to the z/OS host using FTP's binary option. If
using RACF for the key ring, level 2 client authentication, or level 3 client
authentication, an MVS data set will need to be created. If FTP created a z/OS
UNIX file, use the OGET command described in “Copying z/OS UNIX files to
MVS data sets” on page 1468 to create an MVS data set.

Create a self-signed client certificate
See HOD's online documentation for additional details. This sample uses a locally
installed HOD V4 client on an NT system using HODs Key Management Utility.
1. On the HOD client, go to HOD's Certificate Management panels (go to Start,

Programs, Host On Demand, Administration, Certificate Management.) and
open up the key database by selecting the open icon. Usually a key database
will exist. If you have never used the key database, it might have a default
password (usually ncod - the help menu should contain help information that
specifies the default password for your system) or you can select the new
option. If new is selected, the correct path and file name will normally be filled
in by HOD. Do not change this file name. The HOD key database is normally
in HOD's bin subdirectory and named HODClientKeyDb.kdb.

Appendix B. TLS/SSL security 1481

If Personal Certificates is not displayed, click the drop-down list arrow and select
Personal Certificates from the pull-down list.

2. Create a self-signed personal certificate by selecting the New Self-Signed button.
The Create New Self-Signed Certificate screen is displayed.

Fill in the requested information and then click OK. The new certificates will
now be in the personal certificates list.

Figure 145. IBM Keys Management

Figure 146. Create New Self-Signed Certificate

1482 z/OS V1R12.0 Comm Svr: IP Configuration Guide

3. Use the export function by selecting the Export/Import button to create a
PKCS12 file. This is the file that the HOD client will use.
Specify the path and file where the exported PKCS12 file will be stored and
click OK. Enter a password to protect the file when prompted.

4. Create the certificate file that will be used to prime the server's key ring with
the CA for the self-signed client certificate.
Use the Extract Certificate function from the panel shown in Figure 147 to
create a binary DER data file. This file will have the format filename.der.

Figure 147. IBM Key Management

Figure 148. Export/Import Key

Appendix B. TLS/SSL security 1483

Specify the path and file where the exported binary DER file will be stored and
click on OK. This is the file you will FTP to the server host.

5. When you start a session from HOD to a port that requires a client certificate,
HOD will display a panel that requests the client certificate file and password.
The pkcs12 file created in step 3, should be specified.

Note: If using HOD and you are connecting to a port that requires a client
certificate, the security properties for the connection must indicate that a
certificate should be sent. The following example shows the HOD
Security properties screen.

Figure 149. Extract Certificate to a File

Figure 150. HOD connection using a client certificate

1484 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Add server certificates to the client key ring
1. Get the server certificate information to the client machine.

v Extract the server certificate from the server key ring. FTP can be used to
ship the server certificate file to the client.

v Newer versions of HOD allow you to extract the server information directly
from the HOD client window during connection setup and eliminate the
need to FTP the server certificate to the clients. The following is an example
of using this method. Once the server side has been configured for the secure
port and the port is active:
– Setup your hod client to connect into the secure port and try the

connection.
– If the connection fails with a 662 (indicating the 'server presented a

certificate that was not trusted'), you do not have the certificate of the CA
that issued the server certificate in your client's key ring.
- From the client window, select communication from the action bar, then

select security. Information for the server certificate should be

Figure 151. HOD security properties

Appendix B. TLS/SSL security 1485

displayed:

- Select extract and indicate binary format and where to store the
certificate, then click OK.

If the action was successful, the following is displayed, which indicates
that the server certificate information is on your client system.

2. Add the self-signed server certificate to HOD's CustomizedCAs:

Figure 152. Security Information

Figure 153. Extract a Certificate

Figure 154. Certificate was extracted

1486 z/OS V1R12.0 Comm Svr: IP Configuration Guide

v On the HOD client, go to HOD's Certificate Management panels. To do this,
select Start, Programs, IBM Host On-Demand, Administration, Certificate
Management.

v Open the CustomizedCAs.class file. If customized CA certificates have
previously been added to HOD, or if this is the first customized CA, create a
new class file by:
– Selecting File, then New.
– Click on the Key Database Type arrow and select SSLight key database

class. This automatically fills in the required filename and path

– Click OK. The Signed Certificates window is displayed.
– Add the server certificate information:

- Select ADD. The Add CA's Certificate from a File window is displayed.
- Select data type 'Binary DER data'.

– Specify the path and name of the binary certificate file that was FTPed
from the server or the file extracted using the HOD client window above.
Click on the OK button to complete the add.

Figure 155. Creating a new CustomizedCAs.class

Figure 156. Default location displayed

Figure 157. Add CA's Certificate From a File

Appendix B. TLS/SSL security 1487

– Close the CustomizedCAs.class after completing the ADD.
3. Restart HOD to pick up the updated CustomizedCAs.class.

Figure 158. Add CA's Certificate From a File — continued

1488 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Appendix C. Express Logon Feature

Users accessing SNA applications using Telnet clients such as Host On Demand are
generally required to know the user ID and password for the application they
want to access. The ID-and-password authentication process creates several
potential problems. For example, users may forget their IDs and passwords. If they
do forget, the passwords must be reset by a system administrator, a
time-consuming process. On the other hand, writing down the IDs and passwords
or sharing them with someone else creates a security risk, especially since
passwords are usually valid for relatively long periods of time.

IBM's solution to these problems is the Express Logon Feature (ELF), a process
which allows a user on a workstation with a Telnet client and an X.509 certificate
to log on to a SNA application without entering an ID or password. The Express
Logon Feature is supported on two-tier and three-tier network designs. The
two-tier design utilizes the z/OS TN3270E Telnet server. The three-tier design
utilizes a middle-tier Telnet server and a Digital Certificate Access Server (DCAS).

Both network designs require a Telnet client workstation that supports Secure
Sockets Layer (SSL) connections with client authentication and an X.509 certificate.
Using RACF services in z/OS, the client certificate must be associated with a valid
user ID. The only client-side product that supports the Express Logon Feature is
the IBM WebSphere Host On Demand V5.0 and later releases.

The two-tier design requires the z/OS TN3270E Telnet server with SSL, client
authentication, and Express Logon functions turned on. See “Express Logon
Feature” on page 635 for server setup information.

The three-tier design requires a middle-tier Telnet server and a Digital Certificate
Access Server (DCAS). A middle-tier Telnet server, so called because it does not
reside on the host, but rather between the Telnet workstation client and the host.
This server includes a Digital Certificate Access Requester (DCAR). The middle-tier
IBM Telnet servers supporting Express Logon are:
v CS2 6.1

TCP/IP

HOD (Host on Demand)
Telnet SSL Client with x.509 certificate HOD

Telnet Server
with Digital Certificate
Access Requester

TN3270E Telnet Server

Two-tier
Solution

Three-tier
Solution CS/NT

CS/AIX
CS/2

z/OS
- Communications Server
- SAF/RACF
- SNA Applications

DCAS

SNA

TCP/IP
TCP/IP

Figure 159. Express Logon network

© Copyright IBM Corp. 2000, 2011 1489

v CS/NT 6.1.1 PTF
v CS/AIX 6.0.0.1 PTF

Note: The term DCAR is used to describe the part of the Telnet middle-tier server
that supports the Express Logon Feature and communicates as a client with
the DCAS. It is not separate from the Telnet middle-tier server. The term
DCAR might not be used in other information that describes ELF but has
been used here to simplify the description of this function.

A Digital Certificate Access Server (DCAS) resides on the host. DCAS uses RACF
services to obtain a user ID that has been mapped to a digital certificate.

The host also provides RACF Secured Signon services, which the DCAS or the
MVS host Telnet server use to generate a PassTicket. A PassTicket is a RACF token
similar to a password except that it is valid only for ten minutes.

In a typical scenario, a Host On Demand client wants to log on to a TSO
application on the host.
v In the two-tier design, the user starts a secure connection with level 2 client

authentication, which passes the client certificate to the TN3270E Telnet server.
The TN3270E Telnet server uses RACF Secured Signon services to obtain a user
ID and PassTicket.

v In the three-tier design, the user starts the Telnet connection to the middle-tier
Telnet server. The client of the DCAS is the middle-tier Telnet server or DCAR,
which attempts to log on to an SNA application for the workstation client. The
DCAS receives a digital certificate from the DCAR and returns a user ID and
PassTicket. Secure communication is used between the DCAS and the DCAR.
The server recognizes that the client wants the Express Logon function and
invokes the DCAR, which opens a secure connection with client authentication
and passes the workstation's certificate and application name to the DCAS on
the host. The DCAS uses RACF Secured Signon services to obtain a user ID and
PassTicket, which the DCAS returns to the DCAR. The DCAR passes this
information back to the middle-tier Telnet server.

In both cases the ELF-enabled client and server now have enough information to
complete the logon to TSO. This occurs without the user ever having to enter a
user ID or password.

Note: You can use RACF or any other SAF-compliant security product that
supports PassTickets with Express Logon.

Configuring RACF services for Express Logon
At a minimum, you must register all workstation client certificates with RACF
using the RACDCERT command. This associates the certificates with the IDs of
users who are attempting to log on. In the two-tier solution, the certificate is
passed from the client to the TN3270E Telnet server. In the three-tier solution, the
certificate is passed from the client to the middle-tier Telnet server, then to the
DCAR, and then to the DCAS.

You must also create a RACF PTKTDATA profile for each application ID the end
user is attempting to access. The PTKTDATA profile allows the DCAS or z/OS
TN3270E Telnet server to obtain a PassTicket and user ID for the application. In the
three-tier solution, the DCAS must pass the PassTicket and user ID back to the
DCAR. For Host On Demand, the application ID part of the profile name must be

1490 z/OS V1R12.0 Comm Svr: IP Configuration Guide

the same as that configured in the Host On Demand Express Logon Application ID
popup window. In most cases, the application name with which the user logs on
will match the application ID portion of the RACF PTKTDATA class profile.
However, for TSO and some other applications, the names and IDs may not match:
v If VTAM generic resources are used for TSO, define the application name

portion on the RACF profile using the TCASGNAM defined in the TSOKEYxx,
SYS1.PARMLIB member.

v If VTAM generic resources are not used, define the application name on the
RACF profile as TSO.

v When configuring for TSO application logon, use the format TSO<SID> in the
PassTicket profile, where SID is the SMF system ID defined in the SMFPRMxx
member of SYS1.PARMLIB. (For example, if the SID is 3390, you would type
TSO3390 in the profile.) For details, see z/OS Security Server RACF Security
Administrator's Guide.

For applications that allow shared user IDs (multiple users request access to the
application simultaneously with the same user ID), you must specify the
APPLDATA('NO REPLAY PROTECTION') option on the RDEFINE command in
the PTKTDATA profile. This bypasses the default RACF protection against replay
of PassTickets.

Configuring the Express Logon components
The following describes, in general terms, how to set up and configure currently
supported Express Logon components:
v Host On Demand Telnet client
v z/OS TN3270E Telnet server
v Middle-tier Telnet server (CS/2 V6.1, CS/NT 6.1.1, and CS/AIX 6.0.0.1)
v DCAS - see Appendix B, “TLS/SSL security,” on page 1461

For details on configuring each product, see the appropriate documentation for
that product.

Configuring the Host On Demand Telnet client
To setup and configure the Host On Demand client, follow these steps:
1. For each application to which the end user will log on, create a macro to record

the logon screen of the application.
The end user plays this macro when displaying the logon screen on the
workstation.

2. Enter the application ID in the application ID popup window.
The application ID must be the same name specified on the z/OS for the
application ID portion of the PTKTDATA profile. The ID in the profile in most
cases must be the same as the application name.

3. Use the Host On Demand key-management utility to:
a. Create a key database (key ring).
b. Create a certificate request or generate a self-signed certificate and associate

the certificate with the key ring.
c. Use FTP to transmit the middle-tier Telnet certificate to the workstation and

store the server certificate in the key database of the client.
d. Use FTP to transmit the Host On Demand Telnet client certificate to the

middle-tier server and store in the SSL key database of the server.

Appendix C. Express Logon Feature 1491

4. Use FTP to transmit the workstation certificate to an MVS data set on the z/OS
host. Use the RACF Certificate Services RACDCERT command to associate the
certificate with a valid user ID.

Configuring the z/OS TN3270E Telnet server
Express Logon Feature requires SSL with level 2 client authentication functionality
at the server. Once that level of security is working, specify the EXPRESSLOGON
parameter statement to enable ELF in the z/OS TN3270E Telnet server.

Configuring the middle-tier Telnet server (CS/2 example)
The middle-tier server is a Telnet server such as CS/2 V6.1, that communicates
with the Host On Demand client using an SSL connection with client
authentication. The middle-tier server DCAR also communicates with the DCAS on
the host. The DCAS and DCAR communicate over a TCP/IP connection using SSL
with client authentication.

To configure the Telnet server, follow these steps:
1. Configure the NDF file for the Express Logon function and communication

with the DCAS using the following command:
DEFINE_EXPRESS_LOGON_SUPPORT

ENABLED(YES)
DCAS_ID(9.25.55.182)
DCAS_ID_TYPE(IP_ADDRESS)
DCAS_PORT(8990)

2. Use the local key management utility to store the workstation client certificate
and the DCAS certificate in the local key ring:
a. Create a key database file.
b. Create a certificate request or generate a self-signed certificate and associate

the certificate with the key ring.
c. Store the workstation client certificate and the DCAS certificate in the key

ring of the server.
3. Use FTP to transmit the DCAR certificate to the z/OS host and use gskkyman

or RACF Certificate Services to store the DCAR certificate in the DCAS key
ring.

1492 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Appendix D. Using HCD

This information includes examples of panels that are used to define IQD channels
and devices for z/OS Communications Server using HCD.
1. Select processors

2. Select 'S' Work with attached channel paths

Figure 160. Select processors

Figure 161. Work with attached channel paths

© Copyright IBM Corp. 2000, 2011 1493

3. On the Channel Path List enter the Add command (or press F11) to initiate the
Define Channel Path dialog.

4. Fill in the Add Channel Path panel, then press Enter (Select SHR for
Operation mode to share IQD Chpids across LPARs).

5. For an IQD channel path, the Specify Maximum Frame Size panel pops up
with the default value of 16 KB.

Figure 162. Initiate the Define Channel Path dialog

Figure 163. Add channel path

1494 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Or change the frame size to desired size:

Table 74. Frame size specification

Maximum Frame Size TCP/IP MTU size

16K 8K

24K 16K

40K 32K

64K 56K

6. Define the channel path access list that each LPAR should have access to.

Figure 164. Specify Maximum Frame Size

Figure 165. Define the channel path access list

Appendix D. Using HCD 1495

7. Having pressed Enter, the Channel Path List is redisplayed with channel path
number FF defined.

8. As the next step, add the control unit(s) to the IQD channel path. Select the
defined channel path with action "Work with attached control units" (action
code 'S').

9. An empty control unit list is displayed. Enter the 'Add' command or F11.

Figure 166. Channel path number FF defined

Figure 167. Work with attached control units

1496 z/OS V1R12.0 Comm Svr: IP Configuration Guide

10. Define a control unit of type 'IQD' for channel path FF.

11. Define it to the processor:

Figure 168. Add the control unit(s)

Figure 169. Define a control unit

Appendix D. Using HCD 1497

12. The processor settings are already preset. Pressing Enter, returns to the Select
Processor/Control unit panel. Pressing Enter again, returns to the Control Unit
List panel which shows the currently defined control unit.

13. Next, define the devices. Successively, select a control unit and perform action
"Work with attached Devices".

Figure 170. Define it to the processor

Figure 171. Currently defined control unit

1498 z/OS V1R12.0 Comm Svr: IP Configuration Guide

14. This leads to an empty device list.

15. Perform the Add action to define the devices for the control unit selected in
the previous step.

Figure 172. Define the devices

Figure 173. Empty device list

Appendix D. Using HCD 1499

16. Add devices of type IQD to the selected control unit.

17. If the number of devices has been left unspecified (as in this example), HCD
defines 10 devices.

Figure 174. Define the devices for the control unit

Figure 175. Add devices of type IQD

1500 z/OS V1R12.0 Comm Svr: IP Configuration Guide

18. Hit enter and the next panel displayed will be:

19. Next, define the devices to the operating system by selecting an 'S' on each
system you want to have them defined on.

Figure 176. Define number of devices

Figure 177. Define device to operating system

Appendix D. Using HCD 1501

20. The device parameters are shown with default values. Press Enter, to complete
the definition for each system.

21. Press Enter until you return to the I/O device list panel, the definition for
channel path FF is complete.

Figure 178. Select systems

Figure 179. Complete the definition

1502 z/OS V1R12.0 Comm Svr: IP Configuration Guide

The sample IOCP input for this example would be:
----+----1----+----2----+----3----+----4----+----5----+----6----+----7--

CHPID PATH=(FF),SHARED, *
PARTITION=((LPAR1,LPAR2,LPAR3),(LPAR1,LPAR2,LPAR3)), *
TYPE=IQD,OS=00

CNTLUNIT CUNUMBR=DD00,PATH=(FF),UNIT=IQD
IODEVICE ADDRESS=(DD00,010),CUNUMBR=(DD00),UNIT=IQD

Figure 180. Definition completed

Appendix D. Using HCD 1503

1504 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Appendix E. Steps for preparing to run IP security

Perform the following steps to prepare to run the IKE daemon:

1. Set the appropriate UNIX System Services parameters.

2. Authorize the IKE daemon to the external security manager.

3. Authorize the ipsec command to the external security manager.

4. Authorize IP security to ICSF/MVS (optional).

5. Set up the IKE daemon for RSA signature mode authentication (optional).

These steps are described in detail in the following subtopics.

Step 1: Setting appropriate UNIX System Services parameters
Verify that AF_UNIX and AF_INET are defined in the BPXPRMxx member of
SYS1.PARMLIB. If the domains are not defined, see z/OS UNIX System Services
Planning for the steps to customize the BPXPRMxx parmlib member.

Step 2: Authorizing the IKE daemon to the external security manager
To authorize the IKE daemon to RACF, perform the steps in “Steps for authorizing
the IKE daemon to RACF.” The commands that are used are in EZARACF in the
SEZAINST data set.

Steps for authorizing the IKE daemon to RACF
Perform the following steps to authorize the IKE daemon to RACF:

1. Add user ID IKED, and add IKED to the STARTED class as follows:

ADDUSER IKED DFLTGRP(OMVSGRP) NOPASSWORD OMVS(UID(0) HOME(’/’))
RDEFINE STARTED IKED.* STDATA(USER(IKED))
PERMIT BPX.DAEMON CLASS(FACILITY) ID(IKED) ACCESS(READ)
SETROPTS RACLIST(STARTED) REFRESH
SETROPTS GENERIC(STARTED) REFRESH

2. Allow the IKED to access SYS1.PARMLIB as follows:

PERMIT SYS1.PARMLIB ID(IKED) ACCESS(READ)

3. Enable the IKED to access certificates by issuing the appropriate commands.

v If the certificates used by the IKED are not site certificates, enable the IKED
to access the certificates on an ESM key ring by issuing the following
commands:
RDEFINE FACILITY IRR.DIGTCERT.LISTRING UACC(NONE)
RDEFINE FACILITY IRR.DIGTCERT.LIST UACC(NONE)
PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(IKED) ACCESS(READ)
PERMIT IRR.DIGTCERT.LIST CLASS(FACILITY) ID(IKED) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

v If the certificates used by the IKED are site certificates, enable the IKED to
access them by issuing the following commands:
RDEFINE FACILITY IRR.DIGTCERT.LISTRING UACC(NONE)
RDEFINE FACILITY IRR.DIGTCERT.LIST UACC(NONE)
RDEFINE FACILITY IRR.DIGTCERT.GENCERT UACC(NONE)

© Copyright IBM Corp. 2000, 2011 1505

|

|

|

|

PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(IKED) ACCESS(UPDATE)
PERMIT IRR.DIGTCERT.LIST CLASS(FACILITY) ID(IKED) ACCESS(READ)
PERMIT IRR.DIGTCERT.GENCERT CLASS(FACILITY) ID(IKED) ACCESS(CONTROL)
SETROPTS RACLIST(FACILITY) REFRESH

4. Enable the IKED to run as nonswappable.

If you have defined the BPX.STOR.SWAP resource to RACF, you can enable
the IKED using the following commands:
PERMIT BPX.STOR.SWAP CLASS(FACILITY) ID(IKED) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

Step 3: Authorizing the ipsec command to the external security
manager

To authorize the ipsec command to RACF, perform the steps in “Steps for
authorizing the ipsec command to RACF.” The commands that are used are in
EZARACF in the SEZAINST data set. For more information about ipsec command
security and the SERVAUTH profile, see z/OS Communications Server: IP System
Administrator's Commands.

Steps for authorizing the ipsec command to RACF
Perform the following steps to authorize the ipsec command to RACF:

1. Define access control for the ipsec command.

The ipsec command uses both display and control features. You can control
access to each feature independently.
v To control access to both the display and control capabilities of the ipsec

command, issue the following commands:
SETROPTS GENERIC(SERVAUTH)
RDEFINE SERVAUTH EZB.IPSECCMD.sysname.tcpprocname.* UACC(NONE)
PERMIT EZB.IPSECCMD.sysname.tcpprocname.* CLASS(SERVAUTH) ID(userid) ACCESS(READ)
SETROPTS GENERIC(SERVAUTH) REFRESH

v To control access specifically to the display capabilities of the ipsec
command for a stack, issue the following commands:
RDEFINE SERVAUTH EZB.IPSECCMD.sysname.tcpprocname.DISPLAY UACC(NONE)
PERMIT EZB.IPSECCMD.sysname.tcpprocname.DISPLAY CLASS(SERVAUTH) ID(userid) ACCESS(READ)

v To control access specifically to the display capabilities of the ipsec
command for global defensive filters, issue the following commands:
RDEFINE SERVAUTH EZB.IPSECCMD.sysname.DMD_GLOBAL.DISPLAY UACC(NONE)
PERMIT EZB.IPSECCMD.sysname.DMD_GLOBAL.DISPLAY CLASS(SERVAUTH) ID(userid) ACCESS(READ)

v To control access specifically to the control capabilities of the ipsec
command for a stack, issue the following commands:
RDEFINE SERVAUTH EZB.IPSECCMD.sysname.tcpprocname.CONTROL UACC(NONE)
PERMIT EZB.IPSECCMD.sysname.tcpprocname.CONTROL CLASS(SERVAUTH) ID(userid) ACCESS(READ)

v To control access specifically to the control capabilities of the ipsec
command for global defensive filters, issue the following commands:
RDEFINE SERVAUTH EZB.IPSECCMD.sysname.DMD_GLOBAL.CONTROL UACC(NONE)
PERMIT EZB.IPSECCMD.sysname.DMD_GLOBAL.CONTROL CLASS(SERVAUTH) ID(userid) ACCESS(READ)

Tip: These SERVAUTH profiles provide ipsec command access to only the
local stack. For information about SERVAUTH profiles for controlling ipsec
command access for the network security services (NSS) server, see “Network
security services for the IPSec discipline” on page 145.

2. To refresh the in-storage RACF profiles in the SERVAUTH class, issue the
following command:
SETROPTS RACLIST(SERVAUTH) REFRESH

1506 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|

|
|

|
|

Step 4: Authorizing IP security to ICSF/MVS (optional)
IP security can take advantage of the encryption and decryption functions that are
available on zSeries hardware in the following ways:
v Encrypting and decrypting TCP/IP packet data in an IPSec tunnel.
v Encrypting signature data included as part of IKE message flows. This

encryption is performed only when digital signature authentication is requested.

This encryption support is provided by the combination of the Integrated
Cryptographic Feature (ICRF) on the processor and the Integrated Cryptographic
Service Facility/MVS (ICSF/MVS) software product. ICSF provides cryptography
support through various cryptographic hardware features. The cryptographic
features that are available to your applications depends on your processor or
server model. For information about which features are available on your
hardware, see the information about callable service support by hardware
configuration in z/OS Cryptographic Services ICSF Overview.

To use this support, ICSF/MVS must be started and running. Preferably, start
ICSF/MVS prior to starting TCP/IP. However, it can also be started when TCP/IP
is active. For details on configuring ICSF, see z/OS Cryptographic Services ICSF
Administrator's Guide. ICSF provides SAF controls that you can optionally use to
restrict access to these cryptographic services. To view a sample procedure for
generating the corresponding SAF profiles for various CSFSERV services, see the
Cryptographic Services Authorization section of the EZARACF sample in the
SEZAINST dataset.

Requirement: If you plan to control access to the ICSF cryptographic support,
TCP/IP and other applications must be permitted to access the ICSF/MVS
cryptographic services (CSFSERV).

Guideline: If you do not have any reason to restrict access to the ICSF
cryptographic support, you should not activate the CSFSERV resource class, define
any of the profiles listed below, or permit any applications or users to these
profiles. If you do need set up controls in the CSFSERV resource class, complete
the steps below to enable use of ICSF for IP security.

Steps for setting up profiles in the CSFSERV resource class
Perform the following steps to set up profiles in the CSFSERV resource class:
1. Determine the SAF profiles that you will use within the CSFSERV resource

class:
a. If you have CP Assist for Cryptographic Function (CPACF) enabled on your

processors and you want to take advantage of it, you must have ICSF
started but you do not need to grant permission to any SAF profiles.

b. If you do not have CPACF enabled, but you do have a cryptographic
coprocessor, in order to take advantage of it you must perform the
following steps:
1) Permit TCP/IP, and all affected network applications that will send or

receive traffic protected by IP security, to the following profiles:
v CSFCKI
v CSFCKM (used only for Triple DES)
v CSFDEC1
v CSFENC1
v CSFOWH1

Appendix E. Steps for preparing to run IP security 1507

|

|
|

|

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

|

|

|
|

|
|
|

|
|
|

|
|

|

|

|

|

|

2) Permit the IKED and the NSSD to the following profiles:
v CSFDSG
v CSFDSV
v CSFPKI

c. If you are using AES encryption in TCP/IP for manual or dynamic tunnels,
then you must permit TCP/IP and all affected network applications that
will send or receive IP security-protected traffic to the following profiles:
v CSFDEC1
v CSFENC1

d. If you are using AES encryption in the IKED for dynamic tunnels, then you
must permit the IKED to the following profiles:
v CSFDEC
v CSFENC

e. If you are using SHA2 or AES-XCBC authentication in TCP/IP, then you
must permit TCP/IP and all affected network applications that will send or
receive IP security-protected traffic to the following profiles:
v CSF1HMG
v CSF1TRC
v CSF1TRD
v CSFMGN1

f. If you are using SHA2 or AES-XCBC authentication in the IKED, then you
must permit the IKED to the following profiles:
v CSF1HMG
v CSF1TRC
v CSF1TRD
v CSFOWH

g. If you are using Diffie-Hellman groups 19, 20, or 21 in the IKED, then you
must permit the IKED to the following profiles:
v CSF1DVK
v CSF1GAV
v CSF1GKP
v CSF1TRC
v CSF1TRD

h. If you are using digital signature authentication in the IKED, then you must
permit the IKED to the following profiles:
v CSFDSG
v CSFDSV
v CSFPKI

i. If you are using digital signature authentication in the NSSD, then you must
permit the NSSD to the following profiles:
v CSF1HMG
v CSF1TRC
v CSF1TRD
v CSFDSG
v CSFDSV
v CSFIQF
v CSFMGN

1508 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|

|

|

|
|
|

|

|

|
|

|

|

|
|
|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|

|

|

v CSFOWH
v CSFPKI

j. If you are using elliptic curve signature authentication in the NSSD, then
you must permit the NSSD to the following profiles:
v CSF1GAV
v CSF1PKS
v CSF1PKV

k. If you have enabled FIPS 140 support in TCP/IP, then TCP/IP and all
affected network applications that will send or receive IP security-protected
traffic (such as the Ping command and DB2, for example) must be permitted
to the following profiles:
v CSF1HMG
v CSF1SKD
v CSF1SKE
v CSF1TRC
v CSF1TRD
v CSFRNG

l. If you have enabled FIPS 140 support in TCP/IP and you are using manual
tunnels, then the z/OS Communications Server Policy Agent must be
permitted to the CSF1TRC profile.

m. If you have enabled FIPS 140 support in the IKED, then you must permit
the IKED to the following profiles:
v CSF1HMG
v CSF1SKD
v CSF1SKE
v CSF1TRC
v CSF1TRD
v CSFOWH

2. Define the appropriate profiles in the CSFSERV class:
RDEFINE CSFSERV profile-name UACC(NONE)

3. Give TCP/IP access to the appropriate profiles:
PERMIT profile-name CLASS(CSFSERV) ID(stackname) ACCESS(READ)

4. For network applications that run under a specific user ID (such as the Ping
command or DB2, for example), give access to the user ID to the appropriate
profiles:
PERMIT profile-name CLASS(CSFSERV) ID (userid)

5. Activate the CSFSERV class and refresh the in-storage RACF profiles:
SETROPTS CLASSACT(CSFSERV)
SETROPTS RACLIST(CSFSERV) REFRESH

6. Set the MAXLEN ICSF/MVS installation option to 65535 or greater because this
is the maximum TCP/IP packet size. The MAXLEN installation option for
hardware cryptography determines the maximum length that can be used to
encrypt and decrypt data using ICSF/MVS.

Appendix E. Steps for preparing to run IP security 1509

|

|

|
|

|

|

|

|
|
|
|

|

|

|

|

|

|

|
|
|

|
|

|

|

|

|

|

|

|

|

|

|

|
|
|

|

|

|
|

|
|
|
|

Step 5: Setting up the IKE daemon for digital signature authentication
(optional)

You can configure the IKE daemon to use its own certificate service or to use the
certificate service from a network security services (NSS) server. You can control
whether to use the native certificate service or the NSS certificate service at the
stack level. A single stack can use either the native certificate service or the NSS
certificate service, but it cannot use both. If the IKED is to use an IKEv2
signature-based authentication method on behalf of a stack, that stack must be
defined as a network security services (NSS) client.

By default, the IKE daemon uses the native certificate service for all stacks.
Certificates for stacks configured to use the native certificate service must reside on
the key ring specified by the KeyRing parameter of the IkeConfig statement.

The IKE daemon native certificate service does not consult certificate revocation
information when it authenticates a digital signature. If you want revocation
checking, then direct the IKED to use the IPSec certificate service of an NSS server
and enable revocation checking for the remote security endpoint. For information
about enabling revocation checking for a remote security endpoint using the
KeyExchangeAction statement, see z/OS Communications Server: IP Configuration
Reference.

The IKE daemon can be directed to use an NSS server's certificate service for an
individual stack by specifying the Cert option on the ServiceType parameter of an
NssStackConfig statement for that stack. The NssStackConfig statement is specified
in the IKE daemon configuration file. The NSS server does not have to reside on
the same system as the IKE daemon. The location of the NSS server is specified by
the NetworkSecurityServer parameter and optionally the
NetworkSecurityServerBackup parameter of the IkeConfig statement. For more
information about the IkeConfig statement, see z/OS Communications Server: IP
Configuration Reference.

Certificates for stacks configured to use an NSS server for certificate service must
reside on the key ring specified on the KeyRing parameter of the NssConfig
statement in the NSS server configuration file. For more information about the
NssConfig statement, see z/OS Communications Server: IP Configuration Reference.

Figure 181 on page 1511 shows a partial configuration for the IKE daemon on
system SYSTEMA and an NSS server. The NetworkSecurityServer parameter on the
IkeConfig statement specifies that the IKE daemon is configured to use network
security services from an NSS server that is listening on IP address 9.1.1.1. Two
NssStackConfig statements are shown. The ClientName parameters associate a
local TCP/IP stack with an NSS client name. This is the name by which the NSS
server knows this stack. The UserId parameter associates the client name with a
user ID defined on the NSS server's system. Both the client name and user ID are
used by the NSS server to verify that an NSS client is authorized to request
certificate service, and to determine what certificates the client is authorized to use
(For additional details, see “Steps for authorizing resources for NSS” on page
1152). The KeyRing parameter on the IkeConfig statement identifies the location of
certificates for all stacks for which there are no NssStackConfig statements. The
KeyRing parameter on the NssConfig statement identifies the location of
certificates for all NSS client stacks that use the NSS server certificate service.

1510 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

|

|
|
|

|
|
|
|
|
|
|

The following subtopics provide steps for setting up the IKE daemon for RSA
signature mode authentication:
v When the native certificate service is utilized
v When the certificate service of an NSS server is utilized

Before you begin: Use the following references to understand the concepts that are
involved in using digital certificates with RACF:
v For more information about RACF key rings and digital certificates, see z/OS

Security Server RACF Security Administrator's Guide.
v For more information about controlling the use of the RACDCERT command,

see z/OS Security Server RACF Security Administrator's Guide.
v For a complete description of the facilities and authorizations that are needed to

create and modify digital certificates and key rings, see z/OS Security Server
RACF Command Language Reference.

Steps for setting up the IKE daemon for digital signature
authentication when the native certificate service is used

Perform the following steps to set up the IKE daemon for digital signature
authentication when the native certificate service is being used:

1. Define RACF facilities and access controls.

2. Define profiles to control access to the RACDCERT command.

3. Create a RACF key ring for the user ID under which the IKED is to run.

4. Install an X509 digital certificate to be used by the native IKE certificate
service.

IKED configuration
file

IKED
NSS

server
IKED requests NSS certificate service for
STACK1 and STACK3.

SYSTEMA 9.1.1.1

IkeConfig
{

KeyRing LocalRing
NetworkSecurityServer 9.1.1.1 Identity IpAd r 9.1.1.1
...

}

NssStackConfig STACK1
{

...
}

d

ClientName SYSTEMA_STACK1
ServiceType Cert
Userld A1S1

NssStackConfig STACK3
{

ClientName SYSTEMA_STACK3
ServiceType Cert
Userld A1S3
...

}

NSS server
configuration

file

NssConfig
{

KeyRing EnterpriseRing
...

}

LocalRing EnterpriseRing

IKED requests native
certificate service for all
stacks except STACK1
and STACK3

Contains certificates for all stacks on
SYSTEMA except STACK1 and STACK3

Contains certificates for all NSS clients
including STSTEMA_STACK1 and
SYSTEMA_STACK3

Figure 181. Partial configuration for the IKE daemon and an NSS server

Appendix E. Steps for preparing to run IP security 1511

Step 1: Define RACF facilities and access controls
To support RSA signature mode authentication in phase 1 negotiations, perform
the following steps to give the IKE daemon the required access to a RACF key
ring:

1. If they are not already defined, create the definitions that are required to allow
certificates to be stored and accessed from the RACF database by issuing the
following TSO commands:
RDEFINE FACILITY IRR.DIGTCERT.LISTRING UACC(NONE)
RDEFINE FACILITY IRR.DIGTCERT.LIST UACC(NONE)

2. To permit the IKED to the facilities, issue the following TSO commands:

PERMIT IRR.DIGTCERT.LIST CLASS(FACILITY) ID(IKED) ACC(READ)
PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(IKED) ACC(READ)

3. Refresh the FACILITY class:

SETROPTS RACLIST(FACILITY) REFRESH

Step 2: Define profiles to control access to the RACDCERT
command
The RACF database provides digital certificate and key ring support through the
RACDCERT command. The administrator who is responsible for managing the
RACF key ring for the IKED needs appropriate access to this command. Perform
the following steps to define profiles to control access to this command:

1. If they are not already defined, create the definitions that are required to
control access to the basic RACDCERT actions by issuing the following TSO
commands:
RDEFINE FACILITY IRR.DIGTCERT.ADD UACC(NONE)
RDEFINE FACILITY IRR.DIGTCERT.ADDRING UACC(NONE)
RDEFINE FACILITY IRR.DIGTCERT.CONNECT UACC(NONE)
RDEFINE FACILITY IRR.DIGTCERT.GENCERT UACC(NONE)
RDEFINE FACILITY IRR.DIGTCERT.GENREQ UACC(NONE)

2. Issue the following TSO commands (where userid is the ID of the person who
will be executing the RACDCERT command to manage digital certificates):
PERMIT IRR.DIGTCERT.ADD CLASS(FACILITY) ID(userid) ACC(CONTROL)
PERMIT IRR.DIGTCERT.ADDRING CLASS(FACILITY) ID(userid) ACC(UPDATE)
PERMIT IRR.DIGTCERT.CONNECT CLASS(FACILITY) ID(userid) ACC(CONTROL)
PERMIT IRR.DIGTCERT.GENCERT CLASS(FACILITY) ID(userid) ACC(CONTROL)
PERMIT IRR.DIGTCERT.GENREQ CLASS(FACILITY) ID(userid) ACC(CONTROL)
PERMIT IRR.DIGTCERT.LIST CLASS(FACILITY) ID(userid) ACC(CONTROL)
PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(userid) ACC(UPDATE)

3. Refresh the FACILITY class:

SETROPTS RACLIST(FACILITY) REFRESH

Step 3: Create a RACF key ring for the user ID under which the
IKED is to run
Digital certificates are made available to the IKE daemon by connecting them to a
key ring that is owned by the IKE daemon. To create a key ring for the IKE
daemon, issue the following TSO command:
RACDCERT ID(IKED) ADDRING(ikeyring)

The value used for ikeyring is case sensitive.

1512 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Step 4: Install an X509 digital certificate to be used by the native
certificate service
The procedure for installing a digital certificate on a SAF key ring for the native
certificate service to use is similar to the procedure for installing a digital certificate
on a SAF key ring for the NSS certificate service to use. For details, see “IPSec
certificate management” on page 1514.

Steps for setting up the IKE daemon for digital signature
authentication using the certificate service of an NSS server

Perform the following steps to set up the IKE daemon for digital signature
authentication when the certificate service of an NSS server is being used:

1. Update the IKE daemon configuration file to define NSS clients.

2. Install X509 digital certificates for NSS clients on the NSS server's key ring.

3. Authorize the NSS clients.

4. Enable HTTP Certificate Lookup (optional)

Step 1: Update the IKE daemon configuration file to define NSS
clients
The IKE daemon configuration file must be updated to include the
NetworkSecurityServer parameter and optionally the
NetworkSecurityServerBackup parameter on the IkeConfig statement. These
parameters identify the location of the NSS server. In addition, an NssStackConfig
statement with a ServiceType value Cert must be added for each stack that will use
the NSS certificate service. For additional details about configuring the IKE
daemon, see z/OS Communications Server: IP Configuration Reference.

Step 2: Install X509 digital certificates for NSS clients on the NSS
server's key ring
This step must be performed on the system where the NSS server will run.

The procedure for installing a digital certificates on a SAF key ring to be used by
the NSS server is similar to the procedure used for installing a digital certificate on
a SAF key ring for use by the native certificate service. For details, see “IPSec
certificate management” on page 1514.

Step 3: Authorize the NSS clients
This step must be performed on the system where the NSS server will run.

NSS clients defined in the IKE daemon configuration file must be authorized to
use the NSS server's certificate service. For authorization details, see step 7 on page
1154.

Step 4: Enable HTTP Certificate Lookup (optional)
The following actions occur during a phase 1 IKE exchange:
v Peers exchange encoded certificate information in certificate payloads
v The NSS server provides the IKED with certificate information to send
v The IKED forwards the encoded certificate information that it received from the

NSS server

IKEv2 defines two new encoding types that require the use of an HTTP server:
v Hash and URL of a certificate
v Hash and URL of a certificate bundle

Appendix E. Steps for preparing to run IP security 1513

|

|

|

|
|

|

|

|
|

|

|

|

The NSS server supports these new encoding types; however, by default the IKED
does not support sending or receiving them.

Use the CertificateURLLookupPreference parameter on the KeyExchangePolicy and
KeyExchangeAction statements in the IP security policy configuration file to enable
the IKED to use the hash and URL encoding types. Code the appropriate value on
the CertificateURLLookupPreference parameter:
v Disallow, which is the default value, indicates that the IKED will not send the

new encoding type and will ignore the new encoding type when received.
v Tolerate indicates that the IKED will not send the new encoding type, but it will

accept the new encoding type when received.
v Allow indicates that the IKED may send the new encoding type and it will

accept the new encoding type when received.

Rule: You must configure the NSS server appropriately before the IKED can send
the new encoding types.

Enabling this capability might result in smaller messages being exchanged between
the IKED and its remote security endpoint as well as the IKED and the NSS server;
however, it may also result in increased latency during an IKEv2 negotiation.

For more details about the CertificateURLLookupPreference parameter on the
KeyExchangePolicy and KeyExchangeAction statements, see z/OS Communications
Server: IP Configuration Reference. For more details about configuring the NSS sever
to use the new certificate encoding types, see “Using hash and URL certificate
encoding types” on page 1166.

IPSec certificate management
The IKE daemon and NSS server require the ability to retrieve digital certificates
from a RACF key ring, each associated with a particular identity, and also to
perform operations with the associated private key. The IKED can own multiple
certificates on its RACF key ring. The NSS server can own multiple certificates for
multiple NSS clients (that is, stacks). You can install an X509 digital certificate in
the following ways:
v Generate an X509 digital certificate and have it signed by a certificate authority.
v Generate a self-signed X509 digital certificate.
v Migrate an existing key database to a RACF key ring.

Steps for generating an X509 digital certificate and having it
signed by a certificate authority
Before you begin: Assume that you have an X509 digital certificate that has the
X500 distinguished name CN=SYSTEMA STACK1,OU=Inventory,O=IBM,C=US and the
domain name ibm.com. The certificate identifies the local IKE daemon that executes
on z/OS with the user ID IKED.

Tip: If you are creating a certificate for a stack configured to use the certificate
service from an NSS server, issue these commands against the RACF database for
the system on which the NSS server runs. Modify the user ID in the examples to
be the user ID that is running the NSS server and modify the key ring to be the
key ring that is configured in the NSS server's configuration file.

Perform the following steps to install the X509 digital certificate:

1. Generate a self-signed certificate for the server:

1514 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|

|
|
|
|

|
|

|
|

|
|

|
|

|
|
|

|
|
|
|
|

RACDCERT ID(IKED) GENCERT SUBJECTSDN(CN(’SYSTEMA STACK1’) OU(’Inventory’) O(’IBM’) C(’US’))
WITHLABEL(’SYSTEMA STACK1’) ALTNAME(DOMAIN(’ibm.com’))

2. Do one of the following:

v RACF supplies certificates for many commercial certificate authorities. If you
are using one of these supplied certificate authority certificates, follow the
steps for supplied digital certificates in z/OS Security Server RACF Security
Administrator's Guide.

v If the certificate authority you are using is not one of the supplied certificate
authorities, obtain the root certificate of the certificate authority that is to
sign the certificate of the IKED, and place it in an MVS data set (for
example, USER1.EXTCA1.CERT). Add it to the RACF database as follows:
RACDCERT ID(IKED) ADD(’USER1.EXTCA1.CERT’) WITHLABEL(’External CA’) CERTAUTH

3. Create a certificate request to send to the chosen certificate authority. The
certificate request that you create is based on the certificate that was created in
step 1. Place this certificate into a data set called
USER1.SYSTEMA.STACK1.GENREQ as follows:
RACDCERT ID(IKED) GENREQ(LABEL(’SYSTEMA STACK1’)) DSN(’USER1.SYSTEMA.STACK1.GENREQ’)

4. Send the certificate request to the certificate authority. The certificate request is
in base 64-encoded text. Typically, the request is sent to the certificate authority
by cutting and pasting the certificate request into an e-mail that is sent to the
certificate authority.
The certificate authority validates the certificate. If the certificate is approved
by the certificate authority, it is signed by the certificate authority and returned
to the requester.

5. Receive the returned certificate into a data set (for example,
USER1.SYSTEMA.STACK1.CERT). The returned certificate is in base
64-encoded text. This can be done by cutting and pasting, with FTP, or with
another technique.

6. Replace the self-signed certificate with the certificate that is signed by the
certificate authority. The certificate is replaced only if the user ID that is
specified as the ID value on the RACDCERT ADD command is the same user
ID that was specified when the certificate was created. Ensure that the user ID
is the same. Otherwise, the certificate is added, rather than replacing the
self-signed certificate, and does not contain the certificate's private key.
RACDCERT ID(IKED) ADD(’USER1.SYSTEMA.STACK1.CERT’) WITHLABEL(’SYSTEMA STACK1’)

7. Connect the certificate to an existing key ring:
RACDCERT ID(IKED) CONNECT(LABEL(’SYSTEMA STACK1’) RING(ikeyring) USAGE(PERSONAL))

8. Connect the certificate authority's certificate to the key ring:
RACDCERT ID(IKED) CONNECT(CERTAUTH LABEL(’External CA’) RING(ikeyring) USAGE(CERTAUTH))

This completes the certificate hierarchy from root to SYSTEMA STACK1.

9. Add the following statement to the IKE daemon configuration file, iked.conf,
or the NSS server configuration file, nssd.conf:
Keyring IKED/ikeyring

Requirement: If the certificates connected to the key ring are for an NSS client,
you must create a SERVAUTH profile for each certificate. You must give the user
ID associated with the NSS client access to this profile. Create this profile in the
RACF database for the system on which the NSS server runs. For details about
these profiles, see “Steps for authorizing resources for NSS” on page 1152.

Appendix E. Steps for preparing to run IP security 1515

You know you are done when the X509 digital certificate is available, and is
mapped to the X500DN identity CN=SYSTEMA STACK1,OU=Inventory,O=IBM,C=US
from the certificate's subject name, and the FQDN identity ibm.com from the
certificate's alternate subject name.

You can verify that the certificates that you have created are connected to the key
ring associated with user ID IKED by using the RACDCERT command and
examining the output of the Ring Associations field. Verify that the certificate
authority was created and added to the IKED/ikeyring as follows:
RACDCERT CERTAUTH LIST(LABEL(’External CA’)

Verify that the personal certificate for the IKE daemon was created and added to
the IKED/ikeyring as follows:
RACDCERT ID(IKED) LIST(LABEL(’SYSTEMA STACK1’))

Steps for generating a self-signed X509 digital certificate
Before you begin: The certificate that is assigned to the secure server is a
locally-signed certificate rather than one signed by a certificate authority. Assume
that the local certificate authority has the distinguished name of OU=’Local
Certificate Authority’,O=IBM,C=US.

Requirement: If you are creating a certificate for a stack configured to use the
certificate service from an NSS server, issue these commands against the RACF
database for the system on which the NSS server runs. The user ID in the
examples must be the user ID running the NSS server and the key ring must be
the key ring configured in the NSS server's configuration file.

Perform the following steps to implement a locally signed server certificate:

1. Generate a self-signed certificate to represent the local certificate authority:
RACDCERT CERTAUTH GENCERT SUBJECTSDN(OU(’Local Certificate Authority’) O(’IBM’) C(’US’))
KEYUSAGE(CERTSIGN) WITHLABEL(’IBM Local Certificate Authority’)

This certificate is used as the certificate authority certificate.

2. Export the certificate to a data set (in this case, USER1.LOCCERTA.CERT):
RACDCERT CERTAUTH EXPORT(LABEL(’IBM Local Certificate Authority’)) DSN(’USER1.LOCCERTA.CERT’)

3. Create a certificate for the server that is signed with the certificate authority
certificate that was created in step 1:
RACDCERT ID(IKED) GENCERT SUBJECTSDN(CN(’SYSTEMA STACK1’) OU(’Inventory’) O(’IBM’) C(’US’))
WITHLABEL(’SYSTEMA STACK1’) ALTNAME(DOMAIN(’ibm.com’))
SIGNWITH(CERTAUTH LABEL(’IBM Local Certificate Authority’))

4. Connect the certificate to an existing key ring:
RACDCERT ID(IKED) CONNECT(LABEL(’SYSTEMA STACK1’) RING(ikeyring) USAGE(PERSONAL))

5. Connect the local certificate authority certificate to the key ring:
RACDCERT ID(IKED) CONNECT(CERTAUTH LABEL(’IBM Local Certificate Authority’) RING(ikeyring) USAGE(CERTAUTH))

This completes the certificate hierarchy from root to SYSTEMA STACK1.

6. Add the following statement to the IKE daemon configuration file, iked.conf,
or the NSS server configuration file, nssd.conf:
Keyring IKED/ikeyring

Requirement: If the certificates connected to the key ring are for an NSS client,
you must create a SERVAUTH profile for each certificate. You must give the user
ID associated with the NSS client access to this profile. Create this profile in the

1516 z/OS V1R12.0 Comm Svr: IP Configuration Guide

RACF database for the system on which the NSS server runs. For details about
these profiles, see “Steps for authorizing resources for NSS” on page 1152.

You know you are done when the X509 digital certificate is available, and is
mapped to the X500DN identity CN=SYSTEMA STACK1,OU=Inventory,O=IBM,C=US
from the certificate's subject name, and the FQDN identity ibm.com from the
certificate's alternate subject name.

You can verify that the certificates that you have created are connected to the key
ring associated with user ID IKED by using the RACDCERT command and
examining the output of the Ring Associations field. Verify that the certificate
authority was created and added to the IKED/ikeyring as follows:
RACDCERT CERTAUTH LIST(LABEL(’IBM Local Certificate Authority’))

Verify that the personal certificate for the IKE daemon was created and added to
the IKED/ikeyring as follows:
RACDCERT ID(IKED) LIST(LABEL(’SYSTEMA STACK1’))

Steps for migrating an existing key database to a RACF key ring
Before you begin: To migrate an existing key database file to a RACF key ring, see
the information on migrating key database files to RACF key rings in z/OS
Cryptographic Services System SSL Programming.

Perform the following steps to migrate keys and certificates that are stored in an
existing z/OS key database into a RACF key ring:

1. Using gskkyman, export the certificate and private key to a
password-protected PKCS#12 file. For details on copying a certificate with its
private key, see z/OS Cryptographic Services System SSL Programming.

2. Copy the newly created PKCS#12 file to an MVS data set.

3. Use the RACDCERT command with the ADD operand to define a certificate
and private key. The data set name that was created in step 2 contains the
certificate.

4. Use the RACDCERT command with the ADDRING operand to create a new
key ring in RACF.

5. Use the RACDCERT command with the CONNECT operand to add the
certificate and private key to one or more existing RACF key rings.

Appendix E. Steps for preparing to run IP security 1517

1518 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Appendix F. Using an LDAP server for policy definitions

Lightweight Directory Access Protocol (LDAP) is a fast-growing technology for
accessing common directory information. LDAP has been embraced and
implemented in most network-oriented middleware. As an open, vendor-neutral
standard, LDAP provides an extendable architecture for centralized storage and
management of information that needs to be available for today's distributed
systems and services.

Note: If the z/OS LDAP server is used, a DB2 backend is required.

Policy object model overview
Policies consist of several related objects. The main object is the policy rule. A policy
rule object refers to one or more policy condition, policy action, or policy time period
condition objects, and also contains information on how these objects are to be
used. Policy time period objects are used to determine when a given policy rule is
active. Active policy objects are related in a way that is analogous to an 'IF'
statement in a program. For example:
IF condition THEN action

In other words, when the set of conditions referred to by a policy rule are TRUE,
then the policy actions associated with the policy rule are executed.

Policy rules can refer to one or more policy conditions. A policy rule with a single
policy condition is known as a simple rule, and one with more conditions is known
as a complex rule. Complex policy rules can have their conditions evaluated
according to one of two different methods. The first is Disjunctive Normal Form
(DNF), which means an ORed set of ANDed conditions. The second is Conjunctive
Normal Form (CNF), which means an ANDed set of ORed conditions. In order to
accomplish these evaluations, individual policy conditions are assigned an

Policy Time
Period

Condition

Policy Time
Period

Condition

Policy
Condition

Policy Action

Policy Rule

Figure 182. Basic policy objects

© Copyright IBM Corp. 2000, 2011 1519

arbitrary group number, and also an indication of whether or not the condition is
negated. For example, consider the following set of conditions for a policy rule:
C1: Group Number = 1, Condition Negated = FALSE
C2: Group Number = 1, Condition Negated = TRUE
C3: Group Number = 1, Condition Negated = FALSE
C4: Group Number = 2, Condition Negated = FALSE
C5: Group Number = 2, Condition Negated = FALSE

If the conditions are to be evaluated using DNF, then the overall condition for the
policy rule is:
(C1 AND (NOT C2) AND C3) OR (C4 AND C5)

On the other hand, if CNF is used to evaluate the conditions, then the overall
condition for the policy rule is:
(C1 OR (NOT C2) OR C3) AND (C4 OR C5)

Complex rules can be split into multiple simple rules. Negated conditions are not
allowed in a rule if explosion is to be performed. Consider the following set of
conditions for a policy rule:
C1: Group Number = 1, Condition Negated = FALSE
C2: Group Number = 1, Condition Negated = FALSE
C3: Group Number = 1, Condition Negated = FALSE
C4: Group Number = 2, Condition Negated = FALSE
C5: Group Number = 2, Condition Negated = FALSE

Policy
Condition C1

Policy
Condition C4

Policy
Condition C3

(NOT) Policy
Condition C2

Policy
Condition C5

Policy Rule

Figure 183. Complex policy conditions

1520 z/OS V1R12.0 Comm Svr: IP Configuration Guide

If DNF is used to evaluate the conditions, splitting the complex rule produces the
following simple rules:
Simple Rule 1: C1 AND C2 AND C3
Simple Rule 2: C4 AND C5

If CNF is used to evaluate the conditions, splitting the complex rule produces the
following simple rules:
Simple Rule 1: C1 AND C4
Simple Rule 2: C1 AND C5
Simple Rule 3: C2 AND C4
Simple Rule 4: C2 AND C5
Simple Rule 5: C3 AND C4
Simple Rule 6: C3 AND C5

Policy actions specify actions to take when the set of conditions for a policy rule
evaluate to TRUE. The policy model allows multiple actions for a policy rule.
Many policy rules typically use only a single action, but multiple actions make
sense for some policy types.

Policy conditions and actions can either be specific to a single rule, or be reusable
among several policy rules. To allow either type of conditions and actions, and to
specify related information such as condition group number and negation
indicator, several other policy objects are required. First are policy condition
association and policy action association objects. These objects contain condition and
action related attributes, respectively, and may directly contain policy conditions
and actions (rule-specific).

Policy Rule

Policy
Condition

C1

Policy
Condition

C2

Policy
Condition

C3

Policy
Condition

C5

Policy
Condition

C4

Figure 184. Complex policy conditions before explosion

Appendix F. Using an LDAP server for policy definitions 1521

The policy association objects alternatively may refer to conditions and actions
(reusable). Policy condition instance and policy action instance objects are used to
represent reusable policy conditions and actions, respectively.

Primarily for administrative grouping of policy rules, the policy group object is
used. Policy groups can refer either to policy rules or to policy groups. This allows
related policy rules to be grouped together, and also allows policy groups to be
grouped to any needed level of nesting.

Policy
Condition

Association 1
+ Policy

Condition C1

Policy
Condition

Association 1
+ Policy

Condition C1

Policy
Condition

Association 2
+ Policy

Condition C2

Policy
Condition

Association 2
+ Policy

Condition C2

Policy
Action

Association 1
+ Policy

Action A1

Policy
Action

Association 1
+ Policy

Action A1

Policy Rule
1

Policy Rule
2

Figure 185. Rule-specific conditions and actions

Policy
Condition

Association 1

Policy
Condition

Association 1

Policy
Action

Association 1

Policy
Action

Association 1

Policy
Condition

Instance C1

Policy
Condition

Instance C2

Policy
Action

Instance A1

Policy
Condition

Association 2

Policy
Condition

Association 2

Policy Rule
1

Policy Rule
1

Figure 186. Reusable conditions and actions

1522 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Overview of the object classes
Policies defined on an LDAP server are comprised of one or more objects, each
with a defined object class, and a unique name. Object names are in the form of
LDAP Distinguished Names (DNs), which are text strings composed of individual
parts known as Relative Distinguished Names (RDNs). The structure of the naming
defines a hierarchical tree, in a manner similar to directories in a hierarchical file
system. For example, consider the following set of objects:
Object 1, DN: o=IBM, c=US
Object 2, DN: cn=group_1, o=IBM, c=US
Object 3, DN: cn=group_5, o=IBM, c=US
Object 4, DN: cn=group_1_sub_A, cn=group_1, o=IBM, c=US

This set of objects can be viewed as a tree, with Object 1 as the root. Objects 2 and
3 are branches under the root, with Object 4 a branch under Object 2. The names
used are attributes of the objects they define. For example, Object 2, whose name
starts with "cn=group_1" contains a cn attribute with the value group_1. See z/OS
Integrated Security Services LDAP Server Administration and Use for more information
on LDAP naming.

Object class names define the type of each LDAP object. The top object class is
predefined and is the root of all other object classes.

There are three types of object classes.

Abstract object classes
Used to define broad concepts, such as policy and to define basic attributes
that apply to all subclasses.

Policy Group
2

Policy Rule
1

Policy Rule
2

Policy Rule
4

Policy Rule
3

Policy Rule
5

Policy Group
3

Policy Group
1

Figure 187. Policy groups

Appendix F. Using an LDAP server for policy definitions 1523

Structural object classes
Basic building blocks, and are the only type of object class that can be
instantiated as real objects on an LDAP server.

Auxiliary object classes
Used to define attributes that are shared among different structural object
classes, or are used to extend the basic set of objects.

Attributes from auxiliary classes are attached to structural objects by including them
in the structural objects, and also by including the auxiliary object class as one of
the values of the objectClass attribute in the structural object.

The following object classes are recognized by the Policy Agent. The indentation
defines subclasses. For example, ibm-policyGroup is a subclass of ibm-policy, and
therefore inherits all of the attributes defined for ibm-policy.

1524 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Note: The classes identified in bold italics in Figure 188 are for schema version 2
and are mutually exclusive with the schema version 3 classes with similar
names.

top

ibm-policy (abstract)

ibm-policyGroup (structural)

ibm-policyRule (structural)

ibm-policyRuleConditionAssociation (structural)

ibm-policyRuleActionAssociation (structural)

ibm-policyInstance (structural)

ibm-policyConditionInstance (structural)

ibm-policyActionInstance (structural)

ibm-policyElementAuxClass (auxiliary)

ibm-policyConditionAuxClass (auxiliary)

ibm-policyTimePeriodConditionAuxClass (auxiliary)

ibm-networkingPolicyConditionAuxClass (auxiliary)

ibm-routeConditionAuxClass (auxiliary)

ibm-hostConditionAuxClass (auxiliary)

ibm-applicationConditionAuxClass (auxiliary)

ibm-idsConditionAuxClass (auxiliary)

ibm-idsAttackConditionAuxClass (auxiliary)

ibm-idsIPAttackConditionAuxClass (auxiliary)

ibm-idsTrafficRegulationConditionAuxClass (auxiliary)

ibm-idsScanConditionAuxClass (auxiliary)

ibm-idsScanEventConditionAuxClass (auxiliary)

ibm-idsTransportConditionAuxClass (auxiliary)

ibm-idsHostConditionAuxClass (auxiliary)

ibm-policyActionAuxClass (auxiliary)

ibm-serviceCategoriesAuxClass (auxiliary)

ibm-idsActionAuxClass (auxiliary)

ibm-idsNotificationAuxClass (auxiliary)

ibm-idsAttackActionsAuxClass (auxiliary)

ibm-idsTrafficRegulationActionAuxClass (auxiliary)

ibm-idsTRtcpActionAuxClass (auxiliary)

ibm-idsTRudpActionAuxClass (auxiliary)

ibm-idsScanActionAuxClass (auxiliary)

ibm-idsScanSensitivityActionAuxClass (auxiliary)

ibm-idsScanExclusionActionAuxClass (auxiliary)

ibm-policyRepository (structural)

ibm-policySubtreesPtrAuxClass (auxiliary)

ibm-policyGroupContainmentAuxClass (auxiliary)

ibm-policyRuleContainmentAuxClass (auxiliary)

ibm-policyCondition (structural)

ibm-policyTimePeriodCondition (structural)

ibm-networkingPolicyCondition (structural)

ibm-policyAction (structural)

ibm-serviceCategories (structural)

ibm-idsFloodAttackActionsAuxClass (auxiliary)

ibm-policyGroupLoadDistibutionAuxClass (auxiliary)

SetSubnetPrioTosMask

Figure 188. LDAP schema object class hierarchy

Appendix F. Using an LDAP server for policy definitions 1525

Object class name Purpose of object

Top Used to anchor the LDAP hierarchical
tree root.

ibm-policy Used as the root for all policy objects.

ibm-policyGroup Defines a policy group object.

ibm-policyRule Defines a policy rule object.

ibm-policyRuleConditionAssociation Defines an association between a policy
rule object and a policy condition.

ibm-policyRuleActionAssociation Defines an association between a policy
rule object and a policy action.

ibm-PolicyInstance Defines an instance of a reusable policy
object.

ibm-PolicyConditionInstance Defines an instance of a reusable policy
condition object.

ibm-PolicyActionInstance Defines an instance of a reusable policy
action object.

ibm-PolicyElementAuxClass Defines an auxiliary class that can be
used to tag non-policy objects as
though they were policy objects.

ibm-policyCondition Defines a policy condition object.
(schema version 2 — supported for
migration)

ibm-policyTimePeriodCondition Defines an auxiliary class to represent
time periods during which a policy
rule is considered to be active. (schema
version 2 — supported for migration)

ibm-networkingpolicyCondition Defines a subclass of
ibm-PolicyCondition used to define
networking policy conditions. (schema
version 2 — supported for migration)

ibm-policyAction Defines a policy action object. (schema
version 2 — supported for migration)

ibm-serviceCategories Defines an auxiliary class to represent a
set of QoS attributes for a policy action.
(schema version 2 — supported for
migration)

ibm-policyConditionAuxClass Defines an auxiliary class for generic
policy conditions.

ibm-policyTimePeriodConditionAuxClass Defines an auxiliary class to represent
time periods during which a policy
rule is considered to be active.

ibm-networkingPolicyConditionAuxClass Defines an auxiliary class used to
define networking policy conditions.

ibm-routeConditionAuxClass Defines an auxiliary class to represent
QoS routing conditions for a policy
rule.

ibm-hostConditionAuxClass Defines an auxiliary class to represent
QoS host (end-point) conditions for a
policy rule.

1526 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Object class name Purpose of object

ibm-applicationConditionAuxClass Defines an auxiliary class to represent
QoS application and transport
conditions for a policy rule.

ibm-idsConditionAuxClass Defines an auxiliary class to represent
generic IDS conditions.

ibm-idsAttackConditionAuxClass Defines an auxiliary class to represent
IDS attack conditions.

ibm-idsIPAttackConditionAuxClass Defines an auxiliary class to represent
IDS IP attack conditions.

ibm-idsTrafficRegulationConditionAuxClass Defines an auxiliary class to represent
IDS Traffic Regulation conditions.

ibm-idsScanConditionAuxClass Defines an auxiliary class to represent
IDS global scan conditions.

ibm-idsScanEventConditionAuxClass Defines an auxiliary class to represent
IDS scan event conditions.

ibm-idsTransportConditionAuxClass Defines an auxiliary class to represent
IDS transport conditions.

ibm-idsHostConditionAuxClass Defines an auxiliary class to represent
IDS host conditions.

ibm-policyActionAuxClass Defines an auxiliary class for generic
policy actions.

ibm-serviceCategoriesAuxClass Defines an auxiliary class to represent a
set of QoS attributes for a policy action.

ibm-idsActionAuxClass Defines an auxiliary class to represent
generic IDS actions.

ibm-idsNotificationAuxClass Defines an auxiliary class to represent
notification options for IDS actions.

ibm-idsAttackActionsAuxClass Defines an auxiliary class to represent
attack attributes for IDS actions.

ibm-idsFloodAttackActionsAuxClass Defines an auxiliary class to represent
flood-specific attack attributes for IDS
actions.

ibm-idsTrafficRegulationActionAuxClass Defines an auxiliary class to represent
generic Traffic Regulation attributes for
IDS actions.

ibm-idsTRtcpActionAuxClass Defines an auxiliary class to represent
Traffic Regulation TCP attributes for
IDS actions.

ibm-idsTRudpActionAuxClass Defines an auxiliary class to represent
Traffic Regulation UDP attributes for
IDS actions.

ibm-idsScanActionAuxClass Defines an auxiliary class to represent
global scan attributes for IDS actions.

ibm-idsScanSensitivityActionAuxClass Defines an auxiliary class to represent
scan sensitivity attributes for IDS
actions.

ibm-idsScanExclusionActionAuxClass Defines an auxiliary class to define
scan exclusion lists for IDS actions.

Appendix F. Using an LDAP server for policy definitions 1527

Object class name Purpose of object

ibm-policyRepository Defines a repository for generic
reusable policy objects.

ibm-policySubtreesPtrAuxClass Defines an auxiliary class to represent
pointers to subtrees in the LDAP
directory tree to be retrieved by the
Policy Agent. This allows entire
subtrees to be retrieved at once,
improving retrieval performance in
some situations.

ibm-policyGroupContainmentAuxClass Defines an auxiliary class for binding a
policy group object to another policy
group.

ibm-policyRuleContainmentAuxClass Defines an auxiliary class for binding a
policy rule object to another policy
group.

ibm-policyGroupLoadDistributionAuxClass Defines an auxiliary class to represent
load distribution attributes for policy
groups. The load distribution attributes
are applied to all policy rules that are
pointed to by groups to which this
auxiliary class has been attached.

SetSubnetPrioTosMask Defines a mapping of outbound IPv4
packet Type of Service (ToS) byte or
IPv6 packet Traffic Class values to
QDIO device priorities and Virtual
LAN (VLAN) user priorities.

Policy objects are used to accomplish the following objectives:
v Group related objects together. Policy groups can contain related policy rules,

and can also contain other policy groups. This allows objects to be grouped in
various administrative ways. If the resulting objects will be retrieved by any
Policy Agent prior to z/OS Communications Server V1R2, then the object should
not include the values ibm-policyGroupContainmentAuxClass,
ibm-policyRuleContainmentAuxClass or ibm-
policyGroupLoadDistributionAuxClass for the objectClass attribute.

v Specify conditions for a policy rule. The conditions are used to filter traffic
packets, and can specify attributes such as source and destination port,
application name, protocol, and so on. Policy rules can be either simple or
complex, depending on the nature of the specified conditions. When a single
condition is specified, the rule is a simple rule. This single condition can be
composed of any of the condition attributes, but only one instance of each. For
example, only a single destination port range can be specified in a simple rule.
Complex rules specify more than one condition. The specified conditions are
organized into one or more levels, and each level is composed of one or more
conditions. Each condition can be composed of one instance of any of the
condition attributes. The conditions can thus be thought of as a two-dimensional
array. Any individual condition can be negated. Two types of processing are
applied to the conditions, depending on the specified condition list type:
– Disjunctive Normal Form (DNF). DNF conditions are logically ANDed at each

level, and ORed between levels.
– Conjunctive Normal Form (CNF). CNF conditions are logically ORed at each

level, and ANDed between levels.

1528 z/OS V1R12.0 Comm Svr: IP Configuration Guide

For example, suppose five conditions are specified, two at one level and three at
another:
Level 1: C1, NOT C2
Level 2: C3, C4, C5

If DNF is specified, the conditions are evaluated as:
(C1 AND NOT C2) OR (C3 AND C4 AND C5)

CNF evaluation of the same conditions is:
(C1 OR NOT C2) AND (C3 OR C4 OR C5)

This allows a wide variety of conditional logic to be defined for policy rules.
v Specify time periods during which policy rules are active. Active policy rules are

those that are installed in a TCP/IP stack by the Policy Agent. A wide variety of
attributes are available to specify time periods, and up to 25 time periods can be
specified for any policy rule. The policy rule is active if any of the specified time
intervals include the current time.

v Specify actions to take on behalf of traffic that maps to active policy rules, based
on the evaluation of its conditions. QoS Actions contain a scope attribute that
indicates the type of policy being defined, namely Differentiated Services, RSVP,
or both Differentiated Services and RSVP. Up to four actions can be specified for
each rule, but only one action per scope can be active at a time. IDS actions
contain an action type that indicates the type of policy being defined, namely
Attack, TR, Scan Global, or Scan Event. Only one IDS action can be specified for
each rule. QoS and IDS actions (or conditions) can't be mixed within a single
policy rule.

Considerations for defining LDAP objects
LDAP objects can refer to other objects, using the DN of the referenced object. For
example, a policy rule can be separated from its conditions and time periods, with
those objects being referenced by the rule object.

Each LDAP object is composed of a number of attributes. Some of the attributes
are generic LDAP attributes that apply to all LDAP objects. Other attributes are
used only for Version 1 policy definitions. All other Version 2 and later policy
attributes must begin with a unique prefix:
ibm-

When defining complex policy rules (those with more than one condition or
action), two mutually exclusive methods can be used to associate the conditions or
actions with the rule:
v The ibm-policyConditionListDN and ibm-policyActionListDN attributes can be

omitted from the rule. In this case, the condition and action association objects
MUST be created as subordinate objects to the policy rule, in other words, under
the rule in the directory subtree. This is known as Directory Information Tree
(DIT)-containment.

v The ibm-policyConditionListDN and ibm-policyActionListDN attributes can be
specified in the rule. In this case, the condition and action association objects
SHOULD be created as subordinate objects to the policy rule, in other words,
under the rule in the directory subtree. However, this is not a requirement, only
a recommendation. The objects can actually exist anywhere in the DIT.

Appendix F. Using an LDAP server for policy definitions 1529

Policy Agent retrieval of LDAP objects
The design of the LDAP object tree should be carefully thought out. The Policy
Agent uses a variety of mechanisms to search for and retrieve objects from an
LDAP server:
v An initial search is done for a subtree of objects based on the SearchBaseDN

parameter on the ReadFromDirectory statement.
v If any objects retrieved by this initial search contain subtree pointer references

(using the ibm-policySubtreesAuxContainedSet attribute) then a search is done
for all such subtrees. This is a recursive search: additional objects retrieved
might also contain subtree pointer references.

v The above searches use a filter to only retrieve certain object classes. For LDAP
protocol version 3, the default is to only scan for the ibm-policy object class. This
is an abstract object class from which all other policy object classes are derived.
Most LDAPv3 servers implement abstract and auxiliary classes such that this
search will properly retrieve policy, and only policy, object classes. However,
some LDAPv3 servers do not honor abstract/auxiliary object classes as a search
filter. For these servers, specify LDAP_AbstractPolicy NO on the
ReadFromDirectory statement. This causes the searches to use a filter that
retrieves ALL object classes.

v All of the above searches may be scoped, or filtered, using keywords specified
on the ReadFromDirectory statement parameters SearchPolicyKeyword,
SearchPolicyGroupKeyword, or SearchPolicyRuleKeyword. The LDAP server
only returns objects with any matching keywords.

v Some objects retrieved using the above searches may contain DN pointer
references to additional objects. These objects are individually retrieved. If the
object to be retrieved is a policy rule, then a subtree search is performed, using
the keywords specified on the ReadFromDirectory statement. All other objects
are retrieved as single objects, using the DN pointers (no keywords are used on
the search).

v All policy rule objects retrieved using the above searches are further filtered
using the PolicyRole parameter on the ReadFromDirectory statement. Any rules
that do not match policy roles specified on the ReadFromDirectory statement are
discarded.

Therefore, it is possible to design an LDAP tree such that a minimal set of objects
is initially retrieved, followed by many additional individual LDAP retrievals. If
the total set of objects is large, there is a performance impact to retrieving objects
in this manner. If possible, try to design the tree and the ReadFromDirectory
parameters to retrieve the largest set of objects initially, to achieve the best
performance, or to use subtree pointer references to retrieve larger sets of objects in
one operation.

LDAP sample files
The following set of sample files provides an example of policy definitions in
LDAP. For more information on using these sample files, see “Using the sample
LDAP objects” on page 1532.

/usr/lpp/tcpip/samples/pagent.ldif
This file contains the top level directory structure for the set of sample
quality of service (QoS) and intrusion detection services (IDS) policies.

/usr/lpp/tcpip/samples/pagent_starter_QOS.ldif
This file contains the starter set sample of LDAP definitions of QoS objects.
This file requires the directory structure defined in sample file pagent.ldif.

1530 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|

/usr/lpp/tcpip/samples/pagent_starter_IDS.ldif
This file contains the starter set sample of LDAP definitions of IDS objects.
This file requires the directory structure defined in sample file pagent.ldif.

/usr/lpp/tcpip/samples/pagent_advanced_QOS.ldif
This file contains the advanced set sample of LDAP definitions of QoS
objects. This file requires the objects defined in the QoS starter set sample
file pagent_starter_QOS.ldif and the directory structure defined in sample
file pagent.ldif.

/usr/lpp/tcpip/samples/pagent_advanced_IDS.ldif
This file contains the advanced set sample of LDAP definitions of IDS
objects. This file requires the objects defined in the IDS starter set sample
file pagent_starter_IDS.ldif and the directory structure defined in sample
file pagent.ldif.

The next set of samples is the definition of the schemas in LDAP protocol version 3
format. They must be installed on the LDAPv3 server in the proper order as an
object in the server's database, rather than as configuration information. This
process is known as schema publication. See RFCs 1804 and 2251. The files need to
be specified on ldapmodify commands to modify the cn:schema entry in the
server's database. See “Installing the schema definition on the LDAP server” for
more information.

/usr/lpp/tcpip/samples/pagent_r8qosschema.ldif
This file contains the schema version 3 QoS schema definitions.

/usr/lpp/tcpip/samples/pagent_r5idsschema.ldif
This file contains the schema version 3 IDS schema definitions.

The next set of samples contain the text of draft documents used to develop the
Version 3 schema.

/usr/lpp/tcpip/samples/pagent_pcim.txt
This file contains the draft version of the proposed Policy Core Information
Model (PCIM) used as the basis for the support in this release. PCIM is
described by RFC 3060 but this file is an earlier draft level.

/usr/lpp/tcpip/samples/pagent_core.txt
This file contains the draft version of the proposed Policy Core LDAP
Schema Internet Draft used in z/OS V1R2 and later releases.

Note: This file is provided as-is and there are some differences between
the draft and the implementation. The intent of this file is to provide
background information on the level of the supported schema.

/usr/lpp/tcpip/samples/pagent_cond.txt
This file contains the draft version of the proposed Policy Conditions
Internet Draft used in z/OS V1R2 and later releases.

Note: This file is provided as-is and there are some differences between
the draft and the implementation. The intent of this file is to provide
background information on the level of the supported schema.

Installing the schema definition on the LDAP server
The files that define the schema supported by the Policy Agent are shipped as a set
of sample files. You need to modify the configuration of the LDAP server to
include these schema definition files.

Appendix F. Using an LDAP server for policy definitions 1531

|
|

|
|

For LDAP protocol version 3, the schema definition is shipped in ldif format and
installed on the LDAP server as a modification to the generic schema entry, known
as a subschema. You must modify the existing schema entry to include the
supported schema as a subschema by using the ldapmodify command. The
schema definition files that you must install are located in the
/usr/lpp/tcpip/samples directory. You must install the files in the following order:
1. pagent_r8qosschema.ldif
2. pagent_r5idsschema.ldif

This process is supported for the z/OS LDAP server.

To install the schema definitions, use commands like those shown in the following
examples:
ldapmodify -h <server address> -p <server port> -D <administrator userid>
-w <password> -f /usr/lpp/tcpip/samples/pagent_r8qosschema.ldif

ldapmodify -h <server address> -p <server port> -D <administrator userid>
-w <password> -f /usr/lpp/tcpip/samples/pagent_r5idsschema.ldif

See the TDBM backend information in z/OS Integrated Security Services LDAP Server
Administration and Use for more details.

Using the sample LDAP objects
There are 5 sample files that provide examples of policy definitions in LDAP:
v pagent.ldif
v pagent_starter_IDS.ldif
v pagent_starter_QOS.ldif
v pagent_advanced_IDS.ldif
v pagent_advanced_QOS.ldif

For brief descriptions of these files, see “Policy sample files” on page 841. You can
either use some or all of these predefined policies in the starter and advanced sets,
or modify them as needed.

The recommended way to create customized policies is to copy the sample policies
you want to change to the custom portion of the pagent.ldif file (under the
appropriate cn=custom root, QoS or IDS), modify them as needed, and then point
to the custom set as the search base on the ReadFromDirectory statement.

For example, the pagent.ldif file has the following hierarchical structure [this
shows the relevant parts of the Distingushed Name (DN) for each object]:
o=IBM, c=US (root object)

cn=repository (root of all reusable policy conditions and actions)
ou=policy (root of all policy groups and rules)

cn=groups (root of sample groups)
cn=starter (root of simple starter set of policies)

cn=IDS (IDS starter set - actually defined in file pagent_starter_IDS.ldif)
cn=QoS (QOS starter set - actually defined in file pagent_starter_QOS.ldif)

cn=advanced (root of advanced set of policies)
cn=IDS (IDS advanced set - actually defined in file pagent_advanced_IDS.ldif)
cn=QoS (QOS advanced set - actually defined in file pagent_advanced_QOS.ldif)

cn=custom (root of customer-defined set of policies)
cn=IDS (root of customer-defined IDS policies (empty))
cn=QoS (root of customer-defined QOS policies (empty))

To obtain only the customized policies, specify the top custom policy group object
as the search base on the ReadFromDirectory statement as follows:

1532 z/OS V1R12.0 Comm Svr: IP Configuration Guide

|
|
|
|

|

|

|

|
|

|
|

|
|

ReadFromDirectory {
...
SearchPolicyBaseDN dn:cn=custom, ou=policy, o=IBM, c=US
...
}

Note: If your LDAP server has a root structure other than "o=IBM, c=US", be sure
to change the root structure in all the files you want to use by replacing
every instance of "o=IBM, c=US" with the appropriate root used on your
LDAP server.

Defining QoS policies using LDAP
This topic contains examples for defining QoS policies using LDAP.

Differentiated Services policy example
The goal of this Differentiated Services policy is to map a subset of the traffic
outbound from an FTP server.

This policy is identified as a Differentiated Services policy by the
ibm-PolicyScope:DataTraffic attribute in the ibm-PolicyActionInstance object.

The following statements apply to the example in this topic:
v The policy rule selects traffic originated by ports in the range 20-21 (FTP

outbound data connection uses port 20) from the source address 200.50.23.11 or
200.50.33.14 or 202::B055:1.

v The policy rule is active on weekdays between 6 a.m. and 10 p.m. local time,
between the dates 7/1/2000 and 7/1/2005.

v The policy action specifies that the ToS byte be set to '10000000' for traffic that
conforms to this policy.

v The action establishes a token bucket traffic conditioner with a mean rate of 256
kilobits per second, a peak rate of 512 kilobits per second, and a burst size of 64
kilobytes. Any traffic that exceeds these specifications will be sent as best effort,
with an accompanying ToS byte of '00000000'.

dn:cn=diffserv-rule, cn=QoS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyRule
cn:diffserv-rule
ibm-policyRuleName:diffserv-rule
ibm-policyRuleEnabled:1
ibm-policyRuleConditionListType:2
ibm-policyRuleConditionListDN:cn=condassoc1, cn=diffserv-rule, cn=QoS, cn=advanced,

ou=policy, o=IBM, c=US
ibm-policyRuleConditionListDN:cn=condassoc2, cn=diffserv-rule, cn=QoS, cn=advanced,

ou=policy, o=IBM, c=US
ibm-policyRuleConditionListDN:cn=condassoc3a, cn=diffserv-rule, cn=QoS, cn=advanced,

ou=policy, o=IBM, c=US
ibm-policyRuleConditionListDN:cn=condassoc3b, cn=diffserv-rule, cn=QoS, cn=advanced,

ou=policy, o=IBM, c=US
ibm-policyRuleConditionListDN:cn=condassoc3c, cn=diffserv-rule, cn=QoS, cn=advanced,

ou=policy, o=IBM, c=US
ibm-policyRuleActionListDN:cn=actassoc1, cn=diffserv-rule, cn=QoS, cn=advanced,

ou=policy, o=IBM, c=US
ibm-policyRuleValidityPeriodList:cn=period1, cn=time, cn=repository, o=IBM, c=US
ibm-policyRulePriority:10
ibm-policyRuleMandatory:TRUE
ibm-policyRuleSequencedActions:1
ibm-policyKeywords:Diffserv
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY

Appendix F. Using an LDAP server for policy definitions 1533

description:QOS Differentiated Services rule

dn:cn=condassoc1, cn=diffserv-rule, cn=QoS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
cn:condassoc1
ibm-policyConditionName:diffserv-condition1
ibm-policyConditionGroupNumber:1
ibm-policyConditionNegated:FALSE
ibm-policyConditionDN:cn=IpProtTCP, cn=QoScond, cn=repository, o=IBM, c=US
ibm-policyKeywords:Diffserv
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Represents reusable CNF condition at level 1 - TCP

dn:cn=condassoc2, cn=diffserv-rule, cn=QoS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
cn:condassoc2
ibm-policyConditionName:diffserv-condition2
ibm-policyConditionGroupNumber:2
ibm-policyConditionNegated:FALSE
ibm-policyConditionDN:cn=ftpdPorts, cn=QoScond, cn=repository, o=IBM, c=US
ibm-policyKeywords:Diffserv
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Represents reusable CNF condition at level 2 - ftpd ports

dn:cn=condassoc3a, cn=diffserv-rule, cn=QoS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
cn:condassoc3a
ibm-policyConditionName:diffserv-condition3a
ibm-policyConditionGroupNumber:3
ibm-policyConditionNegated:FALSE
ibm-policyConditionDN:cn=Host1, cn=QoScond, cn=repository, o=IBM, c=US
ibm-policyKeywords:Diffserv
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Represents first reusable CNF condition at level 3 - host1

dn:cn=condassoc3b, cn=diffserv-rule, cn=QoS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
cn:condassoc3b
ibm-policyConditionName:diffserv-condition3b
ibm-policyConditionGroupNumber:3
ibm-policyConditionNegated:FALSE
ibm-policyConditionDN:cn=Host2, cn=QoScond, cn=repository, o=IBM, c=US
ibm-policyKeywords:Diffserv
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Represents second reusable CNF condition at level 3 - host2

dn:cn=condassoc3c, cn=diffserv-rule, cn=QoS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
cn:condassoc3c
ibm-policyConditionName:diffserv-condition3c
ibm-policyConditionGroupNumber:3
ibm-policyConditionNegated:FALSE
ibm-policyConditionDN:cn=Host3, cn=QoScond, cn=repository, o=IBM, c=US
ibm-policyKeywords:Diffserv
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Represents third reusable CNF condition at level 3 - host3

dn:cn=actassoc1, cn=diffserv-rule, cn=QoS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleActionAssociation
cn:actassoc1
ibm-policyActionName:diffserv-action
ibm-policyActionOrder:1

1534 z/OS V1R12.0 Comm Svr: IP Configuration Guide

ibm-policyActionDN:cn=tokenbucket, cn=QoSact, cn=repository, o=IBM, c=US
ibm-policyKeywords:Diffserv
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Represents reusable action - token bucket

dn: cn=tokenbucket, cn=QoSact, cn=repository, o=IBM, c=US
objectclass:ibm-policyActionInstance
objectclass:ibm-policyActionAuxClass
objectclass:ibm-serviceCategoriesAuxClass
cn:tokenbucket
ibm-policyActionName:tokenbucket-action
ibm-PolicyScope:DataTraffic
ibm-OutgoingTOS:10000000
ibm-DiffServInProfileRate:256
ibm-DiffServInProfilePeakRate:512
ibm-DiffServInProfileTokenBucket:512
ibm-DiffServInProfileMaxPacketSize:120
ibm-DiffServOutProfileTransmittedTOSByte:00000000
ibm-DiffServExcessTrafficTreatment:BestEffort
ibm-policyKeywords:Diffserv
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Reusable QoS diffserv token bucket action

dn:cn=ftpdPorts, cn=QoScond, cn=repository, o=IBM, c=US
objectclass:ibm-policyConditionInstance
objectclass:ibm-policyConditionAuxClass
objectclass:ibm-networkingPolicyConditionAuxClass
objectclass:ibm-applicationConditionAuxClass
cn:ftpdPorts
ibm-policyConditionName:ftpdPorts-condition
ibm-sourcePortRange:20-21
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Reusable QoS ftpd ports condition

dn:cn=IpProtTCP, cn=QoScond, cn=repository, o=IBM, c=US
objectclass:ibm-policyConditionInstance
objectclass:ibm-policyConditionAuxClass
objectclass:ibm-networkingPolicyConditionAuxClass
objectclass:ibm-applicationConditionAuxClass
cn:IpProtTCP
ibm-policyConditionName:IpProtTCP-condition
ibm-protocolNumberRange:6
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Reusable QoS protocol TCP condition

dn:cn=Host1, cn=QoScond, cn=repository, o=IBM, c=US
objectclass:ibm-policyConditionInstance
objectclass:ibm-policyConditionAuxClass
objectclass:ibm-networkingPolicyConditionAuxClass
objectclass:ibm-hostConditionAuxClass
cn:Host1
ibm-policyConditionName:Host1-condition
ibm-SourceIPAddressRange:3-200.50.23.11
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Reusable QoS Host 1 condition

dn:cn=Host2, cn=QoScond, cn=repository, o=IBM, c=US
objectclass:ibm-policyConditionInstance
objectclass:ibm-policyConditionAuxClass
objectclass:ibm-networkingPolicyConditionAuxClass
objectclass:ibm-hostConditionAuxClass
cn:Host2

Appendix F. Using an LDAP server for policy definitions 1535

ibm-policyConditionName:Host2-condition
ibm-SourceIPAddressRange:3-200.50.33.14
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Reusable QoS Host 2 condition

dn:cn=Host3, cn=QoScond, cn=repository, o=IBM, c=US
objectclass:ibm-policyConditionInstance
objectclass:ibm-policyConditionAuxClass
objectclass:ibm-networkingPolicyConditionAuxClass
objectclass:ibm-hostConditionAuxClass
cn:Host3
ibm-policyConditionName:Host3-condition
ibm-SourceIPAddressRange:5-202::B055:1
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Reusable QoS Host 3 condition

dn:cn=period1, cn=time, cn=repository, o=IBM, c=US
objectclass:ibm-policyInstance
objectclass:ibm-policyTimePeriodConditionAuxClass
cn:period1
ibm-policyInstanceName:WeekdayPrime-time
ibm-ptpConditionTime:20000701000000:20050630235959
ibm-ptpConditionMonthOfYearMask:111111111111
ibm-ptpConditionDayOfMonthMask:1111111111111111111111111111111
ibm-ptpConditionDayOfWeekMask:0111110
ibm-ptpConditionTimeOfDayMask:060000:220000
ibm-ptpConditionLocalOrUtcTime:1
ibm-policyKeywords:POLICY
description:Active weekdays 6am - 10pm local time, 7/1/2000 to 7/1/2005

The goal of this policy is to ensure that outgoing data that match the specified
attributes will be assigned a QoS service level defined in action "interactive1".

The following statements apply to the example in this topic:
v This rule will only match traffic on TCP connections (protocol 6) with a source

port of 80 (i.e. HTTP server) and application defined data beginning with the
string "/catalog".

v Since we are dealing with HTTP traffic, this rule is basically indicating that all
outgoing traffic associated with a URI that begins with "/catalog" should be
managed using the DS characteristics specified in the "interactive1" policy action.

dn:cn=web-catalog-rule, cn=QoS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyRule
cn:web-catalog-rule
ibm-policyRuleName:web-catalog-rule
ibm-policyRuleEnabled:1
ibm-policyRuleConditionListType:1
ibm-policyRulePriority:10
ibm-policyKeywords:Diffserv
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:QOS Web catalog rule

dn:cn=condassoc1, cn=web-catalog-rule, cn=QoS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
cn:condassoc1
ibm-policyConditionName:web-catalog-condition1
ibm-policyConditionGroupNumber:1
ibm-policyConditionNegated:FALSE
ibm-policyConditionDN:cn=IpProtTCP, cn=QoScond, cn=repository, o=IBM, c=US
ibm-policyKeywords:Diffserv
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY

1536 z/OS V1R12.0 Comm Svr: IP Configuration Guide

description:Represents first reusable DNF condition - TCP

dn:cn=condassoc2, cn=web-catalog-rule, cn=QoS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
cn:condassoc2
ibm-policyConditionName:web-catalog-condition2
ibm-policyConditionGroupNumber:1
ibm-policyConditionNegated:FALSE
ibm-policyConditionDN:cn=webPort, cn=QoScond, cn=repository, o=IBM, c=US
ibm-policyKeywords:Diffserv
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Represents second reusable DNF condition - web port

dn:cn=condassoc3, cn=web-catalog-rule, cn=QoS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
objectclass:ibm-policyConditionAuxClass
objectclass:ibm-networkingPolicyConditionAuxClass
objectclass:ibm-applicationConditionAuxClass
cn:condassoc3
ibm-policyConditionName:web-catalog-condition3
ibm-policyConditionGroupNumber:1
ibm-policyConditionNegated:FALSE
ibm-applicationData:/catalog
ibm-policyKeywords:Diffserv
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Rule-specific condition - web catalog pages

dn:cn=actassoc1, cn=web-catalog-rule, cn=QoS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleActionAssociation
cn:actassoc1
ibm-policyActionName:web-catalog-action
ibm-policyActionOrder:1
ibm-policyActionDN:cn=interactive1, cn=QoSact, cn=repository, o=IBM, c=US
ibm-policyKeywords:Diffserv
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Represents reusable action - interactive 1

dn: cn=interactive1, cn=QoSact, cn=repository, o=IBM, c=US
objectclass:ibm-policyActionInstance
objectclass:ibm-policyActionAuxClass
objectclass:ibm-serviceCategoriesAuxClass
cn:interactive1
ibm-policyActionName:interactive1-action
ibm-policyScope:DataTraffic
ibm-outgoingTOS:10000000
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Reusable QoS interactive 1 action (TOS 100)

dn:cn=webPort, cn=QoScond, cn=repository, o=IBM, c=US
objectclass:ibm-policyConditionInstance
objectclass:ibm-policyConditionAuxClass
objectclass:ibm-networkingPolicyConditionAuxClass
objectclass:ibm-applicationConditionAuxClass
cn:webPort
ibm-policyConditionName:webPort-condition
ibm-sourcePortRange:80
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Reusable QoS web port condition

dn:cn=IpProtTCP, cn=QoScond, cn=repository, o=IBM, c=US
objectclass:ibm-policyConditionInstance
objectclass:ibm-policyConditionAuxClass

Appendix F. Using an LDAP server for policy definitions 1537

objectclass:ibm-networkingPolicyConditionAuxClass
objectclass:ibm-applicationConditionAuxClass
cn:IpProtTCP
ibm-policyConditionName:IpProtTCP-condition
ibm-protocolNumberRange:6
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Reusable QoS protocol TCP condition

RSVP policy example
The goal of this RSVP policy is to establish limits on resource reservations
requested by RSVP applications using the RSVP API (RAPI) interface. The policy is
identified as an RSVP policy by the ibm-PolicyScope:RSVP attribute in the
ibm-PolicyActionInstance object.

The following statements apply to the example in this topic:
v The policy rule selects traffic from source ports in the range 8000 to 8001, with a

protocol ID of 6 (TCP).
v One policy action specifies that the ToS byte be set to 01100000 for traffic that

conforms to this policy.
v The RSVP policy action limits the type of RSVP service requested by RSVP

applications to Controlled Load. Applications requesting Guaranteed service are
downgraded to using Controlled Load service. In addition, the action limits the
mean rate and token bucket size to 50000 bytes per second and 6000 bytes,
respectively. These values are requested by RSVP applications in the traffic
specification, or Tspec.

v The action also limits the number of active RSVP flows that map to this policy
to 10.

dn:cn=intserv-rule, cn=QoS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyRule
cn:intserv-rule
ibm-policyRuleName:intserv-rule
ibm-policyRuleConditionListType:1
ibm-policyRuleConditionListDN:cn=condassoc1, cn=intserv-rule, cn=QoS, cn=advanced,

ou=policy, o=IBM, c=US
ibm-policyRuleActionListDN:cn=actassoc1, cn=intserv-rule, cn=QoS, cn=advanced,

ou=policy, o=IBM, c=US
ibm-policyRuleActionListDN:cn=actassoc2, cn=intserv-rule, cn=QoS, cn=advanced,

ou=policy, o=IBM, c=US
ibm-policyRuleValidityPeriodList:cn=period2, cn=time, cn=repository, o=IBM, c=US
ibm-policyRuleValidityPeriodList:cn=period3, cn=time, cn=repository, o=IBM, c=US
ibm-policyKeywords:Intserv
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:QOS Integrated Services rule

dn:cn=condassoc1, cn=intserv-rule, cn=QoS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
objectclass:ibm-policyConditionAuxClass
objectclass:ibm-networkingPolicyConditionAuxClass
objectclass:ibm-hostConditionAuxClass
objectclass:ibm-applicationConditionAuxClass
cn:condassoc1
ibm-policyConditionName:intserv-condition
ibm-policyConditionGroupNumber:1
ibm-policyConditionNegated:FALSE
ibm-ProtocolNumberRange:6
ibm-SourceIPAddressRange:1
ibm-SourcePortRange:8000-8001
ibm-policyKeywords:Intserv
ibm-policyKeywords:QOS

1538 z/OS V1R12.0 Comm Svr: IP Configuration Guide

ibm-policyKeywords:POLICY
description:Rule-specific condition - all local IP addresses, application TCP ports

dn:cn=actassoc1, cn=intserv-rule, cn=QoS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleActionAssociation
objectclass:ibm-policyActionAuxClass
objectclass:ibm-serviceCategoriesAuxClass
cn:actassoc1
ibm-policyActionName:intserv-action1
ibm-policyActionOrder:1
ibm-PolicyScope:DataTraffic
ibm-OutgoingTOS:01100000
ibm-policyKeywords:Intserv
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Rule-specific action - set TOS

dn:cn=actassoc2, cn=intserv-rule, cn=QoS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleActionAssociation
objectclass:ibm-policyActionAuxClass
objectclass:ibm-serviceCategoriesAuxClass
cn:actassoc2
ibm-policyActionName:intserv-action2
ibm-policyActionOrder:2
ibm-PolicyScope:RSVP
ibm-OutgoingTOS:01100000
ibm-FlowServiceType:ControlledLoad
ibm-MaxRatePerFlow:400
ibm-MaxTokenBucketPerFlow:48
ibm-MaxFlows:10
ibm-policyKeywords:Intserv
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Rule-specific action - RSVP limitations

dn:cn=period2, cn=time, cn=repository, o=IBM, c=US
objectclass:ibm-policyConditionInstance
objectclass:ibm-policyTimePeriodConditionAuxClass
cn:period2
ibm-policyConditionName:EndOfMonth-time
ibm-ptpConditionDayOfMonthMask:00000000000000000000000000000001

000000000000000000000000000000
ibm-ptpConditionLocalOrUtcTime:2
ibm-policyKeywords:POLICY
description:Active last day of the month (in UTC)

dn:cn=period3, cn=time, cn=repository, o=IBM, c=US
objectclass:ibm-policyConditionInstance
objectclass:ibm-policyTimePeriodConditionAuxClass
cn:period3
ibm-policyConditionName:PacificNight-time
ibm-ptpConditionTimeOfDayMask:190000:030000
ibm-ptpConditionTimeZone:-08
ibm-policyKeywords:POLICY
description:Active 7pm - 3am local time, Pacific Time Zone (no daylight savings)

Sysplex distributor routing policy example
The goal of this sysplex distributor policy is to limit the number of SD target
servers for inbound Telnet traffic. The policies are identified as SD policies by the
ibm-policyGroupForLoadDistribution:TRUE attribute in the ibm-PolicyGroup
object.

The following statements apply to the example in this topic:

Appendix F. Using an LDAP server for policy definitions 1539

v Separate policies are defined on the sysplex distributor distributing and target
servers.

v The policy rules select incoming Telnet connection requests.
v The selected target server will be based on WLM information and QoS

information if activated at the target servers.
v The rule (disttelnet) is coded on the distributing stack to select inbound traffic

destined to the Telnet server.
v The rule (targtelnet) is coded on the target server to select outbound data from

the Telnet server.
v If none of the specified target servers are available to service incoming requests

(either the node is down or the Telnet server is not active), then sysplex
distributor will distribute the requests to any available target server.

Note: If the ibm-Interface:1–0.0.0.0 attribute were not present, and none of the
defined target servers were available, sysplex distributor would reject the
request.

dn:cn=sysplex, cn=QoS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyGroup
objectclass:ibm-policyRuleContainmentAuxClass
objectclass:ibm-policyGroupLoadDistributionAuxClass
cn:sysplex
ibm-policyGroupName:QoSadvancedsysplex-Group
ibm-policyRulesAuxContainedSet:cn=disttelnet-rule,cn=QoS,cn=advanced,ou=policy,

o=IBM,c=US
ibm-policyGroupForLoadDistribution:TRUE
ibm-policyKeywords:Sysplex
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description: QoS advanced examples sysplex group.

dn:cn=disttelnet-rule, cn=QoS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyRule
cn:disttelnet-rule
ibm-policyRuleName:disttelnet-rule
ibm-policyRuleValidityPeriodList:cn=period1, cn=time, cn=repository, o=IBM, c=US
ibm-policyRulePriority:20
ibm-policyKeywords:Sysplex
ibm-policyKeywords:Diffserv
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:QOS Sysplex Distributor telnet rule

dn:cn=condassoc1, cn=disttelnet-rule, cn=QoS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
objectclass:ibm-policyConditionAuxClass
objectclass:ibm-networkingPolicyConditionAuxClass
objectclass:ibm-applicationConditionAuxClass
cn:condassoc1
ibm-policyConditionName:disttelnet-condition
ibm-policyConditionGroupNumber:1
ibm-policyConditionNegated:FALSE
ibm-ProtocolNumberRange:6
ibm-DestinationPortRange:23
ibm-policyKeywords:Sysplex
ibm-policyKeywords:Diffserv
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Rule-specific condition - telnet inbound SD traffic

dn:cn=actassoc1, cn=disttelnet-rule, cn=QoS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleActionAssociation
cn:actassoc1

1540 z/OS V1R12.0 Comm Svr: IP Configuration Guide

ibm-policyActionName:disttelnet-action
ibm-policyActionOrder:1
ibm-policyActionDN:cn=telnetGold, cn=QoSact, cn=repository, o=IBM, c=US
ibm-policyKeywords:Sysplex
ibm-policyKeywords:Diffserv
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Represents reusable action - telnet Gold Service

dn:cn=targtelnet-rule, cn=QoS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyRule
cn:targtelnet-rule
ibm-policyRuleName:targtelnet-rule
ibm-policyRuleConditionListType:2
ibm-policyRuleValidityPeriodList:cn=period1, cn=time, cn=repository, o=IBM, c=US
ibm-policyRulePriority:20
ibm-policyKeywords:Diffserv
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:QOS Sysplex Target telnet rule

dn:cn=condassoc1, cn=targtelnet-rule, cn=QoS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
cn:condassoc1
ibm-policyConditionName:targtelnet-condition1
ibm-policyConditionGroupNumber:1
ibm-policyConditionNegated:FALSE
ibm-policyConditionDN:cn=IpProtTCP, cn=QoScond, cn=repository, o=IBM, c=US
ibm-policyKeywords:Diffserv
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Represents reusable condition at level 1 - TCP

dn:cn=condassoc2, cn=targtelnet-rule, cn=QoS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
cn:condassoc2
ibm-policyConditionName:targtelnet-condition2
ibm-policyConditionGroupNumber:2
ibm-policyConditionNegated:FALSE
ibm-policyConditionDN:cn=telnetdPort, cn=QoScond, cn=repository, o=IBM, c=US
ibm-policyKeywords:Diffserv
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Represents reusable condition at level 2 - telnetd port

dn:cn=actassoc1, cn=targtelnet-rule, cn=QoS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleActionAssociation
cn:actassoc1
ibm-policyActionName:targtelnet-action
ibm-policyActionOrder:1
ibm-policyActionDN:cn=telnetGold, cn=QoSact, cn=repository, o=IBM, c=US
ibm-policyKeywords:Diffserv
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Represents reusable action - telnet Gold Service

dn: cn=telnetGold, cn=QoSact, cn=repository, o=IBM, c=US
objectclass:ibm-policyActionInstance
objectclass:ibm-policyActionAuxClass
objectclass:ibm-serviceCategoriesAuxClass
cn:telnetGold
ibm-policyActionName:telnetGold-action
ibm-PolicyScope:DataTraffic
ibm-OutgoingTOS:10100000
ibm-MinRate:500
ibm-Interface:1--129.100.11.1
ibm-Interface:1--129.100.21.1

Appendix F. Using an LDAP server for policy definitions 1541

ibm-Interface:1--129.200.12.1
ibm-Interface:1--0.0.0.0
ibm-policyKeywords:Diffserv
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Reusable QoS telnet Gold Service action

dn:cn=telnetdPort, cn=QoScond, cn=repository, o=IBM, c=US
objectclass:ibm-policyConditionInstance
objectclass:ibm-policyConditionAuxClass
objectclass:ibm-networkingPolicyConditionAuxClass
objectclass:ibm-applicationConditionAuxClass
cn:telnetdPort
ibm-policyConditionName:telnetdPort-condition
ibm-sourcePortRange:23
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Reusable QoS telnetd port condition

dn:cn=IpProtTCP, cn=QoScond, cn=repository, o=IBM, c=US
objectclass:ibm-policyConditionInstance
objectclass:ibm-policyConditionAuxClass
objectclass:ibm-networkingPolicyConditionAuxClass
objectclass:ibm-applicationConditionAuxClass
cn:IpProtTCP
ibm-policyConditionName:IpProtTCP-condition
ibm-protocolNumberRange:6
ibm-policyKeywords:QOS
ibm-policyKeywords:POLICY
description:Reusable QoS protocol TCP condition

dn:cn=period1, cn=time, cn=repository, o=IBM, c=US
objectclass:ibm-policyInstance
objectclass:ibm-policyTimePeriodConditionAuxClass
cn:period1
ibm-policyInstanceName:WeekdayPrime-time
ibm-ptpConditionTime:20000701000000:20050630235959
ibm-ptpConditionMonthOfYearMask:111111111111
ibm-ptpConditionDayOfMonthMask:1111111111111111111111111111111
ibm-ptpConditionDayOfWeekMask:0111110
ibm-ptpConditionTimeOfDayMask:060000:220000
ibm-ptpConditionLocalOrUtcTime:1
ibm-policyKeywords:POLICY
description:Active weekdays 6am - 10pm local time, 7/1/2000 to 7/1/2005

Defining IDS policies using LDAP
To define IDS policies using LDAP, see the following examples.

IDS scan policy example
dn:cn=scanglobal-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRule
cn:scanglobal-rule
ibm-policyRuleName:ScanGlobal-rule
ibm-policyRuleConditionListType:2
ibm-policyRuleEnabled:1
ibm-policyRulePriority:2
ibm-policyKeywords:Scan
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Example of IDS global scan rule

dn:cn=condassoc1, cn=scanglobal-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
objectclass:ibm-idsConditionAuxClass
objectclass:ibm-idsScanConditionAuxClass
cn:condassoc1

1542 z/OS V1R12.0 Comm Svr: IP Configuration Guide

ibm-policyConditionName:ScanGlobal-condition
ibm-idsConditionType:SCAN_GLOBAL
ibm-policyConditionGroupNumber:1
ibm-policyConditionNegated:FALSE
ibm-policyKeywords:Scan
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Rule-specific condition

dn:cn=actassoc1, cn=scanglobal-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleActionAssociation
objectclass:ibm-idsActionAuxClass
objectclass:ibm-idsScanActionAuxClass
objectclass:ibm-idsNotificationAuxClass
cn:actassoc1
ibm-policyActionName:ScanGlobal-action
ibm-idsActionType:SCAN_GLOBAL
ibm-policyActionOrder:1
ibm-idsTypeActions:LOG
ibm-idsNotification:SYSLOG
ibm-idsNotification:SYSLOGDETAIL
ibm-idsLoggingLevel:4
ibm-idsTraceData:RECORDSIZE
ibm-idsTraceRecordSize:200
ibm-idsFSInterval:2
ibm-idsFSThreshold:5
ibm-idsSSInterval:480
ibm-idsSSThreshold:10
ibm-policyKeywords:Scan
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Rule-specific action - Fast scan = 5 in 2 minutes, Slow scan = 10 in 8 hours

dn:cn=scaneventlow-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRule
cn:scaneventlow-rule
ibm-policyRuleName:ScanEventLow-rule
ibm-policyRuleConditionListType:2
ibm-policyRuleEnabled:1
ibm-policyRulePriority:2
ibm-policyKeywords:Scan
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:IDS scan event rule for low sensitivity on TCP and UDP Low Ports

dn:cn=condassoc2, cn=scaneventlow-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
cn:condassoc2
ibm-policyConditionName:ScanEventLow-condition2
ibm-policyConditionDN:cn=ScanTcpLowPorts, cn=IDScond, cn=repository, o=IBM, c=US
ibm-policyConditionGroupNumber:2
ibm-policyConditionNegated:FALSE
ibm-policyKeywords:Scan
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Reusable CNF condition level 2 - scan TCP low ports

dn:cn=condassoc3, cn=scaneventlow-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
cn:condassoc3
ibm-policyConditionName:ScanEventLow-condition3
ibm-policyConditionDN:cn=ScanUdpLowPorts, cn=IDScond, cn=repository, o=IBM, c=US
ibm-policyConditionGroupNumber:2
ibm-policyConditionNegated:FALSE
ibm-policyKeywords:Scan
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Reusable CNF condition level 2 - scan UDP low ports

dn:cn=actassoc1, cn=scaneventlow-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleActionAssociation
objectclass:ibm-idsActionAuxClass
objectclass:ibm-idsScanSensitivityActionAuxClass
objectclass:ibm-idsScanExclusionActionAuxClass
cn:actassoc1
ibm-policyActionName:ScanEventLow-action

Appendix F. Using an LDAP server for policy definitions 1543

ibm-idsActionType:SCAN_EVENT
ibm-policyActionOrder:1
ibm-idsSensitivity:LOW
ibm-policyKeywords:Scan
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Rule-specific action - low sensitivity

dn:cn=scaneventmedium-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRule
cn:scaneventmedium-rule
ibm-policyRuleName:ScanEventMedium-rule
ibm-policyRuleConditionListType:2
ibm-policyRuleEnabled:1
ibm-policyRulePriority:2
ibm-policyKeywords:Scan
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:IDS scan event rule for medium sensitivity on ICMP

dn:cn=condassoc1, cn=scaneventmedium-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
objectclass:ibm-idsConditionAuxClass
objectclass:ibm-idsScanEventConditionAuxClass
objectclass:ibm-idsTransportConditionAuxClass
cn:condassoc1
ibm-policyConditionName:ScanEventMedium-condition
ibm-idsConditionType:SCAN_EVENT
ibm-policyConditionGroupNumber:2
ibm-policyConditionNegated:FALSE
ibm-idsProtocolRange:1
ibm-policyKeywords:Scan
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Rule-specific condition - ICMP protocol

dn:cn=actassoc1, cn=scaneventmedium-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleActionAssociation
objectclass:ibm-idsActionAuxClass
objectclass:ibm-idsScanSensitivityActionAuxClass
cn:actassoc1
ibm-policyActionName:ScanEventMedium-action
ibm-idsActionType:SCAN_EVENT
ibm-policyActionOrder:1
ibm-idsSensitivity:MEDIUM
ibm-policyKeywords:Scan
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Rule-specific action - medium sensitivity

dn:cn=ScanTcpLowPorts, cn=IDScond, cn=repository, o=IBM, c=US
objectclass:ibm-policyConditionInstance
objectclass:ibm-idsConditionAuxClass
ibm-idsConditionType:SCAN_EVENT
objectclass:ibm-idsScanEventConditionAuxClass
objectclass:ibm-idsTransportConditionAuxClass
cn:ScanTcpLowPorts
ibm-policyConditionName:ScanTcpLowPorts-condition
ibm-idsProtocolRange:6
ibm-idsLocalPortRange:1-1023
ibm-policyKeywords:Scan
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Reusable IDS Scan TCP Low Ports condition

dn:cn=ScanUdpLowPorts, cn=IDScond, cn=repository, o=IBM, c=US
objectclass:ibm-policyConditionInstance
objectclass:ibm-idsConditionAuxClass
ibm-idsConditionType:SCAN_EVENT
objectclass:ibm-idsScanEventConditionAuxClass
objectclass:ibm-idsTransportConditionAuxClass
cn:ScabUdpLowPorts
ibm-policyConditionName:ScanUdpLowPorts-condition
ibm-idsProtocolRange:17
ibm-idsLocalPortRange:1-1023
ibm-policyKeywords:Scan

1544 z/OS V1R12.0 Comm Svr: IP Configuration Guide

ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Reusable IDS Scan UDP Low Ports condition

IDS attack policy example
dn:cn=attackMalformed-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRule
cn:attackMalformed-rule
ibm-policyRuleName:AttackMalformed-rule
ibm-policyRuleConditionListType:1
ibm-policyRuleEnabled:1
ibm-policyRulePriority:2
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Example of IDS attack rule for Malformed Packets

dn:cn=condassoc1, cn=attackMalformed-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
objectclass:ibm-idsConditionAuxClass
objectclass:ibm-idsAttackConditionAuxClass
cn:condassoc1
ibm-policyConditionName:attackMalformed-condition
ibm-policyConditionGroupNumber:1
ibm-policyConditionNegated:FALSE
ibm-idsConditionType:ATTACK
ibm-idsAttackType:MALFORMED_PACKET
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Rule-specific condition - attack type

dn:cn=actassoc1, cn=attackMalformed-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleActionAssociation
cn:actassoc1
ibm-policyActionName:attackMalformed-action
ibm-policyActionOrder:1
ibm-policyActionDN:cn=attackact1, cn=IDSact, cn=repository, o=IBM, c=US
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Represents reusable action - attack action 1

dn:cn=attackFlood-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRule
cn:attackFlood-rule
ibm-policyRuleName:AttackFlood-rule
ibm-policyRuleConditionListType:1
ibm-policyRuleEnabled:1
ibm-policyRulePriority:2
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Example of IDS attack rule for Floods

dn:cn=condassoc1, cn=attackFlood-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
objectclass:ibm-idsConditionAuxClass
objectclass:ibm-idsAttackConditionAuxClass
cn:condassoc1
ibm-policyConditionName:attackFlood-condition
ibm-policyConditionGroupNumber:1
ibm-policyConditionNegated:FALSE
ibm-idsConditionType:ATTACK
ibm-idsAttackType:FLOOD
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Rule-specific condition - attack type

dn:cn=actassoc1, cn=attackFlood-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleActionAssociation
objectclass:ibm-idsActionAuxClass
objectclass:ibm-idsNotificationAuxClass

Appendix F. Using an LDAP server for policy definitions 1545

objectclass:ibm-idsAttackActionsAuxClass
objectclass:ibm-idsFloodAttackActionsAuxClass
cn:actassoc1
ibm-policyActionName:attackFlood-action
ibm-policyActionOrder:1
ibm-idsActionType:ATTACK
ibm-idsTypeActions:LOG
ibm-idsNotification:SYSLOG
ibm-idsLoggingLevel:1
ibm-idsTypeActions:EXCEPTSTATS
ibm-idsStatInterval:60
ibm-idsTraceData:RECORDSIZE
ibm-idsTraceRecordSize:200
ibm-idsIfcFloodPercentage:10
ibm-idsIfcFloodMinDiscard:1000
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Rule-specific action - LOG(SYSLOG(1) NOCONSOLE) EXCEPTSTATS(60) TRACE(200)
dn:cn=attackICMPRedirect-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRule
cn:attackICMPRedirect-rule
ibm-policyRuleName:AttackICMPRedirect-rule
ibm-policyRuleConditionListType:1
ibm-policyRuleEnabled:1
ibm-policyRulePriority:2
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Example of IDS attack rule for ICMP Redirect

dn:cn=condassoc1, cn=attackICMPRedirect-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
objectclass:ibm-idsConditionAuxClass
objectclass:ibm-idsAttackConditionAuxClass
cn:condassoc1
ibm-policyConditionName:attackICMPRedirect-condition
ibm-policyConditionGroupNumber:1
ibm-policyConditionNegated:FALSE
ibm-idsConditionType:ATTACK
ibm-idsAttackType:ICMP_REDIRECT
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Rule-specific condition - attack type

dn:cn=actassoc1, cn=attackICMPRedirect-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleActionAssociation
cn:actassoc1
ibm-policyActionName:attackICMPRedirect-action
ibm-policyActionOrder:1
ibm-policyActionDN:cn=attackact1, cn=IDSact, cn=repository, o=IBM, c=US
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Represents reusable action - attack action 1

dn:cn=attackIpFragment-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRule
cn:attackIpFragment-rule
ibm-policyRuleName:AttackIpFragment-rule
ibm-policyRuleConditionListType:1
ibm-policyRuleEnabled:1
ibm-policyRulePriority:2
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Example of IDS attack rule for IP fragment restriction

dn:cn=condassoc1, cn=attackIpFragment-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
objectclass:ibm-idsConditionAuxClass
objectclass:ibm-idsAttackConditionAuxClass
cn:condassoc1
ibm-policyConditionName:attackIpFragment-condition
ibm-policyConditionGroupNumber:1

1546 z/OS V1R12.0 Comm Svr: IP Configuration Guide

ibm-policyConditionNegated:FALSE
ibm-idsConditionType:ATTACK
ibm-idsAttackType:IP_FRAGMENT
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Rule-specific condition - attack type

dn:cn=actassoc1, cn=attackIpFragment-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleActionAssociation
cn:actassoc1
ibm-policyActionName:attackIpFragment-action
ibm-policyActionOrder:1
ibm-policyActionDN:cn=attackact1, cn=IDSact, cn=repository, o=IBM, c=US
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Represents reusable action - attack action 1

dn:cn=attackIpProt-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRule
cn:attackIpProt-rule
ibm-policyRuleName:AttackIPprot-rule
ibm-policyRuleConditionListType:1
ibm-policyRuleEnabled:1
ibm-policyRulePriority:2
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Example of IDS attack rule for restricted protocol

dn:cn=condassoc1, cn=attackIpProt-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
cn:condassoc1
ibm-policyConditionName:AttackIPprot-condition1
ibm-policyConditionGroupNumber:1
ibm-policyConditionNegated:FALSE
ibm-policyConditionDN:cn=attackIpProtcond1, cn=IDScond, cn=repository, o=IBM, c=US
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Represents first reusable DNF condition at level 1

dn:cn=condassoc1a, cn=attackIpProt-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
cn:condassoc1a
ibm-policyConditionName:AttackIPprot-condition1a
ibm-policyConditionGroupNumber:1
ibm-policyConditionNegated:TRUE
ibm-policyConditionDN:cn=IpProtICMP, cn=IDScond, cn=repository, o=IBM, c=US
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Represents second reusable DNF condition at level 1 (negated) allow ICMP

dn:cn=condassoc1b, cn=attackIpProt-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
cn:condassoc1b
ibm-policyConditionName:AttackIPprot-condition1b
ibm-policyConditionGroupNumber:1
ibm-policyConditionNegated:TRUE
ibm-policyConditionDN:cn=IpProtTCP, cn=IDScond, cn=repository, o=IBM, c=US
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Represents third reusable DNF condition at level 1 (negated) allow TCP

dn:cn=condassoc1c, cn=attackIpProt-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
cn:condassoc1c
ibm-policyConditionName:AttackIPprot-condition1c
ibm-policyConditionGroupNumber:1
ibm-policyConditionNegated:TRUE
ibm-policyConditionDN:cn=IpProtUDP, cn=IDScond, cn=repository, o=IBM, c=US
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS

Appendix F. Using an LDAP server for policy definitions 1547

ibm-policyKeywords:POLICY
description:Represents fourth reusable DNF condition at level 1 (negated) allow UDP

dn:cn=actassoc1, cn=attackIpProt-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleActionAssociation
cn:actassoc1
ibm-policyActionName:AttackIPprot-action
ibm-policyActionOrder:1
ibm-policyActionDN:cn=attackact1, cn=IDSact, cn=repository, o=IBM, c=US
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Represents reusable action - attack action 1

dn:cn=attackOutboundRaw-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRule
cn:attackOutboundRaw-rule
ibm-policyRuleName:AttackOutboundRaw-rule
ibm-policyRuleConditionListType:1
ibm-policyRuleEnabled:1
ibm-policyRulePriority:2
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Example of IDS attack rule for Outbound Raw restrictions

dn:cn=condassoc1, cn=attackOutboundRaw-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
cn:condassoc1
ibm-policyConditionName:AttackOutboundRaw-condition1
ibm-policyConditionGroupNumber:1
ibm-policyConditionNegated:FALSE
ibm-policyConditionDN:cn=attackOutboundRawcond1, cn=IDScond, cn=repository, o=IBM, c=US
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Represents first reusable DNF condition at level 1

dn:cn=condassoc1a, cn=attackOutboundRaw-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
cn:condassoc1a
ibm-policyConditionName:AttackOutboundRaw-condition1a
ibm-policyConditionGroupNumber:1
ibm-policyConditionNegated:TRUE
ibm-policyConditionDN:cn=IpProtICMP, cn=IDScond, cn=repository, o=IBM, c=US
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Represents second reusable DNF condition at level 1 (negated) allow ICMP

dn:cn=condassoc1b, cn=attackOutboundRaw-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
cn:condassoc1b
ibm-policyConditionName:AttackOutboundRaw-condition1b
ibm-policyConditionGroupNumber:1
ibm-policyConditionNegated:TRUE
ibm-policyConditionDN:cn=IpProtUDP, cn=IDScond, cn=repository, o=IBM, c=US
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Represents third reusable DNF condition at level 1 (negated) allow UDP

dn:cn=condassoc1c, cn=attackOutboundRaw-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
cn:condassoc1c
ibm-policyConditionName:AttackOutboundRaw-condition1c
ibm-policyConditionGroupNumber:1
ibm-policyConditionNegated:TRUE
ibm-policyConditionDN:cn=IpProtIGMP, cn=IDScond, cn=repository, o=IBM, c=US
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Represents fourth reusable DNF condition at level 1 (negated) allow IGMP

dn:cn=condassoc1d, cn=attackOutboundRaw-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation

1548 z/OS V1R12.0 Comm Svr: IP Configuration Guide

cn:condassoc1d
ibm-policyConditionName:AttackOutboundRaw-condition1d
ibm-policyConditionGroupNumber:1
ibm-policyConditionNegated:TRUE
ibm-policyConditionDN:cn=IpProtOSPFIGP, cn=IDScond, cn=repository, o=IBM, c=US
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Represents fifth reusable DNF condition at level 1 (negated) allow OSPFIGP

dn:cn=actassoc1, cn=attackOutboundRaw-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleActionAssociation
cn:actassoc1
ibm-policyActionName:AttackOutboundRaw-action
ibm-policyActionOrder:1
ibm-policyActionDN:cn=attackact1, cn=IDSact, cn=repository, o=IBM, c=US
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Represents reusable action - attack action 1

dn: cn=attackact1, cn=IDSact, cn=repository, o=IBM, c=US
objectclass:ibm-policyActionInstance
objectclass:ibm-idsActionAuxClass
objectclass:ibm-idsNotificationAuxClass
objectclass:ibm-idsAttackActionsAuxClass
cn:attackact1
ibm-policyActionName:AttackLog-action
ibm-idsActionType:ATTACK
ibm-idsTypeActions:LOG
ibm-idsNotification:SYSLOG
ibm-idsLoggingLevel:1
ibm-idsTypeActions:EXCEPTSTATS
ibm-idsStatInterval:60
ibm-idsTraceData:RECORDSIZE
ibm-idsTraceRecordSize:200
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:IDS common attack action - LOG(SYSLOG(1) NOCONSOLE) NOLIMIT
description:IDS common attack action - EXECPTSTATS(60) TRACE(200)

dn:cn=attackIpProtcond1, cn=IDScond, cn=repository, o=IBM, c=US
objectclass:ibm-policyConditionInstance
objectclass:ibm-idsConditionAuxClass
objectclass:ibm-idsAttackConditionAuxClass
cn:attackIpProtcond1
ibm-policyConditionName:AttackIPprot-condition1
ibm-idsConditionType:ATTACK
ibm-idsAttackType:RESTRICTED_IP_PROTOCOL
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Reusable IDS attack condition 1 for restricted IP protocol

dn:cn=attackOutboundRawcond1, cn=IDScond, cn=repository, o=IBM, c=US
objectclass:ibm-policyConditionInstance
objectclass:ibm-idsConditionAuxClass
objectclass:ibm-idsAttackConditionAuxClass
cn:attackOutboundRawcond1
ibm-policyConditionName:AttackOutboundRaw-condition1
ibm-idsConditionType:ATTACK
ibm-idsAttackType:OUTBOUND_RAW
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Reusable IDS attack condition 1 for Outbound Raw restrictions

dn:cn=IpProtICMP, cn=IDScond, cn=repository, o=IBM, c=US
objectclass:ibm-policyConditionInstance
objectclass:ibm-idsConditionAuxClass
objectclass:ibm-idsTransportConditionAuxClass
cn:IpProtICMP
ibm-policyConditionName:IpProtICMP
ibm-idsConditionType:ATTACK
ibm-idsProtocolRange:1

Appendix F. Using an LDAP server for policy definitions 1549

ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Reusable IDS condition for IP protocol ICMP

dn:cn=IpProtIGMP, cn=IDScond, cn=repository, o=IBM, c=US
objectclass:ibm-policyConditionInstance
objectclass:ibm-idsConditionAuxClass
objectclass:ibm-idsTransportConditionAuxClass
cn:IpProtIGMP
ibm-policyConditionName:IpProtIGMP
ibm-idsConditionType:ATTACK
ibm-idsProtocolRange:2
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Reusable IDS condition for IP protocol IGMP

dn:cn=IpProtTCP, cn=IDScond, cn=repository, o=IBM, c=US
objectclass:ibm-policyConditionInstance
objectclass:ibm-idsConditionAuxClass
objectclass:ibm-idsTransportConditionAuxClass
cn:IpProtTCP
ibm-policyConditionName:IpProtTCP
ibm-idsConditionType:ATTACK
ibm-idsProtocolRange:6
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Reusable IDS condition for IP protocol TCP

dn:cn=IpProtUDP, cn=IDScond, cn=repository, o=IBM, c=US
objectclass:ibm-policyConditionInstance
objectclass:ibm-idsConditionAuxClass
objectclass:ibm-idsTransportConditionAuxClass
cn:IpProtUDP
ibm-policyConditionName:IpProtUDP
ibm-idsConditionType:ATTACK
ibm-idsProtocolRange:17
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Reusable IDS condition for IP protocol UDP

dn:cn=IpProtOSPFIGP, cn=IDScond, cn=repository, o=IBM, c=US
objectclass:ibm-policyConditionInstance
objectclass:ibm-idsConditionAuxClass
objectclass:ibm-idsTransportConditionAuxClass
cn:IpProtOSPFIGP
ibm-policyConditionName:IpProtOSPFIGP
ibm-idsConditionType:ATTACK
ibm-idsProtocolRange:89
ibm-policyKeywords:Attack
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Reusable IDS condition for IP protocol OSPFIGP

IDS TCP traffic regulation policy example
dn:cn=trtcp-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRule
cn:trtcp-rule
ibm-policyRuleName:TRtcp-rule
ibm-policyRuleConditionListType:1
ibm-policyRuleEnabled:1
ibm-policyRuleConditionListDN:cn=condassoc1,cn=trtcp-rule,cn=IDS,cn=starter,

ou=policy,o=IBM,c=US
ibm-policyRuleActionListDN:cn=actassoc1,cn=trtcp-rule,cn=IDS,cn=starter,

ou=policy,o=IBM,c=US
ibm-policyRulePriority:2
ibm-policyKeywords:TR
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY

1550 z/OS V1R12.0 Comm Svr: IP Configuration Guide

description:Example of IDS TR TCP rule

dn:cn=condassoc1, cn=trtcp-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
cn:condassoc1
ibm-policyConditionName:TRtcp-condition1
ibm-policyConditionGroupNumber:1
ibm-policyConditionNegated:FALSE
ibm-policyConditionDN:cn=TrTcpLowPorts, cn=IDScond, cn=repository, o=IBM, c=US
ibm-policyKeywords:TR
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Represents reusable condition - TR TCP low ports

dn:cn=actassoc1, cn=trtcp-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleActionAssociation
cn:actassoc1
ibm-policyActionName:TRtcp-action
ibm-policyActionOrder:1
ibm-policyActionDN:cn=trtcpact1, cn=IDSact, cn=repository, o=IBM, c=US
ibm-policyKeywords:TR
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Represents reusable action - TR TCP action 1

dn:cn=trtcpWeb-rule, cn=IDS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyRule
cn:trtcpWeb-rule
ibm-policyRuleName:trtcpWeb-rule
ibm-policyRuleConditionListType:1
ibm-policyRuleEnabled:1
ibm-policyRuleConditionListDN:cn=condassoc1,cn=trtcpWeb-rule,cn=IDS,cn=advanced,

ou=policy, o=IBM,c=US
ibm-policyRuleActionListDN:cn=actassoc1,cn=trtcpWeb-rule,cn=IDS,cn=advanced,

ou=policy,o=IBM,c=US
ibm-policyRuleValidityPeriodList:cn=period1, cn=time, cn=repository, o=IBM, c=US
ibm-policyRulePriority:7
ibm-policyKeywords:TR
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Example of IDS TR TCP rule with limit

dn:cn=condassoc1, cn=trtcpWeb-rule, cn=IDS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
cn:condassoc1
ibm-policyConditionName:TRtcpWeb-condition1
ibm-policyConditionGroupNumber:1
ibm-policyConditionNegated:FALSE
ibm-policyConditionDN:cn=TrTcpWebPort, cn=IDScond, cn=repository, o=IBM, c=US
ibm-policyKeywords:TR
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Represents reusable condition - TR TCP web port

dn:cn=actassoc1, cn=trtcpWeb-rule, cn=IDS, cn=advanced, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleActionAssociation
cn:actassoc1
ibm-policyActionName:TRtcpWeb-action
ibm-policyActionOrder:1
ibm-policyActionDN:cn=trtcpact2, cn=IDSact, cn=repository, o=IBM, c=US
ibm-policyKeywords:TR
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Represents reusable action - TR TCP action 2

dn: cn=trtcpact1, cn=IDSact, cn=repository, o=IBM, c=US
objectclass:ibm-policyActionInstance

Appendix F. Using an LDAP server for policy definitions 1551

objectclass:ibm-idsActionAuxClass
objectclass:ibm-idsNotificationAuxClass
objectclass:ibm-idsTRtcpActionAuxClass
cn:trtcpact1
ibm-policyActionName:TRtcpLog-action
ibm-idsActionType:TR
ibm-idsTypeActions:LOG
ibm-idsNotification:SYSLOG
ibm-idsLoggingLevel:4
ibm-idsTypeActions:STATISTICS
ibm-idsStatInterval:60
ibm-policyKeywords:TR
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:IDS TR TCP action TCP(64K,100%) LOG(SYSLOG(4) NOCONSOLE) NOLIMIT
description:TRACE(HEADER) STATISTICS(60)

dn:cn=trtcpact2, cn=IDSact, cn=repository, o=IBM, c=US
objectclass:ibm-policyActionInstance
objectclass:ibm-idsActionAuxClass
objectclass:ibm-idsNotificationAuxClass
objectclass:ibm-idsTRtcpActionAuxClass
cn:trtcpact2
ibm-policyActionName:TRtcpLimit-action
ibm-idsActionType:TR
ibm-idsTypeActions:LIMIT
ibm-idsTypeActions:LOG
ibm-idsNotification:SYSLOG
ibm-idsLoggingLevel:4
ibm-idsTypeActions:EXCEPTSTATS
ibm-idsStatInterval:60
ibm-idsTRtcpTotalConnections:1000
ibm-idsTRtcpPercentage:10
ibm-policyKeywords:TR
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:IDS TR TCP action TCP(1K,10%) LOG(SYSLOG(4) NOCONSOLE) LIMIT
description:TRACE(HEADER) EXCEPTSTATS(60)

dn:cn=TrTcpLowPorts, cn=IDScond, cn=repository, o=IBM, c=US
objectclass:ibm-policyConditionInstance
objectclass:ibm-idsConditionAuxClass
ibm-idsConditionType:TR
objectclass:ibm-idsTrafficRegulationConditionAuxClass
objectclass:ibm-idsTransportConditionAuxClass
cn:TrTcpLowPorts
ibm-policyConditionName:TrTcpLowPorts-condition
ibm-idsProtocolRange:6
ibm-idsLocalPortRange:1-1023
ibm-policyKeywords:TR
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Reusable IDS TR TCP Low Ports condition

dn:cn=TrTcpWebPort, cn=IDScond, cn=repository, o=IBM, c=US
objectclass:ibm-policyConditionInstance
objectclass:ibm-idsConditionAuxClass
ibm-idsConditionType:TR
objectclass:ibm-idsTrafficRegulationConditionAuxClass
objectclass:ibm-idsHostConditionAuxClass
objectclass:ibm-idsTransportConditionAuxClass
cn:TrTcpWebPort
ibm-policyConditionName:TrTcpWebPort-condition
ibm-idsProtocolRange:6
ibm-idsLocalPortRange:80
ibm-idsLocalHostIPAddress:3-10.14.243.87
ibm-policyKeywords:TR

1552 z/OS V1R12.0 Comm Svr: IP Configuration Guide

ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Reusable IDS TR TCP Web Port condition

IDS UDP traffic regulation policy example
dn:cn=trudp-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRule
cn:trudp-rule
ibm-policyRuleName:TRudp-rule
ibm-policyRuleConditionListType:1
ibm-policyRuleEnabled:1
ibm-policyRuleConditionListDN:cn=condassoc1,cn=trudp-rule,cn=IDS,cn=starter,

ou=policy,o=IBM,c=US
ibm-policyRuleActionListDN:cn=actassoc1,cn=trudp-rule,cn=IDS,cn=starter,

ou=policy,o=IBM,c=US
ibm-policyRulePriority:2
ibm-policyKeywords:TR
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Example of IDS TR UDP rule

dn:cn=condassoc1, cn=trudp-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleConditionAssociation
cn:condassoc1
ibm-policyConditionName:TRudp-condition1
ibm-policyConditionGroupNumber:7
ibm-policyConditionNegated:FALSE
ibm-policyConditionDN:cn=TrUdpLowPorts, cn=IDScond, cn=repository, o=IBM, c=US
ibm-policyKeywords:TR
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Represents reusable condition - TR UDP low ports

dn:cn=actassoc1, cn=trudp-rule, cn=IDS, cn=starter, ou=policy, o=IBM, c=US
objectclass:ibm-policyRuleActionAssociation
cn:actassoc1
ibm-policyActionName:TRudp-action
ibm-policyActionOrder:1
ibm-policyActionDN:cn=trudpact1, cn=IDSact, cn=repository, o=IBM, c=US
ibm-policyKeywords:TR
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Represents reusable action - TR UDP action 1

dn: cn=trudpact1, cn=IDSact, cn=repository, o=IBM, c=US
objectclass:ibm-policyActionInstance
objectclass:ibm-idsActionAuxClass
objectclass:ibm-idsNotificationAuxClass
objectclass:ibm-idsTRudpActionAuxClass
cn:trudpact1
ibm-policyActionName:TRudpLog-action
ibm-idsActionType:TR
ibm-idsTypeActions:LOG
ibm-idsTypeActions:LIMIT
ibm-idsNotification:SYSLOG
ibm-idsLoggingLevel:4
ibm-idsTypeActions:STATISTICS
ibm-idsStatInterval:60
ibm-idsTRudpQueueSize:LONG
ibm-policyKeywords:TR
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:IDS TR UDP action UDPQ(LONG) LOG(SYSLOG(4) NOCONSOLE) LIMIT
description:TRACE(HEADER) STATISTICS(60)
dn:cn=TrUdpLowPorts, cn=IDScond, cn=repository, o=IBM, c=US
objectclass:ibm-policyConditionInstance

Appendix F. Using an LDAP server for policy definitions 1553

objectclass:ibm-idsConditionAuxClass
ibm-idsConditionType:TR
objectclass:ibm-idsTrafficRegulationConditionAuxClass
objectclass:ibm-idsTransportConditionAuxClass
cn:TrUdpLowPorts
ibm-policyConditionName:TrUdpLowPorts-condition
ibm-idsProtocolRange:17
ibm-idsLocalPortRange:1-1023
ibm-policyKeywords:TR
ibm-policyKeywords:IDS
ibm-policyKeywords:POLICY
description:Reusable IDS TR UDP Low Ports condition

1554 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Appendix G. Related protocol specifications

This appendix lists the related protocol specifications (RFCs) for TCP/IP. The
Internet Protocol suite is still evolving through requests for comments (RFC). New
protocols are being designed and implemented by researchers and are brought to
the attention of the Internet community in the form of RFCs. Some of these
protocols are so useful that they become recommended protocols. That is, all future
implementations for TCP/IP are recommended to implement these particular
functions or protocols. These become the de facto standards, on which the TCP/IP
protocol suite is built.

You can request RFCs through electronic mail, from the automated Network
Information Center (NIC) mail server, by sending a message to
service@nic.ddn.mil with a subject line of RFC nnnn for text versions or a subject
line of RFC nnnn.PS for PostScript versions. To request a copy of the RFC index,
send a message with a subject line of RFC INDEX.

For more information, contact nic@nic.ddn.mil or at:

Government Systems, Inc.
Attn: Network Information Center
14200 Park Meadow Drive
Suite 200
Chantilly, VA 22021

Hard copies of all RFCs are available from the NIC, either individually or by
subscription. Online copies are available at the following Web address:
http://www.rfc-editor.org/rfc.html.

See “Internet drafts” on page 1571 for draft RFCs implemented in this and
previous Communications Server releases.

Many features of TCP/IP Services are based on the following RFCs:

RFC Title and Author

RFC 652 Telnet output carriage-return disposition option D. Crocker

RFC 653 Telnet output horizontal tabstops option D. Crocker

RFC 654 Telnet output horizontal tab disposition option D. Crocker

RFC 655 Telnet output formfeed disposition option D. Crocker

RFC 657 Telnet output vertical tab disposition option D. Crocker

RFC 658 Telnet output linefeed disposition D. Crocker

RFC 698 Telnet extended ASCII option T. Mock

RFC 726 Remote Controlled Transmission and Echoing Telnet option J. Postel, D.
Crocker

RFC 727 Telnet logout option M.R. Crispin

RFC 732 Telnet Data Entry Terminal option J.D. Day

RFC 733 Standard for the format of ARPA network text messages D. Crocker, J.
Vittal, K.T. Pogran, D.A. Henderson

© Copyright IBM Corp. 2000, 2011 1555

http://www.rfc-editor.org/rfc.html

RFC 734 SUPDUP Protocol M.R. Crispin

RFC 735 Revised Telnet byte macro option D. Crocker, R.H. Gumpertz

RFC 736 Telnet SUPDUP option M.R. Crispin

RFC 749 Telnet SUPDUP—Output option B. Greenberg

RFC 765 File Transfer Protocol specification J. Postel

RFC 768 User Datagram Protocol J. Postel

RFC 779 Telnet send-location option E. Killian

RFC 783 TFTP Protocol (revision 2) K.R. Sollins

RFC 791 Internet Protocol J. Postel

RFC 792 Internet Control Message Protocol J. Postel

RFC 793 Transmission Control Protocol J. Postel

RFC 820 Assigned numbers J. Postel

RFC 821 Simple Mail Transfer Protocol J. Postel

RFC 822 Standard for the format of ARPA Internet text messages D. Crocker

RFC 823 DARPA Internet gateway R. Hinden, A. Sheltzer

RFC 826 Ethernet Address Resolution Protocol: Or converting network protocol
addresses to 48.bit Ethernet address for transmission on Ethernet
hardware D. Plummer

RFC 854 Telnet Protocol Specification J. Postel, J. Reynolds

RFC 855 Telnet Option Specification J. Postel, J. Reynolds

RFC 856 Telnet Binary Transmission J. Postel, J. Reynolds

RFC 857 Telnet Echo Option J. Postel, J. Reynolds

RFC 858 Telnet Suppress Go Ahead Option J. Postel, J. Reynolds

RFC 859 Telnet Status Option J. Postel, J. Reynolds

RFC 860 Telnet Timing Mark Option J. Postel, J. Reynolds

RFC 861 Telnet Extended Options: List Option J. Postel, J. Reynolds

RFC 862 Echo Protocol J. Postel

RFC 863 Discard Protocol J. Postel

RFC 864 Character Generator Protocol J. Postel

RFC 865 Quote of the Day Protocol J. Postel

RFC 868 Time Protocol J. Postel, K. Harrenstien

RFC 877 Standard for the transmission of IP datagrams over public data networks
J.T. Korb

RFC 883 Domain names: Implementation specification P.V. Mockapetris

RFC 884 Telnet terminal type option M. Solomon, E. Wimmers

RFC 885 Telnet end of record option J. Postel

RFC 894 Standard for the transmission of IP datagrams over Ethernet networks C.
Hornig

RFC 896 Congestion control in IP/TCP internetworks J. Nagle

1556 z/OS V1R12.0 Comm Svr: IP Configuration Guide

RFC 903 Reverse Address Resolution Protocol R. Finlayson, T. Mann, J. Mogul,
M. Theimer

RFC 904 Exterior Gateway Protocol formal specification D. Mills

RFC 919 Broadcasting Internet Datagrams J. Mogul

RFC 922 Broadcasting Internet datagrams in the presence of subnets J. Mogul

RFC 927 TACACS user identification Telnet option B.A. Anderson

RFC 933 Output marking Telnet option S. Silverman

RFC 946 Telnet terminal location number option R. Nedved

RFC 950 Internet Standard Subnetting Procedure J. Mogul, J. Postel

RFC 952 DoD Internet host table specification K. Harrenstien, M. Stahl, E.
Feinler

RFC 959 File Transfer Protocol J. Postel, J.K. Reynolds

RFC 961 Official ARPA-Internet protocols J.K. Reynolds, J. Postel

RFC 974 Mail routing and the domain system C. Partridge

RFC 1001 Protocol standard for a NetBIOS service on a TCP/UDP transport:
Concepts and methods NetBios Working Group in the Defense
Advanced Research Projects Agency, Internet Activities Board,
End-to-End Services Task Force

RFC 1002 Protocol Standard for a NetBIOS service on a TCP/UDP transport:
Detailed specifications NetBios Working Group in the Defense
Advanced Research Projects Agency, Internet Activities Board,
End-to-End Services Task Force

RFC 1006 ISO transport services on top of the TCP: Version 3 M.T. Rose, D.E.
Cass

RFC 1009 Requirements for Internet gateways R. Braden, J. Postel

RFC 1011 Official Internet protocols J. Reynolds, J. Postel

RFC 1013 X Window System Protocol, version 11: Alpha update April 1987 R.
Scheifler

RFC 1014 XDR: External Data Representation standard Sun Microsystems

RFC 1027 Using ARP to implement transparent subnet gateways S. Carl-Mitchell,
J. Quarterman

RFC 1032 Domain administrators guide M. Stahl

RFC 1033 Domain administrators operations guide M. Lottor

RFC 1034 Domain names—concepts and facilities P.V. Mockapetris

RFC 1035 Domain names—implementation and specification P.V. Mockapetris

RFC 1038 Draft revised IP security option M. St. Johns

RFC 1041 Telnet 3270 regime option Y. Rekhter

RFC 1042 Standard for the transmission of IP datagrams over IEEE 802 networks J.
Postel, J. Reynolds

RFC 1043 Telnet Data Entry Terminal option: DODIIS implementation A. Yasuda,
T. Thompson

Appendix G. Related protocol specifications 1557

RFC 1044 Internet Protocol on Network System’s HYPERchannel: Protocol
specification K. Hardwick, J. Lekashman

RFC 1053 Telnet X.3 PAD option S. Levy, T. Jacobson

RFC 1055 Nonstandard for transmission of IP datagrams over serial lines: SLIP J.
Romkey

RFC 1057 RPC: Remote Procedure Call Protocol Specification: Version 2 Sun
Microsystems

RFC 1058 Routing Information Protocol C. Hedrick

RFC 1060 Assigned numbers J. Reynolds, J. Postel

RFC 1067 Simple Network Management Protocol J.D. Case, M. Fedor, M.L.
Schoffstall, J. Davin

RFC 1071 Computing the Internet checksum R.T. Braden, D.A. Borman, C.
Partridge

RFC 1072 TCP extensions for long-delay paths V. Jacobson, R.T. Braden

RFC 1073 Telnet window size option D. Waitzman

RFC 1079 Telnet terminal speed option C. Hedrick

RFC 1085 ISO presentation services on top of TCP/IP based internets M.T. Rose

RFC 1091 Telnet terminal-type option J. VanBokkelen

RFC 1094 NFS: Network File System Protocol specification Sun Microsystems

RFC 1096 Telnet X display location option G. Marcy

RFC 1101 DNS encoding of network names and other types P. Mockapetris

RFC 1112 Host extensions for IP multicasting S.E. Deering

RFC 1113 Privacy enhancement for Internet electronic mail: Part I — message
encipherment and authentication procedures J. Linn

RFC 1118 Hitchhikers Guide to the Internet E. Krol

RFC 1122 Requirements for Internet Hosts—Communication Layers R. Braden,
Ed.

RFC 1123 Requirements for Internet Hosts—Application and Support R. Braden,
Ed.

RFC 1146 TCP alternate checksum options J. Zweig, C. Partridge

RFC 1155 Structure and identification of management information for TCP/IP-based
internets M. Rose, K. McCloghrie

RFC 1156 Management Information Base for network management of TCP/IP-based
internets K. McCloghrie, M. Rose

RFC 1157 Simple Network Management Protocol (SNMP) J. Case, M. Fedor, M.
Schoffstall, J. Davin

RFC 1158 Management Information Base for network management of TCP/IP-based
internets: MIB-II M. Rose

RFC 1166 Internet numbers S. Kirkpatrick, M.K. Stahl, M. Recker

RFC 1179 Line printer daemon protocol L. McLaughlin

RFC 1180 TCP/IP tutorial T. Socolofsky, C. Kale

1558 z/OS V1R12.0 Comm Svr: IP Configuration Guide

RFC 1183 New DNS RR Definitions C.F. Everhart, L.A. Mamakos, R. Ullmann,
P.V. Mockapetris

RFC 1184 Telnet Linemode Option D. Borman

RFC 1186 MD4 Message Digest Algorithm R.L. Rivest

RFC 1187 Bulk Table Retrieval with the SNMP M. Rose, K. McCloghrie, J. Davin

RFC 1188 Proposed Standard for the Transmission of IP Datagrams over FDDI
Networks D. Katz

RFC 1190 Experimental Internet Stream Protocol: Version 2 (ST-II) C. Topolcic

RFC 1191 Path MTU discovery J. Mogul, S. Deering

RFC 1198 FYI on the X window system R. Scheifler

RFC 1207 FYI on Questions and Answers: Answers to commonly asked
“experienced Internet user” questions G. Malkin, A. Marine, J.
Reynolds

RFC 1208 Glossary of networking terms O. Jacobsen, D. Lynch

RFC 1213 Management Information Base for Network Management of
TCP/IP-based internets: MIB-II K. McCloghrie, M.T. Rose

RFC 1215 Convention for defining traps for use with the SNMP M. Rose

RFC 1227 SNMP MUX protocol and MIB M.T. Rose

RFC 1228 SNMP-DPI: Simple Network Management Protocol Distributed Program
Interface G. Carpenter, B. Wijnen

RFC 1229 Extensions to the generic-interface MIB K. McCloghrie

RFC 1230 IEEE 802.4 Token Bus MIB K. McCloghrie, R. Fox

RFC 1231 IEEE 802.5 Token Ring MIB K. McCloghrie, R. Fox, E. Decker

RFC 1236 IP to X.121 address mapping for DDN L. Morales, P. Hasse

RFC 1256 ICMP Router Discovery Messages S. Deering, Ed.

RFC 1267 Border Gateway Protocol 3 (BGP-3) K. Lougheed, Y. Rekhter

RFC 1268 Application of the Border Gateway Protocol in the Internet Y. Rekhter, P.
Gross

RFC 1269 Definitions of Managed Objects for the Border Gateway Protocol: Version
3 S. Willis, J. Burruss

RFC 1270 SNMP Communications Services F. Kastenholz, ed.

RFC 1285 FDDI Management Information Base J. Case

RFC 1315 Management Information Base for Frame Relay DTEs C. Brown, F.
Baker, C. Carvalho

RFC 1321 The MD5 Message-Digest Algorithm R. Rivest

RFC 1323 TCP Extensions for High Performance V. Jacobson, R. Braden, D.
Borman

RFC 1325 FYI on Questions and Answers: Answers to Commonly Asked "New
Internet User" Questions G. Malkin, A. Marine

RFC 1327 Mapping between X.400 (1988)/ISO 10021 and RFC 822 S.
Hardcastle-Kille

Appendix G. Related protocol specifications 1559

RFC 1340 Assigned Numbers J. Reynolds, J. Postel

RFC 1344 Implications of MIME for Internet Mail Gateways N. Bornstein

RFC 1349 Type of Service in the Internet Protocol Suite P. Almquist

RFC 1350 The TFTP Protocol (Revision 2) K.R. Sollins

RFC 1351 SNMP Administrative Model J. Davin, J. Galvin, K. McCloghrie

RFC 1352 SNMP Security Protocols J. Galvin, K. McCloghrie, J. Davin

RFC 1353 Definitions of Managed Objects for Administration of SNMP Parties K.
McCloghrie, J. Davin, J. Galvin

RFC 1354 IP Forwarding Table MIB F. Baker

RFC 1356 Multiprotocol Interconnect on X.25 and ISDN in the Packet Mode A.
Malis, D. Robinson, R. Ullmann

RFC 1358 Charter of the Internet Architecture Board (IAB) L. Chapin

RFC 1363 A Proposed Flow Specification C. Partridge

RFC 1368 Definition of Managed Objects for IEEE 802.3 Repeater Devices D.
McMaster, K. McCloghrie

RFC 1372 Telnet Remote Flow Control Option C. L. Hedrick, D. Borman

RFC 1374 IP and ARP on HIPPI J. Renwick, A. Nicholson

RFC 1381 SNMP MIB Extension for X.25 LAPB D. Throop, F. Baker

RFC 1382 SNMP MIB Extension for the X.25 Packet Layer D. Throop

RFC 1387 RIP Version 2 Protocol Analysis G. Malkin

RFC 1388 RIP Version 2 Carrying Additional Information G. Malkin

RFC 1389 RIP Version 2 MIB Extensions G. Malkin, F. Baker

RFC 1390 Transmission of IP and ARP over FDDI Networks D. Katz

RFC 1393 Traceroute Using an IP Option G. Malkin

RFC 1398 Definitions of Managed Objects for the Ethernet-Like Interface Types F.
Kastenholz

RFC 1408 Telnet Environment Option D. Borman, Ed.

RFC 1413 Identification Protocol M. St. Johns

RFC 1416 Telnet Authentication Option D. Borman, ed.

RFC 1420 SNMP over IPX S. Bostock

RFC 1428 Transition of Internet Mail from Just-Send-8 to 8bit-SMTP/MIME G.
Vaudreuil

RFC 1442 Structure of Management Information for version 2 of the Simple
Network Management Protocol (SNMPv2) J. Case, K. McCloghrie, M.
Rose, S. Waldbusser

RFC 1443 Textual Conventions for version 2 of the Simple Network Management
Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1445 Administrative Model for version 2 of the Simple Network Management
Protocol (SNMPv2) J. Galvin, K. McCloghrie

RFC 1447 Party MIB for version 2 of the Simple Network Management Protocol
(SNMPv2) K. McCloghrie, J. Galvin

1560 z/OS V1R12.0 Comm Svr: IP Configuration Guide

RFC 1448 Protocol Operations for version 2 of the Simple Network Management
Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1464 Using the Domain Name System to Store Arbitrary String Attributes R.
Rosenbaum

RFC 1469 IP Multicast over Token-Ring Local Area Networks T. Pusateri

RFC 1483 Multiprotocol Encapsulation over ATM Adaptation Layer 5 Juha
Heinanen

RFC 1514 Host Resources MIB P. Grillo, S. Waldbusser

RFC 1516 Definitions of Managed Objects for IEEE 802.3 Repeater Devices D.
McMaster, K. McCloghrie

RFC 1521 MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms
for Specifying and Describing the Format of Internet Message Bodies N.
Borenstein, N. Freed

RFC 1535 A Security Problem and Proposed Correction With Widely Deployed
DNS Software E. Gavron

RFC 1536 Common DNS Implementation Errors and Suggested Fixes A. Kumar, J.
Postel, C. Neuman, P. Danzig, S. Miller

RFC 1537 Common DNS Data File Configuration Errors P. Beertema

RFC 1540 Internet Official Protocol Standards J. Postel

RFC 1571 Telnet Environment Option Interoperability Issues D. Borman

RFC 1572 Telnet Environment Option S. Alexander

RFC 1573 Evolution of the Interfaces Group of MIB-II K. McCloghrie, F.
Kastenholz

RFC 1577 Classical IP and ARP over ATM M. Laubach

RFC 1583 OSPF Version 2 J. Moy

RFC 1591 Domain Name System Structure and Delegation J. Postel

RFC 1592 Simple Network Management Protocol Distributed Protocol Interface
Version 2.0 B. Wijnen, G. Carpenter, K. Curran, A. Sehgal, G. Waters

RFC 1594 FYI on Questions and Answers— Answers to Commonly Asked "New
Internet User" Questions A. Marine, J. Reynolds, G. Malkin

RFC 1644 T/TCP — TCP Extensions for Transactions Functional Specification R.
Braden

RFC 1646 TN3270 Extensions for LUname and Printer Selection C. Graves, T.
Butts, M. Angel

RFC 1647 TN3270 Enhancements B. Kelly

RFC 1652 SMTP Service Extension for 8bit-MIMEtransport J. Klensin, N. Freed,
M. Rose, E. Stefferud, D. Crocker

RFC 1664 Using the Internet DNS to Distribute RFC1327 Mail Address Mapping
Tables C. Allochio, A. Bonito, B. Cole, S. Giordano, R. Hagens

RFC 1693 An Extension to TCP: Partial Order Service T. Connolly, P. Amer, P.
Conrad

RFC 1695 Definitions of Managed Objects for ATM Management Version 8.0 using
SMIv2 M. Ahmed, K. Tesink

Appendix G. Related protocol specifications 1561

RFC 1701 Generic Routing Encapsulation (GRE) S. Hanks, T. Li, D. Farinacci, P.
Traina

RFC 1702 Generic Routing Encapsulation over IPv4 networks S. Hanks, T. Li, D.
Farinacci, P. Traina

RFC 1706 DNS NSAP Resource Records B. Manning, R. Colella

RFC 1712 DNS Encoding of Geographical Location C. Farrell, M. Schulze, S.
Pleitner D. Baldoni

RFC 1713 Tools for DNS debugging A. Romao

RFC 1723 RIP Version 2—Carrying Additional Information G. Malkin

RFC 1752 The Recommendation for the IP Next Generation Protocol S. Bradner, A.
Mankin

RFC 1766 Tags for the Identification of Languages H. Alvestrand

RFC 1771 A Border Gateway Protocol 4 (BGP-4) Y. Rekhter, T. Li

RFC 1794 DNS Support for Load Balancing T. Brisco

RFC 1819 Internet Stream Protocol Version 2 (ST2) Protocol Specification—Version
ST2+ L. Delgrossi, L. Berger Eds.

RFC 1826 IP Authentication Header R. Atkinson

RFC 1828 IP Authentication using Keyed MD5 P. Metzger, W. Simpson

RFC 1829 The ESP DES-CBC Transform P. Karn, P. Metzger, W. Simpson

RFC 1830 SMTP Service Extensions for Transmission of Large and Binary MIME
Messages G. Vaudreuil

RFC 1831 RPC: Remote Procedure Call Protocol Specification Version 2 R.
Srinivasan

RFC 1832 XDR: External Data Representation Standard R. Srinivasan

RFC 1833 Binding Protocols for ONC RPC Version 2 R. Srinivasan

RFC 1850 OSPF Version 2 Management Information Base F. Baker, R. Coltun

RFC 1854 SMTP Service Extension for Command Pipelining N. Freed

RFC 1869 SMTP Service Extensions J. Klensin, N. Freed, M. Rose, E. Stefferud,
D. Crocker

RFC 1870 SMTP Service Extension for Message Size Declaration J. Klensin, N.
Freed, K. Moore

RFC 1876 A Means for Expressing Location Information in the Domain Name
System C. Davis, P. Vixie, T. Goodwin, I. Dickinson

RFC 1883 Internet Protocol, Version 6 (IPv6) Specification S. Deering, R. Hinden

RFC 1884 IP Version 6 Addressing Architecture R. Hinden, S. Deering, Eds.

RFC 1886 DNS Extensions to support IP version 6 S. Thomson, C. Huitema

RFC 1888 OSI NSAPs and IPv6 J. Bound, B. Carpenter, D. Harrington, J.
Houldsworth, A. Lloyd

RFC 1891 SMTP Service Extension for Delivery Status Notifications K. Moore

RFC 1892 The Multipart/Report Content Type for the Reporting of Mail System
Administrative Messages G. Vaudreuil

1562 z/OS V1R12.0 Comm Svr: IP Configuration Guide

RFC 1894 An Extensible Message Format for Delivery Status NotificationsK.
Moore, G. Vaudreuil

RFC 1901 Introduction to Community-based SNMPv2 J. Case, K. McCloghrie, M.
Rose, S. Waldbusser

RFC 1902 Structure of Management Information for Version 2 of the Simple
Network Management Protocol (SNMPv2) J. Case, K. McCloghrie, M.
Rose, S. Waldbusser

RFC 1903 Textual Conventions for Version 2 of the Simple Network Management
Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1904 Conformance Statements for Version 2 of the Simple Network
Management Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S.
Waldbusser

RFC 1905 Protocol Operations for Version 2 of the Simple Network Management
Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1906 Transport Mappings for Version 2 of the Simple Network Management
Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1907 Management Information Base for Version 2 of the Simple Network
Management Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S.
Waldbusser

RFC 1908 Coexistence between Version 1 and Version 2 of the Internet-standard
Network Management Framework J. Case, K. McCloghrie, M. Rose, S.
Waldbusser

RFC 1912 Common DNS Operational and Configuration Errors D. Barr

RFC 1918 Address Allocation for Private Internets Y. Rekhter, B. Moskowitz, D.
Karrenberg, G.J. de Groot, E. Lear

RFC 1928 SOCKS Protocol Version 5 M. Leech, M. Ganis, Y. Lee, R. Kuris, D.
Koblas, L. Jones

RFC 1930 Guidelines for creation, selection, and registration of an Autonomous
System (AS) J. Hawkinson, T. Bates

RFC 1939 Post Office Protocol-Version 3 J. Myers, M. Rose

RFC 1981 Path MTU Discovery for IP version 6 J. McCann, S. Deering, J. Mogul

RFC 1982 Serial Number Arithmetic R. Elz, R. Bush

RFC 1985 SMTP Service Extension for Remote Message Queue Starting J. De
Winter

RFC 1995 Incremental Zone Transfer in DNS M. Ohta

RFC 1996 A Mechanism for Prompt Notification of Zone Changes (DNS NOTIFY)
P. Vixie

RFC 2010 Operational Criteria for Root Name Servers B. Manning, P. Vixie

RFC 2011 SNMPv2 Management Information Base for the Internet Protocol using
SMIv2 K. McCloghrie, Ed.

RFC 2012 SNMPv2 Management Information Base for the Transmission Control
Protocol using SMIv2 K. McCloghrie, Ed.

RFC 2013 SNMPv2 Management Information Base for the User Datagram Protocol
using SMIv2 K. McCloghrie, Ed.

Appendix G. Related protocol specifications 1563

RFC 2018 TCP Selective Acknowledgement Options M. Mathis, J. Mahdavi, S.
Floyd, A. Romanow

RFC 2026 The Internet Standards Process — Revision 3 S. Bradner

RFC 2030 Simple Network Time Protocol (SNTP) Version 4 for IPv4, IPv6 and OSI
D. Mills

RFC 2033 Local Mail Transfer Protocol J. Myers

RFC 2034 SMTP Service Extension for Returning Enhanced Error CodesN. Freed

RFC 2040 The RC5, RC5–CBC, RC-5–CBC-Pad, and RC5–CTS AlgorithmsR.
Baldwin, R. Rivest

RFC 2045 Multipurpose Internet Mail Extensions (MIME) Part One: Format of
Internet Message Bodies N. Freed, N. Borenstein

RFC 2052 A DNS RR for specifying the location of services (DNS SRV) A.
Gulbrandsen, P. Vixie

RFC 2065 Domain Name System Security Extensions D. Eastlake 3rd, C.
Kaufman

RFC 2066 TELNET CHARSET Option R. Gellens

RFC 2080 RIPng for IPv6 G. Malkin, R. Minnear

RFC 2096 IP Forwarding Table MIB F. Baker

RFC 2104 HMAC: Keyed-Hashing for Message Authentication H. Krawczyk, M.
Bellare, R. Canetti

RFC 2119 Keywords for use in RFCs to Indicate Requirement Levels S. Bradner

RFC 2133 Basic Socket Interface Extensions for IPv6 R. Gilligan, S. Thomson, J.
Bound, W. Stevens

RFC 2136 Dynamic Updates in the Domain Name System (DNS UPDATE) P.
Vixie, Ed., S. Thomson, Y. Rekhter, J. Bound

RFC 2137 Secure Domain Name System Dynamic Update D. Eastlake 3rd

RFC 2163 Using the Internet DNS to Distribute MIXER Conformant Global
Address Mapping (MCGAM) C. Allocchio

RFC 2168 Resolution of Uniform Resource Identifiers using the Domain Name
System R. Daniel, M. Mealling

RFC 2178 OSPF Version 2 J. Moy

RFC 2181 Clarifications to the DNS Specification R. Elz, R. Bush

RFC 2205 Resource ReSerVation Protocol (RSVP)—Version 1 Functional
Specification R. Braden, Ed., L. Zhang, S. Berson, S. Herzog, S.
Jamin

RFC 2210 The Use of RSVP with IETF Integrated Services J. Wroclawski

RFC 2211 Specification of the Controlled-Load Network Element Service J.
Wroclawski

RFC 2212 Specification of Guaranteed Quality of Service S. Shenker, C. Partridge,
R. Guerin

RFC 2215 General Characterization Parameters for Integrated Service Network
Elements S. Shenker, J. Wroclawski

RFC 2217 Telnet Com Port Control Option G. Clarke

1564 z/OS V1R12.0 Comm Svr: IP Configuration Guide

RFC 2219 Use of DNS Aliases for Network Services M. Hamilton, R. Wright

RFC 2228 FTP Security Extensions M. Horowitz, S. Lunt

RFC 2230 Key Exchange Delegation Record for the DNS R. Atkinson

RFC 2233 The Interfaces Group MIB using SMIv2 K. McCloghrie, F. Kastenholz

RFC 2240 A Legal Basis for Domain Name Allocation O. Vaughn

RFC 2246 The TLS Protocol Version 1.0 T. Dierks, C. Allen

RFC 2251 Lightweight Directory Access Protocol (v3) M. Wahl, T. Howes, S. Kille

RFC 2253 Lightweight Directory Access Protocol (v3): UTF-8 String Representation
of Distinguished Names M. Wahl, S. Kille, T. Howes

RFC 2254 The String Representation of LDAP Search Filters T. Howes

RFC 2261 An Architecture for Describing SNMP Management Frameworks D.
Harrington, R. Presuhn, B. Wijnen

RFC 2262 Message Processing and Dispatching for the Simple Network
Management Protocol (SNMP) J. Case, D. Harrington, R. Presuhn, B.
Wijnen

RFC 2271 An Architecture for Describing SNMP Management Frameworks D.
Harrington, R. Presuhn, B. Wijnen

RFC 2273 SNMPv3 Applications D. Levi, P. Meyer, B. Stewartz

RFC 2274 User-based Security Model (USM) for version 3 of the Simple Network
Management Protocol (SNMPv3) U. Blumenthal, B. Wijnen

RFC 2275 View-based Access Control Model (VACM) for the Simple Network
Management Protocol (SNMP) B. Wijnen, R. Presuhn, K. McCloghrie

RFC 2279 UTF-8, a transformation format of ISO 10646 F. Yergeau

RFC 2292 Advanced Sockets API for IPv6 W. Stevens, M. Thomas

RFC 2308 Negative Caching of DNS Queries (DNS NCACHE) M. Andrews

RFC 2317 Classless IN-ADDR.ARPA delegation H. Eidnes, G. de Groot, P. Vixie

RFC 2320 Definitions of Managed Objects for Classical IP and ARP Over ATM
Using SMIv2 (IPOA-MIB) M. Greene, J. Luciani, K. White, T. Kuo

RFC 2328 OSPF Version 2 J. Moy

RFC 2345 Domain Names and Company Name Retrieval J. Klensin, T. Wolf, G.
Oglesby

RFC 2352 A Convention for Using Legal Names as Domain Names O. Vaughn

RFC 2355 TN3270 Enhancements B. Kelly

RFC 2358 Definitions of Managed Objects for the Ethernet-like Interface Types J.
Flick, J. Johnson

RFC 2373 IP Version 6 Addressing Architecture R. Hinden, S. Deering

RFC 2374 An IPv6 Aggregatable Global Unicast Address Format R. Hinden, M.
O'Dell, S. Deering

RFC 2375 IPv6 Multicast Address Assignments R. Hinden, S. Deering

RFC 2385 Protection of BGP Sessions via the TCP MD5 Signature OptionA.
Hefferman

Appendix G. Related protocol specifications 1565

RFC 2389 Feature negotiation mechanism for the File Transfer Protocol P.
Hethmon, R. Elz

RFC 2401 Security Architecture for Internet Protocol S. Kent, R. Atkinson

RFC 2402 IP Authentication Header S. Kent, R. Atkinson

RFC 2403 The Use of HMAC-MD5–96 within ESP and AH C. Madson, R. Glenn

RFC 2404 The Use of HMAC-SHA–1–96 within ESP and AH C. Madson, R.
Glenn

RFC 2405 The ESP DES-CBC Cipher Algorithm With Explicit IV C. Madson, N.
Doraswamy

RFC 2406 IP Encapsulating Security Payload (ESP) S. Kent, R. Atkinson

RFC 2407 The Internet IP Security Domain of Interpretation for ISAKMPD. Piper

RFC 2408 Internet Security Association and Key Management Protocol (ISAKMP)
D. Maughan, M. Schertler, M. Schneider, J. Turner

RFC 2409 The Internet Key Exchange (IKE) D. Harkins, D. Carrel

RFC 2410 The NULL Encryption Algorithm and Its Use With IPsec R. Glenn, S.
Kent,

RFC 2428 FTP Extensions for IPv6 and NATs M. Allman, S. Ostermann, C.
Metz

RFC 2445 Internet Calendaring and Scheduling Core Object Specification
(iCalendar) F. Dawson, D. Stenerson

RFC 2459 Internet X.509 Public Key Infrastructure Certificate and CRL Profile R.
Housley, W. Ford, W. Polk, D. Solo

RFC 2460 Internet Protocol, Version 6 (IPv6) Specification S. Deering, R. Hinden

RFC 2461 Neighbor Discovery for IP Version 6 (IPv6) T. Narten, E. Nordmark,
W. Simpson

RFC 2462 IPv6 Stateless Address Autoconfiguration S. Thomson, T. Narten

RFC 2463 Internet Control Message Protocol (ICMPv6) for the Internet Protocol
Version 6 (IPv6) Specification A. Conta, S. Deering

RFC 2464 Transmission of IPv6 Packets over Ethernet Networks M. Crawford

RFC 2466 Management Information Base for IP Version 6: ICMPv6 Group D.
Haskin, S. Onishi

RFC 2476 Message Submission R. Gellens, J. Klensin

RFC 2487 SMTP Service Extension for Secure SMTP over TLS P. Hoffman

RFC 2505 Anti-Spam Recommendations for SMTP MTAs G. Lindberg

RFC 2523 Photuris: Extended Schemes and Attributes P. Karn, W. Simpson

RFC 2535 Domain Name System Security Extensions D. Eastlake 3rd

RFC 2538 Storing Certificates in the Domain Name System (DNS) D. Eastlake
3rd, O. Gudmundsson

RFC 2539 Storage of Diffie-Hellman Keys in the Domain Name System (DNS) D.
Eastlake 3rd

RFC 2540 Detached Domain Name System (DNS) Information D. Eastlake 3rd

RFC 2554 SMTP Service Extension for Authentication J. Myers

1566 z/OS V1R12.0 Comm Svr: IP Configuration Guide

RFC 2570 Introduction to Version 3 of the Internet-standard Network Management
Framework J. Case, R. Mundy, D. Partain, B. Stewart

RFC 2571 An Architecture for Describing SNMP Management Frameworks B.
Wijnen, D. Harrington, R. Presuhn

RFC 2572 Message Processing and Dispatching for the Simple Network
Management Protocol (SNMP) J. Case, D. Harrington, R. Presuhn, B.
Wijnen

RFC 2573 SNMP Applications D. Levi, P. Meyer, B. Stewart

RFC 2574 User-based Security Model (USM) for version 3 of the Simple Network
Management Protocol (SNMPv3) U. Blumenthal, B. Wijnen

RFC 2575 View-based Access Control Model (VACM) for the Simple Network
Management Protocol (SNMP) B. Wijnen, R. Presuhn, K. McCloghrie

RFC 2576 Co-Existence between Version 1, Version 2, and Version 3 of the
Internet-standard Network Management Framework R. Frye, D. Levi, S.
Routhier, B. Wijnen

RFC 2578 Structure of Management Information Version 2 (SMIv2) K.
McCloghrie, D. Perkins, J. Schoenwaelder

RFC 2579 Textual Conventions for SMIv2 K. McCloghrie, D. Perkins, J.
Schoenwaelder

RFC 2580 Conformance Statements for SMIv2 K. McCloghrie, D. Perkins, J.
Schoenwaelder

RFC 2581 TCP Congestion Control M. Allman, V. Paxson, W. Stevens

RFC 2583 Guidelines for Next Hop Client (NHC) Developers R. Carlson, L.
Winkler

RFC 2591 Definitions of Managed Objects for Scheduling Management Operations
D. Levi, J. Schoenwaelder

RFC 2625 IP and ARP over Fibre Channel M. Rajagopal, R. Bhagwat, W.
Rickard

RFC 2635 Don't SPEW A Set of Guidelines for Mass Unsolicited Mailings and
Postings (spam*) S. Hambridge, A. Lunde

RFC 2637 Point-to-Point Tunneling Protocol K. Hamzeh, G. Pall, W. Verthein, J.
Taarud, W. Little, G. Zorn

RFC 2640 Internationalization of the File Transfer Protocol B. Curtin

RFC 2665 Definitions of Managed Objects for the Ethernet-like Interface Types J.
Flick, J. Johnson

RFC 2671 Extension Mechanisms for DNS (EDNS0) P. Vixie

RFC 2672 Non-Terminal DNS Name Redirection M. Crawford

RFC 2675 IPv6 Jumbograms D. Borman, S. Deering, R. Hinden

RFC 2710 Multicast Listener Discovery (MLD) for IPv6 S. Deering, W. Fenner, B.
Haberman

RFC 2711 IPv6 Router Alert Option C. Partridge, A. Jackson

RFC 2740 OSPF for IPv6 R. Coltun, D. Ferguson, J. Moy

RFC 2753 A Framework for Policy-based Admission Control R. Yavatkar, D.
Pendarakis, R. Guerin

Appendix G. Related protocol specifications 1567

RFC 2782 A DNS RR for specifying the location of services (DNS SRV) A.
Gubrandsen, P. Vixix, L. Esibov

RFC 2821 Simple Mail Transfer Protocol J. Klensin, Ed.

RFC 2822 Internet Message Format P. Resnick, Ed.

RFC 2840 TELNET KERMIT OPTION J. Altman, F. da Cruz

RFC 2845 Secret Key Transaction Authentication for DNS (TSIG) P. Vixie, O.
Gudmundsson, D. Eastlake 3rd, B. Wellington

RFC 2851 Textual Conventions for Internet Network Addresses M. Daniele, B.
Haberman, S. Routhier, J. Schoenwaelder

RFC 2852 Deliver By SMTP Service Extension D. Newman

RFC 2874 DNS Extensions to Support IPv6 Address Aggregation and Renumbering
M. Crawford, C. Huitema

RFC 2915 The Naming Authority Pointer (NAPTR) DNS Resource Record M.
Mealling, R. Daniel

RFC 2920 SMTP Service Extension for Command Pipelining N. Freed

RFC 2930 Secret Key Establishment for DNS (TKEY RR) D. Eastlake, 3rd

RFC 2941 Telnet Authentication Option T. Ts'o, ed., J. Altman

RFC 2942 Telnet Authentication: Kerberos Version 5 T. Ts'o

RFC 2946 Telnet Data Encryption Option T. Ts'o

RFC 2952 Telnet Encryption: DES 64 bit Cipher Feedback T. Ts'o

RFC 2953 Telnet Encryption: DES 64 bit Output Feedback T. Ts'o

RFC 2992 Analysis of an Equal-Cost Multi-Path Algorithm C. Hopps

RFC 3019 IP Version 6 Management Information Base for The Multicast Listener
Discovery Protocol B. Haberman, R. Worzella

RFC 3060 Policy Core Information Model—Version 1 Specification B. Moore, E.
Ellesson, J. Strassner, A. Westerinen

RFC 3152 Delegation of IP6.ARPA R. Bush

RFC 3164 The BSD Syslog Protocol C. Lonvick

RFC 3207 SMTP Service Extension for Secure SMTP over Transport Layer Security
P. Hoffman

RFC 3226 DNSSEC and IPv6 A6 aware server/resolver message size requirements
O. Gudmundsson

RFC 3291 Textual Conventions for Internet Network Addresses M. Daniele, B.
Haberman, S. Routhier, J. Schoenwaelder

RFC 3363 Representing Internet Protocol version 6 (IPv6) Addresses in the Domain
Name System R. Bush, A. Durand, B. Fink, O. Gudmundsson, T.
Hain

RFC 3376 Internet Group Management Protocol, Version 3 B. Cain, S. Deering, I.
Kouvelas, B. Fenner, A. Thyagarajan

RFC 3390 Increasing TCP's Initial Window M. Allman, S. Floyd, C. Partridge

RFC 3410 Introduction and Applicability Statements for Internet-Standard
Management Framework J. Case, R. Mundy, D. Partain, B. Stewart

1568 z/OS V1R12.0 Comm Svr: IP Configuration Guide

RFC 3411 An Architecture for Describing Simple Network Management Protocol
(SNMP) Management Frameworks D. Harrington, R. Presuhn, B.
Wijnen

RFC 3412 Message Processing and Dispatching for the Simple Network
Management Protocol (SNMP) J. Case, D. Harrington, R. Presuhn, B.
Wijnen

RFC 3413 Simple Network Management Protocol (SNMP) Applications D. Levi, P.
Meyer, B. Stewart

RFC 3414 User-based Security Model (USM) for version 3 of the Simple Network
Management Protocol (SNMPv3) U. Blumenthal, B. Wijnen

RFC 3415 View-based Access Control Model (VACM) for the Simple Network
Management Protocol (SNMP) B. Wijnen, R. Presuhn, K. McCloghrie

RFC 3416 Version 2 of the Protocol Operations for the Simple Network
Management Protocol (SNMP) R. Presuhn, J. Case, K. McCloghrie,
M. Rose, S. Waldbusser

RFC 3417 Transport Mappings for the Simple Network Management Protocol
(SNMP) R. Presuhn, J. Case, K. McCloghrie, M. Rose, S.
Waldbusser

RFC 3418 Management Information Base (MIB) for the Simple Network
Management Protocol (SNMP) R. Presuhn, J. Case, K. McCloghrie,
M. Rose, S. Waldbusser

RFC 3419 Textual Conventions for Transport Addresses M. Daniele, J.
Schoenwaelder

RFC 3484 Default Address Selection for Internet Protocol version 6 (IPv6) R.
Draves

RFC 3493 Basic Socket Interface Extensions for IPv6 R. Gilligan, S. Thomson, J.
Bound, J. McCann, W. Stevens

RFC 3513 Internet Protocol Version 6 (IPv6) Addressing Architecture R. Hinden,
S. Deering

RFC 3526 More Modular Exponential (MODP) Diffie-Hellman groups for Internet
Key Exchange (IKE) T. Kivinen, M. Kojo

RFC 3542 Advanced Sockets Application Programming Interface (API) for IPv6 W.
Richard Stevens, M. Thomas, E. Nordmark, T. Jinmei

RFC 3566 The AES-XCBC-MAC-96 Algorithm and Its Use With IPsec S. Frankel,
H. Herbert

RFC 3569 An Overview of Source-Specific Multicast (SSM) S. Bhattacharyya, Ed.

RFC 3584 Coexistence between Version 1, Version 2, and Version 3 of the
Internet-standard Network Management Framework R. Frye, D. Levi, S.
Routhier, B. Wijnen

RFC 3602 The AES-CBC Cipher Algorithm and Its Use with IPsec S. Frankel, R.
Glenn, S. Kelly

RFC 3629 UTF-8, a transformation format of ISO 10646 R. Kermode, C. Vicisano

RFC 3658 Delegation Signer (DS) Resource Record (RR) O. Gudmundsson

RFC 3678 Socket Interface Extensions for Multicast Source Filters D. Thaler, B.
Fenner, B. Quinn

Appendix G. Related protocol specifications 1569

||
|

RFC 3715 IPsec-Network Address Translation (NAT) Compatibility Requirements B.
Aboba, W. Dixon

RFC 3810 Multicast Listener Discovery Version 2 (MLDv2) for IPv6 R. Vida, Ed.,
L. Costa, Ed.

RFC 3947 Negotiation of NAT-Traversal in the IKE T. Kivinen, B. Swander, A.
Huttunen, V. Volpe

RFC 3948 UDP Encapsulation of IPsec ESP Packets A. Huttunen, B. Swander, V.
Volpe, L. DiBurro, M. Stenberg

RFC 4001 Textual Conventions for Internet Network Addresses M. Daniele, B.
Haberman, S. Routhier, J. Schoenwaelder

RFC 4007 IPv6 Scoped Address Architecture S. Deering, B. Haberman, T. Jinmei,
E. Nordmark, B. Zill

RFC 4022 Management Information Base for the Transmission Control Protocol
(TCP) R. Raghunarayan

RFC 4106 The Use of Galois/Counter Mode (GCM) in IPsec Encapsulating Security
Payload (ESP) J. Viega, D. McGrew

RFC 4109 Algorithms for Internet Key Exchange version 1 (IKEv1) P. Hoffman

RFC 4113 Management Information Base for the User Datagram Protocol (UDP) B.
Fenner, J. Flick

RFC 4191 Default Router Preferences and More-Specific Routes R. Draves, D.
Thaler

RFC 4217 Securing FTP with TLS P. Ford-Hutchinson

RFC 4292 IP Forwarding Table MIB B. Haberman

RFC 4293 Management Information Base for the Internet Protocol (IP) S. Routhier

RFC 4301 Security Architecture for the Internet Protocol S. Kent, K. Seo

RFC 4302 IP Authentication Header S. Kent

RFC 4303 IP Encapsulating Security Payload (ESP) S. Kent

RFC 4304 Extended Sequence Number (ESN) Addendum to IPsec Domain of
Interpretation (DOI) for Internet Security Association and Key
Management Protocol (ISAKMP) S. Kent

RFC 4306 Internet Key Exchange (IKEv2) Protocol C. Kaufman, Ed.

RFC 4307 Cryptographic Algorithms for Use in the Internet Key Exchange Version
2 (IKEv2) J. Schiller

RFC 4308 Cryptographic Suites for IPsec P. Hoffman

RFC 4434 The AES-XCBC-PRF-128 Algorithm for the Internet Key Exchange
Protocol P. Hoffman

RFC 4552 Authentication/Confidentiality for OSPFv3 M. Gupta, N. Melam

RFC 4678 Server/Application State Protocol v1 A. Bivens

RFC 4718 IKEv2 Clarifications and Implementation Guidelines P. Eronen, P.
Hoffman

RFC 4753 ECP Groups for IKE and IKEv2 D. Fu, J. Solinas

RFC 4754 IKE and IKEv2 Authentication Using the Elliptic Curve Digital
Signature Algorithm (ECDSA) D. Fu, J. Solinas

1570 z/OS V1R12.0 Comm Svr: IP Configuration Guide

||
|

||

||
|

||

||
|

||
|

||
|

||

||
|

RFC 4809 Requirements for an IPsec Certificate Management Profile C. Bonatti,
Ed., S. Turner, Ed., G. Lebovitz, Ed.

RFC 4835 Cryptographic Algorithm Implementation Requirements for
Encapsulating Security Payload (ESP) and Authentication Header V.
Manral

RFC 4862 IPv6 Stateless Address Autoconfiguration S. Thomson, T. Narten, T.
Jinmei

RFC 4868 Using HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512 with
IPsec S. Kelly, S. Frankel

RFC 4869 Suite B Cryptographic Suites for IPsec L. Law, J. Solinas

RFC 4941 Privacy Extensions for Stateless Address Autoconfiguration in IPv6 T.
Narten, R. Draves, S. Krishnan

RFC 4945 The Internet IP Security PKI Profile of IKEv1/ISAKMP, IKEv2, and
PKIX B. Korver

RFC 5014 IPv6 Socket API for Source Address Selection E. Nordmark, S.
Chakrabarti, J. Laganier

RFC 5095 Deprecation of Type 0 Routing Headers in IPv6 J. Abley, P. Savola, G.
Neville-Neil

RFC 5175 IPv6 Router Advertisement Flags Option B. Haberman, Ed., R. Hinden

RFC 5282 Using Authenticated Encryption Algorithms with the Encrypted Payload
of the Internet Key Exchange version 2 (IKEv2) Protocol D. Black, D.
McGrew

Internet drafts
Internet drafts are working documents of the Internet Engineering Task Force
(IETF), its areas, and its working groups. Other groups may also distribute
working documents as Internet drafts. You can see Internet drafts at
http://www.ietf.org/ID.html.

Several areas of IPv6 implementation include elements of the following Internet
drafts and are subject to change during the RFC review process.

Draft Title and Author

draft-ietf-ipngwg-icmp-v3-07
Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6
(IPv6) Specification A. Conta, S. Deering

Appendix G. Related protocol specifications 1571

||
|

||
|
|

||
|

||

||
|

||
|

||

||
|
|

http://www.ietf.org/ID.html

1572 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Appendix H. Accessibility

Publications for this product are offered in Adobe Portable Document Format
(PDF) and should be compliant with accessibility standards. If you experience
difficulties when using PDF files, you may view the information through the z/OS
Internet Library Web site or the z/OS Information Center. If you continue to
experience problems, send an e-mail to mhvrcfs@us.ibm.com or write to:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Mail Station P181
2455 South Road
Poughkeepsie, NY 12601-5400
U.S.A.

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:
v Use assistive technologies such as screen readers and screen magnifier software
v Operate specific or equivalent features using only the keyboard
v Customize display attributes such as color, contrast, and font size

Using assistive technologies

Assistive technology products, such as screen readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User's Guide, and z/OS ISPF User's Guide Vol I for information
about accessing TSO/E and ISPF interfaces. These guides describe how to use
TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF
keys). Each guide includes the default settings for the PF keys and explains how to
modify their functions.

z/OS information

z/OS information is accessible using screen readers with the BookServer/Library
Server versions of z/OS books in the Internet library at www.ibm.com/systems/z/
os/zos/bkserv/.

© Copyright IBM Corp. 2000, 2011 1573

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

1574 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Notices

This information was developed for products and services offered in the USA.

IBM may not offer all of the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for information
on the products and services currently available in your area. Any reference to an
IBM product, program, or service is not intended to state or imply that only that
IBM product, program, or service may be used. Any functionally equivalent
product, program, or service that does not infringe any IBM intellectual property
right may be used instead. However, it is the user's responsibility to evaluate and
verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14 Shimotsuruma,, Yamato-Shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2000, 2011 1575

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
P.O. Box 12195
3039 Cornwallis Road
Research Triangle Park, North Carolina 27709-2195
U.S.A

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

1576 z/OS V1R12.0 Comm Svr: IP Configuration Guide

imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_.

IBM is required to include the following statements in order to distribute portions
of this document and the software described herein to which contributions have
been made by The University of California. Portions herein © Copyright 1979,
1980, 1983, 1986, Regents of the University of California. Reproduced by
permission. Portions herein were developed at the Electrical Engineering and
Computer Sciences Department at the Berkeley campus of the University of
California under the auspices of the Regents of the University of California.

Portions of this publication relating to RPC are Copyright © Sun Microsystems,
Inc., 1988, 1989.

Some portions of this publication relating to X Window System** are Copyright ©
1987, 1988 by Digital Equipment Corporation, Maynard, Massachusetts, and the
Massachusetts Institute Of Technology, Cambridge, Massachusetts. All Rights
Reserved.

Some portions of this publication relating to X Window System are Copyright ©
1986, 1987, 1988 by Hewlett-Packard Corporation.

Permission to use, copy, modify, and distribute the M.I.T., Digital Equipment
Corporation, and Hewlett-Packard Corporation portions of this software and its
documentation for any purpose without fee is hereby granted, provided that the
above copyright notice appears in all copies and that both that copyright notice
and this permission notice appear in supporting documentation, and that the
names of M.I.T., Digital, and Hewlett-Packard not be used in advertising or
publicity pertaining to distribution of the software without specific, written prior
permission. M.I.T., Digital, and Hewlett-Packard make no representation about the
suitability of this software for any purpose. It is provided "as is" without express
or implied warranty.

Copyright © 1983, 1995-1997 Eric P. Allman

Copyright © 1988, 1993 The Regents of the University of California. All rights
reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list

of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this

list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must
display the following acknowledgement:

Notices 1577

This product includes software developed by the University of
California, Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors may be
used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

This software program contains code, and/or derivatives or modifications of code
originating from the software program "Popper." Popper is Copyright ©1989-1991
The Regents of the University of California, All Rights Reserved. Popper was
created by Austin Shelton, Information Systems and Technology, University of
California, Berkeley.

Permission from the Regents of the University of California to use, copy, modify,
and distribute the "Popper" software contained herein for any purpose, without
fee, and without a written agreement is hereby granted, provided that the above
copyright notice and this paragraph and the following two paragraphs appear in
all copies. HOWEVER, ADDITIONAL PERMISSIONS MAY BE NECESSARY
FROM OTHER PERSONS OR ENTITIES, TO USE DERIVATIVES OR
MODIFICATIONS OF POPPER.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY
PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THE
POPPER SOFTWARE, OR ITS DERIVATIVES OR MODIFICATIONS, AND ITS
DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE POPPER SOFTWARE PROVIDED HEREUNDER IS ON AN "AS
IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO
PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR
MODIFICATIONS.

Copyright © 1983 The Regents of the University of California. All rights reserved.

Redistribution and use in source and binary forms are permitted provided that the
above copyright notice and this paragraph are duplicated in all such forms and
that any documentation, advertising materials, and other materials related to such
distribution and use acknowledge that the software was developed by the
University of California, Berkeley. The name of the University may not be used to

1578 z/OS V1R12.0 Comm Svr: IP Configuration Guide

endorse or promote products derived from this software without specific prior
written permission. THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

Copyright © 1991, 1993 The Regents of the University of California. All rights
reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list

of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this

list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must
display the following acknowledgement:
This product includes software developed by the University of
California, Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors may be
used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Copyright © 1990 by the Massachusetts Institute of Technology

Export of this software from the United States of America may require a specific
license from the United States Government. It is the responsibility of any person or
organization contemplating export to obtain such a license before exporting.

WITHIN THAT CONSTRAINT, permission to use, copy, modify, and distribute this
software and its documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that both that
copyright notice and this permission notice appear in supporting documentation,
and that the name of M.I.T. not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission. Furthermore
if you modify this software you must label your software as modified software and
not distribute it in such a fashion that it might be confused with the original M.I.T.
software. M.I.T. makes no representations about the suitability of this software for
any purpose. It is provided "as is" without express or implied warranty.

Notices 1579

Copyright © 1998 by the FundsXpress, INC. All rights reserved.

Export of this software from the United States of America may require a specific
license from the United States Government. It is the responsibility of any person or
organization contemplating export to obtain such a license before exporting.

WITHIN THAT CONSTRAINT, permission to use, copy, modify, and distribute this
software and its documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that both that
copyright notice and this permission notice appear in supporting documentation,
and that the name of FundsXpress not be used in advertising or publicity
pertaining to distribution of the software without specific, written prior
permission. FundsXpress makes no representations about the suitability of this
software for any purpose. It is provided "as is" without express or implied
warranty.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

Copyright © 1999, 2000 Internet Software Consortium.

Permission to use, copy, modify, and distribute this software for any purpose with
or without fee is hereby granted, provided that the above copyright notice and this
permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND INTERNET SOFTWARE
CONSORTIUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL INTERNET SOFTWARE CONSORTIUM
BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Copyright © 1995-1998 Eric Young (eay@cryptsoft.com) All rights reserved.

This package is an SSL implementation written by Eric Young (eay@cryptsoft.com).
The implementation was written so as to conform with Netscape's SSL.

This library is free for commercial and non-commercial use as long as the
following conditions are adhered to. The following conditions apply to all code
found in this distribution, be it the RC4, RSA, lhash, DES, etc., code; not just the
SSL code. The SSL documentation included with this distribution is covered by the
same copyright terms except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in the code are
not to be removed. If this package is used in a product, Eric Young should be
given attribution as the author of the parts of the library used. This can be in the
form of a textual message at program startup or in documentation (online or
textual) provided with the package.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

1580 z/OS V1R12.0 Comm Svr: IP Configuration Guide

1. Redistributions of source code must retain the copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must
display the following acknowledgement: "This product includes cryptographic
software written by Eric Young (eay@cryptsoft.com)". The word 'cryptographic'
can be left out if the routines from the library being used are not cryptographic
related.

4. If you include any Windows specific code (or a derivative thereof) from the
apps directory (application code) you must include acknowledgement:
"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

The license and distribution terms for any publicly available version or derivative
of this code cannot be changed. i.e. this code cannot simply be copied and put
under another distribution license [including the GNU Public License.]

This product includes cryptographic software written by Eric Young.

Copyright © 1999, 2000 Internet Software Consortium.

Permission to use, copy, modify, and distribute this software for any purpose with
or without fee is hereby granted, provided that the above copyright notice and this
permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND INTERNET SOFTWARE
CONSORTIUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL INTERNET SOFTWARE CONSORTIUM
BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Copyright © 2004 IBM Corporation and its licensors, including Sendmail, Inc., and
the Regents of the University of California. All rights reserved.

Copyright © 1999,2000,2001 Compaq Computer Corporation

Notices 1581

Copyright © 1999,2000,2001 Hewlett-Packard Company

Copyright © 1999,2000,2001 IBM Corporation

Copyright © 1999,2000,2001 Hummingbird Communications Ltd.

Copyright © 1999,2000,2001 Silicon Graphics, Inc.

Copyright © 1999,2000,2001 Sun Microsystems, Inc.

Copyright © 1999,2000,2001 The Open Group

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, provided that the
above copyright notice(s) and this permission notice appear in all copies of the
Software and that both the above copyright notice(s) and this permission notice
appear in supporting documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE
FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL
DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used
in advertising or otherwise to promote the sale, use or other dealings in this
Software without prior written authorization of the copyright holder.

X Window System is a trademark of The Open Group.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

You can obtain softcopy from the z/OS Collection (SK3T-4269), which contains
BookManager and PDF formats.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted
for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

1582 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at Copyright and
trademark information at www.ibm.com/legal/copytrade.shtml.

Adobe and PostScript are registered trademarks of Adobe Systems Incorporated in
the United States, and/or other countries.

Intel is a registered trademark of Intel Corporation or its subsidiaries in the United
States and other countries.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other product and service names might be trademarks of IBM or other companies.

Notices 1583

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

1584 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Bibliography

This bibliography contains descriptions of the documents in the z/OS
Communications Server library.

z/OS Communications Server documentation is available in the following forms:
v Online at the z/OS Internet Library web page at www.ibm.com/systems/z/os/

zos/bkserv/
v In softcopy on CD-ROM collections. See “Softcopy information” on page xxxv.

z/OS Communications Server library updates

An index to z/OS Communications Server book updates is at http://
www.ibm.com/support/docview.wss?uid=swg21178966. Updates to documents are
also available on RETAIN® and in information APARs (info APARs). Go to
http://www.ibm.com/software/network/commserver/zos/support to view
information APARs. In addition, Info APARs for z/OS documents are in z/OS and
z/OS.e DOC APAR and PTF ++HOLD Documentation, which can be found at
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/ BOOKS/ZIDOCMST/
CCONTENTS.

z/OS Communications Server information

z/OS Communications Server product information is grouped by task in the
following tables.

Planning

Title Number Description

z/OS Communications Server:
New Function Summary

GC31-8771 This document is intended to help you plan for new IP for
SNA function, whether you are migrating from a previous
version or installing z/OS for the first time. It summarizes
what is new in the release and identifies the suggested and
required modifications needed to use the enhanced functions.

z/OS Communications Server:
IPv6 Network and Application
Design Guide

SC31-8885 This document is a high-level introduction to IPv6. It
describes concepts of z/OS Communications Server's support
of IPv6, coexistence with IPv4, and migration issues.

Resource definition, configuration, and tuning

Title Number Description

z/OS Communications Server: IP
Configuration Guide

SC31-8775 This document describes the major concepts involved in
understanding and configuring an IP network. Familiarity
with the z/OS operating system, IP protocols, z/OS UNIX
System Services, and IBM Time Sharing Option (TSO) is
recommended. Use this document in conjunction with the
z/OS Communications Server: IP Configuration Reference.

© Copyright IBM Corp. 2000, 2011 1585

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/support/docview.wss?uid=swg21178966
http://www.ibm.com/support/docview.wss?uid=swg21178966
http://www.ibm.com/software/network/commserver/zos/support
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS

Title Number Description

z/OS Communications Server: IP
Configuration Reference

SC31-8776 This document presents information for people who want to
administer and maintain IP. Use this document in conjunction
with the z/OS Communications Server: IP Configuration Guide.
The information in this document includes:

v TCP/IP configuration data sets

v Configuration statements

v Translation tables

v Protocol number and port assignments

z/OS Communications Server:
SNA Network Implementation
Guide

SC31-8777 This document presents the major concepts involved in
implementing an SNA network. Use this document in
conjunction with the z/OS Communications Server: SNA
Resource Definition Reference.

z/OS Communications Server:
SNA Resource Definition Reference

SC31-8778 This document describes each SNA definition statement, start
option, and macroinstruction for user tables. It also describes
NCP definition statements that affect SNA. Use this document
in conjunction with the z/OS Communications Server: SNA
Network Implementation Guide.

z/OS Communications Server:
SNA Resource Definition Samples

SC31-8836 This document contains sample definitions to help you
implement SNA functions in your networks, and includes
sample major node definitions.

z/OS Communications Server: IP
Network Print Facility

SC31-8833 This document is for system programmers and network
administrators who need to prepare their network to route
SNA, JES2, or JES3 printer output to remote printers using
TCP/IP Services.

Operation

Title Number Description

z/OS Communications Server: IP
User's Guide and Commands

SC31-8780 This document describes how to use TCP/IP applications. It
contains requests that allow a user to log on to a remote host
using Telnet, transfer data sets using FTP, send and receive
electronic mail, print on remote printers, and authenticate
network users.

z/OS Communications Server: IP
System Administrator's
Commands

SC31-8781 This document describes the functions and commands helpful
in configuring or monitoring your system. It contains system
administrator's commands, such as TSO NETSTAT, PING,
TRACERTE and their UNIX counterparts. It also includes TSO
and MVS commands commonly used during the IP
configuration process.

z/OS Communications Server:
SNA Operation

SC31-8779 This document serves as a reference for programmers and
operators requiring detailed information about specific
operator commands.

z/OS Communications Server:
Quick Reference

SX75-0124 This document contains essential information about SNA and
IP commands.

1586 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Customization

Title Number Description

z/OS Communications Server:
SNA Customization

SC31-6854 This document enables you to customize SNA, and includes
the following:

v Communication network management (CNM) routing table

v Logon-interpret routine requirements

v Logon manager installation-wide exit routine for the CLU
search exit

v TSO/SNA installation-wide exit routines

v SNA installation-wide exit routines

Writing application programs

Title Number Description

z/OS Communications Server: IP
Sockets Application Programming
Interface Guide and Reference

SC31-8788 This document describes the syntax and semantics of program
source code necessary to write your own application
programming interface (API) into TCP/IP. You can use this
interface as the communication base for writing your own
client or server application. You can also use this document to
adapt your existing applications to communicate with each
other using sockets over TCP/IP.

z/OS Communications Server: IP
CICS Sockets Guide

SC31-8807 This document is for programmers who want to set up, write
application programs for, and diagnose problems with the
socket interface for CICS using z/OS TCP/IP.

z/OS Communications Server: IP
IMS Sockets Guide

SC31-8830 This document is for programmers who want application
programs that use the IMS TCP/IP application development
services provided by the TCP/IP Services of IBM.

z/OS Communications Server: IP
Programmer's Guide and Reference

SC31-8787 This document describes the syntax and semantics of a set of
high-level application functions that you can use to program
your own applications in a TCP/IP environment. These
functions provide support for application facilities, such as
user authentication, distributed databases, distributed
processing, network management, and device sharing.
Familiarity with the z/OS operating system, TCP/IP protocols,
and IBM Time Sharing Option (TSO) is recommended.

z/OS Communications Server:
SNA Programming

SC31-8829 This document describes how to use SNA macroinstructions to
send data to and receive data from (1) a terminal in either the
same or a different domain, or (2) another application program
in either the same or a different domain.

z/OS Communications Server:
SNA Programmer's LU 6.2 Guide

SC31-8811 This document describes how to use the SNA LU 6.2
application programming interface for host application
programs. This document applies to programs that use only
LU 6.2 sessions or that use LU 6.2 sessions along with other
session types. (Only LU 6.2 sessions are covered in this
document.)

z/OS Communications Server:
SNA Programmer's LU 6.2
Reference

SC31-8810 This document provides reference material for the SNA LU 6.2
programming interface for host application programs.

z/OS Communications Server:
CSM Guide

SC31-8808 This document describes how applications use the
communications storage manager.

Bibliography 1587

Title Number Description

z/OS Communications Server:
CMIP Services and Topology
Agent Guide

SC31-8828 This document describes the Common Management
Information Protocol (CMIP) programming interface for
application programmers to use in coding CMIP application
programs. The document provides guide and reference
information about CMIP services and the SNA topology agent.

Diagnosis

Title Number Description

z/OS Communications Server: IP
Diagnosis Guide

GC31-8782 This document explains how to diagnose TCP/IP problems
and how to determine whether a specific problem is in the
TCP/IP product code. It explains how to gather information
for and describe problems to the IBM Software Support
Center.

z/OS Communications Server:
ACF/TAP Trace Analysis
Handbook

GC23-8588-00 This document explains how to gather the trace data that is
collected and stored in the host processor. It also explains how
to use the Advanced Communications Function/Trace
Analysis Program (ACF/TAP) service aid to produce reports
for analyzing the trace data information.

z/OS Communications Server:
SNA Diagnosis Vol 1, Techniques
and Procedures and z/OS
Communications Server: SNA
Diagnosis Vol 2, FFST Dumps and
the VIT

GC31-6850

GC31-6851

These documents help you identify an SNA problem, classify
it, and collect information about it before you call the IBM
Support Center. The information collected includes traces,
dumps, and other problem documentation.

z/OS Communications Server:
SNA Data Areas Volume 1 and
z/OS Communications Server:
SNA Data Areas Volume 2

GC31-6852

GC31-6853

These documents describe SNA data areas and can be used to
read an SNA dump. They are intended for IBM programming
service representatives and customer personnel who are
diagnosing problems with SNA.

Messages and codes

Title Number Description

z/OS Communications Server:
SNA Messages

SC31-8790 This document describes the ELM, IKT, IST, IUT, IVT, and USS
messages. Other information in this document includes:

v Command and RU types in SNA messages

v Node and ID types in SNA messages

v Supplemental message-related information

z/OS Communications Server: IP
Messages Volume 1 (EZA)

SC31-8783 This volume contains TCP/IP messages beginning with EZA.

z/OS Communications Server: IP
Messages Volume 2 (EZB, EZD)

SC31-8784 This volume contains TCP/IP messages beginning with EZB or
EZD.

z/OS Communications Server: IP
Messages Volume 3 (EZY)

SC31-8785 This volume contains TCP/IP messages beginning with EZY.

z/OS Communications Server: IP
Messages Volume 4 (EZZ, SNM)

SC31-8786 This volume contains TCP/IP messages beginning with EZZ
and SNM.

z/OS Communications Server: IP
and SNA Codes

SC31-8791 This document describes codes and other information that
appear in z/OS Communications Server messages.

1588 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Index

Special characters
/etc/ftp.data 671
/etc/hosts

accessing HOSTS.SITEINFO 767
/etc/inetd.conf

adding applications to 1459
configuring z/OS UNIX REXECD 1447
definition 1447
setting traces in 1459

/etc/osnmpd.data 25
/etc/pagent.conf 867
/etc/protocol 768
/etc/pw.src 26
/etc/resolv.conf

overview 208
use of system names in 209

/etc/services 206, 649, 768, 1356
defining ports for RSHD 1448
defining ports for z/OS UNIX REXECD 1447
specifying syslog service 206

/etc/snmpd.boots 1340
/etc/snmpd.conf 1339
/etc/snmptrap.dest 27
/etc/syslog.conf

configuring for syslogd 185, 1460
for FTP messages and traces 661
overview 35

/etc/trapfwd.conf 1358

Numerics
328x printer support 577

A
access control

Fast Response Cache Accelerator 126
IPSec network management interface (NMI) 128
Netstat 125
network 120
port 116
SMF information service 127
stack 115
TCP connection information service 127
TCP/IP packet trace service 126

accessibility 1573
accounting, SMF records

FTP 36, 680, 706
PROFILE.TCPIP 215
syslogd 202
Telnet 36, 642

active route, configuring
NCPROUTE 546

address selection, source IP 218
ADNR 1275
advertisements, router 346
AF_INET physical file system

common 8
integrated sockets 8

AF_INET problems 102

alias names 1397
anchor filters 983
anonymous logins, configuring FTP for 710
APIs (application programming interfaces) 8
APPL statement for SNALINK LU0 517
APPL statement for SNALINK LU6.2 521
application programming interfaces, types in z/OS

Communications Server, see also APIs 8
Application Transparent Transport Layer Security

(AT-TLS) 1193
applications

configuration files for TCP/IP 19, 30
planning scenarios for multiple instances 363

applications, functions and protocols
Character Generator protocol 1453
Discard protocol 1453
Echo protocol 1453
NCP Routing (NCPROUTE) 530
Network Computing System (NCS) 1372
Portmapper 1365, 1367
Remote Execution Protocol Daemon (REXECD) 1443, 1447
Remote Printing 1361
Remote Procedure Call (RPC)

Network Computing System (NCS) 1372
Portmapper 1366

Routing Information Protocol (RIP) 530
Simple Mail Transfer Protocol (SMTP) 1392
Simple Network Management Protocol (SNMP) 1325
SNALINK LU type 0 513

ARM (automatic restart manager) 34
ARPTO (IPCONFIG ARPTO) 215
AS (autonomous system) 267

definition 255
assembler callable services, z/OS UNIX, general

description 10
asynchronous transfer mode (ATM), general description 5
AT-TLS 1193
ATCCON member of VTAMLST 108
ATM (asynchronous transfer mode), general description 5
authorization, TCP/IP started task user ID 42
authorization, z/OS UNIX superuser 42
autoconfiguration, stateless 232
AUTOLOG 660
automated domain name registration 1275
automated takeover, VIPA 360
automatic restart manager (ARM) 34
AUTOMOUNT 672
autonomous system, see also AS 255
AUTORECALL 672

B
backing up an MVS host with VIPA 358
banner page 1363
Berkeley Internet Name Domain (BIND) 775
BIND (Berkeley Internet Name Domain) 775
BIND 9 775

DNSSEC 823
Dynamic update 816
Incremental zone transfers (IXFR) 816
IPv6 825

© Copyright IBM Corp. 2000, 2011 1589

BIND 9 (continued)
multiple stack considerations 815
Split DNS) 817
TSIG 821

BLKSIZE 672
BPX.DAEMON FACILITY class profile 43, 44
BPX.SMF 186, 197
BPX.UNIQUE.USER FACILITY class profile 42
BPXPRMxx

CINET configuration 59
BPXPRMxx, for defining z/OS UNIX environment 45
BPXPRMxx, role in AF_INET problems 102
BUFNO 672

C
C sockets 9
cataloged procedures

MISCSERV (MISCSERV) 1455
RXSERVE (RXPROC) 1443, 1447
SNMPD (SNMPDPRC) 1345
SNMPQE (SNMPPROC) 1349

CDLC (channel data link control), general description 5
channel data link control (CDLC), general description 5
channel-to-channel (CTC), general description 5
CICS (customer information control system) sockets 9
Cisco

Content Switching Module (CSM) 464
Multi-Node Load Balancer (MNLB) 483, 484

CLAW (common link access to workstation), general
description 5

CLAWUSEDOUBLENOP 215
code page conversion

control connection 676
data connection 677
table priority, control connection 676
table priority, data connection 677

code page conversion, FTP 676
code page IBM-1047, translating to 790
commands

MODIFY (MVS)
Remote Execution server 1446
SNALINK LU0 520

START (MVS) 108
common AF_INET

access by APIs 8
general description 8

common link access to workstation (CLAW), general
description 5

Communications Server for z/OS, online information xxxvi
communications storage manager, general description 5
component trace, customizing 103
CONDDISP 672
Configuration Assistant for z/OS Communications Server, IBM

AT-TLS 1195
IDS 906
IP security 933
overview 831
policy-based routing 337
QoS 881

configuration data sets
ETCRPC 1366
HOSTS 241
NPSIDATE 524
NPSIGATE 524
SAMPPROF 211
SMTPCONF 1405

configuration data sets (continued)
SMTPNOTE 1394
VTAMLST

in SNALINK LU0 517
in SNALINK LU6.2 521
in X.25 NPSI 527

X25CONF 524
Configuration Demo for z/OS, IBM TCP/IP 11
configuring

data set naming conventions 19
dynamic VIPA 363
files for TCP/IP applications 30
files for the TCP/IP stack 28
resolver environment variables 763
searching for data sets 19
SNMP for z/OS UNIX 1325
SNTPD 1439
TFTP server 727
TIMED 1437
verifying for dynamic VIPAs 412

configuring host resolvers, onslookup considerations 806
Configuring the z/OS UNIX Telnet server 649
Content Switching Module (CSM), Cisco 464
control characters, TCP/IP messages 253
control connection, code page conversions 676
conversion characters, TCP/IP messages 253
conversion tables, control connection 676
cryptographic standards and FIPS 140 130
cryptography 130
CSM (communications storage manager), general

description 5
CSM, Cisco 464
CTC (channel-to-channel), general description 5
CTRACE keyword 103
customer information control system sockets, general

description, see also CICS 9
customizing

SMTP mail headers 1396
customizing TCP/IP messages 248

D
data connection

code page conversions 677
network transfer/file system conversion 677

data sets
dynamic allocation 19
naming conventions 19
overview 17
search order for 19

DATACLASS 672, 673
DATAGRAMFWD (IPCONFIG DATAGRAMFWD) 215, 410
DB2 706, 718
DB2 SQL

in FTP server 718
DB2PLAN 706
DCAS 1451
DCBDSN 672
DD cards 29
default route, configuring

NCPROUTE 547
DEFAULTTCPIPDATA statement 735
Defense Manager daemon (DMD) 1177
defensive filtering 1177
Differentiated Services (DS)

Policies 873
Digital Certificate Access Server (DCAS) 1451

1590 z/OS V1R12.0 Comm Svr: IP Configuration Guide

DIRECTORY 672
disability 1573
distributed DVIPA 351
DMD 1177
DNS (Domain Name System)

authoritative servers 778
caching-only servers 779
definitions 775
dynamic update 816
forward data files 787
forwarders 779
Logging, for BIND 9 793
master name servers 779
overview 775
problem diagnosis 813
reverse data files 787
secondary name servers 779
secondary name servers, configuring 800
security 141
SOURCEVIPA 813, 815
stealth server 780
translating data files 790

DNS name server responsiveness
examples of 755
notifications for 754

DNS, online information xxxviii
DNSSEC 823
domain name registration, automated 1275
Domain Name Resolution, SMTP 1410
Domain Name System, see DNS 775
DPI (distributed prototcol interface) 1330
DSNLOAD 719
duplicate address detection 232
DVIPA takeover

overview 388
using IPSec with 390

DVIPSEC 388
dynamic filters 983
dynamic routes

definition 255
dynamic routing

IPv6 270, 271
using OMPROUTE 267
versus static routing 258

dynamic VIPA
1024 limit 359
configuration 363, 410, 412
DNS considerations 810
MODDVIPA utility 368
multiple application-instance scenario 363
overview 351
relationship to UDP 407
resolving conflicts 391
routing protocols 425
unique application-instance scenario 363, 364
use with OMPROUTE 276, 296
verifying configuration using Netstat 416
verifying in a sysplex 412
within subnets 406

DYNAMICXCF 434
DYNAMICXCF (IPCONFIG DYNAMICXCF) 212, 216, 229,

374
DYNAMICXCF (IPCONFIG6 DYNAMICXCF) 230

E
EGP (exterior gateway protocol) 532

definition 255
Enterprise Extender 185

overview 60
VIPA considerations 355, 358

entry point name incorrect 102
environment variables

for overriding default search order 19
FTP server and 669
OMPROUTE use of 281
passing to syslogd process 197
resolver configuration files and 763
REXECD and 1447

environment, NCPROUTE 530
ETC.IPNODES 240, 243
ETC.SERVICES

FTP and 661
NCPROUTE 538

Express Logon Feature (ELF) 139
overview 1489

express logon services 1451
Extension Mechanisms for DNS standards (EDNS0) 758
exterior gateway protocol (EGP) 532

definition 255
external gateway 531
external route, configuring

NCPROUTE 546
EZACFSM1 32
EZAZSSI 104
EZBDVIPAvvtt 388, 391
EZBEPORTvvtt 380

F
fast path for socket applications 48
Fast Response Cache Accelerator access control 126
fault tolerance, interface layer for LANs 231
File systems, z/OS Communications Server TCP/IP 7
filters, input/output, for RIP 534
FTCHKCMD 707
FTCHKIP 707
FTCHKJES 708
FTCHKPWD 707
FTP

/etc/syslog.conf 661
accounting 36, 680
anonymous 710, 715, 723
APPEND 680
AUTOLOG PORT KEEPALIVE 660
cataloged procedure 662, 718
CCXLATE 669
code page conversion 676
code page conversion for the control connection 676
code page conversion for the data connection 677
configuration statements, TCP/IP 660
configuring with multiple stacks 670
control connection, code page conversion 676
control connection, conversion tables priority 676
data connection, code page conversion 677
data connection, conversion tables priority 677
data translation 675
DB2 718
DELETE 680
ENVAR 670
environment variables for FTP server 669

Index 1591

FTP (continued)
FTCHKCMD 707
FTCHKIP 707
FTCHKJES 708
FTCHKPWD 707
FTP.DATA data set 671
FTPOSTPR 708
FTPSMFEX 706
iconv function 676
JES 709
message catalogs, customizing 678
priority for conversion tables, control connection 676
priority for conversion tables, data connection 677
RACF considerations 663
RENAME 680
RETRIEVE 680
security considerations 663
SMF configuration 680
specifying attributes for new MVS data sets 673
STORE 681
STORE UNIQUE 681
SURROGATE 710
TCPIP.DATA 671
TLS 681
translation of data 675
updating the FTP cataloged procedure 662
user exit 706
XLATE 669

FTP server
preventing exploitation of 668

FTP.DATA 671
(FILETYPE=JES) 681
(FILETYPE=SEQ) 681
(FILETYPE=SQL) 681
ANONYMOUSHFSINFO 715
ANONYMOUSLOGINMSG 715
ANONYMOUSMVSINFO 715
ASATRANS 675
AUTOMOUNT 672
AUTORECALL 672
BANNER 715
BLKSIZE 672, 674
BLOCKSIZE 672
BUFNO 672
CONDDISP 672
CTRLCONN 675
data set attributes 672
DATACLASS 672, 674
DB2 706
DB2PLAN 706
DBSUB 675
DCBDSN 672, 674
DIRECTORY 672, 674
dynamic allocation 673
ENCODING 675
EXTENSIONS UTF8 675
HSFINFO 715
JESGETBYDSN 706
JESINTERFACELEVEL 706
JESINTERFACELevel=2 709
JESLRECL 706
JESPUTGETTO 706
JESRECFM 706
LOGINMSG 715
LRECL 672, 674
MBDATACONN 675
MBREQUIRELASTEOL 675

FTP.DATA (continued)
MBSENDEOL 675
MGMTCLASS 672, 673, 674
MIGRATEVOL 672
MVSINFO 715
PDSTYPE 672, 674, 675
PORTCOMMAND 668
PORTCOMMANDIPADDR 668
PORTCOMMANDPORT 668
PRIMARY 672, 674
RECFM 673, 674
RETPD 673, 674, 675
SBDATACONN 675
SBSENDEOL 675
SBSUB 675
SBSUBCHAR 675
search order 671
SECONDARY 673, 674, 675
SMFAPPE 680
SMFDEL 680
SMFEXIT 680
SMFJES 680
SMFLOGN 680
SMFREN 680
SMFRETR 680
SMFSQL 680
SMFSTOR 680
SMS 674
SPACETYPE 673
SPREAD 706
SQLCOL 706
STORCLASS 673, 674
UCOUNT 673, 674
UCSHOSTCS 675
UCSSUB 675
UCSTRUNCT 675
UMASK 673
UNICODEFILESYSTEMBOM 675
UNITNAME 673, 674
VCOUNT 673, 674
VOLUME 673, 674
XLATE 680

FTPD 662
FTPOEBIND 718
FTPOSTPR 708
FTPSMFEX 706
FTPSMFEX user exit 706

G
gateway route table name 538
GATEWAY statement

configuring static routes 536, 548
GATEWAY_PDS statement 543
gateways

active routes 533, 546
data set (NCPROUTE) 544, 547
default routes 547
external routes 532
NCPROUTE 531, 534
passive routes 531
resolving names of 246
SMTP 1402, 1403
TCP-to-NJE mail 1404, 1407

gateways data set
NCPROUTE 544

generic stack affinity 51

1592 z/OS V1R12.0 Comm Svr: IP Configuration Guide

global TCPIP.DATA file 735
GLOBALTCPIPDATA statement 735
gskkyman utility 1467

H
HCD, using 1493
hierarchical file system concepts 17
high-level qualifier (HLQ) 19
hints (root server) file

definition 790
HiperSockets 6, 446

concepts 81
virtual LAN 83

HiperSockets Accelerator
efficient routing with 88

HLQ (high-level qualifier) 19
HOMETEST 246
HOSTALIASES 763
HOSTS.ADDRINFO

generating from HOSTS.LOCAL 241
HOSTS.LOCAL 240
HOSTS.SITEINFO

generating from HOSTS.LOCAL 241
verifying 246

HYPERchannel, general description 6

I
I/O process model 5
IBM Configuration Assistant for z/OS Communications Server

AT-TLS 1195
IDS 906
IP security 933
overview 831
policy-based routing 337
QoS 881

IBM Software Support Center, contacting xxx
IBM TCP/IP Configuration Demo for z/OS 11
IBM z/OS Management Facility

AT-TLS 1195
DMD 1187
IDS 906
overview 831
policy-based routing 337
QoS 881

ICMP (internet control message protocol), general
description 7

iconv function 676
IDS 142, 897

defining policies 908
IEFSSNxx member 1395
IGNOREREDIRECTS (IPCONFIG IGNOREREDIRECTS) 261
IGP (interior gateway protocol), definition 256
IKE daemon, preparing to run 1505
IKJTSOxx member 1396
IMS sockets 9
in-addr.arpa domain, definition 776
inetd configuration file, setting up 1459
inetd listener program 42
Information APARs xxxiv
initialization failure 101
initializing, NCPROUTE 531
input/output filters, RIP 534
installing z/OS Communications Server 100
instances of TCPIP, considerations for multiple 50

interface takeover 231
interface-layer fault-tolerance for LANs 231
interior gateway protocol (IGP), definition 256
internet control message protocol (ICMP), general

description 7
Internet protocol (IP), definition 4
Internet, finding z/OS information online xxxvi
InterNetwork Information Center (InterNIC) 776
InterNIC (InterNetwork Information Center) 776
Intrusion Detection Services 142, 840
Intrusion Detection Services (IDS) 897

IDS Policy 844
IP (internet protocol), definition 4
IP address selection, source 218
IP addressing, virtual 351
IP security 923
IPCONFIG

ARPTO 215
DATAGRAMFWD 215, 410
DYNAMICXCF 212, 216, 229, 374
IGNOREREDIRECTS 261
MULTIPATH 215, 266
PATHMTUDISC 216, 261
SOURCEVIPA 215, 231, 356, 813, 815
SYSPLEXROUTING 216, 410

IPCONFIG6
DYNAMICXCF 230

IPSec, security 132
IPv6

autoconfiguration, stateless 232
BPXPRMxx, sample definitions 45
configuring static VIPAs 355
defining TCP/IP as UNIX System Services PFS 45
duplicate address detection 232
dynamic routing 270, 271
inetd configuration file, setting up 1459
IP security considerations 941
OSPF security considerations 942
router advertisements 346
stack functions supported 11
static routing 263
static versus dynamic routing 258

iQDIO 6
IUCV/VMCF 107

J
JES 709
JESGETBYDSN 706
JESINTERFACELEVEL 706
JESLRECL 706
JESPUTGETTO 706
JESRECFM 706

K
Kerberos, security 141
key generation commands 1330
keyboard 1573

L
LAN channel station (LCS), general description 6
LCS (LAN channel station), general description 6
LDAP server 1519

Object classes 1523

Index 1593

LDAP server (continued)
Schema definition 1531

LFS (logical file system), general description 7
license, patent, and copyright information 1575
Load Balancing Advisor, z/OS 1219
load libraries, protecting with RACF 44
local host table 240
log files, offloading 202
logical file system (LFS), general description 7
LookAt xxxiv
loopback file

definition 792
LPD

banner page 1363
configuration 1361
configuration data set 1363
description 1361
LPDDATA 1362
LPDPRFX 1362
PROFILE.TCPIP changes 1361
tracing 1362

LRECL 672
LU assignments - objects, client identifiers, mapping

statements 595
LU name groups, shared 568
LU0, see SNALINK LU0 513
LU6.2, see SNALINK LU6.2 520

M
main route table

definition 255
mainframe

education xxxiv
MAKESITE 241
management information base (MIB), general

description 1325
MD5

and OSPF 283
message catalogs, customizing 248
message data sets, customizing 252
messages data sets 252
messages, logging of 34
messages, TCP/IP

rules for customizing 253
MGMTCLASS 672, 673
MIB (management information base), general

description 1325
MIBS.DATA 1348
middle-level qualifier (MLQ) 20
MIGRATEVOL 672
MISC server

configuring 1454
description 1453
protocols supported 1453
specifying server parameters 1455
tracing 1455

MLQ (middle-level qualifier) 20
MNLB, Cisco 483, 484
MODDVIPA utility 368
MODDVIPA, defining RACF profile for 369
MODIFY command

Remote Execution server 1446
SNALINK LU0 520

monitoring DNS name server responsiveness
overview 752

monitoring network interfaces 447

MPC (multipath channel) 5
MPCOSA 6
MPCPTP (multi-path channel point-to-point), general

description 7
Multi-Node Load Balancer (MNLB), Cisco 483, 484
multi-path channel point-to-point, general description 7
multilevel secure environment

overview 153
required configuration 158

MULTIPATH (IPCONFIG MULTIPATH) 215, 266
multipath channel, general description 5
multiple application-instance scenario 363
multiple copies of TCP/IP 50
multiple stacks

AUTOLOG 237
BPXPRMxx 59
CINET PFS 50
configuring FTP with 670
generic versus specific affinity 51
OSA/SF considerations 1356
OSPF and RIP considerations 274
overview 50
port management 50
selecting a stack 56
socket application programs 56
TCPIP.DATA 57, 208
VIPA considerations 353, 360

MVS
accounting 36
automatic restart manager (ARM) 34
component trace 103
failure management 407
general description 3
logging system messages 34
SERVAUTH 39
system symbols 32, 211

MX records 1410

N
name resolution

HOMETEST command to verify 246
iterative resolution 777
SMTP domain 1410
TESTSITE command to verify 246
using HOSTS.LOCAL data set 240
VIPA host 357

name servers
authoritative 777
caching-only, definition 779
configuring master and caching-only 784
for VIPA host-name resolution 357
forwarder, definition 779
master, definition 779
secondary, definition 779
SMTP configuration for 1410
Stealth, definition 780

named daemon 798
naming conventions, dynamically allocated data sets 20
NCP host interface 540
NCP IP router statements 541
NCPROUTE

AUTOLOG 535
BSDROUTINGPARMS 536
building the NCPROUTE profile 542
cataloged procedure 537
configuration examples 547

1594 z/OS V1R12.0 Comm Svr: IP Configuration Guide

NCPROUTE (continued)
configuring 534

active route 546
client NCP 538
default route 547
external route 546
GATEWAYS data set 544
passive route 545

DD statement for external message data set 252
defining for TCP/IP 516
DEVICE 537
ETC.SERVICES 538
filters 534
filters, input/output 534
gateways 531
gateways data set 544
HOME 536
interaction with VIPA 215
LINK 537
NCP 538
operation 531
overview 529, 530
PORT 535
profile data set 542
RIP 530
RIP advertising rules 532
RIP, external 532
RIP, passive 531
server requirements 531
SNMP 530
specifying configuration statements 535
updating ETC.SERVICES 538
VTAM definitions 536

NCS interface
configuration 1372
LLBD cataloged procedure 1372
NRGLBD cataloged procedure 1372
specifying statements in PROFILE.TCPIP 1373

NCST (NCP Connectionless SNA Transport) 539
NETSTAT 102
Netstat access control 125
NetView 1325, 1351
Network access control 120
network connectivity, SNA network 513
network file system, see also NFS 1365
network interfaces monitoring 447
network management application 1326
network protocol layer, z/OS Communications Server

TCP/IP 7
Network SLAPM2 subagent 888, 1329
NFS (network file system)

PORTMAP address space 1365
NJE

mail gateway 1404
NPSI, see X.25 522
nslookup command

overview 812

O
offloading log files 202
OMPROUTE

autolog considerations 278
cataloged procedure 279
configuring 277
displaying information 312
interaction with service policy 276

OMPROUTE (continued)
interaction with VIPA 215, 276, 353
multiple stack considerations 274
overview 267, 274
parameters 285
ROUTESA_CONFIG 1335
run-time environment 272
sample configuration files 333
SNMP subagent 1352
starting 284
stopping 286
subagent 1329
supported protocols 267
use with NCPROUTE 536
verification of configuration and state 312

OMPROUTE_CTRACE_MEMBER 282
OMPROUTE_DEBUG_FILE 282
OMPROUTE_DEBUG_FILE_CONTROL 282
OMPROUTE_FILE 281
OMPROUTE_IPV6_DEBUG_FILE 282
OMPROUTE_OPTIONS 281
OMVS RACF segment 41, 42, 102, 103
onslookup command

command line mode 812
interactive mode 812
overview 812

onslookup considerations, configuring host resolvers 806
open shortest path first, see also OSPF 257
Open Systems Adapter (OSA)

with ARP offload 231
with Cisco router 484
with SNMP 1353

OPTIONS statement
use with NCPROUTE 545

OSA routing 68
OSA-Express feature

network traffic analyzer trace 92
VMAC routing 68

OSA-Express2 feature
synchronization of diagnostic data 93

OSNMPD, configuring 1334
OSNMPD.CONF, search order for 25
OSNMPD.DATA, search order for 25
OSPF (open shortest path first)

configuring authentication 283
configuring OSPF and RIP 288
definition 257
IPv6 257
overview 267
sample configuration files 333
security 141

otelnetd 654

P
parameter, Subnet_mask 292
parameters, LPD server cataloged procedure

DIAG 1362
LPDDATA 1362
LPDPRFX 1362
TRACE 1362
TYPE 1362
VERSION 1362

parameters, Miscellaneous server
CHARGEN 1456
DEbug 1456
DISCARD 1456

Index 1595

parameters, Miscellaneous server (continued)
ECHO 1456
TRACE 1456

parameters, SMTP statements
DEBUG, SMSG 1405
EXPIRE, SMSG 1405
HELP, SMSG 1405
NODEBUG, SMSG 1405
NOTRACE, SMSG 1405
QUEUES, SMSG 1405
SHUTDOWN, SMSG 1405
STATS, SMSG 1405
TRACE, SMSG 1405

Pascal sockets
general description 9

passive gateway 531
passive route, configuring

NCPROUTE 545
path length 48
PATHMTUDISC (IPCONFIG PATHMTUDISC) 216, 261
PDSTYPE 672
performance considerations 47
PFS (physical file system) 8, 45, 50
physical file system (PFS) 50
physical file system, general description 8
policies

IDS 908
sysplex distributor 875

Policies
Attack 901
defining using LDAP 1533
Differentiated Services (DS) 873
DS 882
IDS Attack 912
IDS Scan 910
IDS TR 915
IDS TR TCP 904
IDS TR UDP 905
in Policy Agent configuration file 882
Integrated Services (RSVP) 875
RSVP 884
RSVP in LDAP 1538
Scan 897
sysplex distributor 884
sysplex distributor in LDAP 1539
Traffic Regulation (TR) 904

Policy Agent
and LDAP objects 1530
components 829
Configuration file 882
Configuring 848
overview 829
roles 829
sample files 841
sample LDAP objects, using 1532
Starting and stopping 865
types 829

policy-based route table
definition 256

policy-based routing
definition 256

popper 1413
port access control 116
port management

multiple stacks 50
port ownership, specifying 786

PORTMAP
cataloged procedure 1366
configuring 1365
ETC.RPC 1366
required by NFS 1365
starting 1367

PORTMAP address space
configuring 1365, 1367
starting PORTMAP 1367, 1368
updating the PORTMAP cataloged procedure 1366, 1368

PortMapper, z/OS UNIX
configuring 1367

PORTRANGE
TCP/IP profile statements 239

POSIX standard
application behavior in z/OS Communications Server 7
using z/OS UNIX sockets API with 10

prerequisite information xxxiv
PRIMARY 672
printer support, 328x 577
printf function 253
problem detection and recovery, sysplex 449
problem diagnosis, DNS

checking syslog messages 814
using name server signals 814
using nslookup 814

procedures, TCP/IP
MISCSERV (MISCSERV) 1455
RXSERVE (RXPROC) 1443, 1447
SNMPD (SNMPDPRC) 1345
SNMPQE (SNMPPROC) 1349

PROFILE.TCPIP
ARPAGE 215
ARPTO 215
AUTOLOG 237
BEGINROUTES 231
BSDROUTINGPARMS 216
changes needed for FTP 660
CLAWUSEDOUBLENOP 215
DATAGRAMFWD 215
DATASETPREFIX 19
DELAYACKS 217
DYNAMICXCF 216
ECSALIMIT 215
EXPLICITBINDPORTRANGE 382
FINWAIT2TIME 217
GLOBALCONFIG 215, 382
HOME 231
IGNOREREDIRECT 215
INTERFACE 230
IPCONFIG 215
IPCONFIG6 216
IPSECURITY 215
LINK 227
MULTIPATH 215
MVS system symbols 32
NOUDPCHKSUM 218
PATHMTUDISCOVERY 216
physical characteristics, setting up 221
PING 246
POOLLIMIT 215
PORT 55, 238, 661, 1356
PRIMARYINTERFACE 231
QDIOACCELERATOR 216
REASSEMBLYTIMEOUT 216
reserved port number definitions, setting up 234
RESTRICTLOWPORTS 217, 218

1596 z/OS V1R12.0 Comm Svr: IP Configuration Guide

PROFILE.TCPIP (continued)
SACONFIG 1353, 1356
sample 221
search order 29, 211
SENDGARBAGE 217
SOMAXCON 216
SOURCEVIPA 215, 231
SRCIP 216
STOPONCLAWERROR 216
SYSPLEXROUTING 216
TCP/IP operating characteristics, setting up 212
TCPCONFIG 217, 661
TCPMAXRCVBUFRSIZE 218, 661
TCPRCVBUFRSIZE 218
TCPSENDBFRSIZE 218
TCPTIMESTAMP 217
TRACERTE 246
TRANSLATE 230
TTLS 218
UDPCONFIG 218
UDPQUEUELIMIT 218
UDPRCVBUFRSIZE 218
UDPSENDBFRSIZE 218
verifying 245
verifying your configuration 245
VIPADYNAMIC 230

PROFILE.TCPIP, specifying configuration statements
EZAFTSRV 662
NCPROUTE 535
PORTMAP 1365, 1367
SMTP 1393
SNALINK 514
TCPIP 211
X.25 NPSI 523

PROFINE.TCPIP
DEVICE 227

program control 44
program directory 100
protocol suite 35
protocol suite, z/OS Communications Server TCP/IP 4
pwtokey 1341

Q
QoS, see Quality of service (QoS) 873
Quality of service (QoS)

and Policy Agent 876
Quality of Service (QoS)

QoS Policy 843

R
RACF (Resource Access Control Facility) 41, 42, 44, 102, 103

authorizing sources 41
Common Keyring support 1467
considerations for FTP server 663
considerations for REXEC server 1444
port access control 116
resource protection 111
REXEC access to MVS 1444
stack access control 115
starting OMPROUTE 280
user access control 111

RACF profile, defining for MODDVIPA 369
RAW protocol, general description 7
REASSEMBLYTIMEOUT 216

RECFM 673
remote hosts, accessing using Telnet 549
RESOLVE_VIA_LOOKUP 240
resolver

address space
defining 738
managing 741
overview 738

API calls 731
applying interim fix 742
cache

deleting entries 751
displaying contents 751
migrating to resolver caching 751

caching
configuring (optional) 748
description of cached information 745
eliminating for some users 749
managing cache 750
organization of cached information 747
overview 744

creating a resolver setup file 736
customizing

DEFAULTTCPIPDATA statement 735
global TCPIP.DATA file 735
GLOBALTCPIPDATA statement 735
overview 733
setup file 733

default settings 733
DNS name server responsiveness

notifications for 754
optimal UNRESPONSIVETHRESHOLD setting 756

examples of DNS name server monitoring 755
Extension Mechanisms for DNS standards (EDNS0) 758
functions

overview 743
global TCPIP.DATA file 735
GLOBALTCPIPDATA statement 735
manually restarting 741
modifying the UNRESPONSIVETHRESHOLD value 757
monitoring DNS name server responsiveness 752
overview 731
setup file 733
starting 732

resolver configuration files
for host names outside local area 240
MVS versus z/OS UNIX resolver 761
overview 759
search order 759
setting environment variables 763
TCPIP.DATA 208
use with OMPROUTE 279

RESOLVER_CONFIG
overview 763
pointing to TCPIP.DATA 208
setting the value of 763
use by OMPROUTE 281
when running multiple TCP/IP stacks 59

RESOLVER_IPNODES 763
resolvers, configuring host

name server considerations 805
nslookup considerations 813

resolving conflicts, VIPA 391
Resource Access Control Facility, see also RACF 41
Resource Access Control Facility, z/OS UNIX security and, see

also RACF 41
RETPD 673

Index 1597

REXECD 43
cataloged procedure 1445
configuring PROFILE.TCPIP 1444
security considerations 1444
UNIX 1443
user exits 1446
userid.RHOSTS.DATA 1445

REXECD, z/OS UNIX
configuring inetd 1459
considerations in CINET environment 54
files 1447
installation 1447

REXX sockets 9
RFC (request for comments) 1555

accessing online xxxvi
RIP (Routing Information Protocol)

configuring 288
definition 256, 268
external routes and NCPROUTE 532
input/output filters 534
interaction with NCPROUTE 529, 530
interaction with VIPA 427
passive routes and NCPROUTE 531
reserving RIP UDP port for OMPROUTE 278
route advertising rules 532
sample configuration files 333

RIP input/output filters 534
RIP_RECEIVE_CONTROL statement 542
RIP_SUPPLY_CONTROL statement 542
RIP2_AUTHENTICATION_KEY statement 542
router advertisements 346
router, definition 256
routing

daemons 256, 267
definition 256
dynamic VIPAs 425
IGNOREREDIRECTS 261
IPv6 dynamic 270, 271
IPv6 static 263
MULTIPATH 266
network design considerations 309, 311
PATHMTUDISC 261
Routing Information Protocol (RIP) 530
routing information tables 538
routing table 530
SOURCEVIPA 356
static versus dynamic 258
verification of 347

Routing Information Protocol, see also RIP 256
rpcbind address space

configuring 1368
RPCINFO 1366
RSHD 43
RSHD, z/OS UNIX

configuring inetd 1459
considerations in CINET environment 54
files 1448
installation exit 1448

RSVP 886
Configuring 886
Policies 875
Starting and stopping 887

S
SAMEHOST 7

sample data sets
See configuration data sets

sample NCP IP router statements 541
search order

configuration files 19
DATASETPREFIX value 20
ETC.IPNODES 768, 772
ETC.PROTO 22, 768, 772
ETC.SERVICES 23, 768, 773
FTP.DATA 23, 671
high-level qualifier (HLQ) 19
HOSTS.ADDRINFO 767, 771
HOSTS.SITEINFO 767, 771
LPD configuration file 1363
MIBS.DATA 1348
middle-level qualifier (MLQ) 20
OSNMPD.CONF 25
OSNMPD.DATA 25
overview 19
PAGENT.CONF 25
PROFILE.TCP/IP 29
PROFILE.TCPIP 25
PW.SRC 26
resolver configuration files 759
RSVPD.CONF 26
SNMPD.BOOTS 27
SNMPD.CONF 27
SNMPTRAP.DEST 27
STANDARD.TCPXLBIN 766, 770
TCPIP.DATA 30
TCPXLBIN data set 677
TRAPFWD.CONF 28
with DD cards in TCP/IP startup procedure 29
without DD cards in TCP/IP startup procedure 29

SECONDARY 673
Secure Socket Layer, see SSL 1461
security

application 110
event reporting 142
Express Logon Feature (ELF) 139
FTP server 663
IPSec 132
multilevel 153
overview 108
principals 130
protecting data in the network 130, 132
protocols 132
RACF 41
resource protection 111
SSL and TLS 136
z/OS UNIX considerations 41, 42, 44

sendmail, z/OS UNIX 1413
SERVAUTH 39, 234

MVS considerations 39
resource protection 111
restricting access to port numbers by applications 40
restricting access to TSO and UNIX shell Netstat

command 40
setting up 240

SERVAUTH class profiles
EZA.DCAS.cvtsysname 1478
EZB.BINDDVIPARANGE.sysname.tcpname 394
EZB.CIMPROV.sysname.tcpname 128
EZB.FRCAACCESS.sysname.tcpname 126
EZB.FTP.sysname.ftpdaemonname.ACCESS.HFS 663
EZB.FTP.sysname.ftpdaemonname.PORTnnnnn 1479
EZB.INITSTACK.sysname.tcpname 126

1598 z/OS V1R12.0 Comm Svr: IP Configuration Guide

SERVAUTH class profiles (continued)
EZB.IPSECCMD.sysname.tcpprocname.* 1505, 1506
EZB.MODDVIPA.sysname.tcpname 369
EZB.NETACCESS.sysname.tcpname.zonename 120
EZB.NETMGMT.sysname.tcpname.IPSEC.DISPLAY 128
EZB.NETMGMT.sysname.tcpname.SYSTCPCN 127
EZB.NETMGMT.sysname.tcpname.SYSTCPDA 126
EZB.NETMGMT.sysname.tcpname.SYSTCPSM 127
EZB.NETSTAT.sysname.tcpname.netstat_option 125
EZB.OSM.sysname.tcpname 122
EZB.PAGENT.sysname.image.ptype 851
EZB.PORTACCESS.sysname.tcpname.port_safname 116
EZB.SNMPAGENT.sysname.tcpprocname 1342
EZB.SOCKOPT.sysname.tcpname.socketoption 122, 124
EZB.STACKACCESS.sysname.tcpname 115
EZB.TN3270.sysname.tcpname.PORTnnnnn 1478

server requirements, NCPROUTE 531
SESSLIM parameter, VTAMLST 108
shared LU name groups 568
shortcut keys 1573
Simple Network Management Protocol

See SNMP (Simple Network Management Protocol)
Simple Network Time Protocol (SNTP) 1439
SIOCSVIPA ioctl 366
SIOCSVIPA6 ioctl 366
SMF (System Management Facility)

records for FTP 36, 680
records for Telnet 36
see also, accounting 36
user exit for FTP server 706

SMS (Storage Management System) 674
SMTP 1396

automation 1413
configuring 1392
configuring a TCP-to-NJE mail gateway 1404
customizing the SMTPNOTE CLIST 1394
domain name resolution 1410
exit to filter unwanted mail 1412
MX records, using 1410
non-secure gateway defaults 1402
PROFILE.TCPIP configuration statements 1393
sample SMTP configuration data set 1407
SECTABLE data set 1407
secure gateway defaults 1403
server 1392
SMTP configuration statements 1405
updating the SMTP cataloged procedure 1393

SMTP.RULES data set 1397
SMTP.SECTABLE data set 1407
SNA network connectivity 513
SNALINK environment 513
SNALINK LU0 513

AUTOLOG 518
BEGINROUTES 514
BSDROUTINGPARMS 514
cataloged procedure 517
configure PPT for 517
configuring 514
connections 520
definitions 516
DEVICE 514
dynamic routing 513
GATEWAY 514
HOME 514
LINK 514
MODIFY 520
Netstat DEVLINKS/-d 520

SNALINK LU0 (continued)
PROFILE.TCPIP 514
sample console 518
starting 518
stopping 518
verifying 520
VTAM definitions 517

SNALINK LU6.2 520
cataloged procedure 521
configuration data set 522
configuring 520
DEVICE 521
LINK 521
VTAM definitions 521

SNMP (Simple Network Management Protocol)
agent 1327
agents and subagents 1334, 1352
community names 1336
community-based security 1336, 1349
configuring 1325
configuring for NCPROUTE 542
configuring for z/OS UNIX 1325
creating user keys 1340
DD statement for external message data set 252
Enterprise-Specific variables 1351
MIBDESC.DATA 1349
multiple SNMPv3 agents in same MVS image 27, 1340
NetView 1349
OSA 1353
OSNMPD, starting 1345
OSNMPD.DATA 25
overview 1325
port specification 1335
protocols 1326
PW.SRC 26
pwtokey 1341
security 1332
security models, overview 1327
SLAPM2 subagent 840
snmp 1346
SNMPD.BOOTS 1340
SNMPD.CONF 1339
SNMPTRAP.DEST 27, 1337
SNMPv1, SNMPv2C, SNMPv3 1332
subagents 1328
TCP/IP profile statements 239, 1334, 1356
textual names 1348
trap forwarding 1357
TRAPFWD.CONF 1358
updating the SNMPD cataloged procedure 1349
user-based security 1338

snmp command, configuring 1346
SNMP Network SLAPM2 subagent 840
SNMP_AGENT statement 543
SNMP_COMMUNITY statement 543
snmp, general description 1326
SNMPIUCV module 1351
SNMPv3, security 142
SNTPD daemon 1439
socket APIs 9
socket applications (z/OS UNIX), support for fast path 48
socket applications use of z/OS UNIX 41
Sockets Extended

definition of call instruction API 9
definition of macro API 9

softcopy information xxxiv
source IP address selection 218

Index 1599

SOURCEVIPA (IPCONFIG SOURCEVIPA) 215, 231, 356, 813,
815

SPACETYPE 673
specific stack affinity 51
specifying configuration statements in PROFILE.TCPIP 535
SPREAD 706
SQL 718
SQL usage

in FTP server 718
SQLCOL 706
SSL

for DCAS 1461
for FTP server 1461
for Telnet server 1461
overview 1461
security 136

stack access control 115
stack communications, z/OS UNIX to TCP/IP 48
stack functions supported, IPv6 11
stack, TCP/IP 3
STANDARD.TCPXLBIN 765, 770
START command 108
started task 42
static routes

definition 256
static routing

configuration examples 264
IPv4 260
IPv6 263
versus dynamic routing 258

Storage Management System (SMS) 674
STORCLASS 673
subagent, Network SLAPM2 888
subagent, Network SLAPM2 subagent (nslapm2) 1329
subagent, OMPROUTE 1329
subagent, TCP/IP 1328
subagent, TN3270E Telnet 1329
Subnet_mask parameter 292
subnets, dynamic VIPAs within 406
subplexing, sysplex 430
superuser authorization 42
SURROGATE, in anonymous logins 711
symbols, MVS system 32
syntax diagram, how to read xxxi
SYSFTPD 671
syslog file, creating 806
syslogd

command format 195
configuring 185
diagnosing configuration problems 207
exit values 197
for z/OS UNIX applications 205
modes of operation 193
overview 34
remote messages, receipt of 198
starting 193
stopping 197
usage notes 206

sysplex
failure management 407
network interfaces monitoring 447
problem detection and recovery 449
subplexing 430
sysplex-wide dynamic source VIPAs for TCP

connections 379
sysplex-wide security associations (SWSA) 388
SYSPLEXPORTS 380

sysplex (continued)
TCP/IP in a 429
workload balancing 462

sysplex distributor 351, 843, 884, 890, 1539
configuring distributed DVIPAs 371
DATAGRAMFWD 410
DNS considerations 810
dynamic port assignment 378
policies 875
policy interactions 469
SYSPLEXROUTING 410
timed affinities 384
using IPSec with 390
with Cisco routers 469
with SWSA 389
workload verification 421

Sysplex Distributor
DYNAMICXCF 212

sysplex-wide dynamic source VIPAs for TCP connections 379
sysplex-wide security associations (SWSA)

DVIPA takeover 388
EZBDVIPAvvtt 388, 391
IPSec with DVIPAs and sysplex distributor 390
overview 388
sysplex distributor 389

SYSPLEXPORTS 380
SYSPLEXROUTING (IPCONFIG SYSPLEXROUTING) 216,

410
SYSTCPD DD

fork() considerations 208, 765
search order for TCPIP.DATA 209
SNALINK LU6.2 cataloged procedure 521

system symbols, MVS 32, 211

T
takeover, DVIPA 388
tasks

(VTAM configuration data set, customizing)
steps 553

ADNR in a sysplex subplexing environment, using
steps 1300

ADNR, configuring
steps 1278

ADNR, granting authority to start
steps 1282

Advisor, granting authority to start
steps 1224

Agents, granting authority to start
steps 1224

applying an interim fix
steps 742

AT-TLS, starting and verifying its operation
steps 1203

authorizing resources for NSS
steps 1152

automated domain name registration, configuring
steps 1278

avoiding adjacency failures
steps for 167

branch office model: part 1 (host-to-gateway with IPSec),
configuring

steps 1075
branch office model: part 2 (gateway-to-gateway with

IPSec), configuring
steps 1091

1600 z/OS V1R12.0 Comm Svr: IP Configuration Guide

tasks (continued)
branch office with NAT model (host-to-gateway with

IPSec), configuring
steps 1084

Configuring OMPROUTE
steps for 277

configuring OSPF and RIP (IPv4 and IPv6)
steps for 288

configuring static VIPAs for a z/OS TCP/IP stack
steps for 355

creating a resolver setup file (optional)
steps 736

creating a separate home directory for each security label
steps for 164

creating a separate resolver configuration file for each
security label

steps for 165
CSFSERV resource class, setting up profiles in

steps 1507
CSSMTP, configuring and starting

steps 1379
CSSMTP, configuring SMF records for

steps 1388
CSSMTP, creating mail on the JES spool data set for

steps 1380
CSSMTP, granting authority to start

steps 1383
CSSMTP, using Transport Layer Security for

steps 1386
customizing the FTP client for Kerberos

steps for 697
customizing the FTP client for TLS

steps for 692
customizing the FTP server for Kerberos

steps for 688
customizing the FTP server for TLS

steps for 682
DataPower, configuring sysplex distributor load balancing

to
steps 495

DataPower, configuring sysplex distributor load balancing
to in a multi-tier and multisite environment

steps 500
defining the resolver address space

steps 738
DMD, authorizing resources for

steps 1189
DMD, configuring

steps 1187
enabling Policy Agent load distribution functions

steps for 482
existing key database, migrating to a RACF key ring

steps 1517
FTP server access, controlling

steps 665
FTP server, setting up a port of entry for users

steps 666
FTP server, setting up port of entry for users

steps 666
FTP server, setting up security

steps 664
FTPD cataloged procedure, configuring

steps 662
hot standby distribution, configuring

steps 477
IKE daemon, authorizing to RACF

steps 1505

tasks (continued)
IKE daemon, configuring

steps 1105
IKE daemon, preparing to run

steps 1505
IKE daemon, setting up for RSA signature mode

authentication
steps 1511, 1513

interface, configuring for the intraensemble data network
(CHPID type OSX)

steps 506
intranode management network (CHPID type OSM),

enabling IPv6 on a stack for access to
steps 507

intranode management network (CHPID type OSM), using
steps 507

IP security policy, configuring
overview 990
steps 1026

IP security policy, local, configuring using both a
stack-specific file and a common file

steps 995
IP security policy, local, configuring using only a common

IP security configuration file
steps 993

IP security policy, local, configuring using only a
stack-specific IP security configuration file

steps 994
IP security policy, remote, configuring using both a

stack-specific file and a common file
steps 996

IP security policy, remote, configuring using only a
common IP security configuration file

steps 993
IP security policy, remote, configuring using only a

stack-specific IP security configuration file
steps 994

IP security, using
overview 929

ipsec command, authorizing resources for
steps 1189

ipsec command, authorizing to RACF
steps 1506

JES, setup
steps 1381

Load Balancing Advisor, configuring
steps 1222

LUNR, defining
steps 570

LUNS, defining
steps 570

manually restarting the resolver 741
message catalog, creating a modified

steps 251
message catalog, creating from the shipped catalog and

preserving its timestamp
steps 679

migrating the FTP server and client to use AT-TLS
steps for 700

migrating to resolver caching
steps 751

modifying the UNRESPONSIVETHRESHOLD value
steps 757

modifying UNRESPONSIVETHRESHOLD value
optimal setting 756

NCS interface, configuring
steps 1372

Index 1601

tasks (continued)
NSS server, configuring

steps 1162
partner company model (host-to-host with IPSec),

configuring
steps 1040

partner company with NAPT model (host-to-host with
IPSec), configuring

steps 1069
partner company with NAT model (host-to-host with

IPSec), configuring
steps 1054

Policy Agent, configuring
steps 848

policy changes, managing
steps 833

PORTMAP address space, configuring
steps 1365

profiles to control access to the RACDCERT command,
defining

steps 1512
QDIO inbound workload queueing, enabling

steps 80
RACF facilities and access controls, defining

steps 1512
resolver address space

overview 738
resolver cache, displaying contents

step 751
resolver cache, managing

steps 751
resolver, configuring caching (optional)

steps 748
resolver, deleting cache entries

steps 751
resolver, eliminating caching for selected users

steps 749
resolver, managing the cache

steps 751
resource profile, defining with RACF

steps 1225
rpcbind, configuring

steps 1368
running a separate instance of TFTP for each security label

steps for 172
security for the procedure name and the associated user

ID, defining
steps 551

self-signed X509 digital certificate for the IKE daemon,
generating

steps 1516
SERVAUTH class, activating and defining

steps 664
setting stack affinity by security label

steps for 164
setting up and running sendmail in a multiple security

label environment
steps for 175

setting up sysplex distributor to be the service manager for
Cisco's MNLB (IPv4 only)

steps for 484
SMTPNOTE CLIST, customizing

steps 1381
starting SNTPD as a procedure

steps for 1440
starting SNTPD from the z/OS shell

steps for 1439

tasks (continued)
starting TFTPD as a procedure

step for 729
subplex, partitioning a set of TCP/IP stacks in a sysplex

into a
steps 434

subplexing, preparing your sysplex for
steps 433

syslogd, configuring archive details
steps 204

syslogd, configuring archive triggers
steps 204

TCP/IP profile, converting from IPv4 IPAQENET DEVICE,
LINK, and HOME definitions to the INTERFACE
statement

steps 64
TN3270E Telnet server configuration data set, customizing

steps 556
trusted internal network model (simple IP filtering),

configuring
steps 1029

X509 digital certificate, generating and having it signed by
a certificate authority

steps 1514
z/OS Load Balancing Advisor, configuring

steps 1222
z/OS system, preparing for IP security

steps 985
z/OS UNIX file system, controlling access to

steps 667
z/OS UNIX PORTMAP address space, configuring

steps 1367
TCP (transmission control protocol), definition 4
TCP/IP

application configuration files 30
changing configuration information 211
configuration data sets 21
configuration files for the stack, search order 28
customizing messages 248
initialization failure 101
installation, planning for 99
multiple instances 50
online information xxxvi
protocol specifications 1555
protocol suite 3
resolver configuration files 759
search order and configuration files for the stack 19
socket APIs 9
stack configuration files, search order 28
starting the address space 108
startup DD cards 29
sysplex considerations 429

TCP/IP configuration data sets 21
TCP/IP Configuration Demo for z/OS, IBM 11
TCP/IP subagent 1328
TCPIP.DATA

/etc/resolve.conf 208
characteristics 208
configuring for FTP 671
creating 208
DATASETPREFIX 19, 59
finding with SYS1.TCPPARMS 21
multiple stacks 57
MVS system symbols 32, 211
overview 208
search order 30
syntax 209

1602 z/OS V1R12.0 Comm Svr: IP Configuration Guide

TCPIP.DATA (continued)
TCPIPJOBNAME 59
verifying 245

TCPSTACKSOURCEVIPA 215, 354, 356, 379
Technotes xxxiv
Telnet configuration data set

customizing 556
updating with VARY TCPIP,tnproc,OBEYFILE

command 559
TESTSITE 246
TFTP server, configuring 727
TIMED daemon 1437
TLS

for DCAS 1461
for FTP server 1461
for Telnet server 1461
security 136

TN3270E Telnet server
accounting 36
associated printer function 617
configuration data set 554
connection and session takeover 628
connection security 581
connection types 575
device types 636
diagnostics 561
disconnect on error 634
Express Logon Feature (ELF) 635
Generic connection requests 614
getting started 550
keep LU for client identifier 619
keeping the ACB open 635
logmode considerations 636
LU assignments 595
LU group capacity warning 619
LU mapping by application name 620
LU mapping selection rules 622
LU name assignment user exit 615
LUMAP statements, multiple 618
managing 558
map default application and ParmsGroup by LU

group 618
mapping groups to client identifiers 615
mapping objects to client identifiers 595
multilevel security 624
Network Access Control 591
overview 549
queueing sessions 633
session initiation management 626
SMF records 642
solicitor 637
Specific connection requests 614
storage considerations 582
timers 592
Unformatted System Services (USS) 637
using wildcards to configure 598, 1478, 1479

TN3270E Telnet subagent 1329
TNF 103
trademark information 1583
translation of data, FTP 675
transmission control protocol (TCP), definition 4
transport layer, z/OS Communications Server TCP/IP 7
Trap Forwarder Daemon 1331
traps and SNMP, definition 1326
TRMD

running as a started task 920
running from the z/OS UNIX shell 920

TRMD (continued)
stopping and starting 919

TRMDSTAT 921
TSIG 821

U
UCOUNT 673
UDP (user datagram protocol), general description 7
UMASK 673
unique application-instance scenario 363, 364
UNITNAME 673
UNIX, superuser authorization 42
user datagram protocol (UDP), general description 7

V
variables, setting environment for resolver configuration

files 763
VCOUNT 673
verification

system configuration 108
X Window System 247

VIPA (virtual IP address)
backing up TCP/IP stack 358
configuring static 355
distributed DVIPA 351
dynamic (DVIPA) 359
dynamic routing 351
dynamic VIPA 351
interfaces 296
manual movement 353
overview 61, 351
static 355
takeover planning 352, 360

VIPA interfaces 296
virtual IP address, see also VIPA 351
virtual MAC routing 68
virtual machine communication facility, see also VMCF 103
VMAC routing 68
VMCF (virtual machine communication facility)

commands 105
configuring as non-restartable system 105
configuring as restartable system 104

VOLUME 673
VPN, security 132
VTAM APPL definition

for SNALINK LU0 517
for SNALINK LU6.2 521
for X.25 NPSI 527

VTAM parameters, general update 107
VTAM, online information xxxvi
VTAMLST member 108

W
well-known procedure names, defining 1366

X
X Window System verification 247
X Window, verifying installation 247
X.25 NPSI 522

cataloged procedure 523
configuration 524

Index 1603

X.25 NPSI (continued)
configuration data set 524
configuring 523
DATE 524
DEVICE 523
GATE 524
GATEWAY 523
HOME 523
LINK 523
performance 523
START 523
VTAM definitions 527

X.25, support by SAMEHOST 7
XPG4 standard

using z/OS UNIX sockets API with 10

Z
z/OS Basic Skills information center xxxiv
z/OS Basic Skills Information Center xxxiv
z/OS Communications Server environment, overview 19
z/OS Communications Server overview 3
z/OS Load Balancing Advisor 1219
z/OS Management Facility, IBM

AT-TLS 1195
DMD 1187
IDS 906
overview 831
policy-based routing 337
QoS 881

z/OS UNIX
security considerations 44

z/OS UNIX initialization failure 103
z/OS UNIX sendmail

configuring
steps for 1418

z/OS UNIX sockets 10
z/OS UNIX System Services (z/OS UNIX)

applications and syslogd 205
concepts 16
hierarchical file system concepts 17
overview 16

z/OS UNIX Telnet server, configuring 649
z/OS UNIX, superuser authorization 42
z/OS, documentation library listing 1585
z/OS, IBM TCP/IP Configuration Demo for 11
zone transfers 779

1604 z/OS V1R12.0 Comm Svr: IP Configuration Guide

Communicating your comments to IBM

If you especially like or dislike anything about this document, please use one of
the methods listed below to send your comments to IBM. Whichever method you
choose, make sure you send your name, address, and telephone number if you
would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject
matter, or completeness of this document. However, the comments you send
should pertain to only the information in this manual and the way in which the
information is presented. To request additional publications, or to ask questions or
make comments about the functions of IBM products or systems, you should talk
to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

Please send your comments to us in either of the following ways:
v If you prefer to send comments by FAX, use this number: 1+919-254-1258
v If you prefer to send comments electronically, use this address:

– comsvrcf@us.ibm.com
v If you prefer to send comments by post, use this address:

International Business Machines Corporation
Attn: z/OS Communications Server Information Development
P.O. Box 12195, 3039 Cornwallis Road
Department AKCA, Building 501
Research Triangle Park, North Carolina 27709-2195

Make sure to include the following in your note:
v Title and publication number of this document
v Page number or topic to which your comment applies.

© Copyright IBM Corp. 2000, 2011 1605

mailto:comsvrcf@us.ibm.com

1606 z/OS V1R12.0 Comm Svr: IP Configuration Guide

����

Program Number: 5694–A01

Printed in USA

SC31-8775-18

Sp
in
e
in
fo
rm
at
io
n:

�
�

�
z/

O
S

Co
m

m
un

ic
at

io
ns

Se
rv

er
z/

O
S

V
1R

12
.0

Co
m

m
Sv

r:
IP

Co
nf

ig
ur

at
io

n
G

ui
de

Ve
rs

io
n

1
R

el
ea

se
12

	Contents
	Figures
	Tables
	About this document
	Who should read this document
	How this document is organized
	How to use this document
	Determining whether a publication is current
	How to contact IBM service

	Conventions and terminology that are used in this document
	How to read a syntax diagram
	Prerequisite and related information
	How to send your comments

	Summary of changes
	Part 1. Base TCP/IP system
	Chapter 1. Overview of z/OS Communications Server
	TCP/IP protocol stack
	Multipath channel I/O process
	Communications Storage Manager

	Connectivity and gateway functions
	Network protocol layer
	Transport layer
	File systems
	Application Programming Interfaces
	TCP/IP socket APIs provided by z/OS Communications Server
	z/OS UNIX APIs

	Chapter 2. IP configuration overview
	IPv6 support
	IBM TCP/IP Configuration Demo for z/OS
	z/OS UNIX System Services concepts
	Overview of data sets and UNIX files
	Hierarchical file system concepts
	References to installation data sets

	Understanding search orders of configuration information
	Configuration data set naming conventions
	Dynamic data set allocation
	TCP/IP configuration data sets

	Configuration files for the TCP/IP stack
	PROFILE.TCPIP search order
	Examples

	TCPIP.DATA search order

	Configuration files for TCP/IP applications
	Environment variables

	MVS-related considerations
	MVS system symbols
	Automatic restart manager
	Logging of system messages
	Accounting - SMF records
	Security considerations
	Nonreusable ASIDs
	TSO command authorization

	UNIX System Services security considerations
	Requirement for an OMVS segment
	Authorization of TCP/IP started task user ID
	Other user IDs requiring z/OS UNIX superuser authority
	BPX.DAEMON FACILITY class profile
	Program control

	Defining TCP/IP as a UNIX System Services physical file system
	Performance considerations
	Fast path support
	Considerations for multiple instances of TCP/IP
	Common INET PFS
	Port management overview
	Generic server versus server with affinity for a specific transport provider
	Generic servers in a CINET environment
	Port reservation across multiple transport providers

	Selecting a stack when running multiple instances of TCP/IP
	Standard servers and clients
	Nonstandard servers and clients
	TCP/IP TSO clients
	Selecting configuration data sets
	Sharing resolver configuration data sets

	Specifying BPXPRMxx values for a CINET configuration

	Considerations for Enterprise Extender
	Considerations for VIPA
	Considerations for Fast Response Cache Accelerator
	Considerations for extended address volumes
	Considerations for networking hardware attachment
	OSA-Express feature in QDIO mode
	Steps for converting from IPv4 IPAQENET DEVICE, LINK, and HOME definitions to the IPv4 IPAQENET INTERFACE statement
	Virtual LAN
	OSA VLAN
	OSA routing
	OSA-Express virtual MAC routing
	Primary router

	Relationship of VLAN and primary router
	Network configuration strategy with VLAN
	VLAN switch concepts
	VLAN configuration recommendations

	OSA-Express port sharing
	OSA-Express connection isolation
	ARP offload and VIPA ARP processing
	Checksum offload
	TCP segmentation offload
	Dynamic LAN idle timer
	Optimized latency mode
	QDIO inbound workload queueing
	Steps for enabling QDIO inbound workload queueing

	Displaying OSA-Express QDIO interface information
	HiperSockets concepts and connectivity
	Concepts and considerations for the IQD CHPID
	HiperSockets and VLAN
	Planning for IQD CHPID spanning
	The HiperSockets MPC group
	HiperSockets maximum frame size
	Modifying HiperSockets connectivity [TCP/IP device and link and the VTAM HiperSockets MPC group (IUTIQDIO)]
	HiperSockets connectivity and routing
	Efficient routing using HiperSockets Accelerator
	HiperSockets multiple write
	HiperSockets multiple write assist with IBM zIIP

	QDIO Accelerator
	OSA-Express network traffic analyzer trace
	Synchronization of OSA-Express2 diagnostic data
	Prioritizing outbound OSA-Express data using the Workload Manager service class
	Fixed storage requirements for OSA-Express QDIO and HiperSockets interfaces

	Maximum transmission unit considerations
	Considerations for multiple servers sharing a TCP port
	Considerations for Common Information Model providers
	Required steps before starting TCP/IP
	Planning your installation and migration
	Step 1: Install z/OS Communications Server
	Verifying the initial installation
	Step 2: Customize z/OS Communications Server
	Making SYS1.PARMLIB changes

	Step 3: Configure VMCF and TNF
	Restartable subsystems
	Non-restartable subsystems
	VMCF commands
	Common VMCF problems
	IUCV/VMCF considerations

	Step 4: Update the VTAM application definitions
	Step 5: Verify that the required address spaces are active
	Step 6: Start the TCP/IP address space
	Step 7: Set up cataloged procedures and configuration data sets

	Chapter 3. Security
	Application security
	TCP/IP resource protection
	Local user access control to TCP/IP resources using SAF
	Stack access control
	Port access control
	Controlling access to particular ports
	Controlling access to unreserved ports

	Network access control
	OSM access control
	Socket option access control
	SO_BROADCAST socket option
	IPv6 advanced socket API options

	Netstat access control
	Fast Response Cache Accelerator access control
	TCP/IP stack initialization access control
	TCP/IP packet trace service access control
	TCP connection information service access control
	Real-time SMF information service access control
	TCP/IP OSAENTA trace service access control
	IPSec network management interface access control
	CIM provider access control
	Syslogd isolation
	IP filtering
	Security considerations for the VARY command
	Multilevel security

	Network security principles
	Cryptography: The foundation of good security
	Cryptographic standards and FIPS 140

	End to end security
	Workload-based security deployment
	Existing workload
	New workload

	Network security protocols
	IPSec and VPNs
	Hardware features for encryption, decryption and hashing
	Additional IPSec assist using System z Integrated Information Processor (zIIP IP security)

	SSL and TLS
	TN3270E Telnet server security
	Express Logon Feature
	TLS-enabled FTP

	Application Transparent Transport Layer Security
	Kerberos
	OSPF authentication
	Secure DNS
	DNSSEC
	TSIG

	SNMPv3

	Security event reporting: Integrated Intrusion Detection Services
	Defensive filtering
	Network security services for the IPSec discipline
	Network security services for the XMLAppliance discipline

	Chapter 4. Preparing for TCP/IP networking in a multilevel secure environment
	Understanding multilevel security concepts
	Multilevel secure networking
	Nonsecure systems
	Managed systems
	Multilevel secure systems
	z/OS Communications Server TCP/IP stacks on z/OS multilevel secure systems
	Restricted stacks
	Unrestricted stacks
	Stack recognition of a multilevel secure environment
	Common INET in a multilevel secure environment

	Network security zones
	IBM zEnterprise System ensemble
	Where your z/OS systems fit in your network

	Planning stacks on your z/OS systems
	Required configuration in a multilevel secure environment
	Considerations for IPv6-enabled stacks

	Deciding whether to use restricted or unrestricted stacks
	Configuring a restricted stack
	Configuring an unrestricted stack

	Configuring global definitions for all stacks
	Exempting certain users of certain programs from full Network Access Control
	Configuring stack sysplex features in a multilevel secure environment
	Defining security labels on other profiles in the SERVAUTH class

	Planning your multilevel secure network
	Planning for interactive UNIX System Services users in a multilevel secure environment
	Steps for creating a separate home directory for each security label
	Steps for setting stack affinity by security label
	Host and domain name by security label
	Steps for creating a separate resolver configuration file for each security label

	Planning for applications in a multilevel secure environment
	Configuring z/OS CS applications in a multilevel secure environment
	Trusted network administration server applications
	Trusted multilevel secure server applications
	Trusted single-level secure server applications
	Network administration client applications
	IBM zEnterprise System platform management applications
	General user client applications
	Unsupported applications

	Changing your multilevel secure networking environment

	Chapter 5. TCP/IP Customization
	Configuring the syslog daemon
	Starting and stopping syslogd
	Configuring syslogd to receive remote messages
	Improving the efficiency of syslogd remote logging functions
	Security considerations
	Availability considerations
	Additional considerations

	Offloading log files
	Setting permissions for log files and directories
	Configuring syslogd for automatic archiving
	Steps for configuring the events that trigger automatic archival
	Steps for configuring the archive details for each z/OS UNIX file

	Using syslogd for z/OS UNIX application programs
	Usage notes
	Diagnosing syslogd configuration problems

	Configuring TCPIP.DATA
	Use of TCPIP.DATA and /etc/resolv.conf
	Creating TCPIP.DATA
	TCPIP.DATA statements
	Using MVS system symbols in TCPIP.DATA

	Configuring PROFILE.TCPIP
	Changing configuration information
	Setting up TCP/IP operating characteristics in PROFILE.TCPIP
	Source IP address selection

	Setting up physical characteristics in PROFILE.TCPIP
	Devices that support ARP offload
	Interface-layer fault-tolerance for local area networks (interface-takeover function)
	IPv6 considerations: Stateless autoconfiguration and duplicate address detection

	Setting up reserved port number definitions in PROFILE.TCPIP
	Setting up the System Authorization Facility server access authorization class (optional)

	Configuring the local host table (optional)
	Creating HOSTS.LOCAL site host table
	HOST entries
	NET and GATEWAY entries
	Using MAKESITE

	Creating /etc/hosts
	Creating ETC.IPNODES and /etc/ipnodes

	Verifying your configuration
	Verifying TCPIP.DATA statement values in the native MVS environment
	Verifying TCPIP.DATA statement values in the z/OS UNIX environment
	Verifying PROFILE.TCPIP
	Verifying interfaces with Ping and Traceroute
	Verifying local name resolution with TESTSITE
	Verifying PROFILE.TCPIP and TCPIP.DATA using HOMETEST
	Verifying your X Window System installation (Optional)
	Verifying the X Window X11R4 System installation
	Verifying the X Window X11R6 System installation

	Customizing TCP/IP messages
	Customizing message catalogs
	Message format
	Rules for modifying messages
	Steps for creating a modified message catalog

	Customizing message data sets
	Message text
	Message format
	Rules for customizing the messages

	Chapter 6. Routing
	Routing terminology
	General terms
	Interior Gateway Protocols

	Route selection algorithm
	The sample network

	IPv4 static routing
	IPv6 static routing
	Static routing configuration examples
	z/OS TCPCS4
	z/OS TCPCS7

	IPv4 dynamic routing using OMPROUTE
	Open Shortest Path First
	Routing Information Protocol

	IPv6 dynamic routing using router discovery
	Multiple routes from router advertisements

	IPv6 dynamic routing using OMPROUTE
	IPv6 OSPF protocol
	IPv6 RIP protocol

	OMPROUTE configuration
	Run-time environment
	Language Environment run-time considerations
	OMPROUTE tuning considerations
	Multiple TCP/IP stacks
	TCP/IP stack routing table management
	Using RIP, IPv6 RIP, OSPF, and IPv6 OSPF with OMPROUTE
	Token-ring multicast
	Virtual IP addresses
	Service policy
	Multiple equal-cost routes
	Sysplex autonomics
	Steps for configuring OMPROUTE

	Starting and controlling OMPROUTE
	OMPROUTE parameters
	The -tn and -6tn command line parameters
	The -dn, -6dn, and -sn command line parameters

	Controlling OMPROUTE
	Stopping OMPROUTE
	Rereading the configuration file
	Enabling or disabling the OMPROUTE subagent
	Changing the cost of OSPF links
	Controlling OMPROUTE tracing and debugging

	Steps for configuring OSPF and RIP (IPv4 and IPv6)
	Minimizing the routing responsibility of z/OS Communications Server
	Preventing futile neighbor state loops during adjacency formation
	Verification of OMPROUTE IPv4 configuration and state
	Displaying all OSPF configuration information
	Displaying information about configured OSPF areas
	Displaying configuration information about configured OSPF interfaces
	Displaying information about configured Non-broadcast Multiple Access OSPF interfaces
	Displaying information about configured OSPF virtual links
	Displaying information about configured OSPF neighbors
	Displaying the contents of a single OSPF link state advertisement
	Displaying statistics and parameters for OSPF areas
	Displaying the list of AS external advertisements
	Displaying a list of non-AS external advertisements
	Displaying current, run-time statistics and parameters for OSPF interfaces
	Displaying current, run-time statistics and parameters for a specific OSPF interface
	Displaying current, run-time statistics and parameters for OSPF neighbors
	Displaying current run-time statistics and parameters for a specific OSPF neighbor
	Displaying routes to other routers that have been calculated by OSPF
	Displaying the number of LSAs currently in the link state database
	Displaying statistics generated by the OSPF routing protocol
	Displaying all of the RIP configuration information
	Displaying information about configured RIP interfaces
	Displaying the routes to be unconditionally accepted
	Displaying current run-time information about RIP interfaces
	Displaying current run-time information about a specific RIP interface
	Displaying the global RIP filters
	Displaying the routes in the OMPROUTE main routing table
	Displaying the routes to a specific destination in the main routing table
	Displaying the routes in all OMPROUTE policy-based routing tables
	Displaying the routes in an OMPROUTE policy-based routing table
	Displaying the routes to a specific destination in a policy-based routing table
	Displaying all of the generic configuration information
	Displaying information about configured generic interfaces
	Displaying current run-time information about generic interfaces

	Verification of OMPROUTE IPv6 configuration and state
	Displaying all IPv6 OSPF information
	Displaying IPv6 OSPF area statistics and parameters
	Displaying IPv6 OSPF interface statistics and parameters
	Displaying statistics and parameters for a specific IPv6 OSPF interface
	Displaying IPv6 OSPF virtual link statistics and parameters
	Displaying statistics and parameters for a specific IPv6 OSPF virtual link
	Displaying IPv6 OSPF neighbor statistics and parameters
	Displaying statistics and parameters for a specific IPv6 OSPF neighbor
	Displaying IPv6 OSPF link state database statistics
	Displaying IPv6 OSPF link state advertisement
	Displaying IPv6 OSPF external advertisements
	Displaying IPv6 OSPF area link state database
	Displaying IPv6 OSPF router routes
	Displaying IPv6 OSPF routing protocol statistics
	Displaying all of the IPv6 RIP information
	Displaying information about IPv6 RIP interfaces
	Displaying information about a specific IPv6 RIP interface
	Displaying the routes to be unconditionally accepted by IPv6 RIP
	Displaying the global IPv6 RIP filters
	Displaying the routes in the OMPROUTE IPv6 routing table
	Displaying the routes to a specific IPv6 destination
	Displaying all of the IPv6 generic information
	Displaying information about IPv6 generic interfaces
	Displaying information about a specific IPv6 generic interface

	Sample OMPROUTE configuration files
	Policy-based routing
	Options for configuring policy-based routing
	Option 1: Use the IBM Configuration Assistant for z/OS Communications Server
	Option 2: Manual configuration
	Specifying the routing configuration file based on Policy Agent role

	Routing policy configuration
	Routing rules
	Routing actions
	Routing tables

	Getting started with policy-based routing
	Considerations for using policy-based routing with IP security

	Considerations for mixed routing environments
	Using static routing with OMPROUTE
	Using IPv6 static routing with router advertisements
	Using policy-based routing with static or dynamic routing

	Verifying static, dynamic, and policy-based routing
	Verifying connections with Netstat, Ping, and Traceroute

	Chapter 7. Virtual IP Addressing
	Terminology
	Introduction to VIPA
	Moving a VIPA (for TCP/IP outage)
	Static VIPAs, dynamic VIPAs, distributed DVIPAs
	Using static VIPAs
	Steps for configuring static VIPAs for a z/OS TCP/IP stack
	Configuring static VIPAs for Enterprise Extender
	Considerations when using static VIPAs with IPv6
	Planning for static VIPA takeover and takeback

	Using dynamic VIPAs
	Configuring DVIPA support
	Planning for dynamic VIPA takeover
	Manually initiating takeover for an individual dynamic VIPA

	Different application uses of IP addresses and DVIPAs
	Configuring dynamic VIPAs
	Configuring the multiple application-instance scenario
	Configuring the unique application-instance scenario
	Using the SIOCSVIPA or SIOCSVIPA6 ioctl command
	Using the MODDVIPA utility
	Defining a security profile for MODDVIPA

	Choosing which form of dynamic VIPA support to use
	Configuring distributed DVIPAs — sysplex distributor
	Manually quiescing DVIPA sysplex distributor server applications
	Route selection for distributing packets
	Generic routing encapsulation
	Fragmentation considerations

	Dynamic port assignment
	Sysplex-wide source VIPA
	Sysplex-wide source VIPAs for TCP connections
	SYSPLEXPORTS

	GLOBALCONFIG EXPLICITBINDPORTRANGE
	Timed affinities
	Sysplex-wide security associations
	DVIPA takeover
	Sysplex distributor
	Using IPSec with DVIPAs and sysplex distributor
	Loss of access to coupling facility

	Resolution of dynamic VIPA conflicts
	Restart of the original VIPADEFINE TCP/IP after an outage
	VIPADEFINE MOVEABLE IMMEDIATE
	VIPADEFINE MOVEABLE WHENIDLE

	Movement of unique application-instance (BIND)
	VIPARANGE (DEFINE) MOVEABLE NONDISRUPTIVE
	VIPARANGE (DEFINE) MOVEABLE DISRUPTIVE
	Defining a RACF profile for VIPARANGE

	Movement of a unique APF-authorized application instance (ioctl)
	VIPARANGE (DEFINE) MOVEABLE NONDISRUPTIVE
	VIPARANGE (DEFINE) MOVEABLE DISRUPTIVE

	Same dynamic VIPA for VIPADEFINE and BIND(), SIOCSVIPA or SIOCSVIPA6 ioctl, or MODDVIPA utility
	Dynamic VIPA creation results
	TIER1, TIER2, and CPCSCOPE keyword DVIPA contention resolution

	IPv6 considerations
	VIPARANGE
	VIPADEFINE and VIPABACKUP
	Unique application-instance scenario and IPv6-enabled applications

	VIPAs, OSA-Express QDIO, and Spanning Tree Protocol
	Mixture of types of dynamic VIPAs within subnets
	MVS failure and sysplex failure management
	Applications and dynamic VIPAs
	Configuring VIPAs for activation with VIPABACKUP
	Example of configuring dynamic and distributed VIPAs
	Verifying the DVIPAs in a sysplex
	Using Netstat support to verify dynamic VIPA configuration

	Verifying sysplex distributor workload
	Dynamic VIPAs and routing protocols
	IPv4 considerations for OMPROUTE
	IPv4 considerations for Routing Information Protocol
	IPv6 considerations

	Chapter 8. TCP/IP in a sysplex
	Connectivity in a sysplex
	Sysplex subplexing
	TCP/IP and VTAM subplex concepts and example
	Setting up a subplex

	Dynamic XCF
	Getting started with dynamic XCF
	IUTSAMEH
	XCF
	Examples of definitions generated by dynamic XCF
	HiperSockets

	Network interfaces monitoring
	Sysplex problem detection and recovery
	Problem detection
	Recovery
	Setting TIMERSECS
	Summary of problems monitored and actions taken

	Target server connection setup responsiveness monitoring
	TSR
	CER

	Workload balancing
	Single systemwide image
	Horizontal growth
	Ease of management
	Internal load balancing solutions
	Sysplex-aware external load balancing solutions
	External IP workload balancing solutions
	Choosing a load balancing solution

	Sysplex distributor
	BASEWLM - Distribution using WLM system weights
	SERVERWLM - Distribution using WLM server-specific weights
	Choosing between the BASEWLM and SERVERWLM distribution methods
	BASEWLM and SERVERWLM display example
	WEIGHTEDACTIVE - Distribution based on active connection load
	Choosing between RoundRobin and WeightedActive distribution
	Hot standby distribution
	Steps for configuring hot standby distribution
	Hot standby configuration example

	Timed affinity
	SHAREPORT
	QDIO Accelerator
	QDIO inbound workload queueing
	Optimizing local connections
	Policy interactions
	Steps for enabling Policy Agent load distribution functions

	Optimized connection load balancing using sysplex distributor in a network with CISCO routers (IPv4 only)
	Steps for setting up sysplex distributor to be the service manager for the Cisco MNLB (IPv4 only)

	Sysplex distribution optimizations for multi-tier z/OS workloads
	Sysplex distributor optimization with the OPTLOCAL keyword
	Sysplex distributor enhanced workload distribution for z/OS multi-tier, OPTLOCAL configurations
	Sysplex distributor enhanced workload distribution for z/OS multi-tier, OPTLOCAL configurations with CPC affinity

	Sysplex distribution with DataPower
	Scenario 1 overview - sysplex distributor load balancing to DataPower
	Steps for configuring scenario 1 - sysplex distributor load balancing to DataPower
	Configure sysplex distributor tier 1 distributed DVIPAs and ports
	Configure the DataPower appliances to work with a tier 1 sysplex distributor and act as targets of the tier 1 DVIPAs and port
	Configure a distributed DVIPA for the target z/OS application servers used by the group of DataPower appliances (optional)

	Scenario 2 overview - sysplex distributor load balancing to DataPower in a multi-tier and multisite environment
	Steps for configuring scenario 2 - sysplex distributor load balancing to DataPower in a multi-tier and multisite environment
	Configure sysplex distributor tier 1 distributed DVIPAs and ports
	Configure the DataPower appliances to work with a tier 1 sysplex distributor and act as targets of the tier 1 DVIPAs and port
	Configure tier 2 distributed DVIPAs for each CPC containing target servers used by a group of DataPower appliances
	Configure a CPCSCOPE dynamic VIPA for each CPC for use by a group of DataPower target applications

	Chapter 9. TCP/IP in an ensemble
	Steps for configuring an interface for the intraensemble data network (CHPID type OSX)
	Steps for enabling IPv6 on a stack for access to the intranode management network
	Steps for using the intranode management network (CHPID type OSM)
	Routing considerations for the intraensemble data network
	OMPROUTE considerations for the intraensemble data network
	Sysplex distributor considerations for the intraensemble data network
	Multilevel security and network access control considerations

	Part 2. Server applications
	Chapter 10. Network connectivity with an SNA network
	SNALINK LU0 environment
	Understanding the SNALINK environment
	Configuring SNALINK LU0
	Step 1: Specify configuration statements in hlq.PROFILE.TCPIP
	Step 2: Update the SNALINK cataloged procedure
	Step 3: Define the SNALINK application to VTAM
	Step 4: Configure PPT for SNALINK LU0

	Stopping and starting SNALINK
	Sample console

	Verifying connection status using Netstat DEVLINKS/-d
	Controlling the SNALINK LU0 interface with the MODIFY command

	SNALINK LU6.2
	Configuring SNALINK LU6.2
	Step 1: Specify DEVICE and LINK statements in hlq.PROFILE.TCPIP
	Step 2: Update the SNALINK LU6.2 cataloged procedure
	Step 3: Define the SNALINK LU6.2 application to VTAM
	Step 4: Update the SNALINK LU6.2 configuration data set

	Sample console

	X.25 NCP Packet Switching Interface
	Configuring X.25 NPSI
	Step 1: Specify X.25 configuration statements in hlq.PROFILE.TCPIP
	Step 2: Update the X.25 NPSI cataloged procedure
	Step 3: Update the X.25 NPSI server configuration data set
	Step 4: Define the X.25 NPSI configuration
	Step 5: Define the X.25 NPSI application to VTAM
	Step 6: Define VTAM switched circuits

	NCPROUTE
	Understanding the NCPROUTE environment
	Server requirements
	NCPROUTE operation
	NCPROUTE gateways summary
	RIP input/output filters

	Configuring NCPROUTE
	Step 1: Specify configuration statements in hlq.PROFILE.TCPIP
	Step 2: Configure VTAM and SNALINK applications
	Step 3: Configure the IP over CDLC DEVICE and LINK statements
	Step 4: Update the NCPROUTE cataloged procedure
	Step 5: Update hlq.ETC.SERVICES
	Step 6: Configure the host-dependent NCP clients
	Step 7: Configure the NCPROUTE profile data set (Optional)
	Step 8: Configure the NCPROUTE gateways data set (Optional)
	Step 9: Define a directly connected host route for the NCST session
	Controlling the NCPROUTE address space with the MODIFY command

	Chapter 11. Accessing remote hosts using Telnet
	The TN3270E Telnet server
	Steps for starting the TN3270E Telnet server
	Steps for defining security for a user ID and associating the user ID with the Telnet procedure name
	Steps for customizing the VTAM configuration data set for Telnet
	The TN3270E Telnet server configuration data set
	Steps for customizing the TN3270E Telnet server configuration data set
	Telnet CTRACE

	Managing Telnet
	Telnet commands
	Using the VARY TCPIP,tnproc,OBEYFILE command to update Telnet configuration
	OMVS shutdown

	Telnet diagnostic tools
	DEBUG messages
	MSG07
	Abend trap
	TESTMODE
	Displays
	Tracing

	Telnet configuration data set customization details
	Associating Telnet with one TCP/IP stack
	Shared LU name groups for Telnet servers
	Qualified ports
	Multiple ports
	Connection mode choices
	Connection security
	Connection persistence
	Mapping Objects to Client Identifiers
	LU name mapping statements
	Application mapping statements
	Connection parameters mapping statement
	Advanced LU name mapping topics
	Advanced application topics
	Device types and logmode considerations
	Using the Telnet Solicitor or USS logon panel
	SMF
	Connection monitoring mapping statement
	Reducing demand for ECSA storage

	Configuring the z/OS UNIX Telnet server
	Installation information
	Environment variables
	Starting, stopping, and administration of z/OS UNIX Telnet
	otelnetd
	SMF record handling
	BPX.DAEMON considerations
	Kerberos

	Chapter 12. Transferring files using FTP
	Configuring PROFILE.TCPIP for FTP
	Configuring ETC.SERVICES
	Configuring /etc/syslog.conf
	Configuring the FTPD cataloged procedure
	Security for the FTP server
	(Optional) Steps for activating and defining the SERVAUTH class
	Steps for setting up security for your FTP server
	Steps for controlling user access to the FTP server
	Steps for setting up a port of entry for users of the FTP server
	(Optional) Steps for controlling user access to the z/OS UNIX file system
	Preventing exploitation of your FTP server

	Defining environment variables for the FTP server (optional)
	_FTPXLATE_name used for translation
	TZ and other UNIX environment variables
	_BPX_JOBNAME
	_BPXK_SETIBMOPT_TRANSPORT for affinity to a specific stack

	Configuring FTP with multiple TCP/IP stacks
	Configuring TCPIP.DATA for FTP
	Configuring FTP.DATA
	Optionally configuring user-level server options using FTPS.RC
	Data set attributes
	Specifying attributes for new MVS data sets
	Dynamic allocation
	Storage Management Subsystem

	Translation of data
	z/OS UNIX named pipes
	FTP code page conversion
	Code page conversions for the control connection
	Code page conversions for the data connection

	Master catalog access
	Customizing FTP message catalogs
	Steps for creating a message catalog from the shipped catalog and preserving its timestamp

	Accounting
	Configure the FTP server for SMF (optional)

	Customizing Transport Layer Security and Kerberos security
	Steps for customizing the FTP server for TLS
	Steps for customizing the FTP server for Kerberos
	Steps for customizing the FTP client for TLS
	Steps for customizing the FTP client for Kerberos
	Port 990
	Steps for migrating the FTP server and client to use AT-TLS
	Traversing firewalls with SSL/TLS secure FTP

	DB2 and JES
	Configuring the optional FTP user exits
	The FTPSMFEX user exit
	The FTCHKIP user exit
	The FTCHKPWD user exit
	The FTCHKCMD user exit
	The FTCHKJES user exit
	The FTPOSTPR user exit

	Customizing the FTP-to-JES interface for JESINTERFACELevel 2 (optional)
	Configuring the FTP server for anonymous logins (optional)
	Creating an anonymous directory structure in the z/OS UNIX file system

	Configure the welcome banner page, login, and directory message (optional)
	Using magic cookies to represent information

	Configuring the FTP server to log session (user ID) activity
	Configuring to send detailed login failure replies to an FTP client (optional)
	Install the SQL query function (optional) and access the DB2 modules
	Accessing DB2 modules
	FTP.DATA updates for SQL query function

	Verifying the FTP server
	Verifying the FTP client
	Verifying FTP.DATA statements
	Verifying anonymous, banner, and other optional configuration information
	Verifying the FTP-JES interface (optional)

	Chapter 13. Trivial File Transfer Protocol
	Starting TFTP from the command line
	Starting TFTPD as a procedure
	Stopping the TFTP server

	Chapter 14. The resolver
	Resolver API calls
	Starting the resolver
	The default resolver settings
	Customizing the resolver
	The resolver setup file
	The resolver and the global TCPIP.DATA file
	Steps for creating a resolver setup file

	The resolver address space
	Steps for defining the resolver address space

	Managing the resolver address space
	Steps for manually restarting the resolver

	Steps for applying an interim fix to the resolver
	IPv6 name servers and the resolver
	Resolver functions
	Resolver caching
	Information that is cached by the resolver
	The organization of the cached data
	Steps for configuring resolver caching (optional)
	Steps for disabling caching for selected applications
	Managing the cache size and cache storage
	Step for deleting cache entries
	Step for displaying the contents of the cache
	Migrating from a local caching-only name server to resolver caching

	Monitoring the responsiveness of Domain Name System name servers
	Resolver notifications for DNS name server responsiveness
	Examples of resolver monitoring of DNS name servers
	Optimizing the UNRESPONSIVETHRESHOLD value for your network
	Steps for modifying the UNRESPONSIVETHRESHOLD value

	Extension Mechanisms for DNS standards and the resolver

	Resolver configuration files
	Search orders used in the z/OS UNIX environment
	Setting z/OS XL C/C++ environment variables for configuration files
	Base resolver configuration files
	Translate tables
	Local host tables
	Protocol information
	Services information
	Host alias table

	Search orders used in the native MVS environment
	Base resolver configuration files
	Translate tables
	Local host tables
	Protocol information
	Services information

	Chapter 15. Domain Name System
	DNS and BIND overview
	Domain names
	Domain name servers
	Authoritative servers
	Caching-only servers
	Forwarders
	Stealth server

	Resolvers
	Resolver directives for nslookup
	Resolver directives for dig
	Query Packets
	Resource Records

	Recommended reading

	Performance issues
	Setting up and running the name server
	Configuring a master (primary) name server
	Step 1: Create the configuration file for BIND 9–DNS
	Step 2: Specify port ownership
	Step 3: Update the name server start procedure (optional)
	Step 4: Create the domain data files (master name server only)
	Step 5: Create the hints (root server) file
	Step 6: Create the loopback file
	Step 7: Configure logging
	Step 8: Ensure that the syslog daemon is running on your system
	Step 9: Specify whether the name server is to run as swappable or nonswappable
	Step 10: Start the name server
	Step 11: Verify that the name server started correctly
	Step 12: Verify the name server can accept queries

	Configuring a secondary name server
	Step 1: Create the configuration file for BIND 9-DNS

	Configuring a caching-only name server
	Step 1: Create the configuration file for BIND 9-DNS

	Configuring a stealth name server
	Adding forwarding to your name server
	Configuring host resolvers: Name server considerations
	Configuring host resolvers: onslookup considerations
	Creating the syslog file
	BIND 9 security considerations
	Remote Name Daemon Control
	Access Control Lists
	chroot and setuid
	Dynamic update security

	General VIPA considerations
	Special considerations when using dynamic VIPA
	Dynamic primary DNS movement using dynamic VIPA

	Querying name servers
	nslookup command
	Entering the interactive mode
	Entering the command line mode
	nslookup configuration

	Diagnosing problems
	Checking messages sent to the operators console
	Checking the syslog messages
	Using name server signals to diagnose BIND 9 DNS problems
	Using rndc to diagnose BIND 9 problems
	Checking name server logging files to diagnose BIND 9
	Using nslookup to diagnose problems
	Using dig to diagnose problems

	Advanced BIND 9 name server topics
	Multiple TCP/IP stack (common INET) considerations
	Dynamic update
	Incremental zone transfers
	Split DNS
	Implementing split DNS with views

	TSIG
	Generate shared keys for each pair of hosts
	Copying the shared secret to both machines
	Informing the servers of the key's existence
	Instructing the server to use the key
	TSIG key based access control
	Errors

	DNSSEC
	Generating keys
	Creating a key set
	Signing the child's key set
	Signing the zone
	Configuring servers

	IPv6 support in BIND 9
	Address lookups using AAAA records
	Address lookups using A6 records
	Synthetic IPv6 responses
	Address to name lookups using nibble format
	Address to name lookups using bitstring format
	Using DNAME for delegation of IPv6 reverse addresses

	DNS-related RFCs
	Proposed standards
	Proposed standards still under development
	Other important RFCs about DNS implementation
	Resource record types
	DNS and the Internet
	DNS operations
	Other DNS-related RFCs

	Chapter 16. Policy-based networking
	Policy types and infrastructure overview
	Configuration files and policy definition files
	Managing changes to configuration files and policy definition files
	Storing configuration files and policy definition files
	Steps for managing policy changes

	Policy infrastructure components
	TCP/IP stack
	Policy Agent
	Policy Agent roles
	Policy Agent services
	Policy Agent policies
	Configuration file import services
	Additional QoS services
	Policy API

	Traffic regulation management daemon
	IKE daemon
	Network security services daemon
	Defense Manager daemon
	SNMP Network SLAPM2 subagent

	Sample policy infrastructure
	Policy sample files
	Policy types
	QoS policy
	IDS policy
	IPSec policy
	AT-TLS policy
	Policy-based routing policy

	Steps for configuring the Policy Agent
	Step 1: Configure general information
	Step 2: Configure Policy Agent as a policy server
	Step 3: Configure Policy Agent as a policy client
	Step 4: Configure policies in Policy Agent configuration files
	Step 5: Configure Policy Agent to use the LDAP server using the ReadFromDirectory statement
	Step 6: Configure Policy Agent for configuration file import services
	Step 7: Configuring Policy Agent to automatically monitor applications

	Add SSL to Policy Agent connections
	Starting and stopping the Policy Agent
	AUTOLOG considerations
	Specifying environment variables
	Main configuration file search order
	Other considerations when starting the Policy Agent
	Stopping the Policy Agent

	Refreshing policies
	FLUSH and PURGE considerations
	Switching between local and remote policies

	Verifying that policies are correctly defined and functioning properly

	Chapter 17. Quality of service
	Differentiated Services policies
	Integrated Services policies
	Sysplex distributor policies
	QoS-specific Policy Agent functions
	Sysplex distributor policy performance monitoring configuration
	Policy performance collection configuration
	IPv4 type of service or IPv6 traffic class mapping configuration

	Options for configuring QoS
	Option 1: Use the IBM Configuration Assistant for z/OS Communications Server
	Option 2: Manual configuration
	Specifying the QoS configuration file based on Policy Agent role

	Defining policies in a Policy Agent configuration file
	Differentiated Services policy examples
	RSVP policy example
	Sysplex distributor policy example

	Defining policies using LDAP
	RSVP
	Configuring the RSVP agent
	Starting and stopping RSVP

	SNMP Network SLAPM2 (nslapm2) performance monitor
	Configuring the Network SLAPM2 subagent
	Starting and stopping the Network SLAPM2 subagent

	Verification
	Verifying that the policies are installed in the TCP/IP stacks
	Verifying that the expected traffic is mapping to the correct QoS policies
	Verifying that the sysplex distributor policy functions are working correctly
	Monitoring performance and tuning policies
	Using pasearch
	Using the Network SLAPM2 MIB to monitor policies
	Creating monitor table entries and enabling SNMP traps
	Creating the monitor table index
	Monitor table examples

	Chapter 18. Intrusion Detection Services
	Scan policies
	Attack policies
	Traffic Regulation policies
	TR TCP
	TR UDP

	Options for configuring IDS
	Option 1: Use the IBM Configuration Assistant for z/OS Communications Server
	Option 2: Manual configuration
	Specifying the IDS configuration file based on Policy Agent role

	Defining IDS policies
	IDS policy definition considerations
	IDS scan policy example
	IDS attack policy examples
	Traffic Regulation policy examples

	Verification
	Are the correct policies active?
	Is the expected traffic mapping to the correct policies?
	Are the IDS policy functions working correctly?

	TRMD
	Running TRMD as a started task
	Running TRMD from the z/OS UNIX shell
	Stopping TRMD
	TRMDSTAT

	Defensive filtering

	Chapter 19. IP security
	Terms and concepts for IP security
	Terminology conventions for IP security
	Commands used to administer IP security
	Overview of using IP security
	FIPS 140 and IP security
	Steps for configuring IP security to support FIPS 140 mode

	Configuring IP security
	Configuring IP security using the IBM Configuration Assistant for z/OS Communications Server
	Configuring IP security using manual configuration
	Specifying the IP security configuration file based on Policy Agent role

	IP filtering
	Filter rules and actions
	Filtering criteria in an IP packet
	Additional filtering criteria based on protocol
	Additional filtering criteria based on network attributes
	IP traffic patterns
	Routed traffic and fragmented packets
	Conditionally controlling IP filters

	Special considerations when using IP security for IPv6
	Neighbor discovery and multicast listener discovery
	Stateless address autoconfiguration
	IPv6-specific protocols
	IPv6 address types
	IPv6 extension headers
	Considerations for IPv6 OSPF security
	Virtual links

	Default IP filter policy and IP security policy
	Modifying the default IP filter policy

	IP filter logging
	IP filter discard action
	Data encryption and authentication — IPSec
	AH and ESP protocols
	Encapsulation
	UDP encapsulation of IPSec ESP packets

	IPSec and symmetric key management
	Manual key management
	Dynamic key management - IKE and IPSec negotiations
	Phase 1
	Phase 2
	Refreshing phase 1 Security Associations

	IPSec and network address translation devices
	NATT support level

	Dynamic structures used to map Security Associations
	Anchor filters and dynamic filters
	NATT anchor and NATT dynamic filters
	NAT resolution filters
	Remote port translation

	Steps for preparing the z/OS system for IP security
	IP security policy configuration
	Overview of configuring IP security policy
	Structure of an IP security configuration file

	Steps for configuring local IP security policy using only a common IP security configuration file
	Steps for configuring remote IP security policy using only a common IP security configuration file
	Steps for configuring local IP security policy using only a stack-specific IP security configuration file
	Steps for configuring remote IP security policy using only a stack-specific IP security configuration file
	Steps for configuring local IP security policy using both a stack-specific file and a common file
	Steps for configuring remote IP security policy using both a stack-specific file and a common file
	Component policies of IP security policy configuration files
	IP filter policy
	Key exchange policy
	Local dynamic VPN policy

	Quick start using IP filtering and IPSec host-to-host
	Displaying filters, rules, and actions
	Activating the quick start Security Association
	Displaying the quick start Security Associations

	Steps for configuring IP security policy
	Configuring specific security models
	Steps for configuring the trusted internal network model (simple IP filtering)
	Steps for configuring the partner company model (host-to-host with IPSec)
	Steps for configuring the partner company with NAT model (host-to-host with IPSec)
	Steps for configuring the partner company with NAPT model (host-to-host with IPSec)
	Steps for configuring the branch office model: Part 1 (host-to-gateway with IPSec)
	Steps for configuring the branch office with NAT model (host-to-gateway with IPSec)
	Steps for configuring the branch office model: Part 2 (gateway-to-gateway with IPSec)
	Additional topologies
	Configuration scenarios supported for NAT traversal

	Configuring the IKE daemon
	Multiple TCP/IP stacks
	Run-time environment
	Language Environment run-time considerations
	IKE daemon configuration source information
	Policy Agent considerations
	Using network security services
	Certificate revocation checking
	Steps for configuring the IKE daemon

	Starting the IKE daemon
	Stopping the IKE daemon
	Controlling the IKE daemon
	Verifying policy installation
	Console messages
	Displaying TCP/IP configuration
	Displaying active filters with the ipsec command
	Anchor filters and dynamic filters
	NATT anchor and NATT dynamic filters
	NAT resolution filters
	Displaying remote port translation with the ipsec command

	Displaying Security Associations with the ipsec command
	Displaying IKE tunnel information with the ipsec command
	Displaying IPSec tunnel information with the ipsec command

	Displaying filter rules with the pasearch command
	Verifying filter action

	Security Associations
	Activating a Security Association
	Verifying the activation of a Security Association
	Verifying the use of an active Security Association
	Refreshing Security Associations
	Phase 1
	Phase 2

	Deactivating Security Associations

	Modifying active IP security policy
	IP security policy files
	Policy Agent image configuration files
	Policy Agent main configuration file
	Active Security Associations and the ipsec -f default command

	Displaying NSS client information
	Sysplex-wide Security Associations and IP security
	FIPS 140 and sysplex-wide Security Associations
	Sysplex-wide Security Associations in a mixed-level environment
	Using encryption or authentication algorithms
	Remote identity support in filter policy

	Shadow Security Associations

	Sample IP security policy files

	Chapter 20. Network security services
	Terms and concepts for network security services
	Network security services overview
	NSS IPSec discipline overview
	NSS XMLAppliance discipline

	Preparing to provide network security services
	Steps for authorizing resources for NSS
	NSS server certificate label naming considerations
	NSS client authorization example
	NSS server configuration considerations
	Run-time environment
	Language Environment run-time considerations
	Steps for configuring the NSS server

	Using hash and URL certificate encoding types
	Enabling the NSSD to generate hash and URL certificate encoding
	Enabling the NSSD to process received hash and URL certificate encoding
	Controlling the use of hash and URL certificate encoding

	Creating certificate bundles
	Steps for creating certificate bundles

	Controlling the NSS server
	Starting the NSS server
	Stopping the NSS server
	Using the NSS server MODIFY command

	NSS server failover considerations
	NSS server capacity considerations
	NSS server certificate revocation support

	Managing network security services

	Chapter 21. Defensive filtering
	Global and stack-specific defensive filters
	Defensive filter names
	Defensive filter modes
	Allowing administrative access
	Filter-match logging
	TRMD
	Disabling defensive filters for a single stack
	Relationship between Intrusion Detection Services and defensive filters
	Comparison of IP security filters and defensive filters
	The DMD run-time environment
	The DMD and Language Environment run-time options
	Enabling defensive filtering
	Enabling the IP security function
	Steps for configuring the DMD

	Steps for authorizing resources for the DMD and the ipsec command
	Starting the DMD
	Stopping the DMD
	Using the DMD MODIFY command

	Chapter 22. Application Transparent Transport Layer Security data protection
	AT-TLS configuration in PROFILE.TCPIP
	TCP/IP stack initialization access control
	Options for configuring AT-TLS security
	Option 1: Use the IBM Configuration Assistant for z/OS Communications Server
	Option 2: Manual configuration
	Specifying the AT-TLS configuration file based on Policy Agent role

	AT-TLS policy configuration
	AT-TLS rules
	AT-TLS actions
	AT-TLS group action
	AT-TLS environment action
	AT-TLS connection action

	Getting started with AT-TLS
	Configuring the server system
	Configuring the client systems
	Steps for starting AT-TLS and verifying its operation

	Application compatibility with AT-TLS
	Policy considerations
	Reusable objects
	Common AT-TLS configuration file
	Exempting specific connections from AT-TLS
	Action refresh

	Achieving the basic level of security
	Picking the handshake roles
	Specifying the key ring

	Configuring more sophisticated security
	Protocol versions
	Cipher suite specification
	Certificate validation
	FIPS 140-2 support
	LDAP servers
	Encryption key refresh

	Additional security customization considerations
	Handshake timer
	Diagnostic traces
	Diagnosis considerations
	TLS function negotiation
	Wireless performance
	Certificate selection

	Session caching

	AT-TLS access control considerations
	Application model considerations
	Client application model
	Server application model
	Forked server application model
	CICS transaction model

	Advanced application considerations
	AT-TLS aware application considerations
	AT-TLS controlling application considerations
	Secondary connection application model

	Chapter 23. z/OS Load Balancing Advisor
	z/OS Load Balancing Advisor system overview
	TLS/SSL enablement for the z/OS Load Balancing Advisor
	Steps for configuring the z/OS Load Balancing Advisor
	Step 1: Evaluate TCP/IP workloads to be load balanced and select a load balancing solution (optional)
	Step 2: Decide who will have authority to start the Advisor (optional)
	Steps for granting authority to start the Advisor

	Step 3: Decide who will have authority to start the Agents (optional)
	Steps for granting authority to start the Agents

	Step 4: Authorize the Agents to use WLM services
	Steps for defining the resource profile with RACF

	Step 5: Configure the Advisor and Agents to automatically restart in case of application or system failure (optional)
	Step 6: Configure and start syslogd
	Step 7: Configure one Advisor per sysplex
	Define listening sockets/ports (required)
	Define the access control list
	Customizing optional statements

	Step 8: Configure one Agent per z/OS system in the sysplex
	Defining the IP address and port to bind to for communications with the Advisor
	Identifying the location of the Advisor (required)
	Customizing optional statements

	Step 9: Customize the TCP/IP profiles of the TCP/IP stacks that the Advisor and Agents will run on (optional)
	Enabling TLS/SSL for z/OS Load Balancing Advisor (optional)

	Step 10: Start the TCP/IP stacks that the Advisor and the Agents will use
	Step 11: Start the target applications that will be the targets of load balancing
	Step 12: Customize WLM policies for the Advisor and Agents (optional)
	Step 13: Start one Agent on each sysplex system you want to participate in this method of workload balancing
	Step 14: Start the one instance of the Advisor in the sysplex
	Step 15: Configure the external load balancers
	Step 16: Start the load balancers
	Step 17: Verify that the Advisor system is functioning correctly (optional)

	Configuring the z/OS Load Balancing Advisor in a multiple TCP/IP stack environment
	Step 5 (CINET): Configure the Advisor and Agents to automatically restart in case of application or system failure (optional)
	Step 7 (CINET): Configure one Advisor per sysplex
	Step 8 (CINET): Configure one Agent per z/OS system in the sysplex
	Step 9 (CINET): Customize the TCP/IP profiles of the TCP/IP stacks that the Advisor and Agents will run on (optional)
	Step 10 (CINET): Start the TCP/IP stacks that the Advisor and the Agents will use

	Configuring the z/OS Load Balancing Advisor with subplexing
	Step 5 (subplex): Configure the Advisor and Agents to automatically restart in case of application or system failure (optiona
	Step 6 (subplex): Configure and start syslogd
	Step 7 (subplex): Configure one Advisor per sysplex
	Step 8 (subplex): Configure one Agent per z/OS system in the sysplex
	Step 9 (subplex): Customize the TCP/IP profiles of the TCP/IP stacks that the Advisor and Agents will run on (optional)
	Step 13 (subplex): Start one Agent on each sysplex system you want to participate in this method of workload balancing
	Step 14 (subplex): Start the one instance of the Advisor in the sysplex
	Step 15 (subplex): Configure the external load balancers

	Operating the z/OS Load Balancing Advisor
	Changing the logging level of the Advisor and Agents
	Interpreting Agent and Advisor display information
	MODIFY procname,DISPLAY,LB
	MODIFY procname,DISPLAY,LB,INDEX=lbindex
	MODIFY procname,DISPLAY,MEMBERS,DETAIL

	Stopping or resuming workload distribution to particular members (QUIESCE and ENABLE)

	z/OS Load Balancing Advisor configuration example
	Load balancer configuration details
	Advisor configuration details
	Agent configuration file on SYSB
	Agent configuration file on SYSA
	Customization of PROFILE.TCPIP
	Example displays

	Chapter 24. Automated domain name registration
	System overview
	Interaction with name servers
	Interaction with the z/OS Load Balancing Advisor

	Enabling TLS/SSL for ADNR
	Steps for configuring automated domain name registration
	Step 1: Decide which sysplex resources should be managed by ADNR
	Step 2: Decide on one or more domain names to be managed by ADNR
	Step 3: Decide which name server or name servers are to be managed by ADNR
	Step 4: Configure the selected name servers to be the primary master name servers for the domain names that ADNR is to manage
	Step 5: Delegate the domain names to be managed by ADNR to the selected name servers from the parent domain's name server
	Step 6: Configure the z/OS Load Balancing Advisor function
	Step 7: Define security server profiles for ADNR
	Steps for granting authority to start ADNR

	Step 8: Configure ADNR to automatically restart in case of application or system failure (optional)
	Step 9: Configure and start syslogd (optional, but required to have ADNR write log messages and trace data to syslogd)
	Step 10: Configure one ADNR application per sysplex
	Identifying the name servers to update and the zones to be updated in those name servers
	Identifying the GWM to connect to and IP address to bind to for communications with the GWM
	Identifying the sysplex resources to be managed by ADNR
	Uniquely identifying this ADNR instance
	Customizing optional statements

	Step 11: Customize the TCP/IP profiles of the TCP/IP stacks on which ADNR and the LBA applications are to run (optional)
	Step 12: Start the TCP/IP stacks on which ADNR and the LBA applications are to run
	Step 13: Start the z/OS Load Balancing Advisor and Agent
	Step 14: Start the target applications that are to be managed by ADNR
	Step 15: Start the ADNR application
	Step 16: Verify that the ADNR system is functioning correctly (optional)

	z/OS Load Balancing Advisor configuration considerations
	Connectivity considerations
	Near real-time availability information of sysplex resources

	z/OS Load Balancing Advisor and Agent operational considerations
	Advisor operational considerations
	Agent operational considerations

	Name server configuration considerations
	Initial zone configuration
	Authorizing dynamic updates
	Updates to an ADNR-managed zone
	Update forwarding

	Authorizing zone transfers
	Limiting the duration of an outbound zone transfer
	Limiting the total number of simultaneous outbound zone transfers
	The .digrc file
	Split DNS (views)
	Zone transfer formats

	ADNR configuration considerations
	Changing the ADNR configuration file
	Flushing a zone

	Maintaining zone data integrity

	Steps for using the ADNR application in a sysplex subplexing environment
	Step 1: Plan how the new subdomains representing each subplex will fit into your DNS hierarchy
	Step 2: Configure the name servers that will be updated for the new subplex domains
	Step 3: Define and configure one Advisor per subplex
	Step 4: Update the Agent configuration files to communicate with the Advisor running in its subplex
	Step 5: Define one ADNR application per subplex
	Step 6: Assign the host_group and server_group statements from the sysplex ADNR configuration to their correct subplex domain
	Step 7: Configure the new ADNR instances to update the name server and zone for its subplex
	Step 8: Configure the new ADNR instances to communicate with the subplex Advisor
	Step 9: Update resolver configuration files (optional)
	Step 10: Start the TCP/IP stacks, Advisor, Agent, ADNR, and target applications that are to be managed by ADNR
	Step 11: Verify that each subplex ADNR is functioning correctly

	Operating ADNR
	Changing the logging level of ADNR
	Changing the ADNR configuration dynamically
	Interpreting ADNR display information
	Diagnosing problems

	ADNR configuration example
	ADNR display examples

	Chapter 25. Simple Network Management Protocol
	SNMP overview
	Network management application
	SNMP protocols
	SNMPv1
	SNMPv2
	SNMPv3

	SNMP agent
	Overview of SNMP security models

	SNMP subagents
	TCP/IP subagent
	OMPROUTE subagent
	TN3270E Telnet subagent
	Network SLAPM2 subagent
	OSA-Express Direct subagent

	Key generation commands
	Distributed Protocol Interface
	Trap forwarder daemon

	Processing an SNMP request
	Deciding on SNMP security needs
	Community-based security
	User-based security

	Step 1: Configure the SNMP agent
	Provide TCP/IP profile statements
	Provide community-based security and notification destination information
	Provide community name information
	Provide trap destination information

	Provide community-based and user-based security and notification destination information
	SNMPD.CONF file
	SNMPD.BOOTS
	Creating user keys

	Migrating community-based configuration to SNMPD.CONF format
	Provide secure access to agent from subagents
	Connecting to the agent through z/OS UNIX
	Connecting to the agent through TCP

	Allowing subagents with duplicate identifiers to connect
	Provide MIB object configuration information
	Start the SNMP agent
	Sample JCL procedure for starting OSNMPD from MVS
	Starting OSNMPD from z/OS UNIX

	Step 2: Configure the SNMP commands
	Configure the z/OS UNIX snmp command
	Provide snmp configuration information
	Provide MIB object information in MIBS.DATA
	MIBS.DATA statement syntax

	Configure the NetView SNMP command
	Configure the SNMP query engine
	Configure NetView as an SNMP monitor

	Step 3: Configure the SNMP subagents
	TCP/IP subagent configuration

	Step 4: Configure the Open Systems Adapter support
	OSA/SF prerequisites
	Required TCP/IP profile statements
	Subagent connection to OSA/SF when there are multiple TCP/IP instances

	Step 5: Configure the trap forwarder daemon
	Provide PROFILE.TCPIP statements
	Provide trap forwarder configuration information
	Starting and stopping the trap forwarder daemon
	Starting the trap forwarder daemon from z/OS UNIX

	Chapter 26. Remote print server
	Configuring the Remote Print Server
	Step 1: Configuring PROFILE.TCPIP for LPD
	Step 2: Updating the LPD server cataloged procedure
	Specifying LPD server parameters
	Configuring LPDDATA

	Step 3: Updating the LPD server configuration data set
	Step 4: Creating a banner page (optional)

	Chapter 27. Remote procedure calls
	Steps for configuring the PORTMAP address space
	Step 1: Configuring PROFILE.TCPIP for PORTMAP
	Step 2: Updating the PORTMAP cataloged procedure
	Step 3: Defining the data set for well-known procedure names
	Starting the PORTMAP address space

	Steps for configuring the z/OS UNIX PORTMAP address space
	Step 1: Configuring PROFILE.TCPIP for UNIX PORTMAP
	Step 2: Updating the PORTMAP cataloged procedure
	Starting the PORTMAP address space

	Steps for configuring the rpcbind address space
	Step 1: Configuring the PROFILE.TCPIP data set for rpcbind
	Step 2: Configuring security server (or RACF equivalent) items
	Step 3: Updating the RPCBIND cataloged procedure
	Step 4: Updating the /etc/services file
	Step 5: Configure SYS1.PARMLIB for rpcbind
	Starting the rpcbind address space

	Steps for configuring the NCS interface
	Understanding the LLBD server
	Understanding the NRGLBD server
	Step 1: Configuring PROFILE.TCPIP for NCS
	Step 2: Updating the NRGLBD cataloged procedure
	Step 3: Updating the LLBD cataloged procedure

	Chapter 28. Mail on z/OS
	Configuring the CSSMTP application
	Terms and concepts
	Setting up CSSMTP
	Steps for configuring and starting CSSMTP
	Steps for creating mail on the JES spool data set for CSSMTP

	Customizing the CSSMTP configuration file to handle undeliverable mail
	Steps for granting authority to start CSSMTP
	Security for CSSMTP
	Steps for using Transport Layer Security for CSSMTP
	Steps for configuring SMF records for CSSMTP (optional)
	Monitoring CSSMTP
	Differences between CSSMTP and SMTPD

	Configuring the SMTP server (SMTPD)
	Checklist for working within the SMTP environment
	Configuration process
	Step 1: Verify TCP/IP profile statements in the TCP/IP profile data set
	Step 2: Update the SMTP cataloged procedure
	Step 3: Customize the SMTPNOTE CLIST and modify parmlib data sets
	Step 4: Customize the SMTP mail headers (Optional)
	Step 5: Set up a TCP-to-NJE mail gateway (Optional)
	Step 6: Specify configuration statements in SMTP configuration data set
	Step 7: Create an SMTP security table (Optional)
	Step 8: Enable SMTP domain name resolution
	Step 9: Enable sending of non-local messages to other mail servers
	Step 10: Design SMTP exit to inspect and filter unwanted mail (optional)
	Step 11: Set up automation to monitor how much mail is queued

	Configuring z/OS UNIX sendmail and popper
	Overview
	The sendmail samples directory
	Steps for configuring z/OS UNIX sendmail
	Creating the configuration file
	Creating the z/OS-specific file
	Using sendmail databases
	Configuring an IPv6 daemon and relay client (optional)
	Configuring TLS support (optional)
	Configuring Security Server (RACF or equivalent) items
	Setting up a Milter (optional)
	Creating the Message Submission Program file submit.cf
	Running sendmail as a daemon

	Configuration hints and tips
	Environment variables
	Configuring popper
	Update the /etc/services file
	Update the /etc/inetd.conf file
	Create the directory for the temporary maildrop file
	Start inetd
	Correct connection
	Popper command—administering received mail

	Chapter 29. TIMED daemon
	Starting TIMED from the z/OS shell
	Starting TIMED as a procedure

	Chapter 30. SNTPD daemon
	Steps for starting SNTPD from the z/OS shell
	Steps for starting SNTPD as a procedure
	Stack affinity

	Chapter 31. Remote Execution
	UNIX REXEC
	TSO REXEC
	Configuring the TSO Remote Execution server
	Step 1: Configuring PROFILE.TCPIP for TSO Remote Execution server
	Step 2: Determine whether Remote Execution client will send REXEC or RSH commands
	Step 3: Permit remote users to access MVS resources (optional)
	Step 4: Update the TSO Remote Execution cataloged procedure
	Step 5: Create a user exit routine (optional)
	Step 6: Permit access to JESSPOOL files

	Configuring the z/OS UNIX Remote Execution servers
	Files for z/OS UNIX REXECD
	Files for z/OS UNIX RSHD
	Setting up the z/OS UNIX RSHD installation exit

	Configuring TSO and z/OS UNIX Remote Execution servers to use the same port

	Chapter 32. Express logon services with the Digital Certificate Access Server
	Express Logon Feature
	Web Express Logon
	Using the DCAS server interface for your logon solutions
	What DCAS provides

	Chapter 33. Miscellaneous server
	Discard protocol
	Echo protocol
	Character generator protocol
	Configuring the MISC server
	Step 1: Configuring PROFILE.TCPIP for the MISC server
	Step 2: Updating the MISC server cataloged procedure
	MISC server cataloged procedure (MISCSERV)
	Specifying the MISC server parameters

	Part 3. Appendixes
	Appendix A. Setting up the inetd configuration file
	Appendix B. TLS/SSL security
	Secure Socket Layer overview
	Server authentication
	Client authentication
	Encryption algorithms
	Enable CSFSERV resources

	Creating and managing keys and certificates at the server
	Certificate file types
	Common terminology
	Copying z/OS UNIX files to MVS data sets
	Using the gskkyman utility
	Create a key ring file
	Create a server self-signed certificate
	Extract the server certificate from the key ring
	Add client certificates to the server key ring

	Using RACF's Common Keyring support
	Configuring RACF services for the servers
	Create a key ring file
	Create a server self-signed certificate
	Extract a server certificate from a server key ring
	Add client certificates to the server key ring
	Add user IDs to the SERVAUTH profile access list
	Define PassTicket profiles to RACF

	Migrating an existing gskkyman key database to RACF

	Creating and managing keys and certificates at the client
	Create a self-signed client certificate
	Add server certificates to the client key ring

	Appendix C. Express Logon Feature
	Configuring RACF services for Express Logon
	Configuring the Express Logon components
	Configuring the Host On Demand Telnet client
	Configuring the z/OS TN3270E Telnet server
	Configuring the middle-tier Telnet server (CS/2 example)

	Appendix D. Using HCD
	Appendix E. Steps for preparing to run IP security
	Step 1: Setting appropriate UNIX System Services parameters
	Step 2: Authorizing the IKE daemon to the external security manager
	Steps for authorizing the IKE daemon to RACF

	Step 3: Authorizing the ipsec command to the external security manager
	Steps for authorizing the ipsec command to RACF

	Step 4: Authorizing IP security to ICSF/MVS (optional)
	Steps for setting up profiles in the CSFSERV resource class

	Step 5: Setting up the IKE daemon for digital signature authentication (optional)
	Steps for setting up the IKE daemon for digital signature authentication when the native certificate service is used
	Step 1: Define RACF facilities and access controls
	Step 2: Define profiles to control access to the RACDCERT command
	Step 3: Create a RACF key ring for the user ID under which the IKED is to run
	Step 4: Install an X509 digital certificate to be used by the native certificate service

	Steps for setting up the IKE daemon for digital signature authentication using the certificate service of an NSS server
	Step 1: Update the IKE daemon configuration file to define NSS clients
	Step 2: Install X509 digital certificates for NSS clients on the NSS server's key ring
	Step 3: Authorize the NSS clients
	Step 4: Enable HTTP Certificate Lookup (optional)

	IPSec certificate management
	Steps for generating an X509 digital certificate and having it signed by a certificate authority
	Steps for generating a self-signed X509 digital certificate
	Steps for migrating an existing key database to a RACF key ring

	Appendix F. Using an LDAP server for policy definitions
	Policy object model overview
	Overview of the object classes
	Considerations for defining LDAP objects
	Policy Agent retrieval of LDAP objects
	LDAP sample files
	Installing the schema definition on the LDAP server
	Using the sample LDAP objects
	Defining QoS policies using LDAP
	Differentiated Services policy example
	RSVP policy example
	Sysplex distributor routing policy example

	Defining IDS policies using LDAP
	IDS scan policy example
	IDS attack policy example
	IDS TCP traffic regulation policy example
	IDS UDP traffic regulation policy example

	Appendix G. Related protocol specifications
	Internet drafts

	Appendix H. Accessibility
	Notices
	Policy for unsupported hardware
	Trademarks

	Bibliography
	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Communicating your comments to IBM

